
Theorema 2.0: A System for
Mathematical Theory Exploration

Wolfgang Windsteiger

RISC / JKU Linz, Austria
Wolfgang.Windsteiger@risc.jku.at

http://www.risc.jku.at/home/wwindste

Abstract. Theorema 2.0 stands for a re-design including a complete re-
implementation of the Theorema system, which was originally designed,
developed, and implemented by Bruno Buchberger and his Theorema
group at RISC. In this talk, we want to present the current status of the
new implementation, in particular the new user interface of the system.

Keywords: Theorema, mathematical assistant system, automated the-
orem proving, theory exploration, user interfaces, GPL

1 Introduction

Theorema 2.0 is—like its predecessor versions—based on Mathematica, which
means that it is implemented in the Mathematica programming language and
that it uses the Mathematica notebook front end as its user interface. Unlike
the command-oriented interaction pattern typically propagated in Mathemat-
ica applications, Theorema 2.0 is heavily based on the graphical user interface
capabilities supported in recent versions of Mathematica. As a result, the user
needs the keyboard only for typing the mathematics (definitions, theorems, ex-
planatory text) into the system, all actions to be performed are guided by the
graphical user interface. This approach fosters the convergence of writing for-
mal mathematics towards writing normal mathematics, because the overhead
when writing a Theorema document compared to writing a standard mathemat-
ical document shrinks to almost zero. Moreover, the learning curve for using a
mathematical assistant system is considerably flattened and the system will be
more attractive, in particular for beginners.

A first version of Theorema 2.0 has already been presented in [Win12], where
an emphasis was put on the new graphical user interface. In this presentation,
we report on improvements and further extensions, but also on some new devel-
opments in the system that are not connected directly to the user interface.

Theorema 2.0 runs on all platforms, on which Mathematica is available.
Mathematica is needed to run the system, but the Theorema system itself is
open source licensed under GPL and is available at GitHub.



2 W. Windsteiger

2 How to Use the Theorema System

When using (mathematical) software it is important for the user to exactly un-
derstand, for which intended purpose the software has been developed. Of course,
there are examples of “legitimate fruitful abuse” (e.g. using a spreadsheet pro-
gram to illustrate iterative algorithms when teaching mathematics) but in gen-
eral the user is better off when she uses the software in line with the developers’
intentions.

Much of mathematical software falls into the category of algorithm libraries,
i.e. collections of algorithms for certain more or less well described application
areas, like linear algebra, polynomial equations, geometry, differential equations,
first order theorem proving, and the like. For each of the algorithms there is an
input-output-specification and the systems differ in the range of problems that
can be solved, the computational efficiency, or the input/output format. For the
Theorema system, the situation is a bit more complex since Theorema tries to be
a mathematical assistant system that supports the mathematician during all her
mathematical activities, from first scratch work on some topic, through giving
definitions of mathematical notions, formulating conjectures, proving theorems,
formulating algorithms, executing algorithms on concrete input data, organizing
the knowledge in order to reuse it in the future, composing lecture notes until
finally writing a proper mathematical publication.

Although computer-support for automated or interactive theorem proving is
in our main focus, the acceptance of a mathematical assistant system does not
depend solely on the power of the prover. The huge variety of different working
styles and habits is a major challenge for the user interface. Fig. 1 shows the
new interface of Theorema 2.0, which consists of one or more Theorema notebook
documents (left) and the Theorema commander (right).

In addition to standard Mathematica notebook features, a Theorema note-
book supports Theorema environments, which contain blocks of formal mathe-
matics such as definitions or theorems. The name of the environment (“Facts”
in Fig. 1) can be freely chosen, it serves only structuring purposes and carries
no semantics. Inside an environment, formal mathematics is written in cells of
a particular style defined by the Theorema system, in fact by the Theorema
stylesheet that is required to be used for Theorema notebooks. Formal mathe-
matics is written in a very rich version of the language of predicate logic in com-
mon two-dimensional notation and must be executed (like Mathematica input
in a standard Mathematica notebook) in order to become known to Theorema
within the current session. It is important to note that the stylesheet does not
only define the optical appearance of formal mathematics cells but also their
functionality. We use the possibility to define actions to be executed before and
after the cell content is processed and only so it is guaranteed that Theorema
input is processed correctly. An important consequence of this setting is that
Theorema does not interfere Mathematica in any way, the whole functionality of
Mathematica can be accessed in standard Mathematica input cells. Every formal
math cell carries a label through which the formula can be referenced (e.g. in a



Theorema 2.0: A System for Mathematical Theory Exploration 3

Fig. 1. Theorema 2.0 user interface

proof). In order to accommodate common practice, formal mathematics can be
intermixed with plain informal text as shown in Fig. 1 also.

The Theorema commander is responsible to guide the user through all sorts
of activities (to be selected in the left column in the commander) to be performed
on the formal mathematics written in the notebooks. For every activity chosen,
the commander opens a wizard that guides the user through the concrete actions
in that activity. The “Session”-activity, for instance, has the actions “compose”,
“inspect”, and “archives” helping to compose notebook content, inspect the
formulas available in the current session, and setting up of knowledge archives,
respectively.

Example 1 (How to prove a theorem). In order to prove a theorem, the sys-
tem needs the theorem (= the proof goal), the knowledge base available, and
the proving method to be applied (since Theorema is a multi-method system).
The prove-activity with its actions “goal”, “knowledge”, “built-in”, “prover”,
“submit”, and “inspect” guides the user through this process.

1. The goal is specified by simply selecting the cell containing the theorem
in the notebook.

2. The knowledge base consists of a) user-defined knowledge contained in
some environments possibly spread over several notebooks and b) Theorema
built-in knowledge that can be added to the knowledge base, e.g. on built-in
arithmetic operations. For composing user-defined knowledge, Theorema 2.0
provides the knowledge browser, which contains for each Theorema notebook
available in the current session a structured outline, in which all (groups of)
formulas that should go into the knowledge base can be checked by mouse-click.
A similar mechanism is used to select built-ins.



4 W. Windsteiger

3. A prover in Theorema 2.0 is a collection of inference rules. Rules are
grouped into categories (e.g. quantifier rules) that are displayed in the rule
browser. In analogy to the knowledge browser (groups of) rules can be activated
or deactivated by mouse-click. In addition, rule priorities for their application
during the proof search and the granularity of the resulting proof can be adjusted
by the user.

4. When all settings are finished the collected data is submitted to Theorema
by mouse-click and the answer of the system is printed into the notebook directly
underneath the environment containing the goal. In addition to a summary of all
settings the answer contains most importantly a button to display the proof and
a button to regenerate the proof using the original settings. The proof displays
in a separate window with natural language explanation and the “inspect”-
panel in the commander shows the corresponding proof tree as an alternative
representation. Clicking the mouse in one of the representations will reposition
the cursor in the other representation for quick navigation through a proof.

3 System Highlights

All actions to be performed in the system are mouse-driven, there is no need for
the user to call complicated functions with lots of parameters in order to initiate
some action. The interaction pattern should be more like using a web shop in
the internet.

The proof methods are highly configurable through the Theorema comman-
der. It should be easy for the user to adjust the behavior of the system as
appropriate for a concrete problem.

Computation is an integral component in the provers. Every formula is
silently simplified by computation as soon as it enters a proof. The compu-
tational knowledge applied is subject to user configuration, no user is forced to
use Theorema built-in knowledge in a proof.

Formula input is supported both through palettes with mouse-click and
through keyboard shortcuts. Structural input of formulas following their tree
structure is supported, “invisible parentheses” guarantee correct grouping with-
out any need for operator precedences.

Theorema notebooks can be setup to contain theories, which can be exported
and stored in a format to be later imported and re-used in other notebooks or
theories. The namespaces are separated such that naming collisions between
theories are avoided.

References

[Win12] W. Windsteiger. Theorema 2.0: A Graphical User Interface for a Mathe-
matical Assistant System. In Cezary Kaliszyk and Christoph Lth, editors,
Proceedings 10th International Workshop On User Interfaces for Theorem
Provers, Bremen, Germany, July 11th 2012, volume 118 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 72–82. Open Publishing As-
sociation, 2012.


