Improved Abramov-Petkovšek's Reduction for Hypergeometric Terms

Shaoshi Chen ${ }^{1}$, Hui Huang ${ }^{1,2}$ and Ziming Li ${ }^{1}$
KLMM, Chinese Academy of Sciences $\quad{ }^{2}$ RISC, Johannes Kepler University of Linz

Hypergeometric Sequences

A sequence $T: \mathbb{N} \rightarrow \mathbb{C}$ is said to be hypergeometric if $\exists R \in \mathbb{C}(n)$ s.t. $T(n+1)=R(n) T(n)$ for all $n \gg 0$.

Notation.

- For a sequence $A(n), \Delta(A)=A(n+1)-A(n)$.
- For two hypergeometric sequences $T(n), S(n)$, write

$$
T \equiv S \text { if } T-S=\Delta(H) \text { for some hypergeometric sequence } H(n) \text {. }
$$

Definition 1. A hypergeometric sequence $T(n)$ is summable if $T \equiv 0$.
Summability. Given a hypergeometric sequence $T(n)$, decide whether $T \equiv 0$.
Gosper algorithm [4] solves the summability problem.

Abramov-Petkovšek's Reduction

Additive Decomposition. Given a hypergeometric sequence $T(n)$, compute two hypergeometric sequences $T_{1}(n)$ and $T_{2}(n)$ s.t.

$$
\begin{equation*}
T=\Delta\left(T_{1}\right)+T_{2} \quad \text { and } \quad T \equiv 0 \Longleftrightarrow T_{2}=0 \tag{1}
\end{equation*}
$$

Abramov-Petkovšek's reduction (AP reduction) [1, 2] computes $T_{1}(n)$ and $T_{2}(n)$ in (1). The AP reduction solves the summability problem as well.

Definition 2.

$-p \in \mathbb{C}[n]$ is shift-free if $\operatorname{gcd}(p(n), p(n+i))=1$ for all $i \in \mathbb{Z} \backslash\{0\}$
$-r \in \mathbb{C}(n)$ with $r=u / v$ is shift-reduced if $\operatorname{gcd}(u(n), v(n+i))=1$ for all $i \in \mathbb{Z}$.

- Let $r=u / v$ be a shift-reduced rational function in $\mathbb{C}(n)$. A polynomial $f \in \mathbb{C}[n]$ is strongly prime with r if either $f \in \mathbb{C}$, or, for every irreducible factor p of f,

$$
p \nmid u v, p(n+i) \nmid u \text { and } p(n-i) \nmid v \text { for all } i \in \mathbb{Z}^{+} .
$$

AP reduction. Given a hypergeometric sequence $T(n)$, compute two hypergeometric sequences $T_{1}(n)$ and $T_{2}(n)$ such that the two conditions in (1) hold.

1. Compute three polynomials $a, b, w \in \mathbb{C}[n]$ such that

$$
\begin{equation*}
T \equiv\left(\frac{a}{b}+\frac{w}{v}\right) H \tag{2}
\end{equation*}
$$

where $H(n+1) / H(n)=u / v$ is shift-reduced, $\operatorname{deg}(a)<\operatorname{deg}(b), \operatorname{gcd}(a, b)=1$ and b is shift-free and strongly prime with u / v. Moreover, the degree of the numerator w is bounded
2. Consider the equation
$u(n) y(n+1)-v(n) y(n)=w(n)$.
(3)

Summable case
$b \in \mathbb{C}^{*}$ and $w=0$ or
(3) has a polynomial solution

$$
\begin{gathered}
\Downarrow \\
T_{2}=0
\end{gathered}
$$

Non-summable case
$b \notin \mathbb{C}^{*}$ or
(3) has no polynomial solution
$T_{2}=(a / b+w / v) H$
The sequence $T_{1}(n)$ can be constructed as the product of a rational function $r(n)$ and the sequence $H(n)$ incrementally.

Improved AP Reduction

Idea. Not only bound the degree of the numerator w in (2) as in [1, 2], but also reduce the number of its terms as in [3].
Definition 3. Let $K=u / v$ be shift-reduced. Define

$$
\begin{aligned}
\phi_{K}: \mathbb{C}[n] & \longrightarrow \mathbb{C}[n] \\
f(n) & \mapsto u(n) f(n+1)-v(n) f(n) .
\end{aligned}
$$

Let $\mathcal{N}_{K}=\operatorname{span}_{\mathbb{C}}\left\{n^{\ell} \mid \ell \in \mathbb{N}\right.$ and $\ell \neq \operatorname{deg}(g)$ for all $\left.g \in \operatorname{im}\left(\phi_{K}\right)\right\}$

Key Lemma. The \mathbb{C}-linear map ϕ_{K} is injective and $\mathbb{C}[n]=\operatorname{im}\left(\phi_{K}\right) \oplus \mathcal{N}_{K}$
Improved AP reduction. Given a hypergeometric sequence $T(n)$, compute two hypergeometric sequences $T_{1}(n)$ and $T_{2}(n)$ s.t. the two conditions in (1) hold.

1. Compute (2) as in step 1 of AP reduction.

2. Compute the projection p of w in \mathcal{N}_{K}. Set

$$
T_{2}:=\left(\frac{a}{b}+\frac{p}{v}\right) H
$$

The sequence $T_{1}(n)$ can be constructed as the product of a rational function $r(n)$ and the sequence $H(n)$ incrementally.

The improved AP reduction avoids computing a polynomial solution of any auxiliary $\mathrm{O} \Delta \mathrm{E}$.

Experiments

We compare

- G: the Maple function Gosper in SumTools[Hypergeometric]
- S: a procedure that solves the summability problem based on improved AP, in which T_{1} is not normalized if T is not summable.
- AP: the Maple function SumDecomposition in SumTools[Hypergeometric]
- IAP: the reduction algorithm of improved AP-reduction, in which T_{1} is always normalized

Test suite:

$$
T(n):=\frac{f(n)}{g(n) \cdot g(n+\lambda) \cdot g(n+\mu) \cdot h(n) \cdot h(n+\lambda) \cdot h(n+\mu)} \cdot \prod_{k=n_{0}}^{n} \frac{u(k)}{v(k)},
$$

where $f, g, h \in \mathbb{Z}[n]$ of respective degrees 20,10 and $10, u(n), v(n)$ are the product of two linear polynomials in $\mathbb{Z}[n]$, and $\lambda, \mu \in \mathbb{N}$ with $\lambda \leq \mu$.

Input: $T(n)$				Input: $T(n+1)-T(n)$			
(λ, μ)	G S	AP	IAP	(λ, μ)	G S	AP	IAP
[0, 0]	0.080 .12	0.19	0.12	[0, 0]	1.221 .46	2.83	1.44
[5, 5]	0.420 .52	4.80	0.64	[5, 5]	1.981 .75	9.06	1.76
[10, 10]	0.741 .00	17.06	1.42	[10, 10]	2.551 .87	19.21	1.89
[10, 20]	$3.05 \quad 2.08$	66.50	4.30	[10, 20]	6.112 .55	49.43	2.55
[10, 30]	9.183 .53	237.50	10.54	[10, 30]	16.272 .66	111.77	2.70
[10, 40]	20.385 .20	482.34	24.02	[10, 40]	31.562 .88	214.57	2.89

Timings (in sec.) measured on a Mac computer, 4GB RAM, 3.06 GHz Core 2 Duo processor.

Experiments illustrate that the improved AP reduction is more efficient than both Gosper algorithm and AP-reduction.

A Potential Application

Can one compute the minimal telescoper for a bivariate hypergeometric term by the improved AP reduction, following the idea in [3]?
Advantage. Such an algorithm would separate the computation for telescopers from that for certificates so as to improve efficiency
Difficulty. The least common multiple of shift-free polynomials is not necessarily shift-free.

References

[1] S.A. Abramov and M. Petkovšek. Minimal decomposition of indefinite hypergeometric sums. Proc. of ISSAC 2001, 7-14, New York, ACM, 2001.
[2] S.A. Abramov and M. Petkovšek. Rational normal forms and minimal decompositions of hypergeometric terms. J. Symbolic Comput., 33:521-543, 2002.
[3] A. Bostan, S. Chen, F. Chyzak, Z. Li, and G. Xin. Hermite reduction and creative telescoping for hyperexponential functions. Proc. of ISSAC 2013, 77-84, New York, ACM, 2013
[4] R.W. Gosper, Jr. Decision procedure for indefinite hypergeometric summation. Proc. Nat. Acad. Sci. U.S.A., 75(1):40-42, 1978

