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Foreword

This volume collects contributions presented at the 28th International Workshop on Uni-
fication (UNIF 2014), held July 13, 2014, in Vienna, Austria. UNIF 2014 was organized as a
FLoC workshop hosted by RTA-TLCA and IJCAR, in the context of the Vienna Summer of
Logic.

UNIF is a well-established event with almost three decades of history. UNIF 2014 is the 28th
event in a series of international meetings devoted to unification theory and its applications.
Previous editions were held at:

Val D’Ajol, France, 1987
Val D’Ajol, France, 1988
Lambrecht, Germany, 1989
Leeds, UK, 1990
Barbizon, France, 1991
Schloß Dagstuhl, Germany, 1992
Boston, USA, 1993
Val D’Ajol, France, 1994
Sitges, Spain, 1995
Herrsching, Germany, 1996
Orléans, France, 1997
Rome, Italy, 1998
Frankfurt, Germany, 1999

Pittsburgh, USA, 2000
Siena, Italy, 2001
Copenhagen, Denmark, 2002
Valencia, Spain, 2003
Cork, Ireland, 2004
Nara, Japan, 2005
Seattle, USA, 2006
Paris, France, 2007
Hagenberg, Austria, 2008
Montreal, Canada, 2009
Edinburgh, UK, 2010
Wroclaw, Poland, 2011
Manchester, UK, 2012
Eindhoven, The Netherlands, 2013

Unification is concerned with the problem of identifying terms, finding solutions for equa-
tions, or making formulas equivalent. It is a fundamental process used in a number of fields of
computer science, including automated reasoning, term rewriting, logic programming, natural
language processing, program analysis, types, etc.

The International Workshop on Unification (UNIF) is a yearly forum for researchers in
unification theory and related fields to meet old and new colleagues, to present recent (even
unfinished) work, and to discuss new ideas and trends. It is also a good opportunity for young
researchers and scientists working in related areas to get an overview of the current state of the
art in unification theory.

The Program Committee selected 11 contributions. In addition, the program included two
invited talks given by Jordi Levy, On the Limits of Second-Order Unification, and by Jose
Meseguer on Extensible Symbolic System Analysis.

We would like to thank the authors for their contributions and presentations. We are grateful
to the invited speakers for their talks and their contributions to the proceedings. We thank
the members of the Program Committee and all the referees for their care and time spent in
reviewing the submissions. We thank the members of the UNIF Steering Committee for their
advice and support, and Andrei Voronkov for his EasyChair conference management system.
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Extensible Symbolic System Analysis∗

José Meseguer

University of Illinois at Urbana-Champaign, USA

Abstract

Unification and narrowing are a key ingredient not only to solve equations modulo an
equational theory, but also to perform symbolic system analysis. The key idea is that a
concurrent system can be naturally specified as a rewrite theory R = (Σ, E,R), where
(Σ, E) is an equational theory specifying the system’s states as an algebraic data type,
and R specifies the system’s concurrent, and often non-deterministic, transitions. One can
perform such symbolic analysis by describing sets of states as (the instances of) terms with
logical variables, and using narrowing modulo E to symbolically perform transitions. Under
reasonable conditions on R, this idea can be applied not only for complete reachability
analysis, but also for temporal logic model checking. This approach is quite flexible but
has some limitations. Could it be possible to make symbolic system analysis techniques
more extensible and more widely applicable by simultaneously combining the powers of
rewriting, narrowing, SMT solving and model checking? We give a progress report on
current work aiming at such a unified symbolic approach.

1 Introduction

The automatic analysis of systems through model checking is one of the most successful system
verification methods. The standard approaches (see, e.g., [13]) assume a finite-state system
whose state space is exhaustively explored to check whether a system satisfies a desired tem-
poral logic property. However, systems are often infinite-state in two possible ways (or are
simultaneously infinite in these two ways):

1. The number of initial states is infinite, even though the set of states reachable from each
initial state may be finite. For example, systems parametric in the number of processes
or objects are of this kind.

2. The number of states reachable from an initial state is infinite. This often happens because
states contain unbounded data structures.

To cope with these two sources of infinity two complementary methods can be used. On the
one hand, state abstraction and parametric system techniques (see, e.g., [13]) can reduce the
verification of infinite-state systems to that of finite-state ones. One the other hand, infinite-
state model checking methods can be used, based on various kinds of symbolic techniques such
as: (i) automata and grammars, e.g., [1, 12, 10, 11, 20, 23, 4, 3, 2]; (ii) SMT solving, e.g.,
[5, 14, 18, 19, 22, 26, 27]; and (iii) narrowing [25, 16, 17, 8, 9, 7].

We can think of these various infinite-state symbolic analysis techniques a niches, so that: (i)
if a system specification can be cast within one of them, and (ii) if the chosen symbolic method
can deal with the temporal logic property of interest (some methods only support reachability
analysis, not general temporal logic model checking), then symbolic analysis is possible.

A key open research issue limiting the applicability of current symbolic techniques is lack
of, or limited support for, extensibility. That is, although certain classes of systems can be

∗Research partially supported by NSF Grant CNS 13-19109.
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formalized in ways that allow the application of specific symbolic analysis techniques, many
other systems of interest fall outside the scope of some existing symbolic techniques. In such
cases one would like to extend and combine the power of symbolic techniques to analyze the
given system. Indeed, it seems fair to say that at present we lack general extensibility techniques
for symbolic analysis that can simultaneously combine the power of SMT solving, rewriting-
and unification-based analysis, and automata-based model checking; and we lack tools that can
apply them together to analyze a wide variety of systems beyond the scope of each separate
analysis technique.

2 Towards Extensible Symbolic System Analysis

Several of us at the University of Illinois at Urbana-Champaign, SRI International, the Uni-
versitat Politécnica de of Valéncia, the Escuela Colombiana de Ingenieŕıa, NASA Langley, the
Naval Research Laboratory, and the University of Waterloo in Canada (more on this in the
Acknowledgments) are currently working on developing the foundations and implementations
of techniques that can simultaneously support symbolic analysis using SMT solving, rewrit-
ing/narrowing methods, and automata-based model checking.

More precisely, a concurrent system can be naturally specified as a rewrite theory [21]
R = (Σ, E0 ∪ E,R) where: (i) (Σ, E0 ∪ E) is an equational theory describing the system’s
states as an algebraic data type; and (ii) R is a collection of rewrite rules specifying the system
transitions. Furthermore, we can often identify an equational subtheory (Σ0, E0) ⊆ (Σ, E0∪E)
such that initial algebra TΣ0/E0

of (Σ0, E0) has a decidable first-order theory, whose satisfiability
can be decided by an SMT solver, and, furthermore, the subtheory (Σ0, E0) ⊆ (Σ, E0 ∪ E) is
protected by the inclusion (i.e., we have an isomorphism TΣ0/E0

∼= TΣ/E0∪E |Σ0
). The extensible

symbolic methods sketched above are methods to reason symbolically about the initial model
TR of the rewrite theory R, which in general may be the model of an infinite-state system.

The technical steps we are taking to achieve the goal of extensible symbolic analysis can be
visualized, and placed in the context of existing work, by considering Figure 1 below.

SMT //

���������
'&%$ !"#2

���������

'&%$ !"#0 // '&%$ !"#3

OO

//

���������
REW-NARR/E

OO

}}|||||||

MC
//

OO

'&%$ !"#1

OO

0 SMT-MC

1 REW-NARR/E – MC

2 REW-NARR/SMT+E

3 REW-NARR/SMT+E – MC

Figure 1: Combining techniques for extensible symbolic analysis

The three separate thrusts of symbolic analysis already mentioned, namely: (i) SMT solving,
(ii) rewriting and unification-based techniques (modulo a theory E), and (iii) automata-based
model checking are respectively abbreviated as the SMT, REW-NARR/E, and MC vectors in
the cube. Vertices 0, 1, and 2 describe pairwise combinations obtainable as endpoints of vector
additions for two of these three basic vectors. For example, vertex 0 describes SMT-based model
checking, which is a very active area of research (see, e.g., [5, 14, 18, 19, 22, 26, 27]). Vertex
1 includes work on both rewriting-based model checking, e.g., [15, 6], and narrowing-based
symbolic model checking , e.g., [25, 16, 17, 8, 9, 7]. Vertex 3 is the endpoint of adding the three
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basic vectors, so that the joint power of the three symbolic analysis methods can be brought
to bear on a much broader class of systems. A first, partial step towards reaching Vertex 3 is
model checking based on rewriting modulo SMT [24], but the full power should be achieved
through narrowing modulo SMT techniques currently under development.

Although such a combination of symbolic methods should make the analysis of systems
much more extensible, there is already ample evidence from the work on narrowing-based model
checking suggesting that symbolic techniques should be used in tandem with abstraction and
other space state reduction techniques, which often remain necessary —or are in any case very
useful even when not strictly needed— to make model checking decidable [17, 16, 8, 9, 7].

Acknowledgments
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various colleagues and Ph.D. students, including: Kyungmin Bae, Andrew Cholewa, Santiago
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On the Limits of Second-Order Unification

Jordi Levy

Institut d’Investigació en Intel·ligència Artificia (IIIA-CSIC)
Barcelona, Spain

levy@iiia.csic.es

Abstract

Second-Order Unification is a problem that naturally arises when applying automated
deduction techniques with variables denoting predicates. The problem is undecidable, but
a considerable effort has been made in order to find decidable fragments, and understand
the deep reasons of its complexity. Two variants of the problem, Bounded Second-Order
Unification and Linear Second-Order Unification –where the use of bound variables in the
instantiations is restricted–, have been extensively studied in the last two decades. In this
paper we summarize some decidability/undecidability/complexity results, trying to focus
on those that could be more interesting for a wider audience, and involving less technical
details.

1 Introduction

Unification consists on solving equations over expressions or terms. In the basic form of first-
order unification, terms may contain (first-order) variables. When unifying, these variables may
be replaced by terms, in order to make both sides of an equation t ?= u syntactically equal.
If we are not concerned with efficiency, we can decide first-order unifiability, and eventually
compute the substitution or unifier, applying the following two transformations till we get an
empty set of equations:

Simplification: {f(t1, . . . , tn) ?= f(u1, . . . , un)} ∪ E ⇒ {t1 ?= u1, . . . , tn
?= un} ∪ E

Instantiation: {X ?= t} ∪ E ⇒ Eρ
when X does not occur in t,
and the unifier is extended with the instantiation ρ = [X 7→ t]

In second-order unification, variables may be applied to terms, and instances of variables
may use these arguments, once or several times. Formally, variables are replaced by (second-
order typed) lambda-terms, and then β-reduced. In general, Second-Order Unification allows
the use of bound variables and binders also in equations. However, we know from experience
that they do not make any remarkable difference with respect to the decidability or complexity
of the problem. Therefore, for simplicity, we will avoid them in equations along this paper.

Consider the problem f(F (a), F (a)) ?= F (f(a, a)), where capital letters denote variables.
One solution is [F 7→ λx . x], that instantiates the equation as f(a, a) = f(a, a).

F F

a a

f

F

a a

f

1
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On The Limits of Second-Order Unification Jordi Levy

But, there are other solutions like [F 7→ λx . f(f(x, x), f(x, x))], that using the argument
4 times, instantiates the equation as:

f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a))) = f(f(f(a, a), f(a, a)), f(f(a, a), f(a, a)))

F F

a a

f f f f

f f

f
F

a a

f

f f

f

In this example we can observe some of the properties that distinguishes second-order uni-
fication from first-order unification. First, the number of most general unifiers may be infinite.
Second, equations of the form F (t) ?= u, where F occurs in u, that are unsolvable in first-order
(occur-check), may be solvable in second-order (depending on the arguments). Notice also that,
these type of equations, even when F does not occur in u, are not trivially solvable, because
instances of F may use one or several times the argument t, and we must identify occurrences
of t in u to find the value of F .

Depending on the number of times that the instance of a second-order variable may use
their arguments, we distinguish three variants of second-order unification:

1. If there is no restriction on the number of times that a variable uses its arguments, we
have Second-Order Unification (SOU).

2. If the arguments are used exactly once, we have Linear Second-Order Unification (LSOU).
When, additionally, second-order variables are unary, we have Context Unification (CU).

3. If the arguments may be used once or none, we have Bounded Second-Order Unification
(BSOU).

In the previous example f(F (a), F (a)) ?= F (f(a, a)), the substitution [F 7→ λx . x] is a
context unifier, and also a bounded second-order unifier, whereas [F 7→ λx . f(f(x, x), f(x, x))]
is not linear nor bounded. Despite this restriction, CU and BSOU are also infinitary, as the
equation F (f(a)) ?= f(F (a)) and the infinite set of unifiers {[F 7→ λx . f( n. . . f(x) . . . )]}n≥0

show.

2 Some General Decidability and Undecidability Results

Second-Order Unification (SOU) was proved undecidable by Goldfarb (1981) by reducing the
Hilbert’s Tenth Problem. The more general case of Third-Order Unification was already proved
undecidable, independently, by Lucchesi (1972) and Huet (1973). Pietrzykowski (1973) de-
scribed the first complete second-order unification procedure, that was later extended to the
higher-order case by Jensen and Pietrzykowski (1976). Gould (1966) was the first who found a
complete second-order matching algorithm.

Context Unification (CU) was introduced independently by Comon (1993) and
Schmidt-Schauß (1995). Comon (1993) studied the problem to solve membership constraints.
He proved that context unification is decidable when any occurrence of the same context vari-
able is always applied to the same term. Schmidt-Schauß (1995) was interested in reducing the

2
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problem of unification modulo distributivity to a subset of such context unification problems.
He proved that context unification is decidable when terms are stratified. By stratified we mean
that the string of second-order variables we find going from the root of a term to any occurrence
of the same variable, is always the same. Very recently, Jez (2014) has proved that CU is in
PSPACE, answering a question that has remained open for 21 years.

Linear Second-Order Unification (LSOU) was introduced by Levy (1996). The generalization
w.r.t. CU comes from two facts 1) we consider second-order terms, thus expressions may
contain λ-bindings, and 2) second-order variables are not restricted to be unary like context
variables. This generalization is motivated by the following example. The unification problem
F (a) ?= G(f(a)) has two minimum linear second-order unifiers:

σ1 = [F 7→ λx .G(f(x))]
σ2 = [F 7→ λx .H(x, f(a))][G 7→ λx .H(a, x)]

However, if we restrict ourselves to unary second-order variables (context variables), we can
not represent the second minimum unifier. Levy (1996) described a complete procedure for this
problem and proved that the problem is decidable in the same cases studied in (Comon, 1993)
and (Schmidt-Schauß, 1995), and also when no variable occurs more that twice. We will come
back to this case later. Levy and Villaret (2000) proved that linear second-order unification
can be reduced to context unification with tree-regular constraints, and commented on the
possibility that linear second-order unification is decidable, if context unification is decidable
(something that was unknown by that time, and should be revisited now). de Groote (2000)
proved that Linear Higher-Order Matching is NP-complete.

Finally, Bounded Second-Order Unification was introduced and proved decidable by
Schmidt-Schauß (2004). Later, Levy et al. (2006a) proved that BSOU is in fact NP-complete,
using a similar technique as to prove that Monadic SOU is NP-complete (Levy et al., 2004).

Previous results analyze the general versions of these three variants of second-order unifi-
cation. However, there are other papers where some restrictions on the classes of problems are
studied. These results are also important because they shed light on the sources of complexity
of these problems, and the possibility of finding (efficient) algorithms for some subclasses of
problems. In the rest of this paper we will comment on some of these restrictions, focusing
specially on those that could be interesting for a wide audience, and could help to understand
the nature of this class of problems.

3 Pre-Unification

Huet (1975) introduced the notion pre-unification, a form of “lazy” unification, and found a non-
redundant procedure for it. The idea is to forget about equations of the form F (. . . ) ?= G(. . . ),
called flex-flex, since SOU problems only containing such kind of equations are trivially solvable.
SO pre-unification reminds first-order unification, but instead of instantiation rule, we have two
new rules, imitation and projection.

3
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Simplification: {f(t1, . . . , tn) ?= f(u1, . . . , un)} ∪ E ⇒ {t1 ?= u1, . . . , tn
?= un} ∪ E

Imitation: {X(t1, . . . , tn)
?= f(u1, . . . , um)} ∪ E ⇒(

{X ′(t1, . . . , tn)
?= u1, . . . , X

′(t1, . . . , tn)
?= um} ∪ E

)
ρ

whereX ′are fresh variables, and the unifier is extended with the instantiation
ρ = [X 7→ λy1, . . . , yn . f(X

′
1(y1, . . . , yn), . . . , X

′
m(y1, . . . , yn))]

Projection: {X(t1, . . . , tn)
?= f(u1, . . . , um)} ∪ E ⇒(

{ti ?= f(u1, . . . , um)} ∪ E
)
ρ

whereX ′are fresh variables, and the unifier is extended with the instantiation
ρ = [X 7→ λy1, . . . , yn . yi]

Pre-unification is complete for SOU, in the sense that a problem is solvable if, and only if,
pre-unification leads to a set of flex-flex equations. However, some sequences of pre-unification
transformations do not terminate. Pre-unification is also complete for BSOU, but we must
re-adapt imitation rule in order to avoid repetition of bound variables. So, we instantiate
[X 7→ λy1, . . . , yn . f(X

′
1(yi1 , . . . , yir ), . . . , X

′
m(yis , . . . , yin))], where i1, . . . , in is a permutation

of 1, . . . , n. Pre-unification is not complete for CU because some sets of flex-flex equations, like
{X(a) ?= X(b)}, are not solvable (notice that instances of variables must use their arguments).
Therefore, to get a complete procedure we must deal with flex-flex pairs, like is done in (Levy,
1996).

Word Unification is the problem of solving equations between words containing variables
denoting words. The problem is decidable (Makanin, 1977), and in many aspects is quite
similar to SOU. For instance, instances of variables may overlap with other occurrences of the
same variable, and rise to an infinite number of most general solutions. For instance, the word
unification equation X · a ?= a ·X, has infinitely many solutions of the form [X 7→ a · a . . . a].

Non-termination of pre-unification is shown by the problem X(f(a)) ?= f(X(a)), that re-
quires n imitation steps to generate the unifier [X 7→ λy . fn(y)]. Notice that this problem is
quite similar to the previous word unification problem X · a ?= a ·X. To prove decidability of
BSOU Schmidt-Schauß (2004) used the same technique as in word unification (see Makanin,
1977). He proved a exponent of periodicity lemma (see Schmidt-Schauß, 2004, Lemma 4.1),
that states that we can (exponentially) bound the value of exponents in solutions without
compromising solvability.

The possibility to choose between imitation and projection is also the responsible of NP-
hardness of all variants of second-order unification. Typically (see Schmidt-Schauß, 2004),
NP-hardness is proved by encoding 1-in-3SAT. We can interpret [X 7→ λx . x] as false and
[X 7→ λx . f(x)] as true, and then encode clauses X ∨ Y ∨ Z as X(Y (Z(a))) ?= f(a), with the
additional equation X(f(a)) ?= f(X(a)), in the case of BSOU and SOU, to ensure that all
variables use their arguments.

4 Monadic Second-Order Unification

Farmer (1991) extended Golfarb’s proof to prove that SOU is undecidable even if we restrict all
second-order variables to be unary. Golfarb’s proof requires the use of at least a binary function
symbol, and this use is a crucial fact: Farmer (1988) also proved that SOU is decidable if all
function symbols are at most unary (i.e. all constants are 0-ary or 1-ary), even if we do not
restrict the arity of second-order variables. This fragment of SOU is call Monadic Second-Order
Unification (MSOU).

4
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Completeness of SOU (and BSOU and LSOU) decision procedures ensure that all constants
occurring in a most general unifier, already occur in the original problem.1 On the contrary,
even if all original variables are unary, like in X(a) ?= X(b), to represent the most general unifier
[X 7→ λx . Z(x, b), Y 7→ λy . Z(a, y)] we can require non-unary variables.

Levy and Villaret (2002, 2009) proved that the general forms of SOU, BSOU and LSOU
can be reduced to a restricted form with just one binary function symbol. This is done by some
sort of curryfication where terms like f(g(a, b), c) are translated into @(@(f,@(@(g, a), b)), c).

Levy et al. (2004, 2008) characterized the complexity of MSOU as NP-complete. To prove
that MSOU is in NP, they showed how, for any solvable set of equations, we can represent at
least one of the unifiers (in fact all size-minimal unifiers) in polynomial space. Then, they proved
that we can check if a substitution (written in such representation) is a solution in polynomial
time. There are two key in this proof: One is the result on the exponential upper bound on
the exponent of periodicity of size-minimal unifiers. This upper bound allows us to represent
exponents in linear space. The other key is a result of Plandowski (1994) where he proves
that, given two context-free grammars with just one rule for every non-terminal symbol, we can
check if they define the same language in polynomial time on the size of the grammars. This
comprehension techniques, using context-free grammars generating singleton languages, and
later using so called tree context grammars (Levy et al., 2006a), have been used to generalize
matching and unification on compressed terms (see Gascón et al., 2008, 2009, for instance).

5 Two Occurrences per Variable

Word unification is trivially solvable when variables do not occur more than twice. In this case,
when we apply a sort of imitation rule:

Imitation: {X · w1
?= a · w2} ∪ E} ⇒

(
{X ′ · w1

?= w2} ∪ E}
)
ρ

where ρ = [X 7→ a ·X ′]

the size of the problem does not increase. Notice that we remove an occurrence of a, and ρ
introduces another occurrence of a, when instantiates the other occurrence of X. Similarly,
Levy (1996) proves that the size of the problem does not increase during the execution of the
LSOU procedure, when variables do not occur more than twice (see Levy, 1996, Theorem 3).
Therefore, LSOU and CU are (trivially) decidable when no variable occurs more than twice.
However, this is not the case for SOU.

Levy (1998) proved that SOU unification is undecidable even when no second-order variable
occurs more than twice. The key in this proof is the observation that reachability can be
encoded as SOU:

Given a ground term rewriting system {ti → ui}, we can rewrite v into w, noted

t1 → u1, . . . , tm → um ⊢ v → w

if, and only if, the following SOU equation

X(f(a, v), u1, . . . , um) ?= f(X(a, t1, . . . , tm), w)

is solvable, where f and a are symbols not used in the signature of the rewriting system.

1Alternatively, if a unifier contains constants not occurring in the original problem, we can replace them by
fresh second-order variables with the same arity, obtaining a more general unifier.
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For instance, for the derivation:

b → g(b) ⊢ b → g(b) → g(g(b)) → g(g(g(b)))

the equation would be:
X(f(a, b), g(b)) ?= f(X(a, b), g(g(g(b)))

and the instantiation of the equation as follow:

X
f

f

f

f

g

g

g

g

bba

X

f

f

f

f

g

g

g

g

gg

bba

In this encoding, the number of times that a rewriting rule is used in the derivation cor-
responds to the number of times that the instance of X uses the corresponding argument. In
fact, the unifier, if exists, encodes the sequence of rewriting steps. Ground reachability is a
decidable problem, so this reduction does not proves undecidability of SOU.

If we allow the use of (first-order) variables in rewriting equations, but we restrict them
to be instantiated always the same way, then we get a more general problem called Rigid
Reachability. Notice that the rewriting rule X → a allows us to rewrite f(b, c) into f(a, a).
However, X → a ⊢ f(b, c) → f(a, a) is an unsolvable rigid reachability problem (we cannot
simultaneously instantiate X by b, and by c). If we allow the use of several rigid reachability
equations we have Simultaneous Rigid Reachability. The undecidable of this problem was proved
by Degtyarev and Voronkov (1996) by reduction of SOU. They consider a special kind of SOU
equations, called interpolation equations, of the form F (t1, . . . , tn)

?= u, where neither ti nor u
contain occurrences of second-order variables. By simplifying equations, and replacing subterms
of the form F (t1, . . . , tn) by fresh first-order variables X and the equation F (t1, . . . , tn)

?= X, we
can express any SOU problem as a set of interpolation equations, without increasing the number
of second-order variables, or its number of occurrences. Then, in Degtyarev and Voronkov’s
reduction, every interpolation equation F (t1, ..., tn)

?= u is translated as a1 → t1, . . . , an → tn ⊢
X → u, where X is fresh.

We can reduce rigid reachability to SOU, like its is done for reachability. However, in this
case we need some additional equations. For instance, the following rigid equation

c → X ⊢ g(c, c) → g(d, e)

is unsolvable, whereas the corresponding SOU problem

F (f(a, g(c, c)), X) ?= f(F (a, c), g(d, e))

has a solution [F 7→ λx, y . y][X 7→ f(c, g(d, e))].
This problem can be easily fixed by adding a pair of equations X ?=

Gx(f1(
−→
Yx), . . . , fN (

−→
Yx)), b

?= Gx(b, . . . , b), for all ui that are variables X, where

6
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f1, . . . , fN are all the function symbols of the rigid reachability signature. Notice that
these additional equations disable X from being instantiated by a term with f in the
head. Alternatively (see Levy and Veanes, 2000), we can add the reachability equation
f1(a, . . . , a) → a, . . . , fN (a, . . . , a) ⊢ X → a, for any variable X, to ensure that instances of
X do not contain f . This extension of Simultaneous Rigid Reachability is call Guarded Si-
multaneous Rigid Reachability. Guarded Simultaneous Rigid Reachability can be polynomially
reduced to SOU where every second-order variable occurs twice. Levy and Veanes (1998)
proved that Guarded Simultaneous Rigid Reachability is undecidable, even when restricted
to systems of at most two reachability constraints. Therefore, SOU is undecidable under the
following restrictions: there are at most two distinct second-order variables and two equations,
every second-order variable occurs at most twice and in only one of the equations.

6 Just One Second-Order Variable

The number of different second-order variables in SOU plays a minor role compared to the total
number of occurrences of second-order variables. Levy and Veanes (2000) present a straight-
forward reduction of arbitrary systems of second-order equations to equations using just one
second-order variable and additional first-order variables.

Assume we have a system of SOU interpolation equations
⋃

1≤i≤m

⋃

1≤j≤ki

Fi(t
1
ij , . . . , t

n
ij)

?= uij ,

where {F1, . . . , Fm} is the set of pair-wise distinct second-order variables, and every variable Fi

has ki occurrences. Assume without loss of generality that the arities of the Fi’s are equal to
n. If some Fi has smaller arity then increase the arity of Fi to the maximal arity replacing each
Fi(t

1
ij , . . . , t

m
ij ) by Fi(t

1
ij , . . . , t

m
ij , . . . , t

m
ij ), i.e. repeating the last argument as necessary. Then,

we can reduce these equations to
⋃

1≤i≤m

⋃

1≤j≤ki

G(t1ij , . . . , t
n
ij)

?= g( , . . . ,︸ ︷︷ ︸
i−1

, uij , , . . . ,︸ ︷︷ ︸
m−i

),

where G is a fresh variable, g an appropriate constant, and “ ” denotes fresh and distinct first-
order variables. If some of the tkij is a variable, then we add also G(c, . . . , c) ?= g( , . . . , ). This
reduction increases the number of occurrences of second-order variables in at most one. Notice
also that the maximal arity of second-order variables and their set of arguments are preserved.

Combining this reduction with the results in previous section, we obtain that SOU is unde-
cidable even for problems containing only one second-order variable occurring 4 times.

7 Restricting the Form of Arguments

One way to get a partial decidability result for SOU is to restrict the form of arguments of
second-order variables. Levy and Veanes (2000, Corollary 15) proved that, even if we restrict
arguments to be ground terms, SOU is undecidable. We have already seen that instances of
second-order variables may “encode” sequences of transformations obtained from a rewriting
system. The idea is to encode the execution steps of a universal Turing Machine, and reduce
this way the Halting Problem. We represent the execution as a sequence of pairs of states

((v1, v
+
1 ), (v2, v

+
2 ), . . . , (vk, v

+
k )

7
11



On The Limits of Second-Order Unification Jordi Levy

where v+ represents a successor state of v in the Turing Machine. Then, we use two equa-
tions, the first one has the form F (t, f(b, a)) ?= f(X,F (u, a)). It ensures that any solution
satisfies vi+i = v+i , because the instance of F (t, f(t′, a)) encodes (v1, . . . , vk, b), the instance
of f(X,F (u, a)) encodes (X, v+1 , . . . , v

+
k ), and the instance of X encodes the initial state. The

second equation has the form G(l, f ′(a, a′)) ?= f ′(F (v, a), G(r, a′)). It ensures that v+i is a valid
successor of vi in the TM. The sequence l and r encode the transitions of the Turing Machine,
whereas t, u and v only depends on the alphabet of the Turing Machine.

We obtain this way a system

{F (t, f(b, a)) ?= f(X,F (u, a)), G(l, f ′(a, a′)) ?= f ′(F (v, a), G(r, a′))}

that encodes the Halting Problem of a universal Turing Machine on input X. This proves
undecidability of SOU for 5 occurrences of one second-order variable, even when the variable is
only applied to ground terms.

A way to make SOU, or in general Higher-Order Unification, decidable is to restrict ar-
guments of variables to be lists of pairwise distinct bound variables. This fragment is called
Higher-Order Patterns and was proved decidable by Miller (1991). This restriction makes
Higher-Order Pattern Unification equivalent to some sort of First-Order Unification with bind-
ings and some kind of variable-capture restriction. In fact this extension of First-Order Uni-
fication has been studied extensively, and is called Nominal Unification. Urban et al. (2003)
proved that Nominal Unification is decidable, and Levy and Villaret (2008) proved that it is in
fact quadratic, by quadratic reduction to Higher-Order Patters Unification, that Qian (1996)
proved decidable in linear time.

As we said, Jez (2014) decidability proof for CU closed a question open for more than 20
years. During this time, many other partial positive answers for CU have been found. For
instance, the one-variable case (Gascón et al., 2010), the stratified case, used to prove decid-
ability of unification modulo distributivity (Schmidt-Schauß, 2002; Levy et al., 2006b, 2011),
the well-nested case, used in computational linguistics (Levy et al., 2005), the left-hole case,
used to prove decidability of sequence unification (Kutsia et al., 2007, 2010), etc.
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1 Introduction

Reasoning about data types such as lists and arrays is an important research area with many
applications, such as formal program verification [12, 10]. Early work on this [7] focused on
proving inductive properties. Important outcomes of this work include the technique of proof by
consistency or “inductionless induction” [13, 11] as well as satisfiability modulo theories (SMT)
starting with the pioneering work of Nelson and Oppen [14] and of Shostak [16]. (See [1] for
a recent syntactic, inference-rule based approach to developing SMT algorithms for lists and
arrays.)

In our paper, we investigate the unification problem modulo various theories of lists. The
constructors used in this paper are the usual nil and cons. The different theories are obtained
by considering observer functions of increasing complexity. We first examine lists with only
right cons (rcons) as an operator and propose a novel algorithm for the unification problem for
this theory. We then introduce the theory of reverse (rev) and develop an algorithm to solve
the unification problem over this theory. Lastly, we consider the unification problem modulo
the theory of fold right or reduce which is of central importance in functional programming
languages [9]. Note that in practice reduce is not a first-order function; we turn it into a first-
order function by treating the binary function to be “folded” over the list as an uninterpreted
function, i.e., as a constructor.

2 Definitions

The reader is assumed to be familiar with the concepts and notation used in [2]. For termi-
nology and a more in-depth treatment of unification the reader is referred to [4]. Due to space
constraints, we omit many proofs and details. Interested readers are referred to our technical
report [8] in which much more detail is given.

The unification problems we consider are instances of unification with constants with some
caveats. For instance, we only consider nil-terminated lists — this means that for any ground
term X, the innermost element of X must be nil1. Constants of the list type are not permitted.

3 rcons

The equational axioms of this theory are

∗supported in part by NSF grant CNS 09-05286.
1In LISP parlance, these are called proper lists.
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rcons(nil, x) = cons(x, nil)
rcons(cons(x, y), z) = cons(x, rcons(y, z))

We refer to this equational theory as rcons and orient these from left to right to produce a
convergent rewrite system.

In addition to requiring nil-terminated lists, we enforce the further restriction that the lists
be homogeneous as in ML. We consider a typed theory here with a base sort of non-list elements.
The lists we consider are of type list and may contain either list or non-list elements. Lists which
do not themselves contain lists are called flat lists.

3.1 Complexity Analysis

Lemma 3.1. Let s1, s2, t1, t2 be terms such that

rcons(s1, t1) =RCONS rcons(s2, t2).

Then s1 =RCONS s2 and t1 =RCONS t2.

Theorem 3.2. Unifiability modulo rcons is NP-hard.

Proof Sketch. We will show this by reduction from monotone 1-in-3-SAT using the following
device:

Si : cons(0, cons(0, cons(1, Li))) =? rcons(rcons(rcons(Li, xi), yi), zi)

Note that the solution to Si must have exactly one of {xi, yi, zi} mapped to 1 and the others
to 0.

To show membership in NP we first consider the case where the lists are flat. Thus we
only have two kinds of variables: variables of type list and variables of type non-list. We guess
equivalence classes of all of the variables of type non-list. We consider these equivalence classes
to be discriminating. That is, we fail on equations of the form X =? Y where X,Y are from
different equivalence classes. All variables of type non-list may therefore be treated as constants.

Once this step is done, all equations are expressible in the following way:

cons(a1, ...(cons(an, rcons(rcons(...rcons(X, bn)..., b1))))) =?

cons(c1, ...(cons(cn, rcons(rcons(...rcons(Y, dn), ..., d1)))))

with X and Y not necessarily distinct. We will denote the sequences {ai}, {bi}, {ci}, {di} with
α, β, γ, δ respectively. We thus have to solve equations of the form αXβ =? γY δ.

Lemma 3.3. The following algorithm can be used to solve the problem. Unification modulo
rcons is therefore NP-Complete

1. For each equation in U , αXβ =? γY δ, remove all common prefixes and suffixes from both
sides of that equation.

2. Select an arbitrary equation such that the variables on the right and left hand sides of
the equation are distinct. If no such equation is available, proceed to Step 5.

3.a. If the equation is of the form X =? αY β, replace all instances of X by αY β.
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3.b. If the equation is of the form αX =? Y β, there is always a solution to X,Y of the
form X 7→ Zβ, Y 7→ αZ, where Z is a fresh variable. If there exists some set of strings
{u, v, w} where α = uv and β = vw where v 6= ε then there is an additional solution:
{X 7→ u, Y 7→ w}. This solution is checked for validity. If there is more than one such
set of strings, they are all checked. If no valid solution is found, replace all instances of
X and Y with Zβ and αZ respectively. The number of variables is thereby reduced by 1.

4. Repeat from Step 1.

5. We are now left with only equations in solved form, and independent systems of equations
each of which has only one variable in it. These can be checked for solvability using the
algorithm in [5].

We omit the extension to non-homogeneous, non-flat lists here and direct the reader to [8].

4 rev

The term rewriting system we consider for nil-terminated lists is

(1) rcons(nil, x) → cons(x, nil)
(2) rcons(cons(x, y), z) → cons(x, rcons(y, z))
(3) rev(nil) → nil
(4) rev(cons(x, y)) → rcons(rev(y), x)
(5) rev(rcons(x, y)) → cons(y, rev(x))
(6) rev(rev(x)) → x

This system is convergent. We refer to this equational theory as rev. From this point on, we
consider all terms to be in normal form modulo this term rewrite system.

Lemma 4.1. Let s1, s2, t1, t2 be terms such that rcons(s1, t1) =REV rcons(s2, t2). Then
s1 =REV s2 and t1 =REV t2.

Lemma 4.2. Let s1, s2 be terms such that rev(s1) =REV rev(s2). Then s1 =REV s2.

Lemma 4.3. Unifiability modulo rev is NP-Complete.

The NP-hardness proof given for unifiability modulo rcons is equally valid for unifiability
modulo rev. Membership in NP is shown by providing an algorithm to solve unification modulo
rev which runs in NP time: we first guess equivalence classes of our variables as in the previous
section. We then remove the ‘highest’ applications of rev in the dependency graph by applying
the following inference rules:

(r1)
EQ ] {X =? rev(Y ), X =? cons(W,Z)}

EQ ∪ {X =? cons(W,Z), Y =? rcons(Z ′,W ), Z =? rev(Z ′)}

(r2)
EQ ] {X =? rev(X), X =? cons(Y,Z)}

EQ ∪ {X =? cons(Y,Z), Z =? rcons(Z ′, Y ), Z ′ =? rev(Z ′)}
if Z 6= nil

(r3)
EQ ] {X =? rev(X), X =? cons(Y, nil)}

EQ ∪ {X =? cons(Y, nil)}
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Each of the above rules (r1-r3) have analogous rcons rules which are very similar to the ones
given here and are therefore omitted. After the above rules are applied to termination, the
applications of rev exist only on the variables which correspond to leaf-nodes in the dependency
graph. We now apply the rules of the flat case but once we have removed all equations of the
form αXβ =? α′Y β′ where X 6= Y and Y 6= XR where XR denotes rev(X), we then move on
to palindrome discovery. In this step, we consider all equations of the form αXβ=? α′XRβ′.
We maintain a list of variables that are known to be palindromes (i.e., where X = XR) which
is initially empty. We now have two cases:

Case 1: X =? α′′XRβ′′ in this case, if |α′′β′′| = 0, then we conclude thatX is a palindrome.
Else, there can be no solution and we terminate with failure.

Case 2: α′′X =?XRβ′′. In this case, we check for the existence of a pair of strings {u, v}
such that α′′ = uRv, β = vu. If such a pair exists, we check X = u for consistency. If
all such pairs are checked without finding a solution, then we default to the substitution
X = Zβ′′, XR = α′′Z where Z is known to be a palindrome. If β′′ 6= α′′R, then there is
no solution and we fail. Otherwise we replace all occurrences of X with Zβ′′.

Once we have finished this, we only have equations of the form αX =?Xβ. If X is not a
palindrome, then we may use the algorithm given in [5] to find a solution for it. If X is known
to be a palindrome, then we may still run the algorithm given in [5] to check for a solution, but
first check that the prefixes and suffixes of each equation (i.e., α, β) meet certain criteria:

Lemma 4.4. Let α, β and A be non-empty strings such that A is a palindrome and |α| = |β| <
|A|. Then αA = Aβ if and only if there exist palindromes u, v, and a positive integer k such
that α = uv, β = vu and A = (uv)ku.

Proof Sketch. This follows from the well-known result that for any equation αA = Aβ where
0 < |α| = |β| < |A|, α and β must be conjugates or there can be no solution.

So, if the elements in the set of equations satisfy this constraint, then any solution must be
a palindrome. Thus it is sufficient to check for the existence of appropriate u, v and then apply
the algorithm of [5].

Lemma 4.5. The above algorithm terminates

Proof Sketch. The algorithm begins by applying inference rules (r1-r3) to termination. Each
of these rules either lowers some application of rev further down in the dependency graph or
deletes it outright. Because the set of input equations is finite, eventually all applications of rev
must lie on the leaf-nodes of the graph and no further lowering can occur. The algorithm then
removes all equations of the form αXβ =? α′Y β′ where X 6= Y and Y 6= XR which terminates
by the argument given in the statement of this procedure in Section 3.1. We then move on to
the palindrome discovery step which removes an equation of the form αXβ =? α′XRβ′ in each
iteration. Finally, we apply the algorithm given in [5] which terminates by assumption.

5 reduce

The standard definition of reduce (for a particular two-argument function f) is given by the
following rewrite rules:

reduce(nil, x) → x

reduce(cons(u, v), x) → f(u, reduce(v, x))
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Since we consider only nil-terminated lists, we extend the signature of the theory with the append
function @ and a monadic function g which creates singleton lists. This extended theory has
the following convergent rewrite system:

(1) f(x, z) → reduce(g(x), z)
(2) cons(x, y) → g(x) @ y
(3) reduce(nil, z) → z
(4) reduce(x, reduce(y, z)) → reduce(x @ y, z)
(5) nil @ x → x
(6) x @ nil → x
(7) (x @ y) @ z → x @ (y @ z)

Note that g(x) is equivalent to cons(x, nil). We impose a type system for this equational
theory. There are two types: list and nonlist. Under this type system the unification
problem {reduce(X,Y ) =? cons(U, V )}, for example, will result in a type-failure. Unification
modulo this theory is at least as hard as the word equation problem, which is NP-hard and
in PSPACE [15].

We now outline the algorithm to solve the unification problem modulo the extended theory.
We assume the input equations are in standard form. We also assume that all instances of the
function symbols f and cons are eliminated using the rewrite rules (1) and (2).

Let S be the set of list type variables. As in Section 3.1, we nondeterministically guess a
partition of equivalence classes among all variables. We guess an ordering � on the list type
equivalence classes such that X � Y if the length of X is larger than the length of Y , where
the length of a variable Z refers to the number of instances of cons in Z. All list variables in
the same equivalence class as nil must be equivalent to nil and clearly the partition containing
nil must be a least element in the ordering �. We also nondeterministically guess an ordering
� on the nonlist variables, just as with the list variables, such that X � Y if and only if
the size of X after substitution is greater than the size of Y . This ordering is clearly acyclic
and well-founded.

Lemma 5.1. If X = reduce(Y, Z) and Y is not equivalent to nil then X � Z.

Proof Sketch. We prove this by induction on the length of the list variable Y .

From this point on, if at any time in the algorithm an equation violates a type constraint
or an ordering constraint, we terminate with failure. The inference rules for those failures are
not included. We apply rewrite rules (3), (5) and (6) to remove equations involving nil. After
this, once nils are eliminated, the problem boils down to unification modulo the rules

(4) reduce(x, reduce(y, z)) → reduce(x @ y, z)
(7) (x @ y) @ z → x @ (y @ z)

No rule has nil on the right-hand side (thus new instances of nil will not be produced) and, since
g does not occur in these rewrite rules, the problem is now a general unification problem.

We construct a dependency graph for our unification problem U . If this graph contains a
cycle, then clearly U is not unifiable unless the above theory is subterm-collapsing which it is
not. Thus, if there is a cycle we terminate with failure. The main inference rule is

(5)
EQ ] {X =? reduce(Y,Z), X =? reduce(V,W )}

EQ ∪ {X =? reduce(Y, Z), Y =? V@Y ′, W = reduce(Y ′, Z)} if Y � V

5
19



Unification Modulo Common List Functions Hibbs, Narendran, Mehto

Note that we introduce a (possibly) new list-type variable Y ′ in rule (5). At that point we
nondeterministically include Y ′ into the ordering �. (We omit failure rules here.) The only
equations now left that are not in solved form are equations of the form X =? Y@Z. Thus the
set of equations we get is an instance of the general associative unification problem, which is
decidable [3].

The termination and correctness of this algorithm is given in the technical report [8].

6 Conclusions

We have shown that unification of lists modulo the observer functions rcons and rev is NP-
complete. Our algorithm for unification modulo reduce requires solving the general associative
unification problem, and the algorithm for the latter makes use of an algorithm for the word
equation problem with rational (regular) constraints. This problem (i.e., word equations with
rational constraints) has been shown to be solvable in PSPACE [6] and our algorithm therefore
requires no more than PSPACE complexity. The lower bound on the complexity of this last
problem is an open question.

Acknowledgements: We wish to thank Dan DiTursi, Kim Gero, Wojciech Plandowski, Man-
fred Schmidt-Schauß and the referees for their helpful comments and suggestions.
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Abstract

Matching concept descriptions against concept patterns was introduced as a new inference task in
Description Logics (DLs) almost 20 years ago, motivated by applications in the Classic system. For the
DL EL, it was shown in 2000 that the matching problem is NP-complete. It then took almost 10 years
before this NP-completeness result could be extended from matching to unification in EL. The next
big challenge was then to further extend these results from matching and unification without a TBox
to matching and unification w.r.t. a general TBox, i.e., a finite set of general concept inclusions. For
unification, we could show some partial results for general TBoxes that satisfy a certain restriction on
cyclic dependencies between concepts, but the general case is still open. For matching, we were able to
solve the general case: we can show that matching in EL w.r.t. general TBoxes is NP-complete. We
also determine some tractable variants of the matching problem.

1 Introduction
The DL EL, which offers the constructors conjunction (u), existential restriction (∃r.C), and the
top concept (>), has recently drawn considerable attention since, on the one hand, important
inference problems such as the subsumption problem are polynomial in EL, even in the presence
of general concept inclusions (GCIs) [11]. On the other hand, though quite inexpressive, EL
can be used to define biomedical ontologies, such as the large medical ontology SNOMEDCT.1

Matching of concept descriptions against concept patterns is a non-standard inference task
in Description Logics, which was originally motivated by applications of the Classic system [8].
In [10], Borgida and McGuinness proposed matching as a means to filter out the unimportant
aspects of large concept descriptions appearing in knowledge bases of Classic. Subsequently,
matching (as well as the more general problem of unification) was also proposed as a tool for
detecting redundancies in knowledge bases [7] and to support the integration of knowledge bases
by prompting possible interschema assertions to the integrator [9].

All three applications have in common that one wants to search the knowledge base for
concepts having a certain (not completely specified) form. This “form” can be expressed with
the help of so-called concept patterns, i.e., concept descriptions containing variables (which stand
for descriptions). For example, assume that we want to find concepts that are concerned with
individuals having a son and a daughter sharing some characteristic. This can be expressed
by the pattern D := ∃has-child.(Male u X) u ∃has-child.(Female u X), where X is a variable
standing for the common characteristic. The concept description C := ∃has-child.(Tall u Male) u
∃has-child.(Tall u Female) matches this pattern in the sense that, if we replace the variable X by
the description Tall, the pattern becomes equivalent to the description. Thus, the substitution
σ := {X 7→ Tall} is a matcher modulo equivalence of the matching problem C ≡? D since

∗Supported by DFG under grant BA 1122/14-2
1see http://www.ihtsdo.org/snomed-ct/
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C ≡ σ(D). The original paper by Borgida and McGuinness actually considered matching
modulo subsumption rather than matching modulo equivalence: such a problem is of the form
C v? D, and a matcher τ is a substitution τ satisfying C v τ(D). Obviously, any matcher
modulo equivalence is also a matcher modulo subsumption, but not vice versa. For example,
the substitution σ> := {X 7→ >} is a matcher modulo subsumption of the matching problem
C v? D, but it is not a matcher modulo equivalence.

The first results on matching in DLs were concerned with sublanguages of the Classic de-
scription language, which does not allow for existential restrictions of the kind used in our
example. A polynomial-time algorithm for computing matchers modulo subsumption for a
rather expressive DL was introduced in [10]. The main drawback of this algorithm was that
it required the concept patterns to be in structural normal form, and thus it was not able to
handle arbitrary matching problems. In addition, the algorithm was incomplete, i.e., it did not
always find a matcher, even if one existed. For the DL ALN , a polynomial-time algorithm for
matching modulo subsumption and equivalence was presented in [5]. This algorithm is complete
and it applies to arbitrary patterns. In [4], matching in DLs with existential restrictions was
investigated for the first time. In particular, it was shown that in EL the matching problem (i.e.,
the problem of deciding whether a given matching problem has a matcher or not) is polynomial
for matching modulo subsumption, but NP-complete for matching modulo equivalence.

Unification is a generalization of matching where both sides of the problem are patterns and
thus the substitution needs to be applied to both sides. In [7] it was shown that the unification
problem in the DL FL0, which offers the constructors conjunction (u), value restriction (∀r.C),
and the top concept (>), is ExpTime-complete. In contrast, unification in EL is “only” NP-
complete [6]. In the results for matching and unification mentioned until now, there was no
TBox involved, i.e., equivalence and subsumption was considered with respect to the empty
TBox. For unification in EL, first attempts were made to take general TBoxes, i.e., finite
sets of general concept inclusions (GCIs), into account. However, the results obtained so far,
which are again NP-completeness results, are restricted to general TBoxes that satisfy a certain
restriction on cyclic dependencies between concepts [2, 3].

For matching, we were able to solve the general case: matching in EL w.r.t. general TBoxes
is NP-complete. The matching problems considered in this paper are actually generalizations
of matching modulo equivalence and matching modulo subsumption. For the special case of
matching modulo subsumption, we show that the problem is tractable also in the presence of
GCIs. The same is true for the dual problem where the pattern is on the side of the subsumee
rather than on the side of the subsumer.

Due to space constraints, we cannot provide proofs of our results. They can be found in [1].

2 The Description Logics EL
The expressiveness of a DL is determined both by the formalism for describing concepts (the
concept description language) and the terminological formalism, which can be used to state
additional constraints on the interpretation of concepts and roles in a so-called TBox.

The concept description language considered in this paper is called EL. Starting with a finite
set NC of concept names and a finite set NR of role names, EL-concept descriptions are built
from concept names using the constructors conjunction (C u D), existential restriction (∃r.C
for every r ∈ NR), and top (>). Since in this paper we only consider EL-concept descriptions,
we will sometimes dispense with the prefix EL.

On the semantic side, concept descriptions are interpreted as sets. To be more precise, an
interpretation I = (∆I , ·I) consists of a non-empty domain ∆I and an interpretation function
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·I that maps concept names to subsets of ∆I and role names to binary relations over ∆I . This
function is inductively extended to concept descriptions as follows:

>I := ∆I , (C uD)I := CI ∩DI , (∃r.C)I := {x | ∃y : (x, y) ∈ rI ∧ y ∈ CI}

A general concept inclusion axiom (GCI) is of the form C v D for concept descriptions C,D.
An interpretation I satisfies such an axiom C v D iff CI ⊆ DI . A general EL-TBox is a finite
set of GCIs. An interpretation is a model of a general EL-TBox if it satisfies all its GCIs.

A concept description C is subsumed by a concept description D w.r.t. a general TBox T
(written C vT D) if every model of T satisfies the GCI C v D. We say that C is equivalent
to D w.r.t. T (C ≡T D) if C vT D and D vT C. If T is empty, we also write C v D and
C ≡ D instead of C vT D and C ≡T D, respectively. As shown in [11], subsumption w.r.t.
general EL-TBoxes is decidable in polynomial time.

3 Matching in EL
In addition to the set NC of concept names (which must not be replaced by substitutions),
we introduce a set NV of concept variables (which may be replaced by substitutions). Concept
patterns are now built from concept names and concept variables by applying the constructors of
EL. A substitution σ maps every concept variable to an EL-concept description. It is extended
to concept patterns in the usual way:

• σ(A) := A for all A ∈ NC ∪ {>},
• σ(C uD) := σ(C) u σ(D) and σ(∃r.C) := ∃r.σ(C).

An EL-concept pattern C is ground if it does not contain variables, i.e., if it is a concept
description. Obviously, a ground concept pattern is not modified by applying a substitution.

Definition 3.1. Let T be a general EL-TBox.2 An EL-matching problem w.r.t. T is a finite
set Γ = {C1 v? D1, . . . , Cn v? Dn} of subsumptions between EL-concept patterns, where for
each i, 1 ≤ i ≤ n, Ci or Di is ground. A substitution σ is a matcher of Γ w.r.t. T if σ solves
all the subsumptions in Γ, i.e. if σ(C1) vT σ(D1), . . . , σ(Cn) vT σ(Dn). We say that Γ is
matchable w.r.t. T if it has a matcher.

Matching problems modulo equivalence and subsumption are special cases of the matching
problems introduced above:

• The EL-matching problem Γ is a matching problem modulo equivalence if C v? D ∈ Γ
implies D v? C ∈ Γ. This coincides with the notion of matching modulo equivalence
considered in [5, 4], but extended to a non-empty general TBox.

• The EL-matching problem Γ is a left-ground matching problem modulo subsumption if
C v? D ∈ Γ implies that C is ground. This coincides with the notion of matching modulo
subsumption considered in [5, 4], but again extended to a non-empty general TBox.

• The EL-matching problem Γ is a right-ground matching problem modulo subsumption if
C v? D ∈ Γ implies that D is ground. To the best of our knowledge, this notion of
matching has not been investigated before.

The general case of matching, as introduced in Definition 3.1, and thus also matching modulo
equivalence, is NP-complete, whereas the two notions of matching modulo subsumption are
tractable, even in the presence of GCIs.

2Note that the GCIs in T are built using concept descriptions, and thus do not contain variables.
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Theorem 3.2. Let Γ be an EL-matching problem and T a general EL-TBox. Deciding whether
Γ has a matcher w.r.t. T is

1. polynomial if Γ is a left-ground or a right-ground matching problem modulo subsumption;

2. NP-complete in the general case.

A detailed proof of this theorem can be found in [1]. Basically, the results for the case of
matching modulo subsumption are proved as follows: in each case we define a specific substitu-
tion, and show that the matching problem has a matcher iff this substitution is a matcher. NP-
hardness for the general case follows from the known NP-hardness result for matching modulo
equivalence without a TBox. The NP-upper bound can be shown by introducing a goal-oriented
matching algorithm that uses nondeterministic rules to transform a given matching problem
into a solved form by a polynomial number of rule applications.
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1 Introduction
The unification problem in a logical system L can be defined in the following way:
given a formula φ(x1, . . . , xα), determine whether there exists formulas ψ1, . . ., ψα
such that φ(ψ1, . . . , ψα) is in L. The research on unification for modal logics was
originally motivated by the admissibility problem for rules of inference: given a rule
of inference φ1(x1, . . . , xα), . . . , φm(x1, . . . , xα)/ψ(x1, . . . , xα), determine whether
for all formulas χ1, . . ., χα, if φ1(χ1, . . . , χα), . . ., φm(χ1, . . . , χα) are in L then
ψ(χ1, . . . , χα) is in L [1]. Within the context of description logics, the main motiva-
tion for investigating the unification problem was to propose new reasoning services in
the maintenance of knowledge bases like, for example, the elimination of redundancies
in the descriptions of concepts [2].
Combining algebraic and model-theoretic methods, Rybakov [7] demonstrated that the
admissibility problem and the unification problem in intuitionistic propositional logic
and modal logic S4 are decidable. Later on, Ghilardi [4], proving that intuitionis-
tic propositional logic has a finitary unification type, yielded a new solution of the
admissibility problem, seeing that determining whether a given rule of inference pre-
serves validity in intuitionistic propositional logic is equivalent to checking whether
the finitely many maximal unifiers of its premises are unifiers of its conclusion. These
results incited researchers to determine whether there exists finitely many admissible
rules of inference of intuitionistic propositional logic and modal logic S4 so that the
remaining admissible rules of inference would be derivable from them [5].
With respect to the issue of computational complexity, the admissibility problem and
the unification problem were mostly unexplored before the work of Jerábek [6] who
established the coNEXPTIME-completeness of the admissibility problem for sev-
eral intuitionistic and modal logics extending K4 such as S4 and GL, in contrast with
the satisfiability problem for these logics which is usually PSPACE-complete and
in contrast with the unification problem for modal logics contained in K4 which is
undecidable if one considers a language with the universal modality [8]. One may ask
whether the situation is getting better if the language is restricted in one way or another.
Recently, the admissibility problem in the negation-implication fragment of intuition-
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istic propositional logic was proved to be PSPACE-complete [3].
Nevertheless, very little is known about the unification problem in some of the most
important description and modal logics considered in Computer Science and Artificial
Intelligence. For example, the decidability of the unification problem for the following
description and modal logics remains open: description logic ALC, modal logic K,
multimodal variants of K, sub-Boolean modal logics. In the ordinary modal language,
the modal logic Alt1 is the least normal logic containing the formula 3x → 2x. It
is also the modal logic determined by the class of all frames (W,R) such that R is
functional on W , i.e. for all s, t, u ∈W , if sRt and sRu, then t = u. In this paper, we
demonstrate that the unification problem in Alt1 is in PSPACE.

2 Definitions
Syntax Let AF be a countable set of atomic formulas (denoted x, y, etc). The set F
of all formulas (denoted φ, ψ, etc) is inductively defined as follows:

• φ ::= x | ⊥ | ¬φ | (φ ∨ ψ) | 2φ.

We define the other Boolean constructs as usual. The formula 3φ is obtained as an
abbreviation: 3φ ::= ¬2¬φ. We adopt the standard rules for omission of the paren-
theses. The degree of a formula φ, in symbols deg(φ), and its atom-set, in symbols
var(φ), are inductively defined as follows:

• deg(x) = 0, var(x) = {x},

• deg(⊥) = 0, var(⊥) = ∅,

• deg(¬φ) = deg(φ), var(¬φ) = var(φ),

• deg(φ ∨ ψ) = max{deg(φ), deg(ψ)}, var(φ ∨ ψ) = var(φ) ∪ var(ψ),

• deg(2φ) = deg(φ) + 1, var(2φ) = deg(φ).

We shall say that a formula φ is atom-free iff var(φ) = ∅. Let AFF be the set of all
atom-free formulas.

Semantics For all n ∈ N, an n-valuation is an (n+ 1)-tuple (U0, . . . , Un) of subsets
of AF . We inductively define the truth of a formula φ in an n-valuation (U0, . . . , Un),
in symbols (U0, . . . , Un) |= φ, as follows:

• (U0, . . . , Un) |= x iff x ∈ Un,

• (U0, . . . , Un) 6|= ⊥,

• (U0, . . . , Un) |= ¬φ iff (U0, . . . , Un) 6|= φ,

• (U0, . . . , Un) |= φ ∨ ψ iff (U0, . . . , Un) |= φ, or (U0, . . . , Un) |= ψ,

• (U0, . . . , Un) |= 2φ iff if n 6= 0, then (U0, . . . , Un−1) |= φ.
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Obviously, (U0, . . . , Un) |= 3φ iff n 6= 0 and (U0, . . . , Un−1) |= φ. A formula φ is
said to be n-valid, in symbols |=n φ, iff for all n-valuations (U0, . . . , Un), (U0, . . . ,
Un) |= φ. The modal logic Alt1 is the least normal logic containing the formula
3x → 2x. It is also the modal logic determined by the class of all frames (W,R)
such that R is functional on W , i.e. for all s, t, u ∈ W , if sRt and sRu, then t = u.
Obviously, Alt1 is equal to the set of all formulas φ such that for all n ∈ N, |=n φ.

Unification In the sequel, we use φ(x1, . . . , xα) to denote a formula whose atomic
formulas form a subset of {x1, . . . , xα}. We shall say that a formula ψ(x1, . . . , xα) is
unifiable iff there exists φ1, . . . , φα ∈ F such that ψ(φ1, . . . , φα) ∈ Alt1. The unifi-
cation problem is the decision problem defined as follows: given a formula ψ(x1, . . . ,
xα), determine whether ψ(x1, . . . , xα) is unifiable.

3 Lemmas
Let ψ(x) be a formula. The reader may easily verify that

Lemma 1 For all k ∈ N, the following conditions are equivalent: (1) ψ(x) is unifi-
able; (2) there exists φ ∈ AFF such that ψ(φ) ∈ Alt1; (3) there exists φ ∈ AFF
such that 2k⊥ → ψ(φ) ∈ Alt1 and 3k> → ψ(φ) ∈ Alt1.

Remark that Lemma 1 still holds when one considers a formula ψ(x1, . . . , xα) with
more than one atomic formula. In this case, simply replace the “there exists φ . . .” by
“there exists φ1, . . . , φα . . .”. Concerning the remainder of the paper, the same remark
is on as well. Hence, without loss of generality, we will always consider that ψ is a
formula with at most one atomic formula. In this case, for all n ∈ N, an n-valuation
is comparable to an (n + 1)-tuple of bits. Let k ∈ N be such that deg(ψ(x)) ≤ k.
For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then let Vk(φ, n, i) = “if |=n−k+i
φ, then 1, else 0“ for each i ∈ N such that i ≤ k.

Lemma 2 For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then |=n ψ(φ) iff
(Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x).

Proof: By induction on ψ(x). a

Lemma 3 For all φ ∈ AFF , 3k> → ψ(φ) ∈ Alt1 iff for all n ∈ N, if k ≤ n, then
(Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x).

Proof: Let φ ∈ AFF . The following conditions are equivalent: (1) 3k> → ψ(φ) ∈
Alt1; (2) for all n ∈ N, |=n 3k> → ψ(φ); (3) for all n ∈ N, if |=n 3k>, then
|=n ψ(φ); (4) for all n ∈ N, if k ≤ n, then (Vk(φ, n, 0), . . . , Vk(φ, n, k)) |= ψ(x). The
reasons for these equivalences to hold are the following: the equivalence between (1)
and (2) follows from the definition of Alt1, the equivalence between (2) and (3) fol-
lows from the fact that φ ∈ AFF and the equivalence between (3) and (4) follows
from Lemma 2. a
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For all φ ∈ AFF and for all n ∈ N, if k ≤ n, then let ~Vk(φ, n) = (Vk(φ, n, 0), . . . ,

Vk(φ, n, k)). For all φ ∈ AFF , let fk(φ) = {~Vk(φ, n): n ∈ N is such that k ≤ n}.
The atom-free formulas φ′ and φ′′ are said to be k-equivalent, in symbols φ′ ≡k φ′′,
iff fk(φ′) = fk(φ′′).

Lemma 4 ≡k is an equivalence relation on AFF possessing finitely many equiva-
lence classes.

Proof: By definitions of ≡k and fk, knowing that for all φ ∈ AFF , fk(φ) is a
nonempty set of (k + 1)-tuples of bits. a

Lemma 5 For all φ′, φ′′ ∈ AFF , if φ′ ≡k φ′′, then 3k> → ψ(φ′) ∈ Alt1 iff
3k> → ψ(φ′′) ∈ Alt1.

Proof: By definitions of ≡k and fk and Lemma 3. a

For all φ ∈ AFF and for all n ∈ N, let ~ak(φ, n) = ~Vk(φ, n · (k + 1) + k). For all
φ ∈ AFF , let gk(φ) = {(~ak(φ, n),~ak(φ, n+1)): n ∈ N}. We shall say that the atom-
free formulas φ′ and φ′′ are k-congruent, in symbols φ′ ∼=k φ

′′, iff gk(φ′) = gk(φ′′).

Lemma 6 ∼=k is an equivalence relation on AFF possessing finitely many equiva-
lence classes.

Proof: By definitions of ∼=k and gk, knowing that for all φ ∈ AFF , gk(φ) is a
nonempty set of pairs of (k + 1)-tuples of bits. a

Lemma 7 For all φ′, φ′′ ∈ AFF , if φ′ ∼=k φ
′′, then φ′ ≡k φ′′.

Proof: Let φ′, φ′′ ∈ AFF . Suppose φ′ ∼=k φ
′′ and φ′ 6≡k φ′′. Hence, gk(φ′) = gk(φ′′)

and fk(φ′) 6= fk(φ′′). Thus, there exists n′ ∈ N such that k ≤ n′ and ~Vk(φ′, n′) 6∈
fk(φ′′), or there exists n′′ ∈ N such that k ≤ n′′ and ~Vk(φ′′, n′′) 6∈ fk(φ′). With-
out loss of generality, assume there exists n′ ∈ N such that k ≤ n′ and ~Vk(φ′, n′) 6∈
fk(φ′′). By the division algorithm, there exists m, l ∈ N such that n′ = m · (k+ 1) + l
and l < k + 1.
Case m = 0. Since k ≤ n′, n′ = m · (k + 1) + l and l < k + 1, then n′ = k. Hence,
~Vk(φ′, n′) = ~ak(φ′, 0). Since gk(φ′) = gk(φ′′), then there exists n′′ ∈ N such that
(~ak(φ′, 0),~ak(φ′, 1)) = (~ak(φ′′, n′′),~ak(φ′′, n′′ + 1)). Since ~Vk(φ′, n′) = ~ak(φ′, 0),
then ~Vk(φ′, n′) = ~Vk(φ′′, n′′ · (k + 1) + k).
Case m 6= 0. Since gk(φ′) = gk(φ′′), then there exists n′′ ∈ N such that (~ak(φ′,m−
1),~ak(φ′,m)) = (~ak(φ′′, n′′),~ak(φ′′, n′′+1)). Hence, Vk(φ′, (m−1)·(k+1)+k, i) =
Vk(φ′′, n′′ ·(k+1)+k, i) and Vk(φ′,m·(k+1)+k, i) = Vk(φ′′, (n′′+1)·(k+1)+k, i)
for each i ∈ N such that i ≤ k. Since n′ = m · (k + 1) + l and i ≤ k − (l + 1) and
Vk(φ′,m · (k+ 1) + l, i) = Vk(φ′, (m− 1) · (k+ 1) + k, i+ (l+ 1)), or k− l ≤ i and
Vk(φ′,m · (k+ 1) + l, i) = Vk(φ′,m · (k+ 1) +k, i− (k− l)) for each i ∈ N such that
i ≤ k, then i ≤ k − (l + 1) and Vk(φ′, n′, i) = Vk(φ′′, n′′ · (k + 1) + k, i+ (l + 1)),
or k − l ≤ i and Vk(φ′, n′, i) = Vk(φ′′, (n′′ + 1) · (k + 1) + k, i − (k − l)) for each
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i ∈ N such that i ≤ k. Thus, Vk(φ′, n′, i) = Vk(φ′′, (n′′ + 1) · (k + 1) + l, i) for each
i ∈ N such that i ≤ k. Therefore, ~Vk(φ′, n′) = ~Vk(φ′′, (n′′ + 1) · (k + 1) + l).
In both cases, ~Vk(φ′, n′) ∈ fk(φ′′): a contradiction. a

Lemma 8 For all φ′, φ′′ ∈ AFF , if φ′ ∼=k φ′′, then 3k> → ψ(φ′) ∈ Alt1 iff
3k> → ψ(φ′′) ∈ Alt1.

Proof: By Lemmas 5 and 7. a

We shall say that a nonempty set B of pairs of (k + 1)-tuples of bits is modally defin-
able iff there exists φ ∈ AFF such that B = gk(φ). For all nonempty sets B of pairs
of (k + 1)-tuples of bits, let .B be the domino relation on B. A path in the directed
graph (B, .B) is said to be weakly Hamiltonian iff it visits each vertex at least once.
Let ~1k+1 be the (k + 1)-tuple of 1 and ~0k+1 be the (k + 1)-tuple of 0.

Lemma 9 For all nonempty sets B of pairs of (k + 1)-tuples of bits, B is modally
definable iff the directed graph (B, .B) contains a weakly Hamiltonian path ending
with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1).

Proof: Let B be a nonempty set of pairs of (k + 1)-tuples of bits.
If. Suppose the directed graph (B, .B) contains a weakly Hamiltonian path ending
with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). Hence, there exists s ∈ N and there
exists (b′0, b

′′
0), . . . , (b′s, b

′′
s ) ∈ B such that ((b′0, b

′′
0), . . . , (b′s, b

′′
s )) is a weakly Hamil-

tonian path ending with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). Let (β0, . . . ,
βs·(k+1)+k) be the sequence of bits determined by the sequence (b′0, , . . . , b

′
s) of (k+1)-

tuples of bits.
Case (b′s, b

′′
s ) = (~1k+1,~1k+1). Let φ =

∨{3i2⊥: i ∈ N is such that i < s · (k +
1) and βi = 1} ∨3s·(k+1)>.
Case (b′s, b

′′
s ) = (~0k+1,~0k+1). Let φ =

∨{3i2⊥: i ∈ N is such that i < s · (k +
1) and βi = 1}.
In both cases, the reader may easily verify that for all n ∈ N, if n ≤ s, then Vk(φ, n ·
(k + 1) + k, i) = βn·(k+1)+i for each i ∈ N such that i ≤ k. Hence, for all n ∈ N,
if n ≤ s, then ~Vk(φ, n · (k + 1) + k) = b′n. Thus, for all n ∈ N, if n ≤ s, then
(~ak(φ, n),~ak(φ, n+ 1)) = (b′n, b

′′
n). Therefore, B = gk(φ).

Only if. Suppose B is modally definable. Hence, there exists φ ∈ AFF such that
B = gk(φ). Obviously, there exists n0 ∈ N such that for all n ∈ N, if n0 ≤ n,
then ~ak(φ, n) = ~1k+1, or for all n ∈ N, if n0 ≤ n, then ~ak(φ, n) = ~0k+1. Thus,
((~ak(φ, 0),~ak(φ, 1)), . . . , (~ak(φ, n0),~ak(φ, n0 + 1))) is a weakly Hamiltonian path
ending with (~1k+1,~1k+1), or ending with (~0k+1,~0k+1). a

4 Algorithm
We are now in a position to formulate the main result of this paper.

Proposition 1 The unification problem in Alt1 is in PSPACE.
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Proof: Using the above Lemmas, when k is such that deg(ψ(x)) ≤ k, the given
formula ψ(x) is unifiable iff there exists a modally definable set B of pairs of (k + 1)-
tuples of bits from which, by means of its domino relation, an infinite sequence of bits
respecting ψ(x) and ending with 1s, or ending with 0s can be constructed. Hence, it
suffices to consider the following procedure:

procedure UNI(ψ(x))
begin
k := deg(ψ(x))
guess a tuple (b(0), . . . , b(k)) of bits of size k + 1
bool := >
i := 0
while bool ∧ i ≤ k do

begin
bool := MC(b(0), . . . , b(i), ψ(x))
i := i+ 1
end

if ¬bool, then reject
while (b(0), . . . , b(k)) 6= ~0k+1 ∧ (b(0), . . . , b(k)) 6= ~1k+1 do

begin
guess a tuple (b(k + 1), . . . , b(2k + 1)) of bits of size k + 1
bool := >
i := 0
while bool ∧ i ≤ k do

begin
bool := MC(b(i+ 1), . . . , b(i+ k + 1), ψ(x))
i := i+ 1
end

if ¬bool, then reject
(b(0), . . . , b(k)) := (b(k + 1), . . . , b(2k + 1))
end

accept
end

The function MC(·) takes as input a tuple (b(i), . . . , b(i + j)) of bits and a formula
ψ(x) and returns the Boolean valueMC(b(i), . . . , b(i+j), ψ(x)) = “if (b(i), . . . , b(i
+j)) |= ψ(x), then >, else ⊥“. It can be implemented as a deterministic Turing ma-
chine working in polynomial time. The procedure UNI(·) takes as input a formula
ψ(x) and accepts it iff, when k = deg(ψ(x)), there exists a modally definable set
B of pairs of (k + 1)-tuples of bits from which, by means of its domino relation,
an infinite sequence of bits respecting ψ(x) and ending with 1s, or ending with 0s
can be constructed. By Lemma 9, the procedure UNI(·) accepts its input ψ(x) iff
ψ(x) is unifiable. It can be implemented as a nondeterministic Turing machine work-
ing in polynomial space. Hence, the unification problem is in NPSPACE. Since
NPSPACE = PSPACE, the unification problem is in PSPACE. a

Still, we do not know whether the unification problem in Alt1 is PSPACE-hard.
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5 Conclusion
Much remains to be done. For example, one may consider the unification problem
when the ordinary modal language is extended by a set AP of parameters (denoted
p, q, etc). In this case, the unification problem is to determine, given a formula
ψ(p1, . . . , pα, x1, . . . , xβ), whether there exists formulas φ1, . . . , φβ such that ψ(p1,
. . . , pα, φ1, . . . , φβ) ∈ Alt1. For each k ≥ 2, one may also consider the unifica-
tion problem inAltk, the least normal logic containing the formula 3(x1∧¬x2∧ . . .∧
¬xk−1∧¬xk)∧. . .∧3(¬x1∧¬x2∧. . .∧¬xk−1∧xk)→ 2(x1∨x2∨. . .∨xk−1∨xk).
In other respects, one may consider the unification problem when the ordinary modal
language is replaced by its multimodal variant. Finally, what becomes of these prob-
lems when the ordinary modal language is extended by the universal modality?
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A full version of this work [5] appeared in the proceedings of the 17th International
Conference on Foundations of Software Science and Computation Structures (FoS-
SaCS 2014). In the following, we provide a summary of this work.

1 Introduction

We examine the disjoint combination problem in the newly developed paradigm of asymmetric
unification. This new unification problem was developed based on newly identified requirements
arising from symbolic cryptographic protocol analysis [4]. Its application involves unification-
based exploration of a space in which the states obey rich equational theories that can be
expressed as a decomposition R]E, where R is a set of rewrite rules that are confluent, termi-
nating and coherent modulo E. However, in order to apply state space reduction techniques, it
is usually necessary for at least part of this state to be in normal form, and to remain in normal
form even after unification is performed. This requirement can be expressed as an asymmetric
unification problem {s1 =↓ t1, . . . , sn =↓ tn} where the =↓ denotes a unification problem with
the restriction that any unifier leaves the right-hand side of each equation irreducible.

Although asymmetric unification has the potential of playing an important role in cryp-
tographic protocol analysis, and possibly other unification-based state explorations as well,
it is still not that well understood. Until the development of special-purpose algorithms for
exclusive-or and free Abelian group theories, the only known asymmetric unification algorithm
was variant narrowing. One important question is the problem of asymmetric unification in a
combination of theories, in particular how to produce an algorithm for the combined theory by
combining algorithms for the separate theories. This is particularly significant for cryptographic
protocol analysis. Cryptographic protocols generally make use of more than one cryptoalgo-
rithm. Often, these cryptoalgorithms can be described in terms of disjoint equational theories.
In the case in which the algorithm used is variant narrowing, the problem is straightforward.
If the combination of two theories with the finite variant property also has the finite variant
property, then one applies variant narrowing. However, in attempting to combine theories with
special-purpose algorithms, the path is less clear. This is an important point with respect to

∗Partially supported by the NSF grant CNS-0905222
†ASEE postdoctoral fellowship under contract to the NRL.
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efficiency since special-purpose asymmetric algorithms have the promise of being more efficient
than variant narrowing.

In this work we take the first step to solving this problem, by showing that the combination
method for the unification problem in disjoint equational theories developed by Baader and
Schulz in [2] can be modified and extended to the asymmetric unification paradigm. The only
restrictions on this new method are those inherited from the asymmetric unification problem
and those inherited from Baader and Schulz.

2 Asymmetric Unification

We use the standard notation of equational unification [3] and term rewriting systems [1].

Definition 2.1. Let Γ be an E-unification problem, let X denote the set of variables occurring
in Γ and C the set of free constants occurring in Γ. For a given linear ordering < on X ∪C, and
for each c ∈ C define the set Vc as {x | x is a variable with x < c}. An E-unification problem
with linear constant restriction (LCR) is an E-unification problem with constants, Γ, where
each constant c in Γ is equipped with a set Vc of variables. A solution of the problem is an
E-unifier σ of Γ such that for all c, x with x ∈ Vc, the constant c does not occur in xσ. We call
σ an E-unifier with linear constant restriction.

Definition 2.2. We call (Σ, E, R) a decomposition of an equational theory ∆ over a signature
Σ if ∆ = R]E and R and E satisfy the following conditions: (1) E is variable preserving, i.e.,
for each s = t in E we have V ar(s) = V ar(t). (2) E has a finitary and complete unification
algorithm. That is, an algorithm that produces a finite complete set of unifiers. (3) For each
l → r ∈ R we have V ar(r) ⊆ V ar(l). (4) R is confluent and terminating modulo E, i.e., the
relation→R/E is confluent and terminating. (5)→R,E is E-coherent, i.e., ∀t1, t2, t3 if t1 →R,E t2
and t1 =E t3 then ∃ t4, t5 such that t2 →∗R,E t4, t3 →+

R,E t5, and t4 =E t5.

This definition is inherited directly from [4]. The last restrictions ensure that s →!
R/E t iff

s→!
R,E t, therefore it is sufficient to consider R,E rather then R/E (see [4]).

Definition 2.3 (Asymmetric Unification). Given a decomposition (Σ, E,R) of an equational
theory, a substitution σ is an asymmetric R,E-unifier of a set S of asymmetric equations
{s1 =↓ t1, . . . , sn =↓ tn} iff for each asymmetric equations si =↓ ti, σ is an (E ∪ R)-unifier
of the equation si =? ti and (ti ↓R,E)σ is in R,E-normal form. A set of substitutions Ω is a
complete set of asymmetric R,E-unifiers of S (denoted CSAUR∪E(S) or just CSAU(S) if the
background theory is clear) iff: (i) every member of Ω is an asymmetric R,E-unifier of S, and

(ii) for every asymmetric R,E-unifier θ of S there exists a σ ∈ Ω such that σ ≤V ar(S)
E θ.

Example 2.4. Let R = {x ⊕ 0 → x, x ⊕ x → 0, x ⊕ x ⊕ y → y} and E be the AC theory
for ⊕. Consider the equation y ⊕ x =↓ x⊕ a, the substitution σ1 = {y 7→ a} is an asymmetric
solution but, σ2 = {x 7→ 0, y 7→ a} is not.

Definition 2.5 (Asymmetric Unification with Linear Constant Restriction). Let S be a set of
of asymmetric equations with some LCR. A substitution σ is an asymmetric R,E-unifier of S
with LCR iff σ is an asymmetric solution to S and σ satisfies the LCR.

3 Combining Asymmetric Unification Algorithms

Let ∆1 and ∆2 denote two equational theories with disjoint signatures Σ1 and Σ2. Let ∆ be
the combination, ∆ = ∆1 ∪∆2, of the two theories having signature Σ1 ∪ Σ2. We assume ∆i

2
34



admits a a decomposition (Σi, Ei, Ri), and an asymmetric ∆i-unification with linear constant
restriction algorithm is known for i = 1, 2. In [5], we show that the Baader-Schulz combination
method [2] designed for unification can be reused for asymmetric unification. A slight adaptation
is required to construct combined unifiers that are necessarily asymmetric.

Theorem 3.1. ([5]) Asymmetric ∆1∪∆2-unification is decidable (resp. finitary) if asymmetric
∆i-unification with LCR is decidable (resp. finitary), for i = 1, 2.

As in [2], it can be shown that there exists an asymmetric ∆i-unification algorithm with LCR
if and only if there exists an asymmetric ∆i-unification algorithm with free symbols. Therefore,
the above theorem can be rephrased in terms of asymmetric unification with free symbols.

Example 3.2. Let ∆1 = R1 ∪ E1, where R1 = {e(x, d(x, y)) → y, d(x, e(x, y)) → y} and
E1 = ∅. Let ∆2 = R2 ∪ E2, where R2 = {x ⊕ 0 → x, x ⊕ x → 0, x ⊕ x ⊕ y → y} and
E2 = {x⊕y = y⊕x, (x⊕y)⊕z = x⊕(y⊕z)}}. Consider the set of equations {x0⊕x1⊕x2 =↓ x3⊕
x4, e(x1, d(0, x5)) =↓ x2⊕x0, e(x1, d(x0, e(x2, x6))) =↓ e(x7, x5)}. After purification, we get Γ2:
{x0⊕x1⊕x2 =↓ x3⊕x4, e(x1, d(z0, x5)) =↓ z1, 0 =↓ z0, z1 =↓ x2⊕x0, e(x1, d(x0, e(x2, x6))) =↓

e(x7, x5)}. The next step considers the set of variable partitions, one of which is the following
partition {{x0, x3}, {x2, x4}, {x5, z1}, {x1, z0, x7}, {x6}} Choosing a representative for each set,
we would produce the following Γ3: {x0 ⊕ x1 ⊕ x2 =↓ x0 ⊕ x2, e(x1, d(x1, x5)) =↓ x5, 0 =↓ x1,
x5 =↓ x2 ⊕ x0, e(x1, d(x0, e(x2, x6))) =↓ e(x1, x5)}. The next step considers the possible pairs
of variable orderings and theory indexes. One pair that would be produced is the following:
x6 > x5 > x2 > x1 > x0, index-1 = {x0, x1, x2, x5} and index-2 = {x6}. Next Γ4 is
produced from that pair and split into pure sets to produce Γ5,1 and Γ5,2. Let us denote a
variable, y, being treated as a constant as y. Then, Γ5,1 is the following set of equations:
{x0 ⊕ x1 ⊕ x2 =↓ x0 ⊕ x2, 0 =↓ x1, x5 =↓ x2 ⊕ x0} and Γ5,2 is the following set of equations:
{e(x1, d(x1,x5)) =↓ x5, e(x1, d(x0, e(x2, x6))) =↓ e(x1,x5)}. Next Γ5,i is solved with LCR.
The last step is to combine each pair of substitutions (σ1, σ2) into a substitution σ. One
such pair is σ1 = {x1 7→ 0, x5 7→ x2 ⊕ x0} and σ2 = {x6 7→ d(x2, e(x0,x5))}. Thus, we
get the following asymmetric solution, {x1 7→ 0, x3 7→ x0, x4 7→ x2, x5 7→ x2 ⊕ x0, x6 7→
d(x2, e(x0, x2 ⊕ x0)), x7 7→ 0}, (existential variables z0, z1 are removed).
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1 Introduction

A critical question in matching and unification is how to obtain an algorithm for the combination
of non-disjoint equational theories when there exist algorithms for the constituent theories.
In recent work ([4]) we were able to develop a new approach to the unification problem in
the combination of non-disjoint theories. The approach is based on a new set of restrictions,
for which we can identify a set of properties on the constituent theories, such that theories
characterized by these properties satisfy the restrictions and thus can be combined using the
new algorithm. The main properties of this class are: a hierarchical organization of E1 and E2,
R1 is a left-linear, convergent rewrite system corresponding to E1, and the shared symbols are
“inner constructors” of R1.

Here we consider the matching problem in this new hierarchical framework. Due to the more
restricted nature of the matching problem we obtain several improvements over the unification
problem. One of the improvements is that we are able to relax several restrictions we assumed
for the unification problem. Key among these discarded restrictions is a restriction on the type
of new variables created by the unification algorithm for the first theory in the hierarchical
organization. In the unification setting it was necessary to restrict variables which could cause
reapplication of the first unification algorithm, denoted as ”ping pong” variables. This tricky
restriction can be avoided if most general solutions can be expressed without any new variable.
Because matching problems in regular (variable-preserving) theories have only ground solutions,
we can remove this assumption.

An additional improvement is obtained when constructing a general matching algorithm for
the first theory which satisfies the restrictions of the hierarchical framework. In the unification
case a general procedure was developed but due to the generality of unification problem, ter-
mination had to be checked for each theory. However, for the matching problem we are able
to exploit an interesting relation to the work done on syntactic theories [5, 6, 3]. By assuming
a newly defined resolvent property we are able to construct a terminating and thus general
matching algorithm which can be used in the hierarchical framework for any theory satisfying
the restrictions. The algorithm we present can be seen as an extension of the work done for
matching in disjoint unions of regular/syntactic theories [7, 8, 9].

∗Partially supported by the NSF grant CNS-0905222
†ASEE postdoctoral fellowship under contract to the NRL.
‡Partially supported by the NSF grant CNS-0905286
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2 Preliminaries

We use the standard notation of equational unification [2] and term rewriting systems [1]. A
term t is linear if each variable of t occurs only once in t. Given a first-order signature Σ, and
a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the equational theory =E is the
congruence closure of E under the law of substitutivity. By a slight abuse of terminology, E will
be often called an equational theory. An axiom l = r is variable-preserving if V ar(l) = V ar(r).
An axiom l = r is linear (resp. collapse-free) if l and r are linear (resp. non-variable terms). An
equational theory is variable-preserving (resp. linear/collapse-free) if all its axioms are variable-
preserving (resp. linear/collapse-free). An equational theory E is finite if for each term t, there
are finitely many terms s such that t =E s. A theory E is subterm collapse-free if and only
if for all terms t it is not the case that t =E u where u is a strict subterm of t. Note that a
subterm collapse-free theory is necessarily variable-preserving and collapse-free.

A Σ-equation is a pair of Σ-terms denoted by s =? t. When t is ground, s =? t is denoted
by s ≤? t and called a match-equation. A unification (resp. matching) problem P is a set of
equations (resp. match-equations). An E-unifier of P is a substitution σ such that sσ =E tσ
for each equation s =? t in P .

For a convergent rewrite system R we define a constructor of R to be a function symbol f
which does not appear at the root on the left-hand side of any rewrite rule of R. We define an
inner constructor to be a constructor f that satisfies the following additional restrictions: (1)
f does not appear on the left-hand side on any rule in R. (2) f does not appear as the root
symbol on the right-hand side of any rule in R. (3) there are no function symbols below f on
the right-hand side of any rule in R. We consider two equational theories E1 and E2 built over
the signatures Σ1 and Σ2. Let Σ(1,2) = Σ1 ∩Σ2. In [4], we introduce a hierarchical framework
for a union of equational theories E1 ∪E2 such that E1 is given by a convergent rewrite system
R1 for which Σ(1,2)-symbols are inner constructors. In [4], we study the unification problem in
E1 ∪ E2. In this work, we now consider the matching problem.

3 Hierarchical Combination for Matching

The key principle of the combination algorithm for matching is to purify only the left-hand sides
of matching problems. Thus, this purification introduces a pending solved equation X =? t.
Since X occurs in a match-equation solved by A1 or A2, it will be instantiated by a ground term,
say u, transforming eventually X =? t into a match-equation t ≤? u. Hence, our rule-based
procedures will generate equational problems involving also equations and not only match-
equations. Fortunately, we assume the right properties to solve these equational problems by
using only matching algorithms:

1. Properties of E1: E1 is finite, subterm collapse-free and R1 is a left-linear, convergent
term rewrite system corresponding to E1.

2. Properties of E2: E2 is a linear, finite, collapse-free equational theory.

3. Properties of the shared symbols: If f ∈ Σ(1,2), then f is an inner constructor of R1. If
f and g are inner constructors of R1, then f -rooted terms cannot be equated to g-rooted
terms in E2.

According to the above assumptions, we can show that E1 ∪ E2 is finite, and so we could
take a brute force approach to constructing a E1∪E2-matching algorithm [7]. However, we can
use the constituent algorithms, A1 and A2 to construct a more efficient combination method.
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We assume that A1 and A2 handle now left pure match-equations: A1 handles match-equations
whose left-hand sides are in (Σ1\Σ1,2), whilst A2 handles match-equations whose left-hand sides
are in Σ2.

We first consider the question of constructing the A1 algorithm. We show how such algo-
rithms can be constructed for a family of theories related to the syntactic theories [5, 6, 3].
Therefore, we assume the following resolvent property for R1.

Restriction 1. (Algorithm A1)
Algorithm A1 is a mutation-based algorithm as depicted in Figure 1, where R1 is a resolvent
rewrite system; that is, any R1-normal form can be reached by applying at most one rewrite
step at the top position.

Note, resolvent does not require that all paths from a term to its normal form use one
topmost rewrite step, only that for each normal form there is at least one rewrite path with
such a property. When R1 is resolvent, the mutation-based A1 algorithm presented in Figure 1 is
sound and complete. For the second algorithm A2, we simply assume it is a matching algorithm.

Restriction 2. (Algorithm A2)
Algorithm A2 is an E2-matching algorithm.

Rule (i) Mutate

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P
−→ {s1 =? l1, . . . , sm =? lm, r1 ≤? t1, . . . , rn ≤? tn} ∪ P

If f(l1, . . . , lm)→ g(r1, . . . , rn) is a fresh variant of a rule in R1.

Rule (ii) Matching Decomposition

{f(s1, . . . , sm) ≤? f(t1, . . . , tm)} ∪ P

−→ {s1 ≤? t1, . . . , sm ≤? tm} ∪ P

Where f ∈ Σ1 rΣ(1,2).

Rule (iii) Matching Clash

{f(s1, . . . , sm) ≤? g(t1, . . . , tn)} ∪ P

−→ Fail

Where f ∈ Σ1 rΣ(1,2), f 6= g and Mutate does not apply.

Figure 1: Mutation-based A1 algorithm

3.1 The Matching Procedure - Hierarchical Combination

We give a new matching procedure for the hierarchical combination. It works as follows. First,
we purify the left-hand sides of match-equations. After this purification step, we can easily
distinguish which left-pure match-equations must be given to A1 and A2. Then, the solutions
computed by A1 and A2 are combined using some replacement and merging rules.
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Solve1: Run A1

We apply A1 to match-equations having Σ1 rΣ(1,2)-pure left-hand sides

Solve2: Run A2

We apply A2 to match-equations having Σ2-pure left-hand sides

RemEq:
P ] {t =? t′}
P ∪ {t ≤? t′}

if t′ is ground

Rep:
P ] {t =? t′[Y ], Y ≤? u}
P ∪ {t =? t′[u], Y ≤? u}

Merge:
P ] {X ≤? t, X ≤? s}
P ∪ {X ≤? t}

if s =E1∪E2 t

Clash:
P ] {X ≤? t, X ≤? s}

Fail
if s 6=E1∪E2 t

Figure 2: D: inference system for the combination of matching

The matching procedure is given as the inference system D defined in Figure 2 by the set
of inferences rules

{Solve1, Solve2,RemEq,Rep,Merge,Clash}.
We can easily verify that each rule in D preserves the set of E1 ∪E2-solutions. This is clear for
the rules in {RemEq,Rep,Merge,Clash}. Moreover, this is true by definition for Solve1,
and since E2-matching is sound and complete for solving E1 ∪ E2-matching problems whose
left-hand sides are 2-pure, its is also true for Solve2. Furthermore, it can be shown that normal
forms with respect to D are matching problems in solved form and that D terminates for any
input. This implies that the algorithm D is sound and complete, which means that it provides
an E1 ∪ E2-matching algorithm.

Example 3.1. The following theory appears to be a good case-study for the above hierarchical
combination method.

EAC =





exp(exp(x, y), z) = exp(x, y ~ z)
exp(x ∗ y, z) = exp(x, z) ∗ exp(y, z)

}
= E1

(x~ y)~ z = x~ (y ~ z)
x~ y = y ~ x

}
= E2

The theory EAC has the following AC(~)-convergent system:

R1 =

{
exp(exp(x, y), z) → exp(x, y ~ z)

exp(x ∗ y, z) → exp(x, z) ∗ exp(y, z)
The main task is to construct an A1 algorithm. It can be constructed from an instantiation

of the mutation-based algorithm given in Figure 1. This leads to a set of matching inference
rules dedicated to the particular case of R1.
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Abstract

Motivated by the study of admissible rules, a new hierarchy of “exact” unification
types is introduced where a unifier is more general than another unifier if all identities
unified by the first are unified by the second. A Ghilardi-style algebraic interpretation of
this hierarchy is presented that features exact algebras rather than projective algebras.
Examples of equational classes distinguishing the two hierarchies are also provided.

1 Introduction

It has long been recognized that the study of admissible rules is inextricably bound up with the
study of equational unification (see, e.g., [23, 10, 11]). Indeed, from an algebraic perspective,
admissibility in an equational class (variety) of algebras may be viewed as a generalization of
unifiability in that class.1 Let us fix an equational class of algebras V for a language L and
denote by FmL(X), the formula algebra (absolutely free algebra or term algebra) of L over a
set of variables X ⊆ ω. A substitution (homomorphism) σ : FmL(X) → FmL(ω) is called a
V-unifier (over X) of a set of L-identities Σ with variables in X if V |= σ(ϕ) ≈ σ(ψ) for all
ϕ ≈ ψ in Σ. A clause Σ⇒ ∆ (an ordered pair of finite sets of L-identities Σ,∆) is V-admissible
if every V-unifier of Σ is a V-unifier of a member of ∆. In particular, Σ is V-unifiable if and
only if Σ⇒ ∅ is not V-admissible.

In certain cases, V-admissibility may also be reduced to V-unifiability. Suppose that the
unification type of V is at most finitary, meaning that every V-unifier of a set of L-identities Σ
over the variables in Σ is a substitution instance of one of a finite set S of L-unifiers of Σ. Then a
clause Σ⇒ ∆ is V-admissible if each member of S is an L-unifier of a member of ∆. If there is an
algorithm for determining the finite basis set S for Σ and the equational theory of V is decidable,
then checking V-admissibility is also decidable. This observation, together with the pioneering
work of Ghilardi on equational unification for classes of Heyting and modal algebras [10, 11],
has led to a wealth of decidability, complexity, and axiomatization results for admissibility in
these classes and corresponding modal and intermediate logics [12, 13, 15, 7, 3, 2, 21, 18].

The success of this approach to admissibility appears to rely on considering varieties with
at most finitary unification type. That this is not the case, however, is illustrated by the
case of MV-algebras, the algebraic semantics of  Lukasiewicz infinite-valued logic. Decidability,
complexity, and axiomatization results for admissibility in this class have been established by
Jeřábek [16, 17, 18] via a similar reduction of finite sets of identities to finite approximating sets
of identities. On the other hand, it has been shown by Marra and Spada [20] that the variety of
MV-algebras has nullary unification type, which means in particular that there are finite sets
of identities for which no finite basis of unifiers exists. Further examples of this discrepancy

1We refer the reader to [4] and [19] for undefined notions of universal algebra and category theory, respectively.
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may be found in [6], including the very simple example of the class of distributive lattices where
admissibility and validity of clauses coincide but unification is nullary.

As mentioned above, it is possible to check the V-admissibility of a clause Σ⇒ ∆ by checking
that every V-unifier of Σ in a certain “basis set” V-unifies ∆. Such a basis set S typically has
the property that every other V-unifier of Σ is a substitution instance of a member of S.
The starting point for this paper is the observation that a weaker condition on S suffices,
leading potentially to smaller sets. What is really required for checking admissibility is the
property that every V-unifier of Σ V-unifies all identities V-unified by some member of S. Then
Σ ⇒ ∆ is V-admissible if each member of S is a V-unifier of a member of ∆. This leads to
a new ordering of V-unifiers and hierarchy of exact (unification) types. Moreover, we obtain
a Ghilardi-style algebraic characterization making use of exact algebras rather than projective
algebras. Crucially, we also show that an equational class can have an exact type that is “better
than” its unification type. For example, MV-algebras have finitary exact type and distributive
lattices have unitary exact type.

2 Equational Unification and Projective Algebras

Let us first recall some basic notions for equational unification, referring to [1] for further details.
We then provide a short overview of the algebraic approach to equational unification developed
by Ghilardi in [9].

Let P = 〈P,≤〉 be a preordered set. A complete set for P is a subset M ⊆ P such that
for every x ∈ P , there exists y ∈ M such that x ≤ y. A complete set M for P is called a
µ-set for P if x 6≤ y and y 6≤ x for all distinct x, y ∈ M . It is easily seen that if P has a
µ-set, then every µ-set of P has the same cardinality. P is said to be nullary if it has no µ-sets
(type(P) = 0), infinitary if it has a µ-set of infinite cardinality (type(P) = ∞), finitary if it
has a finite µ-set of cardinality greater than 1 (type(P) = ω), and unitary if it has a µ-set of
cardinality 1 (type(P) = 1). These types are ordered as follows: 1 < ω <∞ < 0.

Now let L be a language and X ⊆ ω a set of variables, and consider substitutions
σi : FmL(X)→ FmL(ω) for i = 1, 2. We say that σ1 is more general than σ2 (written σ2 4 σ1)
if there exists a substitution σ′ : FmL(ω) → FmL(ω) such that σ′ ◦ σ1 = σ2. Let V be an
equational class of algebras for L and Σ a finite set of L-identities with variables denoted by
Var(Σ). Then UV(Σ) is defined as the set of V-unifiers of Σ over Var(Σ) preordered by 4. For
UV(Σ) 6= ∅, the V-unification type of Σ is defined as type(UV(Σ)). The unification type of V is
the maximal type of a V-unifiable finite set Σ of L-identities.

We now recall Ghilardi’s algebraic account of equational unification. Let FV(X) denote the
free algebra of L over a set of variables X and let hV : FmL(X) → FV(X) be the canonical
homomorphism. Given a finite set of L-identities Σ and a finite X ⊇ Var(Σ), we denote
by FpV(Σ, X) the algebra in V finitely presented by Σ and X: that is, the quotient algebra
FV(X)/ΘΣ where ΘΣ is the congruence generated by {(hV(ϕ), hV(ψ)) : ϕ ≈ ψ ∈ Σ}. The class
of finitely presented algebras in V is denoted by FP(V).

Given A ∈ FP(V), a homomorphism u : A → B is called a unifier for A if B ∈ FP(V) is
projective in V (i.e., there exist homomorphisms i : B → FV(ω) and j : FV(ω) → B such that
j ◦ i is the identity map on B). Let ui : A → Bi for i = 1, 2 be unifiers for A. Then u1 is
more general than u2, written u2 ≤ u1, if there exists a homomorphism f : B1 → B2 such that
f ◦ u1 = u2. Let UV(A) be the set of unifiers of A preordered by ≤. For UV(A) 6= ∅, the
unification type of A in V is defined as type(UV(A)) and the algebraic unification type of V is
the maximal type of A in FP(V) such that UV(A) 6= ∅. In [9], Ghilardi proved that type(UV(Σ))
coincides with type(UV(FpV(Σ,Var(Σ)))), for each V-unifiable finite set of identities Σ. Hence
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the algebraic unification type of V coincides with the unification type of V.

3 A New Hierarchy

Let us begin by pointing out the relevance of finitely presented algebras for admissibility. We
freely identify L-identities with pairs of L-formulas and recall that the kernel of a homomor-
phism h : A→ B is defined as ker(h) = {(a, b) ∈ A2 : h(a) = h(b)}.

Lemma 1. The following are equivalent for any L-clause Σ⇒ ∆ with X = Var(Σ ∪∆):

(1) Σ⇒ ∆ is admissible in V.

(2) If σ : FmL(X)→ FmL(ω) satisfies Σ ⊆ ker(hV ◦ σ), then ∆ ∩ ker(hV ◦ σ) 6= ∅.

Let X be a set of variables and let σi : FmL(X) → FmL(ω) be substitutions for i = 1, 2.
We write σ2 v σ1 if all identities V-unified by σ1 are V-unified by σ2. More precisely:

σ2 v σ1 ⇔ ker(hV ◦ σ1) ⊆ ker(hV ◦ σ2).

Observe immediately that σ2 4 σ1 implies σ2 v σ1.
Given an equational class of algebras V for L and a finite set Σ of L-identities, EV(Σ, X) is

defined as the set of V-unifiers of Σ over X ⊇ Var(Σ) preordered by v. For X = Var(Σ), we
simply write EV(Σ) instead of EV(Σ, X).

We define the exact type of Σ in V to be type(EV(Σ))) (for EV(Σ) 6= ∅). Note that, because
σ2 4 σ1 implies σ2 v σ1, every complete set for UV(Σ) is also a complete set for EV(Σ).
Therefore, if type(UV(Σ)) ∈ {1, ω}, we have

type(EV(Σ)) ≤ type(UV(Σ)).

We observe also that the choice of EV(Σ) = EV(Σ,Var(Σ)) to define the exact type of Σ, is not
restrictive; that is, for each X ⊇ Var(Σ),

type(EV(Σ)) = type(EV(Σ, X)).

Using Lemma 1, we obtain the desired relationship with admissibility: namely, to check the
V-admissibility of an L-clause Σ ⇒ ∆, it suffices to find a complete set (preferably a µ-set) S
for UV(Σ) then check that each σ ∈ S is a V-unifier of some L-identity in ∆.

Let us now give the algebraic characterization of exact unification. We call an algebra E
exact in V if it is isomorphic to a finitely generated subalgebra of FV(ω) (see also [8] for a
syntactic characterization). Given A ∈ FP(V), an onto homomorphism u : A → E is called a
coexact unifier for A if E is exact. Coexact unifiers are ordered in the same way as algebraic
unifiers, that is, if ui : A → Ei for i = 1, 2 are coexact unifiers for A, then u1 ≤ u2, if there
exists a homomorphism f : E1 → E2 such that f ◦ u1 = u2.

Let EUV(A) be the set of coexact unifiers for A preordered by ≤. If EUV(A) 6= ∅, then the
exact type of A is defined as the type of EUV(A). We obtain the following Ghilardi-style result.

Theorem 2. Let V be an equational class and Σ a finite set of V-unifiable L-identities. Then
for any X ⊇ Var(Σ),

type(EV(Σ)) = type(EV(Σ, X)) = type(EUV(FpV(Σ, X)).
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Class of Algebras Unification Type Exact Type

Boolean Algebras Unitary Unitary

Heyting Algebras Finitary Finitary

Semigroups Infinitary Infinitary or Nullary

Modal algebras Nullary Nullary

Distributive Lattices Nullary Unitary

Stone Algebras Nullary Unitary

Bounded Distributive Lattices Nullary Finitary

Idempotent Semigroups Nullary Finitary

MV-algebras Nullary Finitary

Table 1: Comparison of unification types and exact types

We define the exact unification type of V to be the maximal exact type of a V-unifiable finite
set Σ of L-identities. Similarly, the exact algebraic unification type of V is the maximal exact
type of A in V such that EUV(A) 6= ∅. By Theorem 2, the exact unification type and the exact
algebraic unification type of V coincide.

The close connection between coexact unifiers and congruences has as a byproduct that if a
finitely presented algebra A has a finite set of congruences, then type(EV(Σ)) is 1 or ω. Hence
we obtain the following useful corollary.

Corollary 3. If V is a locally finite variety, then V has exact unification type 1 or ω.

4 Examples

Any unitary equational class such as the class of Boolean algebras also has exact unitary type,
and any finitary equational class will have unitary or finitary exact type. For example, the class
of Heyting algebras is finitary [10] and hence also has finitary exact type: consider the identity
x ∨ y ≈ > and unifiers σ1 with σ1(x) = >, σ1(y) = y and σ2 with σ2(x) = x, σ2(y) = >.

Minor changes to the original proofs that the class of semigroups has infinitary unification
type [22] and that the class of modal algebras (for the logic K) has nullary unification type [14]
establish that the former has infinitary or nullary exact type and the latter has nullary exact
type. However, the class of distributive lattices, which is known to have nullary unification
type [9], has unitary exact type as all finitely presented distributive lattices are exact. Similarly,
the class of Stone algebras has nullary unification type but unitary exact type. The classes of
bounded distributive lattices and idempotent semigroups are also both nullary, but because
they are locally finite, they have at most – and indeed, it can be shown via suitable cases,
precisely – finitary exact type.

In [20] it is proved that the equational class of MV-algebras has nullary unification type. This
class is not locally finite so we cannot apply Corollary 3; however, combining results from [17]
and [5], we can still prove that MV-algebras have finitary exact type. We observe that because
finitely presented MV-algebras admit a presentation of the form {α ≈ >} and [5, Theorem 4.18]
proves that every admissible saturated formula ([16, Definition 3.1]) is exact, [17, Theorem 3.8]
effectively provides a bound on the exact type of a finitely presented algebra. Note, moreover,
that each formula in the admissible saturated approximation (defined in [16, 17]) of a formula
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α corresponds to an exact unifier of the identity α ≈ >. Similarly in [6], the current authors
present axiomatizations for admissible rules of several locally finite (and hence of finitary exact
unification type) equational classes with classical unification type 0. In all these cases a complete
description of exact algebras, and the finite exact unification type plays a central (if implicit)
role. We therefore expect this approach to be useful for tackling other classes of algebras that
have unitary or finitary exact type, independently of their unification type.

These examples are collected in Table 1, noting that we do not know if there are examples
of equational classes of (i) finitary unification type that have unitary exact type, (ii) infinitary
unification type that have unitary, finitary, or nullary exact type, (iii) nullary unification type
that have infinitary exact type.
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[15] E. Jeřábek. Admissible rules of modal logics. Journal of Logic and Computation, 15:411–431,
2005.
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Abstract

SGGS (Semantically-Guided Goal-Sensitive theorem proving) is a clausal theorem-proving method,

with a seemingly rare combination of properties: it is first order, DPLL-style model based, semantically

guided, goal sensitive, and proof confluent. SGGS works with constrained clauses, and uses a sequence

of constrained clauses to represent a tentative model of the given set of clauses. A basic building

block in SGGS inferences is splitting, which partitions a clause into clauses that have the same set

of ground instances. Splitting introduces constraints and their manipulation, which is the subject of

this paper. Specifically, splitting a clause with respect to another clause requires to compute their

difference, which captures the ground instances of one that are not ground instances of the other. We

give a set of inference rules to compute clause difference, and reduce SGGS constraints to standard

form, and we prove that it is guaranteed to terminate, provided the standardization rules are applied

within the clause difference computation.

Introduction

The SGGS theorem-proving method combines instance generation, resolution, and constraint
solving in a model-based framework. It works with a set S of first-order clauses to be refuted
and an initial interpretation I for semantic guidance. The features of SGGS can be seen as
an attempt to build a model of S, distinct from I. The search for a model of S is done by
constructing an SGGS derivation, which is a series Γ0 ⊢ Γ1 ⊢ Γ2 ⊢ . . . of objects Γ, called SGGS
clause sequences. After Γ0, which is empty, each Γi is obtained from the previous one by an
SGGS inference rule.

An SGGS derivation terminates, if either a refutation is found, or no more inference rules can
be applied. SGGS is refutationally complete: if S is unsatisfiable, there exist SGGS derivations
from S that terminate with the generation of the empty clause. If S is satisfiable, the derivation
may be infinite, and if so will in the limit represent a model of S. At each step the new clause
sequence replaces the old one, so that only one clause sequence exists at any time, and SGGS
is proof confluent: performing an inference will never prevent it from finding a refutation, so
that there is no need for backtracking.

A key property of SGGS is that an SGGS clause sequence represents a candidate partial
model. While in propositional logic, a model is represented by a sequence of literals (e.g., as in
DPLL), in SGGS a first-order model is represented by a sequence of constrained clauses, each of
which has a selected literal. The model I[Γ] represented by a sequence Γ is given by the initial
interpretation I modified to satisfy ground instances of selected literals. Informally, the literal
L selected in the n-th clause C in Γ contributes to I[Γ] its ground instances Lσ that are needed
(Cσ is not already true in the model induced by the first n − 1 clauses of Γ) and consistent
(¬Lσ is not true in the model induced by the first n− 1 clauses of Γ). Formally, I[Γ] is defined
inductively on the length of the sequence [2, 1].

The inference rules of SGGS implement a search for a model thus represented. The main
rule is extension, which adds to the current clause sequence an instance of a clause in S: the
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objective is to find a model of all instances of all clauses in S, and if some are not satisfied,
they must be added.

It may happen that selected literals have ground instances in common. If the literals have
opposite sign, this would make the model inconsistent: SGGS features a restricted form of
resolution, called SGGS-resolution, to remove such contradictions. SGGS-resolution represents
an implicit sort of backtracking over the set of possible models of S. The resolvent is a lemma,
that constrains the model, because the model must satisfy it, and intuitively captures a portion
of the search space of models that has been explored. If resolution generates the empty clause,
no model can be found.

If selected literals have ground instances in common, and have the same sign, there is
duplication. SGGS features splitting rules that partition a clause with respect to another clause.
The clause that gets partitioned, or split, is replaced by other clauses, that have its same set of
ground instances, in such a way that the duplicated literals are isolated and can be removed.

The splitting rules of SGGS are the motivation for this paper. The splitting of a clause with
respect to another clause can be computed by computing unification of selected literals, and
the difference between two clauses. Intuitively, the splitting of C with respect to D replaces
C by a set of clauses one of which captures the (constrained) ground instances of C that are
also (constrained) ground instances of D, while the others capture the (constrained) ground
instances of C that are not (constrained) ground instances of D. The latter form the difference
between C and D, which is what matters in practice, since we want to remove the duplication.

In this paper, we illustrate the ingredients of SGGS that are relevant to constraint solving:
SGGS constraints, constrained clauses, and the concepts of splitting of clauses and difference
between clauses. We give a system of rules for constraint manipulation to compute clause
differences, whence splittings, and reduce SGGS constraints to standard form. Then we discuss
termination: while unrestricted applications of the standardization rules may not terminate,
the computation of clause difference, and restoration of standard form during the computation
of clause difference, are proved to terminate.

For the interested reader, a technical presentation of SGGS, including inference system,
fairness, and proofs of refutational completeness and goal-sensitivity, is available in [2]. A non-
technical exposition is offered in [3]. The representation of models by SGGS clause sequences
is studied in its own right in [1].

Constrained Clauses and Splitting

We assume standard concepts and notations in clausal theorem proving. In addition, ≡ is
syntactic identity; top(t) is the top symbol of term t; at(L) is the atom of literal L; at(T ) =
{at(L) : L ∈ T } for T a set of literals; vars(C) is the set of variables in clause C, and the
same notation applies to terms; clauses are variants, if made identical by a variable renaming,
similar, if made identical by a substitution that replaces variables by variables, but may replace
distinct variables by the same.

SGGS Constraints

In SGGS, an atomic constraint is either empty, denoted by true, or an expression of the form
x ≡ y or top(t) = f , where x and y are variables, f is a function symbol, and t is a term.
Then, a constraint is either an atomic constraint, or the negation, conjunction, or disjunction
of constraints.

SGGS constraints assume Herbrand interpretations: let |= mean truth in all Herbrand in-
terpretations; then, |= t ≡ u for ground terms t and u if t and u are the same element of the
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Herbrand universe; and |= top(t) = f if the top symbol of ground term t is f . Thus, if Aϑ is a
ground instance of a constraint A, either |= Aϑ or |= ¬Aϑ.

SGGS constraints are a variant of Herbrand constraints: they are Herbrand constraints with
the addition of atomic constraints of the form top(t) = f , which allow us to avoid existential
quantifiers in the constraints, since top(t) = f replaces ∃x1 . . . ∃xn. t ≡ f(x1, . . . , xn).

An SGGS constraint is in standard form, if it is a conjunction of distinct atomic constraints
of the form x 6≡ y and top(x) 6= f , where x and y are variables. A constraint top(x) 6= f says
that x cannot be replaced by a term whose top function symbol is f , while a constraint x 6≡ y
specifies that x and y may not be replaced by identical terms.

A constrained clause is a formula A ✄ C, where A is a constraint and C is a clause; a
variable that appears in A but not in C is implicitly existentially quantified. A constrained
clause A✄C may have a selected literal L, written A✄C[L]. A✄L is called constrained literal.
By convention, if L is selected in C, and C′ ≡ Cϑ, then L′ ≡ Lϑ is selected in C′.

The constrained ground instances (cgi) of A✄ C are the ground instances of C that satisfy
the constraints: Gr(A✄C) = {Cϑ : |= Aϑ, Cϑ ground}, where |= means truth in all Herbrand
interpretations. Similarly, Gr(A ✄ L) = {Lϑ : |= Aϑ, Lϑ ground}. For example, P (a, b) ∈
Gr(x 6≡ y✄P (x, y)), but P (b, b) 6∈ Gr(x 6≡ y✄P (x, y)). A constrained clause (literal) represents
its constrained ground instances.

Partition, Splitting, and Difference

Since SGGS uses constrained literals and clauses to exhibit a partial model, it needs to know
when constrained literals have instances in common: A✄ L and B ✄M intersect if at(Gr(A✄

L))∩ at(Gr(B✄M)) 6= ∅, and are disjoint, otherwise. Intersection does not require the literals
to have the same sign, because it is defined based on atoms.

If A ✄ L and B ✄M do not share variables, they intersect if and only if at(L) and at(M)
unify and (A∧B)σ is satisfiable, where σ is the mgu (most general unifier) of at(L) and at(M).
The intersection is given by at(Gr(A ✄ L)) ∩ at(Gr(B ✄ M)) = at(Gr((A ∧ B)σ ✄ Mσ)) =
Gr((A ∧B)σ ✄ at(M)σ).

A partition of A✄C[L], where A is satisfiable, is a set {Ai✄Ci[Li]}ni=1 such that Gr(A✄C) =⋃n
i=1{Gr(Ai ✄Ci[Li])}, the Ai✄Li’s are pairwise disjoint, the Ai’s are satisfiable, and the Li’s

are chosen consistently with L.
For example, {true✄P (f(z), y), top(x) 6= f✄P (x, y)} is a partition of true✄P (x, y) (which

can of course be written simply P (x, y)). Similarly,

{true✄ [P (f(z), y)] ∨Q(f(z), y), top(x) 6= f ✄ [P (x, y)] ∨Q(x, y)}

is a partition of true✄ [P (x, y)] ∨Q(x, y). On the other hand,

{true✄ P (f(z), y) ∨ [Q(f(z), y)], top(x) 6= f ✄ P (x, y) ∨ [Q(x, y)]}

is not a partition of true✄[P (x, y)]∨Q(x, y), because selected literals are not chosen consistently.
If clauses A✄C[L] and B ✄D[M ] in an SGGS clause sequence have selected literals L and

M that intersect, SGGS features inference rules that replace A✄C[L] by split(C,D), that is a
partition of C[L], where all cgi’s of L that are also cgi’s of M are isolated in one of the clauses of
the partition. Formally, a splitting of A✄C[L] by B✄D[M ], denoted split(C,D), is a partition
{Ai ✄ Ci〈Li〉}ni=1 of A✄ C[L] such that:

1. ∃j, 1 ≤ j ≤ n, such that at(Gr(Aj ✄ Lj)) ⊆ at(Gr(B ✄M)), and

2. ∀i, 1 ≤ i 6= j ≤ n, at(Gr(Ai ✄ Li)) and at(Gr(B ✄M)) are disjoint.
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The difference C −D is split(C,D) with Cj removed. Clause Cj is the representative of D in
split(C,D): at(Gr(Aj ✄ Lj)) is the intersection of A ✄ L and B ✄M , while C − D captures
the cgi’s of L that are not cgi’s of M . We write Gr(C −D) for

⋃n
i=1,i6=j Gr(Ci).

For example, a splitting of true ✄ P (x, y) by true✄ P (f(w), g(z)) is

{true✄ P (f(w), g(z)), top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (f(x), y)}

and their difference is {top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (f(x), y)}. On the other hand,

{true✄ P (f(w), g(z)), top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (x, y)}

is not a splitting of true ✄ P (x, y) by true✄ P (f(w), g(z)), because it is not a partition, since
top(x) 6= f ✄ P (x, y) and top(y) 6= g ✄ P (x, y) intersect: for instance, P (a, b) is a cgi of both.
In the correct splitting, P (a, b) is a cgi of top(x) 6= f ✄ P (x, y), not of top(y) 6= g ✄ P (f(x), y).

As this example shows, computing split(C,D) and C −D introduces constraints, including
non-standard ones, even when C and D have empty constraints to begin with. This is precisely
why SGGS works with constrained clauses.

If at(L) and at(M) do not unify, Gr(C − D) = Gr(C); if they unify with mgu σ, then
split(C,D) = (C −D) ∪ {Aσ ∧Bσ ✄C[L]σ}, and (C −D) = (C − (Aσ ∧Bσ ✄C[L]σ)). Thus,
if we have a way to compute C −D, we also have a way to compute split(C,D), and we can
restrict ourselves to compute C −D under the assumption that D is an instance of C.

Rules to Compute Clause Difference and Standardize Constraints

The following rules are sound, as premise and conclusion represent the same set of cgi’s. If a
conclusion has the form A1 ✄C1, . . . , An✄Cn, it is a disjunction, and represents

⋃n
i=1 Gr(Ai ✄

Ci). We begin with rules to compute C −D when D ≡ Cσ.

Rules for Clause Difference and Disjunctive Normal Form

If {x← f(x1, . . . , xn)} ⊆ σ for some x ∈ vars(C) and new variables xi, 1 ≤ i ≤ n, the DiffSim
rule applies {x← f(x1, . . . , xn)} to make C similar to D and on the other hand adds top(x) 6= f
to make them different:

(A✄ C)− (B ✄D)
(A✄ C){x← f(x1, . . . , xn)} − (B ✄D), A ∧ (top(x) 6= f)✄ C

If C and D are similar, and {x← y} ⊆ σ for distinct variables x, y ∈ vars(C), the DiffVar rule
applies {x ← y} to make C a variant of D and on the other hand adds x 6≡ y to make them
different:

(A✄ C)− (B ✄D)
(A✄ C){x← y} − (B ✄D), (x 6≡ y ∧ A)✄ C

If C and D are variants but not identical, the DiffId rule makes them identical:

(A✄ C)− (B ✄D)
(A✄ C)σ − (B ✄D)

The DiffElim rule replaces difference by negation:

(A✄ C)− (B ✄ C)
(A ∧ ¬B)✄ C
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Since B is a conjunction of constraints, ¬B is a disjunction of their negations. The next rules
restore disjunctive normal form (DNF). The Equiv rule replaces a constraint by its DNF:

A✄ C
dnf(A)✄ C

where dnf(A) is the disjunctive normal form of A; and the Div rule subdivides disjunction:

(A ∨B)✄ C
A✄ C, B ✄ C

Rules for Reduction to Standard Form

The rules for reduction to standard form comprise rules for identity and rules for top symbol.
The rules for identity eliminate or decompose all identity constraints, except those in standard
form x 6≡ y.
The ElimId1 rule eliminates a constraint between variable and term: if x 6∈ vars(s), then:

(A ∧ x ≡ s)✄ C
(A✄ C){x← s}

if x ∈ vars(s) and s is not a variable, then:

(A ∧ x ≡ s)✄ C
⊥

(A ∧ x 6≡ s)✄ C
(A✄ C)

The ElimId2 rule detects a conflict: if f 6= g, m ≥ 0, n ≥ 0, then:

(A ∧ f(s1, . . . , sn) ≡ g(t1, . . . , tm))✄ C
⊥

The ElimId3 rule eliminates a satisfied constraint: if f 6= g, m ≥ 0, n ≥ 0, then:

(A ∧ f(s1, . . . , sn) 6≡ g(t1, . . . , tm))✄ C
A✄ C

The ElimId4 rule decomposes an identity: if n ≥ 0, then:

(A ∧ f(s1, . . . , sn) ≡ f(t1, . . . , tn))✄ C
(A ∧ s1 ≡ t1 ∧ . . . ∧ sn ≡ tn)✄ C

The ElimId5 rule decomposes a negated identity: if n ≥ 0, then:

(A ∧ f(s1, . . . , sn) 6≡ f(t1, . . . , tn))✄ C
(A ∧ (s1 6≡ t1 ∨ . . . ∨ sn 6≡ tn))✄ C

The ElimId6 rule eliminates a negated identity between variable and non-variable term:

(A ∧ x 6≡ f(s1, . . . , sn))✄ C
A ∧ top(x) 6= f ✄ C, ((A ∧ f(s1, . . . , sn) 6≡ f(y1, . . . , yn))✄ C){x← f(y1, . . . , yn)}
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where n ≥ 0, and the yi’s, 1 ≤ i ≤ n, are new variables.
The ElimId7 rule detects a conflict: if s is a variable or constant, then:

(A ∧ s 6≡ s)✄ C
⊥

As an example, consider computing split(C,D), where A ✄ C[L] is true ✄ P (x, f(x)) and
B✄D[M ] is x 6≡ y✄P (x, y). After renaming variables in the second clause, so that B✄D[M ]
becomes x′ 6≡ y ✄ P (x′, y), the unification of at(L) = P (x, f(x)) and at(M) = P (x′, y), yields
mgu σ = {x′ ← x, y ← f(x)}, so that Aσ ∧ Bσ ✄ C[L]σ is x 6≡ f(x) ✄ P (x, f(x)). The
ElimId1 rule reduces this clause to true ✄ P (x, f(x)), which is the same as A ✄ C[L]. Thus,
C −D = C − C, or the difference is empty, because indeed Gr(A ✄ C[L]) ⊆ Gr(B ✄D[M ]).
Accordingly, split(C,D) is A✄C[L] itself, or the splitting operation leaves the clause unchanged,
because we tried to split a clause by a more general one.

The rules for top symbol eliminate all top symbol constraints, except those in standard form
top(x) 6= f .
The ElimTop1 rule detects a conflict in a positive constraint: if f 6= g, n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) = g ✄ C
⊥

The ElimTop2 rule eliminates a satisfied positive constraint: if n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) = f ✄ C
A✄ C

The ElimTop3 rule eliminates a satisfied negative constraint: if f 6= g, n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) 6= g ✄ C
A✄ C

The ElimTop4 rule detects a conflict in a negated constraint: if n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) 6= f ✄ C
⊥

The ElimTop5 rule eliminates a positive constraint: if n ≥ 0, then:

A ∧ top(x) = f ✄ C
(A✄ C){x← f(x1, . . . , xn)}

where for all i, 1 ≤ i ≤ n, xi is a new variable.
The combined effect of all rules is to standardize all constraints.

Termination

The application of the identity rules may not terminate in general. For example, consider a
clause (x 6≡ f(y) ∧ y 6≡ f(x) ✄ P (x, y)): ElimId6 yields the two clauses (top(x) 6= f ∧ y 6≡
f(x))✄ P (x, y) and (f(z) 6≡ f(y) ∧ y 6≡ f(f(z))✄ P (f(z), y)). Using ElimId5, the latter clause
becomes (z 6≡ y∧y 6≡ f(f(z))✄P (f(z), y)), which by another application of ElimId6, yields the
two clauses (z 6≡ y∧top(y) 6= f)✄P (f(z), y)) and (z 6≡ f(w)∧f(w) 6≡ f(f(z))✄P (f(z), f(w))).
Using ElimId5 again, the latter clause becomes (z 6≡ f(w) ∧ w 6≡ f(z)✄ P (f(z), f(w))), whose
constraint is a variant of the original one.

Nonetheless, SGGS does not need that every series of applications of these rules terminate.
It suffices that the computation of clause difference terminates:
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Theorem 1. Given A✄C and B✄D, such that D ≡ Cσ, and A and B are in standard form,
any application of the clause difference rules to C −D, where (1) any application of DiffElim
or ElimId5 is followed by conversion to DNF, and (2) all constraints are restored to standard
form after every application of a clause difference rule, is guaranteed to terminate.

Proof. First we show that the rules for clause difference do not cause non-termination. DiffId
and DiffElim can be applied only once. DiffVar can be applied only a finite number of times,
because each application decreases the number of variables in C. Each DiffSim step applies to
C a substitution {x← f(x1, . . . xn)} from σ: since σ contains finitely many such pairs, DiffSim
can be applied only a finite number of times. Then we prove that standardization between an
application of a clause difference rule and the next is guaranteed to terminate:

1. DiffId only renames variables, which does not enable any other rule.

2. DiffVar adds an x 6≡ y, which is in standard form, and applies a substitution {x ← y},
whose only effect may be to replace an x 6≡ y by an x 6≡ x, eliminated by ElimId7.

3. DiffSim adds a top(x) 6= f , which is in standard form, and applies a substitution {x ←
f(x1, . . . , xn)}, which may have two effects. One is to replace the occurrence of x in a
constraint top(x) 6= g by f(x1, . . . , xn). This enables either ElimTop3 or ElimTop4, which
terminate. The other is to transform an x 6≡ y into an f(x1, . . . , xn) 6≡ y, enabling ElimId6.
This rule adds a top(x) 6= f , which is in standard form, and applies another substitution
of the same form, so that eventually a subset of the variables may be replaced by terms
f(x1, . . . , xn) where the xi’s are new. This can only be done a finite number of times,
because the new variables will never be replaced in this way. If two such substitutions are
applied to a z 6≡ w, an f(x1, . . . , xn) 6≡ f(y1, . . . , yn) may arise. ElimId5 applies to such
a constraint, followed by conversion to DNF. The result is a disjunction of constrained
clauses, each containing in its constraint an xi 6≡ yi, for some i, which is in standard form.

4. DiffElim yields (A ∧ ¬B) ✄ C, followed by conversion to DNF. The effect may be to add
x ≡ y (negation of x 6≡ y in B) or top(x) = f (negation of top(x) 6= f in B). In the
first case, ElimId1 applies {x← y}, covered in Case (2) of this proof. In the second case,
ElimTop5 applies {x← f(x1, . . . , xn)}, covered in Case (3) of this proof.

Discussion

We presented a set of inference rules to compute the difference between two constrained clauses,
and to reduce to standard form SGGS constraints. We showed by a counter-example that it
is not the case that any application of the inference rules for standardization is guaranteed to
terminate. Then we proved that computation of clause difference is guaranteed to terminate,
and that standardization in the context of computing clause differences is also guaranteed to
terminate.

SGGS is a new reasoning method that uses sequences of constrained clauses to represent
candidate partial models, during the search for a refutation, or a model, of a set of first-order
clauses. When clauses in the sequence contribute to the candidate partial model sets of ground
literals with non-empty intersection, there is a duplication. SGGS removes this duplication
by inferences that split a clause with respect to another. Computing this splitting requires to
compute unification of literals and differences of clauses, whence the interest for the difference
operation.

SGGS constraints are a variant of Herbrand constraints (e.g., [6, 7, 5, 4]): they feature
atomic constraints in the form top(t) = f , which allow one to avoid existential quantifiers in
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constraints. If top(t) = f is replaced with ∃x1 . . . ∃xn. t ≡ f(x1, . . . , xn), SGGS constraints fit
in the first-order logic of equations between trees.

Inference systems to decide the truth in the Herbrand universe of first-order formulæ with
equality as the only predicate symbol were given independently in [6, 7] and [5]. Our infer-
ence system and termination result are tailored for the SGGS reasoning method; they capture
what is needed precisely by SGGS, and therefore they are relevant to its understanding and
implementation. More study may clarify a more precise relationship between our work in this
paper and that in [6, 7] and [5]. Another possible topic for future investigation is the com-
plexity of these procedures. The research in [6, 7] and [5] was motivated primarily by logic
programming with constraints. It is interesting that those results may turn out to be useful for
a theorem-proving method after several years.
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Studi di Verona, Verona, Italy, January 2014. Revised April 2014, available at
http://profs.sci.univr.it/~bonacina/pub_tr.html (56 pages).

[3] Maria Paola Bonacina and David A. Plaisted. SGGS theorem proving: an exposition. In Leonardo
De Moura Boris Konev and Stephan Schulz, editors, Notes of the Fourth Workshop on Practical
Aspects in Automated Reasoning (PAAR), Seventh International Joint Conference on Automated
Reasoning (IJCAR) and Sixth Federated Logic Conference (FLoC), EasyChair Proceedings in Com-
puting (EPiC), pages 1–14, July 2014.

[4] Hubert Comon. Disunification: a survey. In Jean-Louis Lassez and Gordon Plotkin, editors,
Computational Logic – Essays in Honor of Alan Robinson, pages 322–359. The MIT Press, 1991.

[5] Hubert Comon and Pierre Lescanne. Equational problems and disunification. Journal of Symbolic
Computation, 7:371–425, 1989.

[6] Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees.
Technical report, IBM, Thomas J. Watson Research Center, Yorktown Heights, New York, USA,
1988.

[7] Michael J. Maher. Complete axiomatizations of the algebras of finite, rational and infinite trees.
In Proceedings of the Third Annual IEEE Symposium on Logic in Computer Science (LICS), pages
348–457. IEEE Computer Society Press, 1988.

8
54



Two-sided unification is NP-complete

Tatyana A. Novikova1 and Vladimir A. Zakharov2

1 Kazakhstan Branch of Lomonosov Moscow State University
2 Lomonosov Moscow State University
(taniaelf@mail.ru, zakh@cs.msu.su)

Abstract

It is generally accepted that to unify a pair of substitutions θ1 and θ2 means to find out
a pair of substitutions η′ and η′′ such that the compositions θ1η

′ and θ2η
′′ are the same.

Actually, unification is the problem of solving linear equations of the form θ1X = θ2Y in
the semigroup of substitutions. But some other linear equations on substitutions may be
also viewed as less common variants of unification problem. In this paper we introduce a
two-sided unification as the process of bringing a given substitution θ1 to another given
substitution θ2 from both sides by giving a solution to an equation Xθ1Y = θ2. Two-
sided unification finds some applications in software refactoring as a means for extracting
instances of library subroutines in arbitrary pieces of program code. In this paper we
study the complexity of two-sided unification and show that this problem is NP-complete
by reducing to it the bounded tiling problem.

1 Introduction

To unify a pair of expressions E1 and E2 means to compute such instances of these expressions
that are identical (syntactical unification) or have the same meaning (semantical unification).
Such common instances of E1 and E2 can be obtained by replacing some variables in E1 and
E2 by appropriate terms, i.e. by applying some substitutions to these expressions. Unification
algorithms have found a wide utility in theorem proving, logic programming, term rewriting,
type inference, language processing, etc. (see [1, 2]). In [9] it was shown that unification problem
is also meaningful and efficiently decidable when expressions E1 and E2 are some formal models
in imperative programs. If the programs are unifiable then their behaviors are somewhat similar;
therefore, some results of the analysis of one program (proofs of its correctness, termination,
etc.) can be easily adapted to the other.

But a similarity of programs can be formalized differently. Suppose that one has a library
subroutine π0(~x : input; ~y :output) with a set of formal input arguments ~x and a set of formal
output parameters ~y. Given some piece of program code π1 one may wonder if it is possible to
replace it with an appropriate subroutine call. Such a replacement would make the program
both succinct and uniform which is very much helpful for program understanding and analysis.
To this end one could try to find such instantiation η′′ of input arguments ~x and such special-
ization η′ of output parameters ~y as to make the composition of η′, π0, and η′′ equivalent to π1.
In some formal models of programs (see [4, 8, 9]) a behavior of a program π can be specified
by a substitution θπ which assigns terms on input arguments ~x to output parameters ~y. Thus,
we can set up the following problem: given a pair of substitutions θπ0 and θπ1 find a pair of
substitutions η′′ (input instantiation) and η′ (output specialization) such that the composition
η′θπ0

η′′ is equal to θπ1
, or, in other words, solve the equation Xθπ0

Y = θπ1
in the semigroup of

substitutions. It is worth noticing that the conventional unification problem may be regarded
as that of solving linear equations of the form θ1X = θ2Y in the semigroup of substitutions
when both unknown substitutions are applied to θ1 and θ2 from the one side. Therefore, we
call the solving of equations of the form Xθ0Y = θ1 when unknowns appear on both sides of
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θ0 two-sided unification of substitutions θ0 and θ1. In this paper we show that the problem of
two-sided unification for first-order substitutions is NP-complete.

The paper is organized as follows. In Section 2 we recall briefly the basic notions concerning
first-order substitutions, set up formally two-sided unification problem, and show that it is in
NP. Afterward, in Section 3 we consider BOUNDED TILING problem which is widely used
in complexity theory (see [3]) as an alternative to SATISFIABILITY. Finally, in Section 3 we
prove that BOUNDED TILING is reducible to two-sided unifiability problem.

2 Preliminaries.

We deal with the first-order language over some fixed sets of functional symbols F . Letters
U ,X ,Y,Z . . . will be used for pairwise disjoint finite sets of variables. The set of terms Term[X ]
over a set of variables is defined as usual.

Let X = {x1, . . . , xn} and Y = {y1, y2, . . . } be two sets of variables. A X -Y-substitution is
any mapping θ : X → Term[Y]. Every such mapping can be represented as a set of bindings
θ = {x1/θ(x1), . . . xn/θ(xn)}. We write Subst[X ,Y] for the set of all X -Y-substitutions. An
application of a substitution θ to a term t(x1, . . . , xn) yields the term tθ = t(θ(x1), . . . , θ(xn))
obtained from t by replacing all occurrences of every variable xi, 1 ≤ i ≤ n, with the term
θ(xi). A composition of a X -Y-substitution θ and a Y-Z-substitution η is a X -Z-substitution
ξ such that the equality xξ = (xθ)η (or, in other notation, ξ(x) = (θ(x))η) holds for every
x, x ∈ X . To denote the composition of θ and η we use an expression θη; since t(θη) = (tθ)η
holds for every term t, t ∈ Term[X ], this notation makes it possible to skip parentheses when
writing tθη for the application of a composition of substitutions to a term. A X -X -substitution
ρ is called a renaming iff ρ is a bijection on the set of variables X . Two X -Z-substitutions θ1
and θ2 are equivalent if θ1 = θ2ρ for some X -X -renaming ρ. If θ1 is a composition of θ2 and η
then θ1 is called an instant of θ2, and θ2 is called a pattern of θ1.

Let θ0 be a X -Y-substitution and θ1 be a Z-U-substitution. Then a pair of substitutions
η′ and η′′ from Subst[Z,X ] and Subst[Y,U ] respectively is called a two-sided unifier of (θ0, θ1)
iff η′θ0η′′ = θ1. Two-sided unification problem is that of finding, given a pair of substitutions
(θ0, θ1), a two-sided unifier (η′, η′′) of (θ0, θ1). It must be noticed that two-sided unification,
unlike usual unification, is asymmetric, since substitutions θ0 and θ1 play different roles in the
equation Xθ0Y = θ1. Another important aspect of two-sided unification to be emphasized is
that a substitution η′′ does not affect directly the variables from X but only through the terms
from θ0 via the set of variables Y. This is due to the software engineering application two-sided
unification problem stems from: η′′ only initializes input variables of θ0 but does not interfere
in the computation of θ0.

Two-sided unification problem for a pair of substitutions (θ0, θ1) may have several solu-
tions. For example, if θ0 = {x1/f(y1, y2), x2/y3}, θ1 = {z/f(f(u, u), f(u, u))} then two-sided
unifiers of (θ0, θ1) are non-equivalent pairs (η′ = {z/f(x1, x1)}, η′′ = {y1/u, y2/u}), (η′ =
{z/f(f(x2, x2), x1)}, η′′ = {y1/u, y2/u}) and (η′ = {z/x1}, η′′ = {y1/f(u, u), y2/f(u, u)}).
Since the first component η′ of every such pair is a pattern of θ1 and the set of non-equivalent
patterns of every substitution is finite, the set of non-equivalent two-sided unifiers of every pair
of substitutions (θ0, θ1) is also finite.

When the complexity issues of decision problems for substitutions are concerned, the rep-
resentation of terms in a set of bindings θ = {x1/t1, . . . xn/tn} is of prime importance. We
will assume that terms t1, . . . , tn in every substitution θ are represented by labeled trees. A
representation of a composition θη can be obtained from representations of θ and η just by
attaching the terms from η to the corresponding leaves in the representations of terms from θ.
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Lemma 1. The problem of two-sided unifiability of pairs of substitutions represented by trees
is in NP.

Proof. It is easy to see that two-sided unifiability of (θ0, θ1) can be non-deterministically checked
in polynomial time. It is sufficient

1. to guess a cut of tree representation Tθ1 of θ1 into three pieces T1, T2, and T3 in such a
way that the leaves of every tree in T1 and T2 become the roots in the tree representations
of T2 and T3 respectively.

2. to assign consistently variables from X and Y to all leaves of T1 and T2 respectively (the
same variable can be assigned to different leaf nodes v1, v2 of a piece Ti, i = 1, 2, only if
v1 and v2 are the roots of equal subtrees in Ti+1), and

3. to check that all trees from the middle piece T2 represent only terms from θ0.

Clearly, such cut of T1, T2, and T3 of Tθ1 do exist iff θ1 = η′θ0η′′ for some substitutions η′ and
η′′. It is easy to see that the consistency of variable assignment and the inclusion of T2 in Tθ0
can be checked in polynomial time.

NP-hardness of two-sided unifiability problem follows from NP-completeness of BOUNDED
TILING problem which is formally defined in the next section.

3 Bounded tiling problem

To define the bounded tiling problem imagine 1 × 1 square tiles whose edges are coloured.
Suppose that only finitely many types of tiles are available. Consider a n×m rectangular area
whose border is divided into segments of length 1 and assume that all such segments are also
colored. The problem is to determine if it is possible to cover this area with the tiles (i.e. make
a tiling) in such a manner that every pair of adjacent edges of two tiles has the same colour
and every border segment has the same colour as the edge of a tile adjacent to it.

Formally BOUNDED TILING problem is specified as follows. Let Colours = {1, 2, . . . ,K}
be a finite set of colours. A tile is a quadruple tile = 〈a1, a2, a3, a4〉 of colours. The components
of tile are denoted by tile[0,−1], tile[−1, 0], tile[0, 1], tile[1, 0] respectively; they identify the
colours of the top, right, bottom and left edges of the tile. A n × m area is the set of pairs
Area = {(i, j) : 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ m+ 1}; the elements of this set are called squares. The
set of squares Inter = {(i, j) : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is the interior of the area. The border
of the area is the set of squares Border = Area \ Inter. Two squares (i1, j1) and (i2, j2) in
the Area are called adjacent iff |i1 − i2|+ |j1 − j2| = 1. A boundary constraint is any mapping
B : Border → Colours. If B(i, j) = a then this means that the ”innermost” edge of a border
square (i, j) is painted colour a. Let Tiles = {tile1, . . . , tileL} be a finite set of tiles. Then a
tiling of an Area is any mapping T : Inter → Tiles. Given a boundary constraint B, a tiling
T is called B-consistent if the following two requirements are satisfied:

1. for every pair of adjacent interior squares (i1, j1) and (i2, j2) the equality T (i1, j1)[i1 −
i2, j1 − j2] = T (i2, j2)[i2 − i1, j2 − j1] holds; this equality means that the adjacent edges
of the tiles inserted on these squares have the same colour;

2. for every interior square (i1, j1) which is adjacent to a border square (i2, j2) the equality
T (i1, j1)[i1−i2, j1−j2] = B(i2, j2) holds; this equality means that the colour of the border
segment matches the colour of the adjacent edge of the tile.
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An instance of the BOUNDED TILING problem is a tuple BT = (n,m, T iles,B); this
instance is accepted iff there exists a B-consistent tiling of n ×m Area with tiles from Tiles.
For the first time the TILING problem has been introduced in [10]. The complexity of this
problem depends on the area to be tiled. Thus, in [11] it has been shown that if Area is a
quadrant of infinite plane then TILING problem is undecidable. In [3] it has been proved that
BOUNDED TILING problem is NP-complete. We use this fact to prove NP-hardness of the
two-sided unifiability problem.

4 NP-hardness of two-sided unification

Let Colours = {1, . . . ,K}. Consider an instance of the BOUNDED TILING problem BT =
(n,m, T iles,B), where Tiles = {tile1, . . . , tileL}. We show how to build such a pair of substi-
tutions θ0 and θ1 that their two-sided unification (η′, η′′), if any, gives a solution to BT . The
bindings of X -Y-substitution θ0 represent the boundary constraint B and all possible insertions
of tiles from Tiles onto interior squares of the Area. The Z-U-substitution θ1 represents the
tiling of the same area with monochromatic tiles whose edges are painted colour K. The first
component η′ of a two-sided unifier specifies a choice of some possible tiling T of the Area, and
the second component η′′ checks the consistency of this tiling by simulating an attempt to ”re-
paint” consistently the edges of all tiles and border segments to achieve monochromatic tiling.
The key feature of the substitution θ0 is that the terms in its bindings share variables in such a
manner that the colours of the adjacent edges of tiles can be changed only in common and by
the same value. Therefore, a monochromatic ”re-painting” η′′ is possible only for B-consistent
tilings.

To define θ0 and θ1 formally we introduce a set of functional symbols F which includes

• a binary function g(2) to build a n×m area,

• a 6-ary function h(6) to construct border constraints and instances of tiles,

• a unary function f (1) to enumerate colours and squares.

As for the sets of variables the substitutions θ0 and θ1 operate with, we assume that

• X = X ′ ∪ X ′′, where

– X ′ = {x′i,j : (i, j) ∈ Border}: every variable x′i,j is associated with a border square
(i, j) in the Area,

– X ′′ = {x′′i,j,` : (i, j) ∈ Interior, 1 ≤ ` ≤ L}: every variable x′′i,j,` is associated with
an instant of a tile tile` inserted onto the square (i, j);

• Y = {y0} ∪ Y ′, where

– y0 is a common ”dummy” variable;

– Y ′ = {yi1,j1,i2,j2 : 0 ≤ i1 ≤ i2 ≤ n+ 1, 0 ≤ j1 ≤ j2 ≤ m+ 1, |i1 − i2|+ |j1 − j2| = 1}:
every variable yi1,j1,i2,j2 is associated with a pair of adjacent squares (i1, j1) and
(i2, j2) in the Area;

• Z = {z}, and U = {u}.
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By means of functional symbol f (1) we define recursively numerals fn(y) for every integer
n as follows: f0(y) = y and fn+1(y) = f(fn(y)) for every n, n ≥ 0. Numerals will be used to
enumerate squares and colours. Clearly, fn(fm(y)) = fn+m(y) holds for every pair of integers
n,m. We will say that a numeral fn(y) has a rank n.

The terms that represent the boundary constraint B and all possible insertions of individual
tiles from Tiles onto interior squares are defined as follows.

If a border square (i, j) is such that (i, j) ∈ {(0, 0), (n+ 1, 0), (n+ 1,m+ 1), (0,m+ 1)} (i.e.
(i, j) is a corner square of Area) then we assign the term

ti,j = h(fi(y0), fj(y0), fK(y0), fK(y0), fK(y0), fK(y0))

to the variable xi,j associated with the square (i, j). This term indicates that all edges of this
square are painted colour K.

Suppose that (i, j) ∈ Border \ {(0, 0), (n+ 1, 0), (n+ 1,m+ 1), (0,m+ 1)} and B(i, j) = k.
Then there exists the only interior square (i′, j′) which is adjacent to (i, j). Let yi1,j1,i2,j2 be
the variable from Y ′ which is associated with the pair (i, j), (i′, j′). Then we assign the term

ti,j = h(fi(y0), fj(y0), fK(y0), fK(y0), fK(y0), fk(yi1,j1,i2,j2))

to the variable xi,j associated with the border square (i, j). This term indicates that the
interior edge of this square (border segment) is painted colour B(i, j), whereas all other edges
are painted colour K.

Suppose that (i, j) ∈ Interior. Then there are exactly four squares in the Area that are
adjacent to the square (i, j) on the top, on the right, on the bottom, and on the left. Let
yi1,j1,i′1,j′1 , yi2,j2,i′2,j′2 , yi3,j3,i′3,j′3 , and yi4,j4,i′4,j′4 be all those variables from Y ′ that are associated
with these pairs of adjacent squares respectively. Then for every tile tile` = 〈k1, k2, k3, k4〉, 1 ≤
` ≤ L, from Tiles we assign the term

ti,j,` = h(fi(y0), fj(y0), fk1(yi1,j1,i′1,j′1), fk2(yi2,j2,i′2,j′2), fk3(yi3,j3,i′3,j′3), fk4(yi4,j4,i′4,j′4))

to the variable xi,j,` associated with the interior square (i, j) and the tile tile`.
With terms ti,j and ti,j,` at hand, we define the substitution θ0:

θ0 = {xi,j/ti,j : (i, j) ∈ Border} ∪ {xi,j,`/ti,j,` : (i, j) ∈ Interior, 1 ≤ ` ≤ L}.

It worth noticing that every variable from the set Y ′ occurred as an argument of numerals
exactly in two terms from the range of substitution θ0. We say that an occurrence of a variable
y has a depth n iff n is the maximal rank of a numeral which includes this occurrence of y.

Using functional symbol g(2) we can build a (arbitrary) term tarea which has (n+ 2)(m+ 2)
argument positions (leaves in the tree representation of the term); every argument position in
this term stands for a square in the Area. For every square (i, j) in the Area we introduce
the term t̂i,j = h(fi(u), fj(u), fK(u), fK(u), fK(u), fK(u)) and define the substitution θ1 =
{z/tarea(t̂0,0, t̂0,1, . . . , t̂n+1,m+1)} (monochromatic tiling of Area).

Lemma 2. An instance of the BOUNDED TILING problem BT = (n,m, T iles,B) is accept-
able iff the substitutions θ0 and θ1 defined above are two-sided unifiable.

Proof. 1) Suppose that the instance BT is acceptable. Then there exists a B-consistent tiling
T of Area with the tiles from the set Tiles. For every pair of adjacent squares (i, j) and (i′, j′)
in the interior of the area (assuming that i ≤ i′, j ≤ j′) denote by c(i, j, i′, j′) the common
colour of the adjacent edges of the tiles T (i, j) and T (i′, j′) installed onto these squares. The
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same notation will be used for the common colour of a tile’s edge and an adjacent segment
of the boarder. By the definition of the terms ti,j,` both occurrences of a variable yi,j,i′,j′ in
terms ti,j,T (i,j) and ti′,j′,T (i′,j′) have the same depth c(i, j, i′, j′). Then a two-sided unification
of (θ0, θ1) is a pair (η′, η′′) such that

η′ = {z/tarea(x0,0, x0,1, . . . , x0,m+1, x1,0, x1,1,T (1,1), . . . , x1,m,T (1,m), x1,m+1, . . . , xn+1,m+1)},
η′′ = {y0/u, y0,1,1,1/fK−c(0,1,1,1)(u), . . . , yi,j,i′,j′/fK−c(i,j,i′,j′)(u), . . . }.

In substitution η′ every argument of the term tarea corresponding to a square (i, j) is either a
variable xi,j in the event that (i, j) is a boarder square, or a variable xi,j,T (i,j) in the event that
(i, j) is an interior square. In the latter case the variable xi,j,T (i,j) indicates that a tile tileT (i,j)

is placed onto the square (i, j). The substitution η′′ assigns to every variable yi,j,i′,j′ associated
with a pair of adjacent edges of two squares a numeral fK−c(i,j,i′,j′)(u) to complement the
common colour c(i, j, i′, j′) of the adjacent edges of the tiles T (i, j) and T (i′, j′) to the maximal
colour K. By taking into account the fact that the tiling T is B-consistent we arrive at the
conclusion that θ1 = η′θ0η′′.

2) Suppose that θ1 = η′θ0η′′ holds for a pair of substitutions (η′, η′′). Consider a sequence
of functional symbols assigned to the nodes in an arbitrary branch in a tree representation of
substitution θ1. As it follows from the definition of θ1, this sequence is g, g, . . . , g, h, f . . . , f .
Moreover, for every square (i, j) the term in the range of θ1 contains the only term of the form
h(fi(y0), fj(y0), . . . ). At the same time all terms in the range of θ0 contain only functional
symbols h and f . Thus, the substitution η′ takes the form:

η′ = {z/tarea(x0,0, x0,1, . . . , x0,m+1, x1,0, x1,1,`1,1 , . . . , x1,m,`1,m , x1,m+1, , xn+1,m+1)},
and η′′ is a substitution of the form:

η′′ = {y0/u, y0,1,1,1/fk0,1,1,1(u), . . . , yi,j,i′,j′/fki,j,i′,j′ (u), . . . }.
Consider a tiling T such that T (i, j) = `i,j holds for every square (i, j) iff some term of the
substitution η′ includes a variable xi,j,li,j . We show that this tiling is B-consistent.

Assume the contrary. Then there exists a pair of squares (i1, j1) and (i2, j2) in the Area
such that either the adjacent edges of the tiles T (i1, j1) and T (i2, j2) inserted into these squares
have different colours, or the adjacent edges of the tile T (i1, j1) and the boarder square (i2, j2)
are coloured differently. Without loss of generality we consider only the former case. Then
the occurrences of the shared variable yi1,j1,i2,j2 in the terms ti1,j1,`i1j1

and ti2,j2,`i2,j2
have

different depths. Therefore, both occurrences of yi1,j1,i2,j2 in the terms of substitutions η′θ0 =
{z/tarea(x0,0, . . . , xn+1,m+1)θ0} also have different depths. Since η′′ substitutes the same term
instead of both occurrences of yi1,j1,i2,j2 , the numerals that indicate the colour of adjacent
edges in the terms of composition η′θ0η′′ have different ranks as well. In view of the fact that
θ1 = η′θ0η′′ the latter seems contrary to the definition of θ1: all numerals that indicate the
colour of edges must have the same rank K.

Thus, the tiling T defined above is B-consistent.

Lemma 3. BOUNDED TILING problem is log − space reducible to the problem of two-sided
unifiability of first-order substitutions.

Proof. Suppose that an instance of the BOUNDED TILING problem BT = (n,m, T iles,B) has
a size N . As it can be seen from the definition of terms ti,j , ti,j,`, and t̂i,j , a tree representation
of every such term can be built by a deterministic procedure which operates on an auxiliary
space of the size O(logN). Hence, tree representation of substitutions θ0 and θ1 as defined
above can be also built within the same space.
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The main theorem follows from Lemmas 1 and 3.

Theorem 1. Two-sided unifiability problem for first-order substitutions is NP-complete.

5 Conclusion

This theorem completes the complexity picture in the study of solvability problem for equations
of the form Xσ1

1 θXσ2
2 = Xσ3

1 ηXσ4
4 in the semigroup of first-order substitutions, where σi ∈

{0, 1}, and Xσ is either X in the case of σ = 1, or empty substitution in the case of σ = 0.
It is obvious that equations X1θX2 = X3ηX4, X1θX2 = ηX4, and X1θX2 = X3η are trivially
solvable for every pair of substitutions θ, η. Equations θX2 = ηX4 and θX2 = η correspond
to conventional unification problem; it is known that they are decidable in almost linear time
(see [5, 6, 7]). Equations X1θ = X3η and X1θ = η appeared in [12] with regard to equivalence
checking problem in some class of sequential programs; they are decidable in polynomial time.
Finally, in this paper we prove that only the solvability of equations of the form X1θX2 = η
(two-sided unification) is NP-complete problem.
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1 Introduction

Equation solving between nominal terms has been investigated by several authors, who designed
and analyzed algorithms for nominal unification [3, 4, 15, 26], nominal matching [5], equivari-
ant unification [6], permissive nominal unification [8]. However, in contrast to unification, its
dual problem, anti-unification, has not been studied for nominal terms previously. In [18], it
is referred to as “the as-of-yet undiscovered nominal anti-unification”, which “could form a
fundamental component of a refactoring tool” for αProlog [7] programs.

Software refactoring is one of possible applications of anti-unification. This method, for-
mulated for different theories, has been successfully used in inductive logic programming [17],
cognitive modeling [24], analogy making [13], inductive program synthesis [12], proof general-
ization [27], mathematical reasoning [10, 11], etc. Nominal anti-unification can play a role in
extending some of these applications to the nominal setting. For instance, it can be useful to
generalize proofs done in nominal logic, or in doing analogical reasoning in mathematics, or in
adapting inductive program synthesis methods to αProlog programs, etc.

The anti-unification problem for two terms t1 and t2 is concerned with finding a generaliza-
tion term t such that t1 and t2 are substitutive instances of t. The interesting generalizations are
the least general ones (lgg). Plotkin [20] and Reynolds [22] initiated research on anti-unification
in the 1970s, developing algorithms for first-order terms. Since then, anti-unification has been
studied in various theories, including some of those with binding constructs: calculus of con-
structions [19], Mλ [9], second-order lambda calculus with type variables [16], simply-typed
lambda calculus where generalizations are higher-order patterns [2], just to name a few.

In this paper we address the problem of computing lgg’s for nominal terms-in-context, which
are pairs of a freshness context and a nominal term. It turned out that without a restriction,
there is no lgg for terms-in-context, in general. Therefore we restrict the set of atoms which
are permitted in generalizations to be finite. In this case, there exists a single lgg (modulo ')
and we design an algorithm to compute it. Computation of nominal lgg’s requires a solution
to the equivariance problem which aims at finding a permutation of atoms π for given terms t1
and t2 such that π applied to t1 is α-equivalent to t2 (under a given freshness context).

Various anti-unification techniques, such as first-order, higher-order, or equational anti-
unification have been used in inductive logic programming, logical and relational learning [21],
reasoning by analogy [13], program synthesis [23], program verification [16], etc. Nominal
anti-unification can, hopefully, contribute in solving similar problems in nominal setting.

The anti-unification algorithm has been implemented and is available from www.risc.jku.

at/projects/stout/software/nau.php. The implementation of the equivariance algorithm is
also accessible separately from www.risc.jku.at/projects/stout/software/nequiv.php.
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2 Nominal Terms

Nominal terms contain variables and atoms. Variables can be instantiated and atoms can be
bound. We have sorts of atoms ν and sorts of data δ as disjoint sets. Atoms (a, b, . . .) have
one of the sorts of atoms. Variables (X,Y, . . .) have a sort of atom or data. Nominal function
symbols (f, g, . . .) have an arity of the form τ1 × · · · × τn → δ, where δ is a sort of data and τi
are sorts given by the grammar τ ::= ν | δ | 〈ν〉τ . Abstractions have sorts of the form 〈ν〉τ.

A swapping (a b) is a pair of atoms of the same sort. A permutation is a sequence of swap-
pings. We use π, ρ to denote permutations. Nominal terms (t, s, r) are given by the grammar:

t ::= f(t1, . . . , tn) | a | a.t | π·X
The effect of swapping, and permutation application are defined in the standard way. The

inverse of a permutation π = (a1 b1) . . . (an bn) is the permutation (an bn) . . . (a1 b1), denoted
by π−1. We use Id for the empty permutation and write X as the shortcut of Id ·X.

For a set A, we denote by |A| its cardinality. The set of atoms of a term t or a permutation
π is the set of all atoms which appear in it and is denoted by Atoms(t), Atoms(π) respectively.
‖t‖

Abs
stand for the number of abstraction occurrences in t.

Suspensions are uses of variables with a permutation of atoms waiting to be applied once a
variable is instantiated. Occurrences of an atom a are said to be bound if they are in the scope
of an abstraction of a, otherwise are said to be free. We denote by FA(t) the set of all atoms
which occur freely in t: FA(f(t1, . . . , tn)) =

⋃n
i=1 FA(ti), FA(a) = {a}, FA(a.t) = FA(t) \ {a},

and FA(π·X) = Atoms(π). FA-s(t) is the set of all atoms which occur freely in t ignoring
suspensions: FA-s(f(t1, . . . , tn)), FA-s(a), FA-s(a.t) are defined like above but FA-s(π·X) = ∅.

Substitutions, denoted by σ, are defined in the standard way, and their application allows
atom capture, for instance, a.X{X 7→ a} = a.a. The identity substitution is denoted by ε.

A freshness constraint is a pair of the form a#X stating that the instantiation of X cannot
contain free occurrences of a. A freshness context is a finite set of freshness constraints. We
will use ∇ and Γ for freshness contexts. Atoms(∇) denotes the set of atoms of ∇.

We say that a substitution σ respects ∇, if for all X, FA-s(Xσ) ∩ {a | a#X ∈ ∇} = ∅.
The predicate ≈ stands for α-equivalence and was defined in [25,26] by the following theory:

∇ ` a ≈ a
∇ ` t ≈ t′
∇ ` a.t ≈ a.t′

a 6= a′ ∇ ` t ≈ (a a′)·t′ ∇ ` a#t′

∇ ` a.t ≈ a′.t′
a#X ∈ ∇ for all a such that π·a 6= π′ ·a

∇ ` π·X ≈ π′ ·X
∇ ` t1 ≈ t′1 · · · ∇ ` tn ≈ t′n
∇ ` f(t1, . . . tn) ≈ f(t′1, . . . , t

′
n)

where the freshness predicate # is defined by

a 6= a′

∇ ` a#a′
(π−1 ·a#X) ∈ ∇
∇ ` a#π·X

∇ ` a#t1 · · · ∇ ` a#tn
∇ ` a#f(t1, . . . tn) ∇ ` a#a.t

a 6= a′ ∇ ` a#t

∇ ` a#a′.t

Given a freshness context∇ and a substitution σ, we define∇σ as the minimal (with respect
to ⊆) freshness context such that for all a#X ∈ ∇ holds ∇σ ` a#Xσ. It can easily be derived
from the definition of the freshness predicate, if it exists. Otherwise it is undefined.

Theorem 1. σ respects ∇ iff ∇σ is defined.

A term-in-context, denoted by p, is a pair 〈∇, t〉 of a freshness context and a term. 〈∇, t〉
is more general than a term-in-context 〈Γ, s〉, written 〈∇, t〉 � 〈Γ, s〉, if there is a substitution
σ, which respects ∇, such that ∇σ ⊆ Γ and Γ ` tσ ≈ s. We write ∇ ` t � s if there exists a
substitution σ such that ∇ ` tσ ≈ s. We also write ∇ ` t ' s iff ∇ ` t � s and ∇ ` s � t.
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Example 1. We give some examples to demonstrate the relations we have just defined:

• 〈{a#X}, f(a)〉 ' 〈∅, f(a)〉. We can use {X 7→ b} as substitution applied to the first pair.
• 〈∅, f(X)〉 � 〈{a#Y }, f(Y )〉 with σ = {X 7→ Y }, but not 〈{a#Y }, f(Y )〉 � 〈∅, f(X)〉.
• 〈{a#X}, f(X)〉 6� 〈{a#X}, f(a)〉. Notice that σ = {X 7→ a} does not respect {a#X}.
• 〈{b#X}, (a b)·X〉 � 〈{c#X}, (a c)·X〉 with the substitution σ = {X 7→ (a b)(a c)·X}.

A term-in-context 〈Γ, r〉 is called a generalization of two terms-in-context 〈∇1, t〉 and 〈∇2, s〉
if 〈Γ, r〉 � 〈∇1, t〉 and 〈Γ, r〉 � 〈∇2, s〉. It is the least general generalization (lgg) of 〈∇1, t〉 and
〈∇2, s〉 if there is no generalization 〈Γ′, r′〉 of 〈∇1, t〉 and 〈∇2, s〉 which satisfies 〈Γ, r〉 ≺ 〈Γ′, r′〉.

Note that if we have infinite number of atoms in the language, the relation ≺ is not well-
founded: 〈∅, X〉 ≺ 〈{a#X}, X〉 ≺ 〈{a#X, b#X}, X〉 ≺ · · · . As a consequence, two terms-in-
context may not have an lgg and not even a minimal complete set of generalizations:1

Example 2. Let p1 = 〈∅, a1〉 and p2 = 〈∅, a2〉 be two terms-in-context. Then in any com-
plete set of generalizations of p1 and p2 there is an infinite chain 〈∅, X〉 ≺ 〈{a3#X}, X〉 ≺
〈{a3#X, a4#X}, X〉 ≺ · · · , where {a1, a2, a3, . . .} is the set of all atoms of the language. Hence,
p1 and p2 do not have a minimal complete set of generalizations.

Theorem 2. The problem of anti-unification for terms-in-context is of nullary type.

However, if we restrict the set of atoms which can be used in the generalizations to be finite,
then the anti-unification problem becomes unitary.

We say that a term t (resp., a freshness context∇) is based on a set of atoms A iff Atoms(t) ⊆
A (resp., Atoms(∇) ⊆ A). A term-in-context 〈∇, t〉 is based on A if both t and ∇ are based
on it. A permutation is A-based if it contains only atoms from A. An A-based lgg of A-based
terms-in-context p1 and p2 is an A-based term-in-context p, which is a generalization of p1 and
p2 and there is no A-based generalization p′ of p1 and p2 which satisfies p ≺ p′.

3 Nominal Anti-Unification Algorithm

Our anti-unification problem is parametric on the set of atoms we consider as the base, and
finiteness of this set is essential to ensure the existence of an lgg. The problem we would like
to solve is the following:

Given: Two nominal terms t and s of the same sort, a freshness context ∇, and a finite set of
atoms A such that t, s, and ∇ are based on A.

Find: A term r and a freshness context Γ, such that the term-in-context 〈Γ, r〉 is an A-based
least general generalization of the terms-in-context 〈∇, t〉 and 〈∇, s〉.

The triple X : t , s, where X, t, s have the same sort, is called the anti-unification equation,
shortly AUE, and the variable X is called a generalization variable. We say that a set of AUEs P
is based on a finite set of atoms A, if for all X : t , s ∈ P , the terms t and s are A-based.

The anti-unification algorithm is formulated in a rule-based way and depends on two global
parameters, a finite set of atoms A and a freshness context ∇. It works on tuples of the form
P ; S; Γ; σ, where P and S are sets of AUEs, Γ is a freshness context and σ is a substitution.
P , S, ∇, and Γ are A-based and ∇ does not constrain generalization variables. Furthermore if
X : t , s ∈ P ∪ S, then this is the sole occurrence of X in P ∪ S. The rules are the following:

1The definition of minimal complete sets of generalizations is standard. For a precise definition, see, e.g. [1,14].
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Dec: Decomposition

{X : h(t1, . . . , tm) , h(s1, . . . , sm)} ·∪P ; S; Γ; σ =⇒
{Y1 : t1 , s1, . . . , Ym : tm , sm} ∪ P ; S; Γ; σ{X 7→ h(Y1, . . . , Ym)},

where h is a function symbol or an atom, Y1, . . . , Ym are fresh variables of appropriate sorts.

Abs: Abstraction

{X : a.t , b.s} ·∪P ; S; Γ; σ =⇒ {Y : (c a)·t , (c b)·s} ∪ P ; S; Γ; σ{X 7→ c.Y },
where Y is fresh, c ∈ A such that ∇ ` c#a.t and ∇ ` c#b.s.
Sol: Solving

{X : t , s} ·∪P ; S; Γ; σ =⇒ P ; S ∪ {X : t , s}; Γ ∪ Γ′; σ,

if neither Dec nor Abs is applicable, where Γ′ = {a#X | a ∈ A ∧ ∇ ` a#t ∧ ∇ ` a#s}.
Mer: Merging

P ; {X : t1 , s1, Y : t2 , s2} ·∪S; Γ; σ =⇒
P ; {X : t1 , s1} ∪ S; Γ{Y 7→ π·X}; σ{Y 7→ π·X},

where π is an A-based permutation such that ∇ ` π·t1 ≈ t2, and ∇ ` π·s1 ≈ s2.

Given a finite set of atoms A, an A-based freshness context ∇, and two nominal A-based
terms t and s, to compute an A-based generalization for 〈∇, t〉 and 〈∇, s〉, we start with
{X : t , s}; ∅; ∅; ε, where X is a fresh variable, and apply the rules (don’t care) nondeter-
ministically as long as possible. We denote this procedure by N , and say that the final state
is reached when no more rule is applicable. The final state is of the form ∅;S; Γ;σ, where Mer
does not apply to S and we say that the result computed by N is 〈Γ, Xσ〉.

Note that the Dec rule works also for the AUEs of the form X : a , a. In the Abs rule, it is
important to have the corresponding c in A. If not then the Sol rule takes over.

Example 3. We illustrate N on a couple of examples:

• Let t = f(a, b), s = f(b, c), ∇ = ∅, and A = {a, b, c, d}. Then N performs the following
transformations:

{X : f(a, b) , f(b, c)}; ∅; ∅; ε =⇒Dec

{Y : a , b, Z : b , c}; ∅; ∅; {X 7→ f(Y, Z)} =⇒2
Sol

∅; {Y : a , b, Z : b , c}; {c#Y, d#Y, a#Z, d#Z}; {X 7→ f(Y,Z)} =⇒Mer

∅; {Y : a , b}; {c#Y, d#Y }; {X 7→ f(Y, (a b)(b c)·Y )}

Hence, p = 〈{c#Y, d#Y }, f(Y, (a b)(b c)·Y )〉 is the computed result. It generalizes the
input pairs: p{Y 7→ a} � 〈∇, t〉 and p{Y 7→ b} � 〈∇, s〉. The substitutions {Y 7→ a} and
{Y 7→ b} can be read from the final store. Note that 〈{c#Y }, f(Y, (a b)(b c)·Y )〉 would be
also an A-based generalization of 〈∇, t〉 and 〈∇, s〉, but it is strictly more general than p.

• Let t = f(b, a), s = f(Y, (a b)·Y ), ∇ = {b#Y }, and A = {a, b}. Then N computes the
term-in-context 〈∅, f(Z1, (a b)·Z1)〉 which generalizes the input pairs.

• Let t = f(a.b,X), s = f(b.a, Y ), ∇ = {c#X}, and A = {a, b, c, d}. Then N computes the
term-in-context p = 〈{c#Z1, d#Z1}, f(c.Z1, Z2)〉 which generalizes the input: p{Z1 7→
b, Z2 7→ X} = 〈∅, f(c.b,X)〉 � 〈∇, t〉 and p{Z1 7→ a, Z2 7→ Y } = 〈∅, f(c.a, Y )〉 � 〈∇, s〉.

Theorem 3. Let t, s be terms and ∇,Γ be freshness contexts, all based on a finite atoms set A.

• Termination: The procedure N terminates on any input.
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• Soundness: If {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ; σ is a derivation obtained by an execution
of N , then 〈Γ, Xσ〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉.

• Completeness: If 〈Γ, r〉 is an A-based generalization of 〈∇, t〉 and 〈∇, s〉, then there exists
a derivation {X : t , s}; ∅; ∅; ε =⇒+ ∅; S; Γ′; σ obtained by an execution of N , such
that 〈Γ, r〉 � 〈Γ′, Xσ〉.

• Uniqueness: Let {X : t , s}; ∅; ∅; ε =⇒+ ∅; S1; Γ1; σ1 and {X : t , s}; ∅; ∅; ε =⇒+

∅; S2; Γ2; σ2 be two maximal derivations in N . Then 〈Γ1, Xσ1〉 ' 〈Γ2, Xσ2〉.

Now we study how lgg’s of terms-in-context depend on the set of atoms they are based on.

Lemma 1. Let A1 and A2 be two finite sets of atoms with A1 ⊆ A2 such that the A1-based
terms-in-context 〈∇, t〉 and 〈∇, s〉 have an A1-based lgg 〈Γ1, r1〉 and an A2-based lgg 〈Γ2, r2〉.
Then Γ2 ` r1 � r2.

In general, we can not replace Γ2 ` r1 � r2 with Γ2 ` r1 ' r2 in Lemma 1. Consider
for instance the example t = a.b, s = b.a, ∇ = ∅, A1 = {a, b}, and A2 = {a, b, c}. Then for
〈∇, t〉 and 〈∇, s〉, 〈∅, X〉 is an A1-based lgg and 〈{c#X}, c.X〉 is an A2-based lgg. Obviously,
{c#X} ` X � c.X but not {c#X} ` c.X � X.

We say that a set of atoms A is saturated for A-based t, s and ∇, if

|A \ (Atoms(t) ∪Atoms(s) ∪Atoms(∇))| ≥ min{‖t‖
Abs
, ‖s‖

Abs
}.

Lemma 2. Under the conditions of Lemma 1, if A1 is saturated for t, s,∇, then Γ2 ` r1 ' r2.

4 Deciding Equivariance
Computation of π in the condition of the rule Mer above requires an algorithm that solves the
following problem: Given a finite set of atoms A, terms t and s, and a freshness context ∇,
all based on A, find an A-based permutation π such that ∇ ` π·t ≈ s. This is the problem of
deciding whether t and s are equivariant with respect to ∇ and A.

We describe a rule-base algorithm, which we call E , that solves this problem by effectively
computing the corresponding permutation. It works on tuples of the form E; ∇; A; π (called
systems). E is a set of equivariance equations of the form t ≈ s where t, s are nominal terms.
∇ is a freshness context, and A is a finite set of atoms which are available for computing π.
The latter holds the permutation to be returned in case of success.

The algorithm is split into two phases. In phase 1, function applications, abstractions, and
suspensions are decomposed as long as possible. Phase 2 is the permutation computation.

Phase 1 – Dec-E: Decomposition

{f(t1, . . . , tm) ≈ f(s1, . . . , sm)} ·∪E; ∇; A; Id =⇒ {t1 ≈ s1, . . . , tm ≈ sm} ∪ E; ∇; A; Id .

Phase 1 – Alp-E: Alpha Equivalence

{a.t ≈ b.s} ·∪E; ∇; A; Id =⇒ {(a ć)·t ≈ (b ć)·s} ∪ E; ∇; A; Id ,

where ć is a fresh atom of the same sort as a and b.

Phase 1 – Sus-E: Suspension

{π1 ·X ≈ π2 ·X} ·∪E; ∇; A; Id =⇒ {π1 ·a ≈ π2 ·a | a ∈ A ∧ a#X 6∈ ∇} ∪ E; ∇; A; Id .

Phase 2 – Rem-E: Remove

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; π, if π·a = b.

Phase 2 – Sol-E: Solve

{a ≈ b} ·∪E; ∇; A; π =⇒ E; ∇; A \ {b}; (π·a b)π, if π·a, b ∈ A and π·a 6= b.
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The input for E is initialized in the Mer rule, which needs to compute an A-based permutation
π for A-based context ∇ and two AUEs X : t1 , s1 and Y : t2 , s2. The system is initialized
by {t1 ≈ t2, s1 ≈ s2}; ∇; A; Id . First we apply the rules of phase 1 exhaustively and afterwards
Rem-E and Sol-E are applied as long as possible. If the final system is the success state ∅; ∇; A; π,
then we say that E computes the permutation π. Otherwise it has the form E; ∇; A; π with
E 6= ∅ to which no rule applies. It is transformed into ⊥, called the failure state.

Example 4. We illustrate the algorithm E on examples and consider the equivariance problems:

• For E = {a ≈ a, a.(a b)(c d)·X ≈ b.X}, A = {a, b, c, d}, and ∇ = {a#X}, we derive

{a ≈ a, a.(a b)(c d)·X ≈ b.X}; {a#X}; {a, b, c, d}; Id =⇒Alp-E

{a ≈ a, (a é)(a b)(c d)·X ≈ (b é)·X}; {a#X}; {a, b, c, d}; Id =⇒Sus-E

{a ≈ a, é ≈ é, c ≈ d, d ≈ c}; {a#X}; {a, b, c, d}; Id =⇒2
Rem-E

{c ≈ d, d ≈ c}; {a#X}; {b, c, d}; Id =⇒Sol-E
Rem-E ∅; {a#X}; {b}; (c d).

• For E = {a.b.(a b)(a c)·X = b.a.(a c)·X}, A = {a, b}, and ∇ = ∅, E returns Id .

Theorem 4. Let t, s be terms and ∇ be a freshness context, all based on a finite set of atoms A.

• Termination: The procedure E terminates on any input.
• Soundness: Let {t ≈ s}; ∇; A; Id =⇒∗ ∅; ∇; B; π be a derivation in E, then π is an
A-based permutation such that ∇ ` π·t ≈ s.

• Completeness: If ∇ ` ρ·t ≈ s for some A-based permutation ρ, then there is a derivation
{t ≈ s}; ∇; A; Id =⇒∗ ∅; Γ; B; π, obtained by E, such that π·a = ρ·a for all a ∈ FA(t).

Theorem 5. The equivariance algorithm E has O(n2) space and time complexity and the anti-
unification algorithm N has O(n4) time and O(n2) space complexity, where n is the input size.
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Abstract

In 1991 Miller described a subset of the higher-order unification problem for the Simply Typed

Lambda Calculus which admits most general unifiers, called the pattern fragment. This subset has

been extended to more complex type theories and it is still used as the basis of modern unification

algorithms in applications like proof search and type inference. Our contribution is a new presentation

of the original unification algorithm that focuses on the abstract properties of the operations involved,

using category theory as a structuring principle. These properties characterize a class of languages for

which the algorithm can be reused.

1 Introduction

Pattern unification [Miller, 1991] is a restriction of higher-order unification where meta (uni-
fication) variables can only be applied to a list of distinct object (lambda bound) variables,
called a pattern. This restriction is motivated by how such an unification problem with a meta
variable at the head, M xy z = t, can essentially be read as a definition for the metavariable,
M := λx y z.t, as long as the resulting term is well-scoped.

The existence of most general unifiers guaranteed by the pattern restriction is important in
applications like type inference for dependently typed languages or execution of higher order
logic programs. In these cases, a common implementation strategy is to solve immediately
those unification problems that fall into the pattern fragment and suspend the others, hoping
that they will become tractable later when more meta variables have been solved [Reed, 2009,
Abel and Pientka, 2011].

The basic intuition of our presentation, which is not new, is that patterns correspond to
injective renamings and form a category; from there we go further and recognize how certain
operations on patterns of the unification algorithm correspond to basic concepts of category
theory like finite limits. The correctness of the resulting algorithm has been checked with a
formalization [Vezzosi, 2012] using the proof assistant Agda. Category Theory has been used
before to reason about first order unification by, for example, Goguen [Goguen, 1989].

2 The problem

We consider pattern unification in the Simply Typed Lambda Calculus (STLC) up to αβη-
equivalence. Without loss of generality, we can restrict our focus to terms in β-short η-long
normal form by making use of the so-called spine formulation [Cervesato and Pfenning, 2003].
We use de Brujin [1972] indexes for object variables. As a consequence, unification is to be
considered up to strict equality. Instead of a general application node (t t) we have (M p) and
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(x~t) where the head is a meta or object variable. For application of meta variables M p we
represent the arguments by p, a list of distinct object variables, to ensure the pattern condition.

Terms t ::= λt

| x~t (x~t has base type ι)
| M p (M p has base type ι)

Patterns p ::= ~x (xi 6= xj whenever i 6= j)
Object variables x ::= 0 | 1 + x

To match the way functions are always fully applied in terms, we define types in an uncurried
style, i.e., as a (possibly empty) list of argument types and a base type ι for the result. We will
simply write ι when there are no arguments.

Types τ ::= ~τ → ι
Object contexts ∆ ::= ~τ
Meta contexts Γ ::= . |M :τ,Γ (Variables M in Γ are not repeated)

Typing contexts ∆ for object variables are just lists of types. This identification between a
typing context and argument types is exploited in the typing rules for metas and patterns. In
the following, we list the rules for typing of variables ∆ ` x : τ , patterns ∆ ` p : ∆′, and normal
terms Γ; ∆ ` t : τ .

τ,∆ ` 0 : τ

∆ ` x : τ

τ ′,∆ ` 1 + x : τ ∆ ` . : .

∆ ` x : τ ∆ ` p : ∆′

∆ ` (x, p) : (τ,∆′)

Γ; τ,∆ ` t : ~τ → ι

Γ; ∆ ` λt : (τ, ~τ)→ ι

∆ ` x : ∆′ → ι Γ; ∆ ` ~t : ∆′

Γ; ∆ ` x~t : ι

M : (∆′ → ι) ∈ Γ ∆ ` p : ∆′

Γ; ∆ `M p : ι

As hinted in the introduction we can think of ∆2 ` p : ∆1 as an injective renaming from
variables in ∆1 to variables in ∆2, application to a variable p x is performed by considering x
from ∆1 as an index to the position in p of the resulting variable in ∆2. From this we form
the category Pat with contexts as objects and patterns as morphisms, composition is given by
(p1 ◦ p2)x = p1 (p2 x). We shall write ∆2 ` p : ∆1 as p : ∆1 → ∆2.

We define substitutions σ as finite maps from meta variables to terms. Update (σ,M := t)
is defined as the substitution σ′ such that σ′M = t and σ′N = σN for N 6= M . Since we
consider meta variables as living in a global scope, substitutions will produce terms without
free object variables, hence they will be typed with an empty ∆. We write Γ2 ` σ : Γ1, or
σ : Γ1 → Γ2, iff σM = t for some Γ2; . ` t : τ whenever (M :τ) ∈ Γ1.

Application of a substitution σ to a term, which we write [[σ]] t, is done structurally as usual,
except for nodes (M p) where we need to normalize the generated beta-redex. Since p is merely
a renaming, and our terms are η-long, normalizing amounts to stripping the outermost layer
of λ abstractions from (σM) and applying p to their body. We do not need to apply σ to p
because the latter does not contain meta variables.

[[σ]]M p = [p] t where σM = ~λt

In fact, from now on we will include the operation of stripping out the outer lambdas in the
application of a substitution to a meta variable. Thus, given Γ `M : ∆→ ι we will have σM
be a term t of type ι in the object context ∆, like the t in the equation above. This also allows
us to express the identity substitution idΓ : Γ→ Γ by simply idΓN = N id∆ for (N :∆→ ι) ∈ Γ.
We write the singleton substitution (id,M := t) simply as (M := t).
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With the usual notion of composition we can also form the category Sub where meta variable
contexts are the objects and substitutions are the morphisms.

Finally we observe that the set of terms with given type and contexts, Tm(Γ,∆, τ), is
functorial over both Sub and Pat, which is to say that application of renamings and substitu-
tions commute with the respective compositions and identities, and between themselves. The
category Type, is discrete, i.e., has types as objects but no morphisms except for identities.

Tm : Sub× Pat× Type→ Set
Tm(Γ,∆, τ) = {t ∈ Terms | Γ; ∆ ` t : τ}

[p1 ◦ p2] t = [p1] [p2] t [id∆] t = t
[[σ1 ◦ σ2]] t = [[σ1]] [[σ2]] t [[idΓ]] t = t
[[σ]] [p] t = [p] [[σ]] t

Definition 1 (Unifier). A substitution σ : Γ→ Γ1 is a unifier of two terms t1, t2 ∈ Tm(Γ,∆, τ)
whenever [[σ]] t1 = [[σ]] t2.

Definition 2 (More General Substitution). A substitution σ : Γ → Γ1 is more general than
ρ : Γ→ Γ2, written σ ≤ ρ, if there exists a substitution δ : Γ1 → Γ2 with ρ = δ ◦ σ.

Γ

Γ1
δ -

�

σ

Γ2

ρ
-

Definition 3 (Most General Unifier (MGU)). A unifier σ : Γ → Γ1 of t1, t2 ∈ Tm(Γ,∆, τ) is
most general if σ ≤ ρ for every other unifier ρ : Γ→ Γ2.

3 Finding a solution

We will find the most general unifier of t1 and t2, or decide there cannot be one, by recursion
on the terms themselves. In the following, we consider the possible cases.

3.1 Rigid-Rigid

Since we have that [[σ]]λt = λ([[σ]] t), finding the unifier of λt1 and λt2 amounts to finding the
one of t1 and t2. For variable applications, x1 ~t1 and x2 ~t2, it is almost the same, except that
we need to check whether x1 and x2 are equal, and if so recurse over the subterms updating
them with the unifier computed so far. In fact, we can abstract over both cases using a notion
of operator o ::= λ|x with decidable equality and arities, and such that [[σ]] (o~t) = o ([[σ]]~t).

3.2 Flex-Flex (Same Meta)

If the terms to unify are M p1 and M p2 things get more interesting. We can see that the
most general unifier is M := M ′ e where M ′ is a fresh meta variable and e is what is called
the equalizer of p1 and p2. In fact, for σ to be an unifier it has to satisfy [[σ]]M p1 = [[σ]]M p2

which reduces to M ′ (p1 ◦e) = M ′ (p2 ◦e) and the equalizer is the most general way to solve the
equation p1 ◦ e = p2 ◦ e. What is meant by most general here is that for every other renaming
q satisfying p1 ◦ q = p2 ◦ q there is a unique u such that q = e ◦ u. (See Figure 1.)

This property is all we need to show σ is most general, in fact, for any other unifier ρ we have
[p1] (ρM) = [p2] (ρM), and since the functor Tm preserves equalizers, i.e. [e] is the equalizer
of [p1] and [p2] , we have a unique t such that ρM = [e] t. That allows us to show σ ≤ ρ by
δ := (ρ,M ′ := t). Now (δ ◦ σ)M = [[δ]]M ′ e = [e] t = ρM and (δ ◦ σ)N = δ N = ρN for
N 6= M .
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Figure 1: Equalizer and Pullback diagrams

3.3 Flex-Flex (Different Meta)

As a stepping stone to the next case we consider the unification of the terms M1 p1 and M2 p2

for M1 6= M2. In this case, the unifier is σ = (M1 := M ′ r1,M2 := M ′ r2) for a fresh M ′ so that
[[σ]]M1 p1 = [[σ]]M2 p2 reduces to M1 (p1 ◦ r1) = M2 (p2 ◦ r2) and we can find r1 and r2 through
another finite limit, the pullback of p1 and p2. (See Figure 1.)

3.4 Flex-Rigid

This is the main case to deal with, where we unify M p with a t which does not contain M . Since
σM will not be relevant for [[σ]] t we can decompose our candidate unifier σ into (π,M := s)
for a term s and another substitution π. The unification constraint [[σ]]M p = [[σ]] t becomes
[p] s = [[π]] t. For this equation to be solvable the term [[π]] t may only have free object variables
that appear in p. We distinguish free rigid variables, like x in x~t, from free pattern variables,
like x in p. The substitution π can eliminate the free pattern variables which are not in p by
so-called pruning.

Pruning. Pruning t with respect to p proceeds by recursion on t. In case t = M ′ q we return
the singleton substitution π = (M ′ := M ′′ r2) for some fresh M ′′ and pattern r2, so that
[[π]] t = M ′′ (q ◦ r2). The pattern q ◦ r2 must only contain free variables in p, which means there
must exist a r1 such that p ◦ r1 = q ◦ r2. The most general solution of this equation is again
the pullback of p and q, and with an argument similar to the Flex-Flex case this leads to π
being the most general pruning substitution. In case t = λt′ we update the pattern p to handle
the new bound variable, and recurse on t′. In case t = x~t we recursively compute the pruning
substitutions ~π for the subterms ~t and compose them by iteratively taking the pushout, i.e. the
categorical dual of a pullback.

Inversion. Finding s such that [p] s = [[π]] t, and thus uniquely solving the unification prob-
lem, is possible whenever the free rigid variables of t are contained in p. Specifically in the case
t = x~t the constraint reduces to [p] s = x ([[π]]~t), this is solved by s = y~t1 such that p y = x.
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3.5 Failed Occurs Check

The remaining case is when we are tying to unify M p with a term t where M appears in a
nested position, e.g. t = x (M q). Here we can conclude that there are no unifiers because the
height of the two terms will never match.

4 Towards Generic Pattern Unification

Practical applications of higher-order unification need to handle languages more complex than
STLC, e.g. with product and sum types, defined functions, and dependent types.

Our categorical view of the algorithm allows us to apply techniques from datatype generic
programming to abstract away from the specific syntax and types of STLC. Instead of Pat we
can consider a generic category Ctx having all the pullbacks and equalisers and whose arrows
are monomorphisms. And instead of the grammar of STLC we can use an arbitrary one defined
by a family of operators, as hinted in the Flex-Rigid section, as long as they are functorial
with respect to Ctx, have decidable equality, and provide operations that attempt to invert
the functorial action. From the functoriality of the operators we can derive the functoriality
of the whole syntax. From a formalization point of view we would use an Indexed Container
[Altenkirch and Morris, 2009] to describe the operators. It remains to be verified which language
features of interest can fit into this generalization.
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1 Introduction
The unification algorithm is at the heart of a proof assistant like Coq. In particular, it is a key component
in the refiner (the algorithm that has to infer implicit terms and missing type annotations) and in the ap-
plication of lemmas. In the first case, unification is in charge of equating the type of function arguments
with the type of the elements to which the function is applied. In the second case, for instance when
using the apply tactic, it is in charge of unifying the current goal with the conclusion of the lemma.

Despite playing a central role in proof development, there is no good source of documentation to
understand Coq’s unification algorithm. Since unification is inherently undecidable in Coq, as it must
deal with higher-order problems up to conversion, some form of heuristic is desirable in order to solve
problems that are trivial to the human eye. Otherwise, the proof developer will get easily frustrated when
she finds two apparently equal terms not being unified. For instance, a desirable heuristic will equate
the terms ?x++?y ≈ []++(1 :: []), assigning ?x to the empty list and ?y to the singleton list (1 :: []),
where ?x and ?y are meta-variables and ++ is the list concatenation function. There exist other possible
(convertible) solutions, like for instance assigning (1 :: []) to ?x and [] to ?y, but in most of the cases
preserving the structures of terms gives reasonable solutions.

The current approach in the source code of Coq includes this heuristic but also some harmful ones,
like Constraint Postponement. In certain cases, when an equation has multiple solutions, it is delayed
until more information is gather to solve the ambiguity. Constraint Postponement is commonly used (see
e.g. [1]), and gives in practice reasonably good results. However, it also has its drawbacks. It may lead
to extraneous error messages, since errors are reported at a later point in the unification process. More
importantly, it does not mix well with other aspects of Coq’s unification, like resolution of Canonical
Structures [8]. Canonical Structures is an overloading mechanism similar to type classes, extensively
used in the Mathematical Components library [4], on which the recent feat of proving the odd-order the-
orems [3] crucially relies. Supporting canonical structures resolution in unification makes the algorithm
extremely sensitive to heuristics, since instance resolution depends heavily on the order in which uni-
fication problems are considered. Constraint Postponement also has an impact in performance, which
became unpredictable as the unifier’s complexity does not depend only on the size of the reduction paths
of the two inputs.

In this talk we are going to present our work in progress on a new unification algorithm, built from
scratch, which focuses on the following main properties:

Understandable: The algorithm can be described in full in a few pages, including canonical structures
instance resolution.

Sound: The algorithm, when it succeeds, provides a well-typed substitution that equates both terms (up
to conversion).

Predictable: The algorithm does not include heuristics that are hard to reason about.

In this paper, we will quickly introduce the language (§ 2) and delve into the delicate issues that
come up in our setting, mainly due to unification up-to reduction, backtracking and dependencies (§ 3).
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2 A primer on CIC with meta-variables
The Calculus of Inductive Constructions (CIC) is a dependently typed λ -calculus extended with induc-
tive types. The terms of the language are defined as

t,T =̂ x | c | i | k | s x ∈ V ,c ∈ C , i ∈I ,k ∈K ,s ∈S

| ∀x : T.T | λx : T.t | t t | let x = t : T in t | ?u[σ ] ?u ∈M

| caseT t of k1 x⇒ t; . . . ;kn x⇒ t end

| fix j {x/n : T := t; . . . ;x/n : T := t}

where V is an enumerable set of variables, M of meta-variables, C of constants, I of inductive types,
K of inductive constructors, and S is an infinite set of sorts defined as {Prop,Type(i) | i ∈ N}.

Meta-variables are equipped with a substitution σ , which is nothing more than a list of terms.
In order to destruct an inductive type CIC provides a case constructor (match in vernacular) and a

fixpoint. case is annotated with the return predicate T . In the term fix, the expression x/n : T := t means
that T is a type starting with at least n product types, and the n-th variable is the decreasing one in t.
The subscript j of fix selects the j-th function as the main entry point.

The local context Γ, the meta-variables context Σ, and global environment E are defined as:

Γ,Ψ =̂ · | x : T,Γ | x := t : T,Γ

Σ =̂ · | ?u : T [Ψ],Σ | ?u := t : T [Ψ],Σ

E =̂ · | c : T,E | c := t : T,E | I,E

Meta-variables have types T with all free variables bounded within a local context Ψ. In this work we
borrow the notation T [Ψ] from Contextual Modal Type Theory [6], while in [7] this is noted Ψ ` T .

Each possibly mutually recursive inductive type is stored in the environment E with the shape

I =̂∀x1 : T1, . . . ,∀xh : Th,

{ im : Am := {km
1 : Cm

1 ; . . . ;km
n1

: Cm
n1
}m}

where every im ∈ I , every k j
n ∈K , every Cm

n has the shape ∀x : T , im t1 . . . th, and every Am has the
shape ∀x : T ,s. Inductive definitions are restricted to avoid circularity (each im can only appear strictly
positive in every in depending on it). For the purpose of this work, we are not taking this restriction into
consideration.

Reduction: Since the unification algorithm have to equate terms up to conversion, we need to present
the reduction rules for CIC, listed in Figure 1. Besides the standard β rule, we have the ζ rule that
expands let-definitions, three δ rules, that expand definitions from any of the contexts, and the ι rules
for case destruction and fixpoint unfolding. The reduction rules depend on the contexts, which we
assume as given. These rules rely on the standard multi-substitution of terms, noted t{tn/xn}, which
replaces each variable xi with term ti in term t.

3 Unification
The algorithm takes terms t1 and t2, a well-formed meta-variable context Σ and a well-formed local
context Γ. We have a well-formed global environment E that is omnipresent. As precondition, the two
terms should be well typed with types A1 and A2 respectively. Note that we do not require the types
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(λx : T.t) t ′  β t{t ′/x}
let x = t ′ : T in t  ζ t{t ′/x}

h  δ t if (h := t : T ) ∈ E or (h := t : T ) ∈ Γ
?u[σ ] δ t{σ/Ψ} if (?u := t : T [Ψ]) ∈ Σ

caseT (k j a) of k x⇒ t end ι t j{a/x j}
fix j {F} a  ι t j{fixm {F}/xm} a F = x/n : T := t

Figure 1: Reduction rules in CIC.

to be equal. Upon success, the algorithm returns a new meta-variable context Σ′ with instantiations for
the meta-variables appearing in the terms or in Γ. The algorithm ensures that the terms t1 and t2 are
convertible under this new meta-context. The unification judgment is noted as Σ;Γ ` t1 ≈ t2 .Σ′.

In this abstract we will not present the unification rules, which the interested reader is invited to read
from the accompanying appendix. Instead, we will focus on three points that make the design of the
algorithm delicate: (1) type dependencies, (2) conversion, and (3) canonical structures resolution. In the
following sections we explain these and motivate the need for a change in the current algorithm.

3.1 Type dependencies
Sometimes the unification algorithm is faced with an equation that has not one but many solutions, in
a context where there should only be one possible candidate. For instance, consider the following term
witnessing an existential quantification:

exist 0 (le n 0) : ∃x.x≤ x

where exist is the constructor of the type ∃x.P x, with P a predicate over the (implicit) type of x. More
precisely, exist takes a predicate P, an element x, and a proof that P holds for x, that is, P x. In the
example above we are providing an underscore in place of P, since we want Coq to find out the predicate,
and we annotate the term with a typing constraint (after the colon) to specify that we want the whole
term to be a proof that there exists a number that is lesser or equal to itself. In this case, we provide 0 as
such number, and the proof le n 0 which has type 0≤ 0.

When typechecking the term, Coq first considers the term and then it checks that it is compatible to
the typing constraint. More precisely, Coq will create a fresh meta-variable for the predicate P, let’s call
it ?P, and unify ?P 0 with 0≤ 0. Without any further information, Coq has four different (incomparable)
options for P: λx.0≤ 0,λx.x≤ 0,λx.0≤ x,λx.x≤ x.

When faced with such an ambiguity, Coq delays the equation in the hope that further information will
help disambiguate the problem. In this case, that information was given through the typing constraint,
and Coq succeeds to typecheck the term. If there were no typing constraint, Coq would have picked
an arbitrary solution. There are two direct consequences of these design decisions. On one hand, the
algorithm is more “complete”, in the sense that less typing annotations are required (in this case, we
do not need to specify P). On the other hand, the arbitrary solution selected by Coq may not be the
one expected by the proof developer. In the example above, for instance, when we remove the typing
constraint Coq will decide that the term has type ∃x.0≤ x. If, at a different point in the proof script, this
term is used to prove ∃x.x≤ x, the proof developer will have to debug the proof script to find out where
the problem originated from.
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Moreover, performance-wise, constraint postponement can be disastrous as it might postpone un-
solvable constraints and make failure exponentially slower, e.g. due to first-order unification (see 3.2)
being applied to other unification problems before finally failing.

For all these reasons we decided to remove postponement from the algorithm. Actually, in most
cases it is possible to achieve the same level of “completeness” without constraint postponement, by
using bidirectional typechecking, that is, to use the typing information available (e.g., from the typing
constraint) to infer meta-variables in the term. Then, when typechecking exist 0 le n 0 under the typing
constraint ∃x.0≤ 0, we can propagate a unique solution for P from the type to the term. Removing
postponement also helps to get a simpler proof of type soundness for the unification algorithm, which
we plan to mechanize.

3.2 First-order approximation
The algorithm includes a so-called first-order unification rule:

Σ0;Γ ` u≈ u′ .Σ1

Σ0;Γ ` t u≈ t u′ .Σ1
APP-FO

This rule applies when two applications are unified (here in a simplified binary application version),
even if the head t might be unfoldable (i.e., a definition in some context). This rule clearly precludes
the generation of most general unifiers, as u and u′ do not need to be unified if, for example, t is λx.0.
However, it is very natural to add it as it can shorten many unifications that would in the end result
in the unification of the arguments of t. So we must bear with it if we are to be compatible with the
existing algorithm and keep in sync with its performance. Of course, a drawback of this rule is that we
must backtrack on its application if the premise cannot be derived, and try instead to perform a step of
reduction, like unfolding the head constant.

This behavior is problematic, especially in presence of fixpoint definitions which might generate
repeated, almost identical applications of this rule which ultimately fail, when only the normal forms
of the fixpoint applications can unify. We are experimenting with ideas to keep track of successes (and
failures) of unifications to avoid an exponential blowup due to that behavior.

3.3 Canonical Structures resolution
A structure is a particular inductive type: it has only one constructor, and it generates one projector for
each argument of the constructor. The syntax is

structure i a : s := k {p1 : A1; . . . ; pn : An}

where a is a list of arguments of the type, of the form x1 : T1, . . . ,xm : Tm. Each p j is a projector name.
This language construct generates an inductive type

{ i : ∀a.s := { k : ∀a.∀p : A.i a } }

and for each projector name p j it generates a projector function:

λa.λ z.case s with k x1 . . . x j . . . xn⇒ x j end : ∀a.∀z : i a.A j

An instance ι of the structure is created with the constructor k:

ι := ∀x : B.k t1 . . . tm+n

where m is the number of arguments of the structure. Terms t1 to tm corresponds to the arguments of the
structure, and tm+1 to tm+n to each of the values p j.
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The important aspect of structures is that their instances can be deemed as “canonical”. A canonical
instance instructs the unification algorithm to instantiate a structure meta-variable with the instance, if
certain conditions holds. More precisely, a canonical instance populates the canonical instance database
∆db with triples (p j,h j, ι), where h j is the head constant appearing in value tm+ j. (h j can also be an
implication (→) or a sort.) Then, whenever the unification algorithm have to solve a problem of the
form p j a ?s ≈ h j b, it instantiates ?s with ι . There cannot be two triples with the same projector and
head constant. Coq enforces this invariant by shadowing previous triples with new overlapping triples.

An immediate consequence of using the head constant to determine the instance is that δ -expanding
a term may expose a different constant, and therefore a different instance. In [5, 2], for instance, this
fact is used to resolve overlapping instances. Similarly, an earlier δ -expansion may prevent the use of
an instance, so δ -expansion is delayed as much as possible.

Another relevant aspect, as we mentioned in the introduction, is that constraint postponement in the
presence of Canonical Structures resolution may lead to unexpected results.

4 Conclusion
We have presented the main features and design choices of our algorithm. It has been implemented and
is being successfully tested on the Canonical Structures resolution part of the mathematical components
library, which relies on all the expressive power of the unifier. With our collaborators, we are also
working on a proof of soundness, mechanized in Coq, to provide a solid ground on which to build
complex tactics. As a mid-term goal, we also plan to aggressively optimize the algorithm, making sure
its semantics remains the same. Altogether, our work will give Coq users a fast, completely verified and
documented unification algorithm.
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5 Appendix: Unification rules
Given the complexity of the algorithm, we split the rules in different figures. Figures 2 and 3 show the
subset of rules involving the CIC constructs without meta-variables; Figure 4 considers meta-variable
instantiation; and Figure 8 considers canonical structures resolution.

The first three rules (PROP-SAME, TYPE-SAME and TYPE-SAME-LE) unifies two types, according
to the restriction imposed on universe levels. For abstractions (LAM-SAME) and products (PROD-
SAME) we first unify the types of the arguments and then the body of the binder, with the local context
extended with the bound variable.

When unifying two lets the rule LET-SAME compares the definitions and then the body, augmenting
the context with the definition. Note that we don’t need to check the types of the definitions, since if
the definitions are unifiable then their type is unifiable as well. If the rule fails to apply, then the rule
LET-ZETA unfolds the definitions in both sides and tries again.

RIGID-SAME equates the same variable, constant, inductive type, or constructor.
The following two rules consider the rules for matching cases and fixpoints. In both cases we just

unify pointwise every component of the constructors (case and fix respectively).
The last rule of Figure 2 considers two applications with the same number of arguments (n). It first

compares the head element (t and t ′) and then proceeds to unify each of the arguments.
When the rules in Figure 2 fails to apply, then the algorithm tries to do one step reduction and try

again, in the hope to find a solution. This process is described in Figure 3. The rules are pretty easy to
read, and are labeled according to the reduction step they take.

One point should be made: when one of the terms is a case or a fix the algorithm tries weak-head
reducing the term. We denote the weak head reduction of t under contexts Σ and Γ as Σ;Γ ` t ↓w

βζ δι t ′.
As a sanity check, we make sure that progress was made, by comparing the result of the weak head
reduction with the original term.

Meta-variable instantiation is considered in figure 4. We proceed to describe each rule according to
the case.

Same meta-variable: If both terms are the same meta-variable ?u, we have two distinct cases: if their
substitution is the exact same list of variables ξ , the rule META-SAME-SAME applies, in which the
arguments of the meta-variable are compared point-wise. If, instead, their substitution is different, then
the rule META-SAME is attempted. To better understand this rule, let’s look at an example. Say ?u has
type T [x1 : nat,x2 : nat] and we have to solve the equation

?u[y1,y2]≈ ?u[y1,y3]

where y1,y2 and y3 are defined in the local context. From this equation we cannot know yet what value
?u will hold, but at least we know it cannot refer to the second parameter, x2, since that will render the
equation above false. This reasoning is reflected in the rule META-SAME in the hypothesis

Ψ1 ` ξ ∩ξ ′ .Ψ2

This judgment performs an intersection of both substitutions, filtering out those positions from the
context of the meta-variable Ψ1 where the substitution disagree, resulting in Ψ2. This judgment is
defined in Figure 5.

Once we filter out the disagreeing positions of the substitution we need to create a new meta-variable
?v with same type of ?u, but in the shorter context Ψ2. We further instantiate ?u with ?v. Both the cre-
ation of ?v and the instantiation of ?u in the context Σ is expressed in the fragment Σ∪{?v : T [Ψ2],?u :=
?v[idΨ2 ]} of the last hypothesis. We use this new context to compare point-wise the arguments of the
meta-variable.
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Σ;Γ ` Prop≈ Prop.Σ
PROP-SAME

i = j
Σ;Γ ` Type(i) h Type( j).Σ

TYPE-SAME

i≤ j
Σ;Γ ` Type(i). Type( j).Σ

TYPE-SAME-LE

Σ;Γ ` A1 h A2 .Σ′ Σ′;Γ,x : A1 ` t1 ≈ t2 .Σ′′

Σ;Γ ` λx : A1.t1 ≈ λx : A2.t2 .Σ′′
LAM-SAME

Σ;Γ ` A1 h A2 .Σ′ Σ′;Γ,x : A1 ` B1 ≈ B2 .Σ′′

Σ;Γ ` ∀x : A1.B1 ≈ ∀x : A2.B2 .Σ′′
PROD-SAME

Σ;Γ ` t2 h t ′2 .Σ′ Σ′;Γ,x := t2 ` t1 ≈ t ′1 .Σ′′

Σ;Γ ` let x = t2 : T in t1 ≈ let x = t ′2 : T ′ in t ′1 .Σ′′
LET-SAME

Σ;Γ ` t1{t2/x} ≈ t ′1{t ′2/x}.Σ′

Σ;Γ ` let x = t2 : T in t1 ≈ let x = t ′2 : T ′ in t ′1 .Σ′
LET-ZETA

h ∈ V ∪C ∪I ∪K

Σ;Γ ` h≈ h.Σ
RIGID-SAME

Σ0;Γ ` T ≈ T ′ .Σ1 Σ1;Γ ` t ≈ t ′ .Σ2 Σ2;Γ ` b≈ b′ .Σ3

Σ0;Γ ` caseT t of b end≈ caseT ′ t ′ of b′ end.Σ3
CASE-SAME

Σ0;Γ ` T ≈ T ′ .Σ1 Σ1;Γ ` t ≈ t ′ .Σ2

Σ0;Γ ` fix j {x/n : T := t} ≈ fix j {x′/n′ : T ′ := t ′}.Σ2
FIX-SAME

Σ0;Γ ` t ≈ t ′ .Σ1 Σ1;Γ ` tn ≈ t ′n .Σ2

Σ0;Γ ` t tn ≈ t ′ t ′n .Σ2
APP-FO

Figure 2: Unification algorithm: pure CIC constructs (part 1).
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Σ;Γ ` t ′ ≈ t{t1/x} t2 . . . tn .Σ′

Σ;Γ ` t ′ ≈ (λx : A.t) t1 . . . tn .Σ′
LAM-BETAR

Σ;Γ ` t{t1/x} t2 . . . tn ≈ t ′ .Σ′

Σ;Γ ` (λx : A.t) t1 . . . tn ≈ t ′ .Σ′
LAM-BETAL

Σ;Γ ` t ′ ≈ t1{t2/x} tn .Σ′

Σ;Γ ` t ′ ≈ (let x = t2 : T in t1) tn .Σ′
LET-ZETAR

Σ;Γ ` t1{t2/x} tn ≈ t ′ .Σ′

Σ;Γ ` (let x = t2 : T in t1) tn ≈ t ′ .Σ′
LET-ZETAL

(x := t : A) ∈ Γ Σ;Γ ` t ′ ≈ t tn .Σ′

Σ;Γ ` t ′ ≈ x tn .Σ′
RIGID-DELTA-VARR

(x := t : A) ∈ Γ Σ;Γ ` t tn ≈ t ′ .Σ′

Σ;Γ ` x tn ≈ t ′ .Σ′
RIGID-DELTA-VARL

t ′ is fix or case Σ;Γ ` t ′ ↓w
βζ δι t ′′ t ′ 6= t ′′ Σ;Γ ` t ≈ t ′′ .Σ′

Σ;Γ ` t ≈ t ′ .Σ′
WHDR

t is fix or case Σ;Γ ` t ↓w
βζ δι t ′′ t 6= t ′′ Σ;Γ ` t ′′ ≈ t ′ .Σ′

Σ;Γ ` t ≈ t ′ .Σ′
WHDL

(c := t : A) ∈ E Σ;Γ ` t ′ ≈ t tn .Σ′

Σ;Γ ` t ′ ≈ c tn .Σ′
RIGID-DELTA-CONSR

(c := t : A) ∈ E Σ;Γ ` t tn ≈ t ′ .Σ′

Σ;Γ ` c tn ≈ t ′ .Σ′
RIGID-DELTA-CONSL

Figure 3: Unification algorithm: pure CIC constructs (part 2).

There are two other hypotheses that ensure that nothing goes wrong. Again, we explain them by
means of example. The hypothesis

FV(T )⊆Ψ2

ensures that the type T is well formed in the new (shorter) context Ψ2. This condition might sound
redundant at first sight, and, in fact, it is not present in [1]. However, it is necessary since, unlike in [1],
we don’t have as premise that the type of both terms are the same. As example, consider the contexts

Σ = {?u : x[x : Type]} Γ = {y : Type,z : Type}

and the equation
u[y]≈ u[z]
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The intersection of both substitutions will return an empty context. But we cannot create a new meta-
variable ?v with type x in the empty context! The problem comes from the fact that both terms have
different types (y and z respectively). By ensuring that every free variable in the type of the meta-variable
is in the context Ψ2 we prevent this issue.

More subtle is the inclusion of the premise

Σ `Ψ2

Because of convertibility, it may happen that the two substitutions agree on a value whose type
depends on a previous value not equal in both substitutions. As example, consider contexts

Σ = {?v : Prop[x : Type, p : fst(Prop,x)]} Γ = {y : Type,z : Type,w : Prop}

and the equation
?v[y,w]≈ ?v[z,w]

After performing the intersection, we get the ill-formed context [p : fst(Prop,x)].

Meta-variable instantiation: The rules META-INSTL (R) are in charge of instantiating a meta-
variable. On the left (right) hand side it has meta-variable ?u applied to the (variable to variable)
substitution ξ and with (only variables) arguments ξ ′. On the right (left) hand side it has some term t.
Assuming ?u has (contextual) type T [Ψ], this rule must find a term t ′ such that t ′{ξ/Ψ̂} ξ ′ is convertible
to t, where ·̂ is defined as

ˆx1 : T1, . . . ,xn : Tn =̂ x1, . . . ,xn

In order to obtain t ′ the following steps are followed:

1. The meta-variables in t are pruned, as we are going to explain in the next section.

2. t ′ is constructed as a function taking arguments x, one for each variable in ξ . The body of this
function is the inversion of substitution ξ ,ξ ′/Ψ̂,x. More precisely, every variable in t appearing
only once in the image of the substitution (ξ ,ξ ′) is replaced by the corresponding variable in the
domain of the substitution (Ψ̂,x). If a variable appears multiple times in the image and occur in
term t, then inversion fails.

3. The type of t ′ is unified with the type of ?u. We do this in order to ensure soundness of unification.
Since we do not contemplate the types of the terms being unified, we need to obtain the type of
t ′ in order to compare it with T . This introduces a penalty in the performance of the algorithm,
but since we know t ′ is well typed (the unification algorithm requires both terms to be well typed,
and the inversion process preserves the type), then we can perform a fast retyping of t ′.

4. The term t ′ is occur checked to not contain meta-variable ?u.

5.1 Pruning
The idea behind pruning can be understood with an example. Say we want to unify terms

?w[x,y]≈ c ?u[z,?v[y]] (1)

A solution exists, although z is a free variable in the rhs not appearing in the image of the substitution
of the lhs. The solution has to restrict ?u so it does not depends on the first substitution. This can be
done by meta-substituting ?u with a new ?u′ with a smaller context. That is, if ?u : T [a : T1,b : T2], then
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Σ;Γ ` t ≈ t ′ .Σ′

Σ;Γ ` ?u[ξ ] t ≈ ?u[ξ ] t ′ .Σ′
META-SAME-SAME

?u : T [Ψ1] ∈ Σ
Ψ1 ` ξ ∩ξ ′ .Ψ2 Σ `Ψ2 FV(T )⊆Ψ2 Σ∪{?v : T [Ψ2],?u := ?v[idΨ2 ]};Γ ` t ≈ t ′ .Σ′

Σ;Γ ` ?u[ξ ] t ≈ ?u[ξ ′] t ′ .Σ′
META-SAME

?u : T [Ψ] ∈ Σ0 Σ0 ` prune(ξ ,ξ ′; t).Σ1

t ′ = λx.t{ξ ,ξ ′/Ψ̂,x}−1 Σ1;Ψ ` t ′ : T ′ Σ1;Ψ ` T ′ . T .Σ2 ?u 6∈ t ′

Σ0;Γ ` ?u[ξ ] ξ ′ ≈ t .Σ2∪{?u := t ′} META-INSTL

?u : T [Ψ] ∈ Σ0

n≤ m n> 0 Σ1;Γ ` ?u[σ ]≈ t ′ t ′m−n .Σ2 Σ0;Γ ` tn ≈ t ′m−n+1..m .Σ1

Σ0;Γ ` ?u[σ ] tn ≈ t ′ t ′m .Σ2
META-FOL

Figure 4: Meta-variable instantiation.

· ` ·∩ ·. ·

Ψ ` ξ ∩ξ ′ .Ψ′

Ψ,x : A ` ξ ,y∩ξ ′,y.Ψ′,x : A

Ψ ` ξ ∩ξ ′ .Ψ′

Ψ,x := t : A ` ξ ,y∩ξ ′,y.Ψ′,x := t : A

Ψ ` ξ ∩ξ ′ .Ψ′ z 6= y
Ψ,x : A ` ξ ,y∩ξ ′,z.Ψ′

Ψ ` ξ ∩ξ ′ .Ψ′ z 6= y
Ψ,x := t : A ` ξ ,y∩ξ ′,z.Ψ′

Figure 5: Intersection of substitutions
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a fresh unification variable ?u′ is created with type T [b : T2], and ?u := ?u′[b]. The result of this process
in Equation 1 is

?w[x,y]≈ c ?u′[?v[y]]

which can now be easily solved. Instead, if z occurs inside the substitution of ?v,

?w[x,y]≈ c ?u[x,?v[z]]

then it is not clear anymore, since a solution may exists by pruning z from ?v, or by pruning ?v[z] from
?u.

It is important to note that we can only prune offending variables that appear in the head of the term.
Consider the following example:

?u[x]≈ c ?v[(x,y)] (2)

One is tempted to prune the argument of ?v, however this will prevent the unification algorithm from
picking the following solution

?v[p] := fst p

instantiating further ?u with the (convertible) term x. As example, considering the following problem:

let p := (x,y) in (?u[x],?v[p])≈ let p := (x,y) in (c ?v[(x,y)], fst p)

After unifying the definition of the let, it introduces the definition p := (x,y) in the local context and
proceeds to pairwise unify the components of the pair. By unifying the first component we obtain
Equation 2. If we (incorrectly) prune the argument from ?v, this step succeeds instantiating ?u with
c ?v′[]. The second component will try to unify (after expanding the new definition for ?v)

?v′[]≈ fst p (3)

failing to unify. In this example it is easy to see where things went wrong, but in general it’s a bad idea
to fail at the wrong place, as the developer has to trace the algorithm to find that, actually, the problem
was in another place.

Figure 6 shows the rules for pruning. Given a meta-context Σ, a list of variables ξ and a term t, the
pruning of meta-variables in t is denoted

Σ ` prune(ξ ; t).Σ′

where Σ′ is a new meta-context extending Σ by instantiating the pruned meta-variables with new meta-
variables, as we saw in the example above.

5.2 Canonical structures resolution
The scariest rules of this work are clearly the ones about canonical structures resolution, listed in Fig-
ure 8. But looking at them closely we can see they are not as scary as they look. The first rule CS-
CONSTL shows the most common case of CS resolution. In this rule, on the left hand side we have
projector p j applied to the structure c, with structure parameters a and arguments t. On the right hand
side we have constant h applied to arguments u and t ′. That is, the j-th component of c should be a func-
tion taking arguments t. In order to solve the equation we need an instance ι in the database relating
p j and h. This instance should be a function taking some arguments x : B and returning the application
of the constructor of the structure k to parameters a′, and with field values v. The j-th value should
have head constant h, applied to arguments u′. The algorithm should find the right instantiation for the
arguments of the instance. For this, it creates new meta-variables ?y, one for each argument of ι , and
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h ∈ {Prop,Set,Type}∪C

Σ ` prune(ξ ;h).Σ
PRUNE-CONSTANT

x ∈ ξ
Σ ` prune(ξ ;x).Σ

PRUNE-VAR

Σ ` prune(ξ ,x; t).Σ′

Σ ` prune(ξ ;λx.t).Σ′
PRUNE-LAM

Σ ` prune(ξ ,x; t).Σ′

Σ ` prune(ξ ;∀x.t).Σ′
PRUNE-PROD

Σ0 ` prune(ξ ; t).Σ1 Σi ` prune(ξ ; ti).Σi+1 i ∈ [1,n]

Σ0 ` prune(ξ ; t tn).Σi+1
PRUNE-APP

Σ1 ` prune(ξ ; t2).Σ2 Σ2 ` prune(ξ ,x; t1).Σ3

Σ1 ` prune(ξ ; let x = t2 in t1).Σ3
PRUNE-LET

Ψ ` prune ctx(ξ ;σ).Ψ
Σ,u : A[Ψ],Σ′ ` prune(ξ ; ?u[σ ]).Σ,u : A[Ψ],Σ′

PRUNE-META-NOPRUNE

u : A[Ψ] ∈ Σ Ψ ` prune ctx(ξ ;σ).Ψ′ FV(A)⊆Ψ′

Σ ` prune(ξ ; ?u[σ ]).Σ,?v : A[Ψ′]∪{u := v[idΨ′ ]}
PRUNE-META

Figure 6: Pruning of meta-variables.

· ` prune ctx(ξ ; ·). · PRUNECTX-NIL

FV(t) ∈ ξ Ψ ` prune ctx(ξ ;σ).Ψ′

Ψ,x : A ` prune ctx(ξ ;σ , t).Ψ′,x : A
PRUNECTX-NOPRUNE

y 6∈ ξ Ψ ` prune ctx(ξ ;σ).Ψ′

Ψ,x : A ` prune ctx(ξ ;σ ,y tn).Ψ′
PRUNECTX-PRUNE

Figure 7: Pruning of contexts.
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(p j,h, ι) ∈ ∆db ι := λx : B.k a′ v v j = h u′ Σ1 = Σ0,?y : B Σ1;Γ ` a≈ a′{?y/x}.Σ2

Σ2;Γ ` u≈ u′{?y/x}.Σ3 Σ3;Γ ` c≈ ι ?y.Σ4 Σ4;Γ ` t ≈ t ′ .Σ5

Σ0;Γ ` p j a c t ≈ h u t ′ .Σ5
CS-CONSTL

(p j,→, ι) ∈ ∆db

ι := λx : B.k a′ v v j = u→ u′ Σ1 = Σ0,?y : B Σ1;Γ ` a≈ a′{?y/x}.Σ2
Σ2;Γ ` t ≈ u{?y/x}.Σ3 Σ3;Γ ` t ′ ≈ u′{?y/x}.Σ4 Σ4;Γ ` c≈ ι ?y.Σ5

Σ0;Γ ` p j a c≈ t→ t ′ .Σ5
CS-PRODL

(p j,s, ι) ∈ ∆db

ι := λx : B.k a′ v Σ1 = Σ0,?y : B Σ1;Γ ` a≈ a′{?y/x}.Σ2 Σ2;Γ ` c≈ ι ?y.Σ3

Σ0;Γ ` p j a c≈ s.Σ3
CS-SORTL

(p j, , ι) ∈ ∆db ι := λx : B.k a′ v v j = x j′ Σ1 = Σ0,?y : B
Σ1;Γ ` a≈ a′{?y/x}.Σ2 Σ2;Γ ` x j′{?y/x} ≈ t .Σ3 Σ3;Γ ` c≈ ι ?y.Σ4

Σ0;Γ ` p j a c≈ t .Σ3
CS-DEFAULTL

Figure 8: Canonical structures resolution.

proceeds to unify the parameters of the projector with the parameters of the instance. Then, it unifies the
arguments of the constant h encountered in the rhs with the ones in the field value. Is it after this point
that it equates the structures with the instance. Finally, it unifies the arguments of the function defined
by h on both sides of the equation.

The rule CS-PRODL considers the case when the value is a function type. It is similar to the previous
one, except that the projector cannot have arguments. The same situation we have in rule CS-SORTL,
where the right hand side is a sort (Prop or Type). The last rule CS-DEFAULTL considers the default
instance, when the value of the j-th field of the instance is a variable.

For conciseness we have omitted the rules for when the projector is in the right hand side.

5.3 Algorithm
The rules shown does not precisely nail the way backtracking is handled, nor the priority of the rules.

First, the algorithm distinguishes three cases:

1. Any of the terms has a meta-variable in the head position. We have three subcases, where every
attempt to use rules META-INSTL or META-INSTR is followed by an attempt to use rules META-
FOL and META-FOR, respectively.

(a) Both terms have the same meta-variable in the head position. Try rules META-SAME and
META-SAME-SAME.

(b) Both terms have different meta-variables. Try first META-INSTL and then META-INSTR if
the variable on the left is the oldest one, or viceversa if it’s the newest one.

(c) Any other case: try META-INSTL and META-INSTR.
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2. If both terms have no arguments, try the rules in Figure 2, except of course APP-FO. Special case
if both are lets: first try LET-SAME and if that fails LET-ZETA.

3. In any other case the algorithm tries the following sequence:

(a) If any of the sides is a projector of a structure it tries the rules in Figure 8. Except when both
sides are the same projector.

(b) If both sides have the same number of arguments, try APP-FO.

(c) If any of the above failed, try rules in 3 in the order shown in the figure.
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