Analytic Description of the Phase Transition of
Inhomogeneous Multigraphs

Elie de Panafieu and Vlady Ravelomanana™
Univ Paris Diderot, Sorbonne Paris Cité,
LIAFA, UMR 7089,
75013, Paris, France

Abstract

We introduce a new model of random multigraphs with colored vertices and
weighted edges. It is similar to the inhomogeneous random graph model of
Séderberg [17], extended by Bollobds, Janson and Riordan [6]. By means of an-
alytic combinatorics, we then analyze the birth of complexr components, which
are components with at least two cycles. We apply those results to give a com-
plete picture of the finite size scaling and the critical exponents associated to a
rather broad family of decision problems. As applications, we derive new proofs
of known results on the 2-colorability problem [16] and on the enumeration of
properly g-colored multigraphs [18], and new results on the phase transition of
the satisfiability of quantified 2-Xor-formulas [8, 7].

Keywords: generating functions, analytic combinatorics, inhomogeneous
graphs, phase transition

1. Introduction

Phase transitions for Boolean Satisfiability (SAT) and for Constraint Satis-
faction Problems (CSP) are fundamental problems arising in different commu-
nities including computer science, mathematics and physics. For any k > 2, the
random version of the well-known k-SAT problem is known to exhibit a sharp
phase transition [13]: as the density ¢ of clauses (where the number of clauses is
¢ times the number of variables) increases, the formula abruptly changes from
being satisfiable to being unsatisfiable at a critical threshold point. For general
CSP, the last decade has seen a growth of interest in determining the nature of
the SAT /UNSAT phase transition (sharp or coarse), locating it, determining a
precise scaling window and better understanding the structure of the space of
solutions. These turn out to be very challenging tasks (see e.g. [9], [1]).
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1.1. Related Works

Recently, different authors gave precise descriptions of the phase transitions
associated to several tractable decision problems. The 2-colorability problem
consists in determining if the vertices of a given graph can be colored with two
colors in such a way that the vertices of each edge of the graphs have distinct
colors. Pittel and Yeum [16] derived the limit probability for a random graph
G(n,m) with n vertices and m edges to be 2-colorable, when the parameter
m/n is smaller than or in the vinicity of 1/2. Almost at the same time, Daudé
and Ravelomanana [8] considered the 2-Xor satisfiability problem in which each
instance is a formula that is a conjunction of Boolean equations of the form = &
y=0or x®y = 1. They showed that the probability that a random 2-Xor
formula is satisfiable tends to a similar threshold function. In [7], Creignou et al
introduced (a,2)-QXor formula, which are formula of the form VX3V ¢(X,Y)
where X and Y denote distinct set of variables and ¢ is a Xor-formula with
clauses containing exactly a variables from X and 2 variables from Y. The
problem consists in determining if for every assignment of the variables X,
there ezists an assignment of the variables Y such that ¢(X,Y) is true. For
any positive integers a, the authors showed that the phase transitions of (a, 2)-
QXor-SAT are coarse and that the probability of satisfiability is almost 0 when
the number of variables is around 2 times the number of clauses.

A random graph from the G(n,p) model has n vertices and each pair of
vertices is linked with probability p. In [10], Erdds and Rényi located the density
of edges at which the first connected component with more than one cycle - called
a complex component - appears. Using analytic tools, Janson, Knuth, Luczak
and Pittel derived in [15] more information on the structure of a random graph
or multigraph near the birth of complex components. Sdéderberg introduced
in [17] a model of inhomogeneous random graphs!, extended by Bollobés, Janson
and Riordan [6]. This model generalizes G(n,p) in the following way: each
vertex receives a type among a set of g types, and the probability that a vertex
of type i and one of type j are linked is the coefficient (7,j) of a symmetric
matrix R of dimension ¢ X q. Among other results, they located the birth of
the complex component. We combine here the accuracy of the approach of [15]
with the generality of the inhomogeneous random graph model. We also enrich
the model, adding a weight ¢ for each connected component.

1.2. Our Work

Random Boolean formulas with two variables per clause can be modeled by
random multigraphs. Observe that the critical density 1/2, common in [16, 8]
and [7], corresponds to an important change in the structure of the underlying
graphs: as the number of edges reaches half the number of vertices, components
more complex than trees or unicyclics start to appear in random graphs (see
for instance [4, 15]). Our main goal is to establish a general framework that
allows precise descriptions of some of the phase transitions of random formulas

We thank Annika Heckel for bringing to our notice the existence of this model.



with 2 variables per clause. Namely our results apply to (and generalize) those
in [16, 8]. In particular, they give a more detailed picture of the transitions
introduced in [7] for quantified formulas. To do so, we study a new model
of colored and weighted random multigraphs, similar to the inhomogeneous
random graph model [17] and to the multigraph process [15]. We then propose a
detailed analysis (thought still very general) with the purpose of quantifying the
probability of satisfiability of formulas before and inside the critical window of
their phase transitions. Our work is based on generating functions and analytic
methods.

The rest of the paper is organized as follows: in Section 2, we first present
our model and derive the main theorem on the asymptotic number of inhomo-
geneous multigraphs before and near the birth of complex components. Then,
in Section 3, we show how to use this theorem to derive the phase transition
of several tractable satisfiability problems, namely bipartitness, quantified 2-
Xor-formulas and random k-colorings. Section 4 is dedicated to the proof of
the main theorem: first we derive the generating functions of the vertex-colored
and edge-weighted trees, unicyclic graphs, paths of trees and graphs with cubic
kernel of fixed excess. They are then gathered to build general multigraphs.

2. Model and Main Theorem

We consider labelled multigraphs - loops and multiple edges are allowed -
with colored vertices and weighted edges. Let R be a symmetric ¢ X ¢ matrix
with non-negative coefficients and o a fixed positive constant. Let {ci,...,¢.}
be a set of ¢ distinct colors. A multigraph G is a (R, o)-multigraph if

e cach vertex v of G is colored with color c(v) € {e1,...,¢4},
e cach edge vw of G is weighted with R.() c(w)s
e a weight o is given to each connected component.

Following [3, 5, 11, 15], the compensation factor k(G) of a multigraph G with
set of vertices V' and set of edges F is

K/(G) = H 27771,,1,1; H (mv,w!)il (1)

veV vwekl

where my, ., is the number of edges binding v to v in G. Let us consider an
ordered sequence of m ordered couples of vertices (v, w1),..., (Vm,wn). In-
terpreting each couple as an edge, this sequence describes a multigraph. The
number of such sequences corresponding to a given multigraph G with m edges
is exactly 2™mlk(G). Therefore, the two following random processes induce the
same probability distribution on the multigraphs with n vertices and m edges:

e draw among all multigraphs with n vertices and m edges with probability
proportional to the compensation factors,



e draw uniformly and independently 2m vertices in [1,n] to form a sequence
of couples (v, w1),. .., (Vm, W), output the corresponding multigraph.

The compensation factor is equal to 1 if and only if the multigraph contains
neither loops nor multiple edges (such a multigraph is called simple). The sum
of the compensation factors of all multigraphs with n vertices and m edges

is called, for simplicity, their number and is equal to % (which needs not
be an integer). Given an (R, o)-multigraph G, we define its weight w(G) as
the product of three terms: the compensation factor x(G), a factor o for each

connected component and the product of the weights of its edges

w(G) = K(G) x 0D x T[ Re(w).e(w)> (2)

TwerE

where cc(G) is the number of connected components of G and E its set of edges.

There are three differences between our model and the original one, intro-
duced by Soéderberg [17]. First, the number of edges is a parameter of the model,
while in [17] each pair of vertices is linked by an edge with some probability.
This is the same difference as between the classic graph models G(n,m) and
G(n,p). Secondly, we consider multigraphs instead of simple graphs. Thirdly,
the parameter o is new. It brings to the model the expressiveness needed to
encode the constraint satisfaction problems considered in Section 3.

An edge-weighted multigraph is vertez-transitive if its automorphism group
is transitive and also preserve the weights — see for instance Godsil and Royle [14].
Intuitively, this means that, using only the topology of the multigraph, no ver-
tex can be distinguished from another. Let G be a multigraph with ¢ vertices
and weighted edges. The weighted adjacency matriz R of G is a g X ¢ matrix
with entry R;; equal to the sum of the weights of the edges between vertex i
and vertex j. For simplicity, we say that a matrix R is vertex-transitive if it
is symmetric, has non-negative coefficients and the weighted multigraph associ-
ated is vertex-transitive. The special structure of those matrices implies several
properties, in particular of their spectrum, which are listed in Lemma 6. Many
models using (R, o)-multigraphs involve vertex-transitive matrices R, e.g. the 2-
colorability and the quantified 2-Xor satisfiability problems, as will be shown
in Section 3. Since our aim is to emphasize the link between the birth of com-
plex components and the phase transition of some satisfiability or constraint
problems, we focus on the case where R is vertex-transitive.

We define gr ,(n,m) as the sum of the weights of the (R, o)-multigraphs
built with n vertices and m edges

gRr.o(n,m) = Z w(G).
|Gl=n, |Gll=m

Theorem 1. Let R be a q X q vertex-transitive matriz with greatest eigenvalue 6,
o a positive fized constant, ¢ the number of connected components in the multi-
graph associated to R and let x(X) denote the polynomial ersp(R)\é (1 — %X),



where Sp(R) is the spectrum of R. For any m/n in a closed interval of |0,1/2],
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As n is large and m = 2(1+ pn='/3) with |p| < n'/12,
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where ¢, (1) is equal to V21 y e,(f)akA(Sk—&—%, ), e,(f) is the (2k)-th coefficient
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Remarks.

1. As a corollary of Lemma 6, the number ¢ of connected components in the
graph with adjacency matrix R is equal to the multiplicity of the greatest
eigenvalue ¢ of this vertex-transitive matrix.

2. The polynomial x(X) = [[\esp(rns (1 — 2X) is linked to the characteris-
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tic polynomial Pr(X) = det(XI—R) by the relation x(X) = (<)* (Ii}i(;?))c-
3. Since R is a symmetric matrix with dominant eigenvalue ¢, all the values

in Sp(R) \ § are real and smaller that . Therefore, x(1) is positive.

3. Applications

To describe the phase transition of a problem, we build R and ¢ in order
to obtain a one-to-one mapping between the instances of the problem and the
(R, o)-multigraphs, we derive from R the values g, ¢, 6, x(22) and x(1) defined
in Theorem 1 and, finally, apply this theorem. In the following section, we
rediscover some results from Pittel and Yeum [16], prove new results on the
satisfiability of quantified 2-Xor-formulas [7] and rederive the probability that
a random k-coloring is proper [18].

3.1. Bipartite Multigraphs

A proper 2-coloring of a multigraph is a way of coloring the vertices with 2
colors such that no two adjacent vertices share the same one. A graph is bipartite
if it admits a proper 2-coloring. In particular, such a graph contains no loop.
In [16], the authors computed the probability for a random graph with n vertices
and m edges to be bipartite, and we propose a new proof of some of their results.

Let G be a multigraph with n vertices and ¢ a function from [1,n] to {1, 2}.
We define the vertex-colored and edge-weighted multigraph G. as follows: a
color ¢(v) is assigned to each vertex v, each edge Tw has weight 1 if ¢(v) # c(w)
and 0 if ¢(v) = ¢(w). The weight w(G.) of G, is k(G) times the product of the
weights of the edges. Therefore, w(G.) = 0 if and only if there exist adjacent
vertices v and w such that c(v) = c(w). It follows that 3.y 1,11 0y w(Ge) is the

:[1,n



number of ways to properly 2-color G. We just described a one-to-one mapping
between the properly 2-colored multigraphs and the ((9 ), 1)-multigraphs.
Every bipartite multigraph G admits 2°¢(%) proper 2-colorings, because such
a coloring is characterized by the choice of one color in each connected compo-
nent. Therefore, to count each bipartite multigraph exactly one time, each con-
nected component receives a compensation factor % This proves that the bipar-
tite multigraphs are in a one-to-one mapping with the (((1’ §)s %)-multigraphs.
For R=(9}),wehave 6 =1, x(X) =1+ X,q=2,c=1lando=1. Asa

corollary of Theorem 1, we thus have

Theorem 2. Let Pgip(n,m) denote the probability that a random graph or

multigraph with n vertices and m edges is bipartite, then

1—2m 1/4
)

e when m/n is in a closed interval of 10,1/2[, Pgip(n,m) ~ (H—ﬁ

o for any |u| < n'/12 Tim, oo n!/1? Py, (n, g1+ /mfl/?’)) = d1/2(1),
where ¢1/5(p), defined in Theorem 1, decreases from 1 to O for p in R.

8.2. Quantified 2-Xor Formulas
In [7], the authors analyze quantified 2-Xor formulas. Those are quantified
conjunctions of m Xor-clauses with 8 universal and n existential variables

Voy... $53y1 . Yn /\ (yfq‘,,l [S2) Yfio = (61',1 A :cl) b P (61'75 A xg)) . (3)
1=1

The values of the variables (z;) and (y;) can be considered equally as Booleans
or bits, by identifying True to 1 and False to 0. The Boolean operator Xor x Gy
corresponds to the bit sum (x4+y mod 2), and the And Boolean operator x Ay to
the product (zy mod 2). The authors study how the probability of satisfiability
evolves with the number m of clauses when the number n of existential variables
is large, and locate the value of m at which the phase transition occurs.

Each clause yy, , ®yy,, = (€1 Ax1) D+ D (e;,3 Awg) is characterized by a
triplet (f; 1, fi 2, e;) where f; 1 and f; o are integers in [1,n] and e; is a S-tuple of
bits. We consider clauses such that e; belongs to a fixed multiset E of S-tuples
of bits. We call the formulas that contain only those clauses the E-formulas.
For example, y; @y = 21 ® 23 is a {(1,0,1), (1,1, 0) }-formula (with only one
clause), but y; @ y2 = 2 ® x3 is not. For any integer j in [1,27], [j]2 is the
B-tuple of bits matching the binary decomposition of j — 1

B—1
[j]l2 = (bo,...,bp—1) ifand only if j—1= Z b2k
k=0

To a multiset F of S-tuples of bits, we associate a matrix R(¥) of dimension 2 x
28 such that RE? is the number of occurrences of [i]s @ [j]2 in E:

RY =#{ec E| il @ [j]: = e}.
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For example, when 3 =2 and E = {(01),(10)}, we have R¥) = (é%%é).

Lemma 3. Let E be a multiset of B-tuples of bits. There exists a one-to-one
mapping between the satisfiable E-formulas with n existential variables and m
clauses, and the (R(E), 2= ) -multigraphs with n vertices and m edges.

Proof. Let ¢ denote the formula of Equation (3) and assume it is an E-formula.
A solution of ¢ is a set 11, ...,n, of n B-tuples of bits such that for each instan-
tiation of the variables z1,...,x3, the values (y; = 7,121 ® - -+ B 1 3T8)1<i<n
satisfy ¢. For example, the formula Va1, xo Jy1,y2, y1 ®y2 = x1 has 4 solutions
{(10),(00)}, {(11),(01)}, {(00),(10)}, and {(01),(11)}. The first one
matches the obvious solution y; = x1, y2 = 0.

We first build a bijection between the couples (E-formula, solution) and the
(R(E ), 1)-multigraphs. Each existential variable y; matches a vertex of color n;,
and each clause an edge. The number of couples (E-formula, solution) is

> > oL

¢€ E-formula solution of ¢

The proof consists in switching the sums, assigning to each y; a combina-
tion n; 121 @ - - @ 1,878, and to count the number of E-formulas satisfied by
those (y;). By definition of R()| this is equal to gre 1(n,m).

To end the proof, we show that a satisfiable E-formula admits 27 solutions,
where cc is the number of connected components in its graph representation.
Indeed, once the color (i.e. the S-tuple) of an existential variable is chosen, a
transversal of the graph determines the colors of the other existential variables
of the component. So we have exactly one choice of color for each connected
component, and 27 choices for this color. O

This application is an opportunity to present some tools for deriving the
parameters ¢ and x(X) of Theorem 1 for non-trivial matrices R. Let Ham(/3)
denote the 27 x 27 matrix defined by

1 if the Hamming distance between [i]s and [j]2 is 1,

Ham(f);; = {

0 otherwise.

Xor-Clauses with one Universal Variable. If the Xor-clauses contain

exactly one universal variable, like y; @ y; = xy, then E is the set {e1,...,eg},
where, for all i, e; denotes the (-tuple of bits with a 1 at position ¢ and 0
elsewhere, and R¥) = Ham(f). In this case, the number of colors is ¢ =

o0~1 = 2. The matrix Ham(g) is irreducible, so ¢ = 1. Its greatest eigenvalue
8 = f corresponds to the eigenvector T = (1 - 1 )T. The matrix Ham(3) admits

the following block decomposition?: Ham(B + 1) = (Han;(ﬁ) Harfl(,@)) , SO its

2We thank Timo Jolivet who helped us find this recursion.



characteristic polynomial is solution of the following recursive formula:

Pitam(p+1)(X) = det((XI — Ham(B))* — I?) = Pitam(s)(X — 1) Ptam(s) (X + 1)

By induction, Piamg)(X) = HiB:O(X — (B — 22))(€) and, using Remark 2,

wo-fi(x(-4)"

i=1

Xor-Clauses with o Universal Variables. We consider Xor-clauses
that contain the ordered sum of exactly « universal variables, e.g. for o = 3,
Y1 ®ys = 1 ® x3 ® 1. In this case, RF) = Ham(B)*. The parameters of
this matrix are derived from those of Ham(3). The size ¢ = 27 is the same.
The eigenvalues of Ham(3)* are those of Ham(g), raised at the power a. In
particular, the greatest eigenvalue of Ham(3)® is § = 8%. If « is odd, Ham(8)*
is irreducible and ¢ = 1. If « is even, the greatest eigenvalue of Ham(3)® has

_ Ay (7)
multiplicity 2, so ¢ = 2. Finally, x(X) = Hfjll © (1 - X (1 - %) ) .
Xor-Clauses with Distinct Universal Variables. If, furthermore, the o
universal variables in each Xor-clause are constrained to be distinct, then F is
the set {e € {0,1}? | ey +---+es = a}. Let Ham(a, 8) denote the matrix R().
We claim that this matrix satisfies the recursive relation for all 0 < o < g — 2

Ham(f) Ham(a + 1, 8) = (8 — a) Ham(c, 8) 4+ (o + 2) Ham(a + 2, §).

Indeed, the coefficient (i, j) of the matrix Ham(8) Ham(« + 1, ) is the number
of ways to write the bit-to-bit sum

[i]2 @ [j]2 = € ® Va1 (4)

where e and v,41 are S-tuples of bits that contains respectively exactly o + 1
and 1 ones. There are now three cases.

o If [i]o @ [j]2 contains « ones, then e has canceled a bit from v,y1. There
are then (8 — «) couples (v441,%) which are solutions of Equation (4).

o If [i]2 @ [j]2 contains o + 2 ones, then the one in e is added to a zero
of va41, and Equation (4) admits « + 2 solutions.

e Otherwise, Equation (4) has no solution.

Thus we can write R¥) = P, 5(Ham(j3)) where the polynomial P, 5 is char-
acterized by the recursive formula Py g(X) = 1, P; g(X) = X and for all « in
[0, 8—2], then (a+42)Pat2,p(X) = X Pyy1,8(X)—(8—a)P, g(X). Again, the pa-
rameters of R(¥) are derived from those of Ham(f3). Observe that Py 5(3) = (B)

[0

and P, g(—p) = (—1)0‘(5). The size is ¢ = 27, and the greatest eigenvalue is



0= P,p(f) = (2) If « is odd, Ham(3)* is irreducible and ¢ = 1, else ¢ = 2.

Finally
B+1—c . (f)
X =] (1 _ xFep b= 2) (g) 22)) .

i=1

Xor-Clauses with a Universal Variables and a Constant Term. We
consider Xor-clauses of the form y; ©y; = e121®- - -Begrgdeg41, where exactly
a of the bits eq, ..., eg are I’s. The set E contains now (3 + 1)-tuples of bit. To
take the term egy; into account, any solution of such a formula now assigns to
each existential variable y; a affine combination y; = 7, 121®- - -®n; g DN; g+1-
Let E, denote the set E corresponding to Xor-clauses with o universal variables,
and E, . the corresponding set with the option of adding a constant. Each 3-
tuple e in E, matches two (5 + 1)-tuples in E, .: both with the same first 3
bits as e, one with last bit 0, and the other with last bit 1. Therefore, the

(Ba) R(Ba) .
2(%) g(Erx)>' The spectrum of R(Fe<) is the same

matrix R(Pe<) is equal to (
as the one of R(F=)  except that each eigenvalue is doubled and the eigenvalue 0
is added with multiplicity 2°. We then obtain the parameters ¢ = 1/0 = 28+1,
¢ =1if ais odd and ¢ = 0 otherwise, § = 28* and x(X) as in the following
theorem. Injecting those parameters into Theorem 1 and dividing by the total

number of E, .-formulas Q’if:;! (28%)™ gives the following result.

Theorem 4. Let us consider a random quantified 2-Xor formula of the form (3)
with n existential variables, B universal variables and m Xor-clauses containing
two existential variables, o universal variables and one constant term in {0,1}.
Let Psat denote the probability that such a formula is satisfiable, ¢ = 2 if a is

5
even, ¢ = 1 otherwise, and x(X) = [[24] (1 —2(1 — X2i/5)a)("), then
e asn is large and m/n is restrained to a closed interval of 10,1/2],

%—0271372

_g—B8-2
Psar ~ X (2m/n)~ " (1 —2m/n)
e for any fized real value x and m = (1 + pun~1/3),

. _o—B—1 _9—p—-2
nh_)rlgon(l < )/GIPSAT:X(U 2 ¢c2*ﬁ*1<ﬂ)a

where ¢, (1) is a computable function defined in Theorem 1.

Combining the previous results, we could as well consider quantified 2-Xor
formulas with « distinct universal variables and a constant term in each clause.

8.8. Random k-Coloring of Random Multigraphs

The following theorem, due to Wright [18], enumerates the properly g-colored
multigraphs. We propose a new proof using the formalism of (R, o)-multigraphs.



Theorem 5. If m/n is fived in]0,1/2[, the asymptotic probability that a random
q-coloring of a random multigraph with n vertices and m edges is proper is

g—1
1\™ 1 2m\ =
q qg—1n

Proof. A multigraph properly g-colored is a (R, 1)-multigraph where R; ; = 1
for all ¢ # j and 0 otherwise. Their asymptotics is derived from Theorem 1
with the parameters ¢ = 1, x(X) = (1 + X/(g—1))""". It is then divided by
the total number of multigraphs with n vertices and m edges randomly (and

possibly not properly) g-colored, which is %q" O

In fact, this result holds for any positive fixed value of m/n [18]. Theorem 5
is not to be confused with an asymptotic of g-colorable multigraphs, because a
colorable multigraph may have several proper colorings.

4. Proof of Theorem 1

4.1. Properties of Vertex-Transitive Matrices

The notation I stands for the column vector with all coefficients equal to 1.

Lemma 6. Let R denote a q X q vertex-transitive matriz with non-negative
coefficients, then there exist

1. an integer c, a permutation matrix P and a square matriz S of dimen-
sion 4 x 4 such that PRP~! = diag(S,...,S), where the block diagonal
matrixz contains ¢ blocks,

2. a positive 8, eigenvalue of S of multiplicity 1, such that ST = 61 and for
all X in the spectrum of S, || <4,

3. an orthogonal matriz Q and a diagonal matriz A such that S = QAQT,

Ay =6 and Qéi = \/gf.

Proof. Because the multigraph G associated to R is vertex-transitive, all pairs
of connected components are isomorphic. The matrix S denotes the weighted
adjacency matrix of one of those components and c is their number. In an edge-
weighted multigraph, the degree of a vertex v is the sum of the weights of the
edges that contain v. All the degrees in G are equal, otherwise two vertices with
different degrees could be distinguish, so I is an eigenvector of R and & denotes
this common degree. Applying the Perron-Frobenius Theorem, we conclude
that the eigenvalue ¢ has multiplicity 1 and is greater or equal in absolute value
than any other eigenvalue. Finally, real symmetric matrices are diagonalizable
by orthogonal matrices. O

Let  denote the greatest real eigenvalue of R. We can assume it to be equal
to 1 without loss of generality, replacing R by %R and g(n,m) by 6™g(n,m). We
can also assume that the number ¢ of connected components of the multigraph
encoded by R is 1: the (R,o)-multigraphs are in a one-to-one mapping with

10



the (S, co)-multigraphs where S is the adjacency matrix of one of the connected
components. In the rest of this section, R is assumed to be a ¢ X ¢ irreducible
vertex-transitive matrix with greatest eigenvalue 1.

4.2. Trees and Unicyclic Components

In [15], graphs are decomposed in three parts: trees, unicyclic components
and complez components [19]. Their generating functions are expressed in term
of the Cayley tree function T'(z) that counts the rooted labelled trees and is
characterized by the equation T'(z) = ze”(*). We follow the same approach.

An R-tree is a connected R-multigraph without cycle. If one vertex is
marked, we say that the tree is rooted. A connected R-multigraph with exactly
one cycle is called an R-unicyclic multigraph. Let T;(z), U(z) and V(z) denote
the generating functions of R-rooted trees with root of color 7, unrooted trees
and unicyclic multigraphs. Let also T/(z) denote the vector (Ti(2) - Ty(2))". A
R-path of trees is a colored directed path that links two vertices (that may not
be distinct) of color ¢ and j, and each internal vertex of the path is the root of
a colored R-rooted tree. Its generating function is denoted by P; ;(z).

Lemma 7. If R is irreducible with greatest eigenvalue 1, the generating func-
tions of R-rooted trees, unrooted trees, unicyclic graphs and paths of trees are

T(z) = T(2)1 V(z) = —3log(l — T(2)) — 5 log(x(T'(2)))
U(z) = q(T(2) = $T(2)%) Pij(2) = gty + Lo QuuiQui =iy
where T(z) is the Cayley tree function and R = QAQT as in Lemma 6.

Proof. Using the analytic combinatorics tools (a good reference is [12]), the com-
binatorial specification of R-rooted trees translates into the following equations:
for all i, T}(2) is equal to zexp(row;(R)T(z)). Since R is vertex-transitive, for
all 4,5, Ti(z) = Tj(z), so T;(z) = $T(6z). an R-unrooted tree with a marked
vertex is an R-rooted tree with root of unknown color, so 2U’(z) = Y_{_, Ti(2).
Similarly, an R-unicylic graph with a marked vertex on its cycle and an orien-
tation is an R-path of rooted trees, so ud,V (z,u) = 331 > <, (uT'(2)R)¥;
where u marks the vertices of the cycle and V(z) = V(z,1). Finally, P; j(z) =
(R(I =T(z)R)™');; and Lemma 6 lead to the announced expression. O

Observe that at the first order, U(z), V(2) and P; ;(z) are equal or propor-
tional to their non-colored counterparts T'(z) — 27(z)?, —11log(1 — T(z)) and
ﬁ(z). Furthermore, the first order of P; j(z) is independent of ¢ and j.

We will prove in Theorem 9 that when m/n < 1/2; almost all (R,0)-
multigraphs with n vertices and m edges contain only trees and unicyclic com-

ponents. Theorem 8 is then equivalent to the first statement of Theorem 1.

Theorem 8. With the notations of Theorem 1, the number of (R, o)-multigraphs
that contain only trees and unicyclic components is

1-0
0) n2m (1_ m) 2 (qo.)n—m

gR7O'(n7m) ~ 2mm| n X (277”)0'/2.
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Proof. A multigraph without complex component is a set of n —m trees and of
unicyclic components, so

o0, () = niar T E S v, )

We then apply Theorem VIIL.8 of [12, p.587] to derive the asymptotics of the
coefficient extraction. O

4.8. Complex Components

The notions of excess and kernel were first combined with a generating
function approach in [19] and then [15]. This section relies on their work. The
excess of a graph is defined as the difference between the number of edges
and of vertices k = m —n. A component with excess (—1) (resp. 0) is a tree
(resp. unicyclic). The complex part of a multigraph is the set of its connected
components that have positive excess. Deleting the vertices of degree one and
fusioning the vertices of degree two, each graph can be reduced to a simpler
graph, called its kernel, with minimum degree at least three. Reciprocally, any
such graph can be developed by replacing edges by paths and adding trees to the
vertices. The set Ki, of kernels of excess k is finite. Among them, the kernels that
maximize the number of edges are the cubic (i.e. 3-regular) multigraphs K(B)
with 2k vertices and 3k edges. Their number, counted with their compensation
factors and a weight o for each connected component, is computable

ce oy =)
|K )| = Z K(G)o°(D = (2k)![z*] 2(31)27123“(377,) !'(2n)!

Gek® n>0

The generating function of complex (i.e. without trees and unicyclic compo-
nents) (R, o)-multigraphs of excess k is

cc(G)

Kka Z Z | H H Pci,Cj(z)' (6)

GeKy cel1,q]l€l i€[1,|G] (1,j)€cdgc(G)

Since Ky is finite, this generating function is a rational function in 7'(z). In
its partial fraction decomposition, the term with denominator containing the
highest power of 1 —T'(z) is

Kol ()%
R (=T ")

Theorem 9. When m/n < 1/2 is fixed, almost all (R, o)-multigraphs have an
empty complex part.

Proof. In all the proof, m/n < 1/2 is assumed to be fixed. A multigraph with n
vertices, m edges and complex part of excess k is a set of n — m + k trees,

12



a set of unicyclic components and a complex part. Therefore, the number of

such (R, o)-multigraphs is

(O.U(Z))n—m—i-k
(n—m+k)!

(k)

gR}g(n, m) = nl[z"] eUV(Z)Kk,U(z). (8)

With gg)g (n,m) defined as in Theorem 8, the theorem states that when m/n <
(0)

1/2 is fixed, ggr,o(n,m) ~ gi ,(n,m). Since gr,o(n,m) =3, g%ﬁ)z(n,m), this
is equivalent with B
- i (nm)
Jim > =5 =0 )
k>1 gR,o’(n’ m)
It is well known that Theorem 9 holds for classic multigraphs. Therefore, if
g((lf)) 1(n,m) denotes the sum of the compensation factors of multigraphs with n

vertices, m edges and complex part of excess k, then gg); ,(n,m) has the same

asymptotics as the total number of multigraphs gE?; (n,m) ~ % Combined
with Theorem 8, this equivalence implies that there exists a constant C7, which
depends only on m/n, such that for n large enough,
0 —m (0

g (n,m) > Cy(qo)™ ™) (n,m). (10)
Since an (R, o)-multigraph is a multigraph where each vertex has a color among
a set of size ¢, each edge has a weight at most r = max; ; R; ; and each connected
component a weight o,

k n,.m n (k
g%,L(n,m) < ¢"r™ max(0,1) g((l)),l(n,m). (11)
Combining Equations (10) and (11), we conclude that there exist two constants
C5 and (3, independent of n and &, such that for n large enough,

(k) (k)
gRaU(n’ m) m/n ng(l)’l(n’m)
el < Gy AR

gR,o‘(n’ m) g(1)71(n7m)

where 7 is the maximum of the coefficients of R.

Since Theorem 9 is equivalent with Equation (9) and holds for classic multi-
g5t (n,m)
9, (n,m)
Csr™/™ is smaller than 1, i.e. for matrices R with small enough coefficients.
But Theorem 9 is independent of the size fo the coefficients of R, because this
matrix can be replaced by aR for any positive o without changing the structure
of the graphs. O

graphs, the previous inequality proves that lim, >, = 0 as soon as

Theorem 10. With the notations of Theorem 1, when m = %(1 + pn—1/3)
and |p| < n'/'2, the asymptotic number of (R, o)-multigraphs with complex part
of excess k is

2m n—m
(k) n (0q) (0—1)/6 _k (o) g
IR, (n,m) ~ Tl ()72 n o%ey 'V2mA <3k + 5"”) .
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Proof. In Equation (5), there are two saddle-points that are distinct when
m/n < 1/2, but coalesce at this critical value. In this context, the large powers
scheme ceases to apply, so we replace it with [15, Lemma 3] to obtain Equa-
tion (8) (see also [2, Theorem 11] and [12, Theorem IX.16] for links with the
stable laws of probability theory). This lemma computes asymptotics of the

shape [z”]% where y is a real constant. In particular, it proves that for

any real fixed real values y; and ys, [z"]% ~ n(yl’y2)/3[2”]%.
Therefore, in Equation (8), the only term of Kj ,(z) that influence the asymp-

totic is given by (7). We then apply Lemma 3 of [15] to

T(2)? nom
(n—m)! (o)™ ™ 0k|K;(jZ,| n! (T(z) - %)

. "l (1—T(z))3k+0/2

9p,0(n:m) ~ (n—m+ k) x(1)°72 2F(2k)! (n—m)! K

O

Theorem 1 is then established by summation of the g%ﬁl (n,m). The result
is multiplied by §™, o is replaced by co, ¢ by ¢/c and x(X) is adjusted. More
information on the analytic behavior of A(y, ) can be found in [15, Lemma 3].

5. Conclusion

In this paper, the emphasis is on the link between the birth of complex
components in (R, o)-multigraphs and the phase transition of tractable satisfi-
ability problems. This justifies the restriction to vertex-transitive matrices R,
often encountered in applications, and the addition of the factor ¢ to the original
inhomogeneous graph model in order to enrich the expressiveness.

The present results can be extended to simple (R, o)-graphs. Indeed, almost
surely, all loops and multiple edges of the random (R, o )-multigraphs considered
belong to unicyclic components. So the only adjustment needed is to replace
the generating function V(z) by V(z) — 1 3. R; ;T;(z) — izm R} Ti(2)Ty(2).
Due to the lack of space, the proof of this result is not included.

We now plan to extend our result to non-vertex-transitive matrices R, and
to enumerate R-multigraphs with a larger density of edges.
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