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Abstract. In 2007, Andrews and Paule introduced the family of functions ∆k(n) which
enumerate the number of broken k–diamond partitions for a fixed positive integer k. Since
then, numerous mathematicians have considered partitions congruences satisfied by ∆k(n)
for small values of k. In this work, we provide an extensive analysis of the parity of the
function ∆3(n), including a number of Ramanujan–like congruences modulo 2. This will
be accomplished by completely characterizing the values of ∆3(8n + r) modulo 2 for
r ∈ {1, 2, 3, 4, 5, 7} and any value of n ≥ 0. In contrast, we conjecture that, for any integers
0 ≤ B < A, ∆3(8(An+B)) and ∆3(8(An+B)+6) is infinitely often even and infinitely often
odd. In this sense, we generalize Subbarao’s Conjecture for this function ∆3. To the best of
our knowledge, this is the first generalization of Subbarao’s Conjecture in the literature.

1. Introduction

Broken k-diamond partitions were introduced in 2007 by Andrews and Paule [2]. These

are constructed in such a way that the generating functions of their counting sequences

(∆k(n))n≥0 are closely related to modular forms. Namely,
∞∑
n=0

∆k(n)qn =
∞∏
n=1

(1− q2n)(1− q(2k+1)n)

(1− qn)3(1− q(4k+2)n)

= q(k+1)/12η(2τ)η((2k + 1)τ)

η(τ)3η((4k + 2)τ)
, k ≥ 1,

where we recall the Dedekind eta function

η(τ) := q
1
24

∞∏
n=1

(1− qn) (q = e2πiτ ).

In their original work, Andrews and Paule proved that, for all n ≥ 0,

(1.1) ∆1(2n+ 1) ≡ 0 (mod 3).

They also conjectured a few other congruences modulo 2 satisfied by certain families of

broken k-diamond partitions.
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Since then, a number of authors have provided proofs of additional congruences satisfied

by broken k-diamond partitions. Hirschhorn and Sellers [5] provided a new proof of (1.1)

above as well as elementary proofs of the following parity results: For all n ≥ 0,

∆1(4n+ 2) ≡ 0 (mod 2),

∆1(4n+ 3) ≡ 0 (mod 2),

∆2(10n+ 2) ≡ 0 (mod 2), and

∆2(10n+ 6) ≡ 0 (mod 2)

The third result in the list above appeared in [2] as a conjecture while the other three did not.

Soon after the publication of [5], Chan [3] provided a different proof of the parity results for

∆2 mentioned above as well as a number of congruences modulo powers of 5. Subsequently,

Paule and Radu [7] also proved a number of congruences modulo 5 for broken 2–diamond

partitions, and they also shared conjectures related to broken 3–diamond partitions modulo

7 and broken 5–diamond partitions modulo 11. (Two of these conjectures have recently been

proven by Xiong [12].)

Our goal in this work is to focus on parity results satisfied by ∆3(n). The parity of this

function has been studied, at least partially, by Radu and Sellers [10] who proved (among

other things) that, for all n ≥ 0,

∆3(14n+ 7) ≡ 0 (mod 2),

∆3(14n+ 9) ≡ 0 (mod 2), and(1.2)

∆3(14n+ 13) ≡ 0 (mod 2).

We wish to greatly extend results such as those mentioned in (1.2). This will be accomplished

by completely characterizing the values of ∆3(8n+ r) modulo 2 for r ∈ {1, 2, 3, 4, 5, 7} and

any value of n ≥ 0 by finding interesting relationships modulo 2 between the generating func-

tions for ∆3(8n+r) for these special values of r and classical q–series. We also note here that,

while ∆3(8n + r) is extremely “well–behaved” modulo 2 for the values r ∈ {1, 2, 3, 4, 5, 7},
and satisfies numerous congruences modulo 2 in arithmetic progressions, we also believe that

∆3 does not satisfy any Ramanujan–like congruences modulo 2 within any subprogression

of 8n or 8n + 6. In this sense, we generalize Subbarao’s Conjecture for this function ∆3 by

calling attention to the two arithmetic progressions 8n and 8n+ 6. Our hope is that such an

analysis will motivate others to complete similar work on other restricted parti! tion func-

tions f(n); namely, to locate a particular value A such that f(An + r) has very nice parity

properties for certain values of r while having no congruences modulo 2 within the other

arithmetic progressions of the form An + r. (This seems to be a natural next step in the

study of the parity of partition functions given the first author’s recent proof of Subbarao’s

Conjecture [9].)
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We note, in passing, that we also prove a number of parity results for ∆3(4n + r) and

∆3(2n+r) for various values of r. We begin with a characterization of the parity of ∆3(2n+1)

for any n.

Theorem 1.1.

(1.3)
∞∑
n=0

∆3(2n+ 1)qn ≡
∞∏
n=1

(1− qn)(1− q7n) (mod 2)

Remark 1.2. It should be noted that the coefficients of the power series representation of

the product on the right–hand side of (1.3) can be completely classified modulo 2. First, we

note that

q1/3
∞∏
n=1

(1− qn)(1− q7n) ≡
∑
m,n∈Z

q
(6m−1)2+7(6n−1)2

24 (mod 2).

We then define
∞∑
n=0

a(n)qn :=
∑
m,n∈Z

q(6m−1)
2+7(6n−1)2 (mod 2).

Next note that a(ν) = 0 unless ν = 24k + 8. If ν = 24k + 8 = 8(3k + 1) we observe that

a(ν) = #{(m,n) ∈ N2 : m2 + 7n2 = 8(3k + 1),m, n ≡ 1 (mod 2)}.

Moreover, if 7|ν, then a(ν) = a(ν/7). This is clear because if m2 + 7n2 = 7s then 7|m which

implies that (7 ·(m/7))2+7n2 = 7s which implies that n2+7(m/7)2 = s. Thus every solution

to m2 + 7n2 = 7s can be transformed into a solution of m′2 + 7n′2 = s where m′ = n and

n′ = m/7 and vice versa. Next, let n be a positive integer with 7 - n and let α be an integer

greater than 2. Assume that there exists x, y ∈ Z with x, y ≡ 1 (mod 2) such that

x2 + 7y2 = 2αn.

We note that the ring Z
[
1+
√
−7

2

]
is a unique factorization domain. In particular, we have

2 =

(
1 +
√
−7

2

)(
1−
√
−7

2

)
.

Assume that

n = pα1
1 · · · pαss × (a1 +

√
−7b1)

β1 · · · (ar +
√
−7br)

βr × (a1 −
√
−7b1)

β1 · · · (ar −
√
−7br)

βr ,

where pj, aj ±
√
−7bj are primes. Set

2α =
(1 +

√
−7

2

)α(1−
√
−7

2

)α
.

Note that

(x+
√
−7y)(x−

√
−7y) = 2αn.

If rj is maximal such that p
rj
j |(x+

√
−7y), then p

rj
j |(x−

√
−7y) which implies that 2rj = αj

for j = 1, . . . , s. It follows that

(ai +
√
−7bi)

ji(ai −
√
−7bi)

βi−ji |(x+
√
−7y),
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for some ji = 0, · · · , βi and i = 1, . . . , r. Furthermore, either(1 +
√
−7

2

)(1−
√
−7

2

)α−1
or (1−

√
−7

2

)(1 +
√
−7

2

)α−1
divides x +

√
−7y. These are the only possibilites that guarantee that x and y are odd.

Consequently, in total we have 2
∏r

j=1(1 + βj) possibilities for x +
√
−7y. If out of this we

choose only those with x ≥ 0 we obtain
∏r

j=1(1 + βj) possibilities. This implies that

a(2αn) =
r∏
j=1

(1 + βj)

where 7 - n and

a(2α7kn) =
r∏
j=1

(1 + βj).

Thus,

a(2α7kn) ≡ 1 (mod 2)

iff βj is even for all j or equivalently if n is a square. Next note that 2α7kt2 ≡ 8 (mod 24) iff

3 - t and α− 3 is even and nonnegative. This implies that
∞∑
n=0

a(n)qn ≡
∞∑
n=0

A(n)qn (mod 2),

where

A(n) :=

{
1 if n = 23t2 or n = 237t2, 3 - t, k ≥ 0,
0 otherwise.

Thus

q1/3
∞∏
n=1

(1− qn)(1− q7n) ≡
∞∑
n=0

A(n)qn/24 =
∞∑
k=0

A(24k + 8)qk+1/3.

Hence,
∞∏
n=1

(1− qn)(1− q7n) ≡
∞∑
k=0

A(24k + 8)qk =
∑
t≥0,3-t

q
7t2−1

3 + q
t2−1

3 .

Thanks to the above analysis, we have the following:

Corollary 1.3. For all n ≥ 0, ∆3(2n + 1) ≡ 1 (mod 2) if and only if 3n + 1 = t2 or

3n+ 1 = 7t2.

Notice that the three congruences mentioned in (1.2) follow almost immediately from

this characterization given in Corollary 1.3. For example, the above work implies that we

need to consider whether 3(7n + 3) + 1 or 21n + 10 can be represented as t2 or 7t2 for

some integer t in order to determine the parity of ∆3(14n + 7). Note that 21n + 10 is

not divisible by 7, so it cannot be written in the form 7t2. Moreover, 21n + 10 can never
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be square because 21n + 10 ≡ 3 (mod 7) and 3 is a quadratic nonresidue modulo 7. In

analogous fashion, ∆3(14n+ 9) ≡ 0 (mod 2) because 6 is a quadratic nonresidue modulo 7,

and ∆3(14n+ 13) ≡ 0 (mod 2) because 5 is a quadratic nonresidue modulo 7.

We now consider parity results satisfied by ∆3(4n+ r) for various values of r.

Theorem 1.4.
∞∑
n=0

∆3(4n)qn ≡
∞∏
n=1

(1− qn)5

(1− q7n)
(mod 2)

Theorem 1.5.
∞∑
n=0

∆3(4n+ 2)qn ≡ q
∞∏
n=1

(1− q7n)5

(1− qn)
(mod 2)

Theorem 1.6.
∞∑
n=0

∆3(4n+ 3)qn ≡
∞∏
n=1

(1− q2n)(1− q14n) (mod 2)

Remark 1.7. A few remarks are in order regarding Theorem 1.6. First, note that the product

on the right–hand side of the congruence is an even function of q. This implies that, for all

n ≥ 0, ∆3(4(2n + 1) + 3) ≡ (mod 2) or ∆3(8n + 7) ≡ 0 (mod 2). Secondly, note that the

right–hand side of Theorem 1.6 is the same as the right–hand side in Theorem 1.1 except

with q replaced by q2. Therefore, we can completely characterize the values of ∆3(4n + 3)

modulo 2 via the remarks made regarding Theorem 1.1.

Our last set of theorems provides information about the parity of ∆3(8n+r) for a number

of values of r.

Theorem 1.8.
∞∑
n=0

∆3(8n+ 1)qn ≡
∞∏
n=1

(1− q2n) (mod 2)

Remark 1.9. As with Theorem 1.6, it is clear that the right–hand side in Theorem 1.8 is an

even function of q. Thus, we know that, for all n ≥ 0, ∆3(16n+9) ≡ 0 (mod 2) immediately.

But we actually can say more. Thanks to Euler’s Pentagonal Number Theorem [1, Corollary

1.7], we know
∞∏
n=1

(1− q2n) =
∞∑
m∈Z

(−1)mqm(3m−1).

Therefore, we can explicitly state when ∆3(8n + 1) is even or odd; namely, for any n ≥ 0,

∆3(8n + 1) is odd if and only if n = m(3m − 1) for some integer m. This is equivalent to

saying ∆3(8n+ 1) is odd if and only if 12n+ 1 is a perfect square. This means we can write

down numerous Ramanujan–like congruences modulo 2 within the arithmetic progression

8n+ 1 with ease.
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Theorem 1.10.
∞∑
n=0

∆3(8n+ 2)qn ≡ q
∞∏
n=1

(1− qn)(1− q28n) (mod 2)

Theorem 1.11.
∞∑
n=0

∆3(8n+ 3)qn ≡
∞∏
n=1

(1− qn)(1− q7n) (mod 2)

Remark 1.12. Given Theorem 1.1, we see that Theorem 1.11 clearly implies that, for all

n ≥ 0, ∆3(8n + 3) ≡ ∆3(2n + 1) (mod 2), an attractive “internal” congruence satisfied by

∆3. We will briefly mention this congruence again in our concluding remarks below.

Theorem 1.13.
∞∑
n=0

∆3(8n+ 4)qn ≡
∞∏
n=1

(1− q4n)(1− q7n) (mod 2)

A remark is in order regarding Theorems 1.10 and 1.13. We have

q
1
24

∞∏
n=1

(1− qn) =
∞∑

n=−∞

(−1)nq(6n−1)
2/24 ≡

∞∑
n=−∞

q(6n−1)
2/24 (mod 2).

Consequently,

q
11
24

∞∏
n=1

(1− q4n)(1− q7n) ≡
∑
n,m∈Z

q
4(6n−1)2+7(6m−1)2

24 (mod 2)

and

q
29
24

∞∏
n=1

(1− qn)(1− q28n) ≡
∑
n,m∈Z

q
(6n−1)2+28(6m−1)2

24 (mod 2).

Next we note that

n2 + 7m2 ≡ 11 (mod 24)⇔ n = 2k, k,m ≡ ±1 (mod 6)

and

n2 + 7m2 ≡ 29 (mod 24)⇔ m = 2k, n, k ≡ ±1 (mod 6).

For given x with x ≡ 11 (mod 24) the set of solutions (n,m) such that 4n2+7m2 = x can be

partitioned into equivalence classes and two solutions (n1,m1) and (n2,m2) are equivalent

iff n1 = ±n2 and m1 = ±m2. In particular each equivalence class has exactly 4 elements and

there is only one solution (n1,m1) in each class such that n1 = 2k1 and (k1,m1) ≡ (−1,−1)

(mod 6). This implies in particular that for

(1.4)
∞∑
n=0

b(n)qn :=
∑
n,m∈Z

qn
2+7m2

we have
1

4

∞∑
n=0

b(24n+ 11)q24n+11 =
∑
n,m∈Z

q4(6n−1)
2+7(6m−1)2 .
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This implies that

1

4
q

11
24

∞∑
n=0

b(24n+ 11)qn =
∑
n,m∈Z

q
4(6n−1)2+7(6m−1)2

24 .

In a similar fashion we conclude that

1

4
q

29
24

∞∑
n=0

b(24n+ 29)qn =
∑
n,m∈Z

q
(6n−1)2+28(6m−1)2

24 .

Because of these two relations we observe that in order to understand
∏∞

n=1(1−q4n)(1−q7n)

and
∏∞

n=1(1− qn)(1− q28n) modulo 2 we need to understand b(n) in (1.4) for n odd. By [4,

p. 61, Lemma 3.25] we know that, for m > 1 and odd with 7 - m,

|{x, y ∈ Z : gcd(x, y) = 1, x2 + 7y2 = m}| = 2
∏
p|m

(
1 +

(
−7

p

))
.

Let m = m2
smf with mf squarefree. Then we observe immediately that

|{x, y ∈ Z : x2 + 7y2 = m}| = 2
∑
d|ms

∏
p|m
d2

(
1 +

(
−7

p

))
.

Consequently,

(1.5) b(m) = 2
∑
d|ms

∏
p|m
d2

(
1 +

(
−7

p

))
.

By using the fact that

|{x, y ∈ Z : x2 + 7y2 = 7αn}| = |{x, y ∈ Z : x2 + 7y2 = n}|

one can lift the restriction that 7 - m. From (1.5) we observe that b(m)
2

is multiplicative for

odd m. Because of (1.5), we know for prime p ≥ 3 that

b(p2α+1) = 2(α + 1)

(
1 +

(
−7

p

))
b(p2α) = 2

(
α

(
1 +

(
−7

p

))
+ 1

)
.

This now leads to two corollaries which give a characterization of the values of ∆3(8n + 2)

and ∆3(8n+ 2), modulo 2, in terms of this function b(n) just described:

Corollary 1.14. For all n ≥ 0, ∆3(8n+ 2) ≡ 1
4
b(24n+ 29) (mod 2).

Corollary 1.15. For all n ≥ 0, ∆3(8n+ 4) ≡ 1
4
b(24n+ 11) (mod 2).

Theorem 1.16.
∞∑
n=0

∆3(8n+ 5)qn ≡
∞∏
n=1

(1− q14n) (mod 2)
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Remark 1.17. As was discussed after Theorem 1.8, we can employ Euler’s Pentagonal

Number Theorem here as well to obtain a similar classification result. We can also easily see

that, for all n ≥ 0, ∆3(16n+ 13) ≡ 0 (mod 2) since the right–hand side of Theorem 1.16 is

an even function of q. In similar fashion, since the right–hand side is also a function of q7,

we can say that, for all n ≥ 0, ∆3(56n+ r) ≡ 0 (mod 2) for r ∈ {13, 21, 29, 37, 45, 53}.

2. Proof of the Congruences

Let

f =
∑

a(n)qn :=
η(6z)η(21z)

η3(3z)η(42z)

and

φ := η(8z)72.

Then

a(n) = ∆3

(n+ 1

3

)
.

Let

g =
∑

b(n)qn.

For χ a character we define

gχ :=
∑

χ(n)b(n)qn

and for D ∈ Z, ε(n) :=
(
D
n

)
let

gD := gε.

Define the Ud-operator by

Udg :=
∑

b(dn)qn.

We need that for F :=
∑
A(n)qn, G :=

∑
B(n)qnN and χ a character modulo N we have

(2.1) (FG)χ(z) = Fχ(z)G(z)

and

(2.2) UN(FG) = G(z/N)(UNF )(z).

One verifies that our congruences are equivalent to the following:

(2.3)

Thm. 1.1: U2f ≡ η(3z)η(21z) (mod 2)
Thm. 1.6: U4f ≡ η(6z)η(42z) (mod 2)
Thm. 1.11: U8f ≡ η(3z)η(21z) (mod 2)

Thm. 1.5: 1
2
(f4 + f−4) ≡ η5(84z)

η(12z)
(mod 2)

Thm. 1.4: 1
2
(f4 − f−4) ≡ η5(12z)

η(84z)
(mod 2)

Thm. 1.8: 1
2
([U2f ]4 + [U2f ]−4) ≡ η(24z) (mod 2)

Thm. 1.16: 1
2
([U2f ]4 − [U2f ]−4) ≡ η(168z) (mod 2)

Thm. 1.10: 1
4
(f4 + f−4 − f8 − f−8) ≡ η(24z)η(672z) (mod 2)

Thm. 1.13: 1
4
(f4 − f−4 − f8 + f−8) ≡ η(96z)η(168z) (mod 2).
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Next note that φ is a series in powers of q8. Let φ(s)(z) := φ(z/s). In particular note that

φ(s)(z) is a series in powers of q8/s. Using (2.1) and (2.2) we find

(2.4)
U2(fφ) = φ(2)U2f
U4(fφ) ≡ φ(4)U4f
U8(fφ) ≡ φ(8)U8f

1
2
((fφ)4 + (fφ)−4) = φ · 1

2
(f4 + f−4)

1
2
((fφ)4 − (fφ)−4) = φ · 1

2
(f4 − f−4)

1
2
([U2(fφ)]4 + [U2(fφ)]−4) = 1

2
([φ(2)U2f ]4 + [φ(2)U2f ]−4) = φ(2) · 1

2
([U2f ]4 + [U2f ]−4)

1
2
([U2(fφ)]4 − [U2(fφ)]−4) = 1

2
([φ(2)U2f ]4 − [φ(2)U2f ]−4) = φ(2) · 1

2
([U2f ]4 − [U2f ]−4)

1
4
((fφ)4 + (fφ)−4 − (fφ)8 − (fφ)−8) = φ · 1

4
(f4 + f−4 − f8 − f−8)

1
4
((fφ)4 − (fφ)−4 − (fφ)8 + (fφ)−8) = φ · 1

4
(f4 − f−4 − f8 + f−8)

Recall that η(τ)2

η(2τ)
≡ 1 (mod 2). Then because of (2.4), (2.3) is equivalent to:

(2.5)

Thm. 1.1:
(
η(τ)2

η(2τ)

)4
· U2(fφ) ≡ φ(2)η(3z)η(21z) (mod 2)

Thm. 1.6:
(
η(τ)2

η(2τ)

)4
· U4(fφ) ≡ φ(4)η(6z)η(42z) (mod 2)

Thm. 1.11:
(
η(τ)2

η(2τ)

)4
· U8(fφ) ≡ φ(8)η(3z)η(21z) (mod 2)

Thm. 1.5:
(
η(τ)2

η(2τ)

)4
· 1
2
((fφ)4 + (fφ)−4) ≡

(
η(τ)2

η(2τ)

)−2
· φ · η

5(84z)
η(12z)

(mod 2)

Thm. 1.4:
(
η(τ)2

η(2τ)

)4
· 1
2
((fφ)4 − (fφ)−4) ≡

(
η(τ)2

η(2τ)

)−2
· φ · η

5(12z)
η(84z)

(mod 2)

Thm. 1.8:
(
η(τ)2

η(2τ)

)4
· 1
2
([U2(fφ)]4 + [U2(fφ)]−4) ≡ φ(2) · η(24z) ≡ φ(2) · η(12z)2 (mod 2)

Thm. 1.16:
(
η(τ)2

η(2τ)

)4
· 1
2
([U2(fφ)]4 − [U2(fφ)]−4) ≡ φ(2) · η(168z) ≡ φ(2) · η(84z)2 (mod 2)

Thm. 1.10:
(
η(τ)2

η(2τ)

)4
· 1
4
((fφ)4 + (fφ)−4 − (fφ)8 − (fφ)−8) ≡ φ · η(24z)η(672z) (mod 2)

Thm. 1.13:
(
η(τ)2

η(2τ)

)4
· 1
4
((fφ)4 − (fφ)−4 − (fφ)8 + (fφ)−8) ≡ φ · η(96z)η(168z) (mod 2).

Denote by Mk(N,χ) the set of weak modular forms of weight k and character χ for the

group Γ0(N). By [6, Th. 1.64] we have that fφ ∈M35

(
504,

(−1
d

))
and

(
η(τ)2

η(2τ)

)4
∈M2(4, id).

Furthermore, by [6, Prop. 2.8] we have that if g ∈Mk(N,χ) and
(
D
n

)
is a character modulo

m, then gD ∈ Mk(Nm
2, χ). By [6, Prop. 2.22], if g ∈ Mk(N,χ) and d|N , then Udf ∈

Mk(N,χ). This implies that the left hand side of the relations in (2.5) in the first three lines

are in M37

(
504,

(−1
d

))
, in the next four lines they are in M37

(
504 · 42,

(−1
d

))
and in the last

two lines they are in M37

(
504 · 82,

(−1
d

))
. One can check the same holds for the functions

on the right hand side using [6, Th. 1.64]. Using a generalization of Sturm’s theorem [11],

namely [6, Th. 2.58], we find that the first three identities hold if they hold for the first
35
12
× 1152 ∼ 3360 coefficients in their q-expansion. Similarly, the next four identities hold if

they hold for 35
12
× 18432 ∼ 53760 coefficients in their q-expansions. Finally for the last two

identities on needs to check about 215040 coefficients modulo 2.
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Remark 2.1. An alternative method to prove these identities in their original form is using

the approach from [8] which leads to a less elegant proof but more direct on the problem.

We calculated using this method that we do not need to compute more that 1056 coefficients

for any of the identities.

3. Closing Comments

We close this note by sharing a conjectured infinite family of “internal” congruences

satisfied by ∆3(n) modulo powers of 2:

Conjecture: Let

λα =

{
2α+1+1

3
if α is even,

2α+1
3

if α is odd.

Then, for all α ≥ 1 and n ≥ 0,

∆3(λα)∆3(2
α+2n+ λα+2) ≡ ∆3(λα+2)∆3(2

αn+ λα) (mod 2α)

and

∆3(λα) ≡ 1 (mod 2).

The case α = 1 of this conjecture was proven above; namely, in Remark 1.12, we noted that

∆3(8n+ 3) ≡ ∆3(2n+ 1) (mod 2)

for all n ≥ 0.
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