
RISC-Linz
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe

Constraint Logic Programming for

Hedges:

A Semantic Reconstruction

Besik Dundua, Mário Florido, Temur Kutsia and

Mircea Marin

RISC-Linz Report Series No. 14-02

Editors: RISC-Linz Faculty
K. Bosa, B. Buchberger, R. Hemmecke, T. Jebelean, M. Kauers, T. Kutsia,
G. Landsmann, F. Lichtenberger, P. Paule, V. Pillwein, N. Popov, H. Rolletschek,
J. Schicho, C. Schneider, W. Schreiner, W. Windsteiger, F. Winkler.

Supported by: LIACC through Programa de Financiamento Plurianual of the Fundação para
a Ciência e Tecnologia (FCT), by the FCT fellowship (ref. SFRH/BD/62058/2009),
by the Austrian Science Fund (FWF) under the project SToUT (P 24087-N18), and
the Rustaveli Science Foundation under the grants DI/16/4-120/11 and FR/611/4-
102/12.

Copyright notice: Permission to copy is granted provided the title page is also copied.

Constraint Logic Programming for Hedges:
A Semantic Reconstruction

Besik Dundua1,3, Mário Florido1, Temur Kutsia2, and Mircea Marin4

1 DCC-FC & LIACC, University of Porto, Portugal
2 RISC, Johannes Kepler University, Linz, Austria

3 VIAM, Ivane Javakhishvili Tbilisi State University, Georgia
4 West University of Timişoara, Romania

Abstract. We describe the semantics of CLP(H): constraint logic pro-
gramming over hedges. Hedges are finite sequences of unranked terms,
built over variadic function symbols and three kinds of variables: for
terms, for hedges, and for function symbols. Constraints involve equa-
tions between unranked terms and atoms for regular hedge language
membership. We give algebraic semantics of CLP(H) programs, define a
sound, terminating, and incomplete constraint solver, and describe some
fragments of constraints for which the solver returns a complete set of
solutions.

1 Introduction

Hedges are finite sequences of unranked terms. These are terms in which function
symbols do not have a fixed arity: The same symbol may have a different number
of arguments in different places. Manipulation of such expressions has been
intensively studied in recent years in the context of XML processing, rewriting,
automated reasoning, knowledge representation, just to name a few.

When working with unranked terms, variables that can be instantiated with
hedges (hedge variables) are a pragmatic necessity. In (pattern-based) program-
ming, hedge variables help to write neat, compact code. Using them, for instance,
one can extract duplicates from a list with just one line of a program. Several lan-
guages and formalisms operate on unranked terms and hedges. The programming
language of Mathematica [21] is based on hedge pattern matching. Languages such
as Tom [2], Maude [3], ASF+SDF [19] provide capabilities similar to hedge match-
ing (via associative functions). ρLog [17] extends logic programming with hedge
transformation rules. XDuce [13] enriches untyped hedge matching with regular
expression types. The Constraint Logic Programming schema has been extended
to work with hedges in CLP(Flex) [4], which is a basis for the XML processing
language XCentric [6] and a Web site verification language VeriFLog [5].

The goal of this paper is to describe a precise semantics of constraint logic
programs over hedges. We consider positive CLP programs with two kinds of
primitive constraints: equations between hedges, and membership in a hedge
regular language. Function symbols are unranked. Predicate symbols have a fixed

arity. Terms may contain three kinds of variables: for terms (term variables), for
hedges (hedge variables), and for function symbols (function symbol variables).
Moreover, we may have function symbols whose argument order does not matter
(unordered symbols): a kind of generalization of the commutativity property to
unranked terms. As it turns out, such a language is very flexible and permits to
write short, yet quite clear and intuitive code: One can see examples in Sect. 2.
We call this language CLP(H), for CLP over hedges. It generalizes CLP(Flex)
with function variables, unordered functions, and membership constraints. Hence,
as a special case, our paper describes the semantics of CLP(Flex). Moreover, as
hedges generalize strings, CLP(H) can be seen also as a generalization of CLP
over strings CLP(S) [18], string processing features of Prolog III [7], and CLP
over regular sets of strings CLP(Σ∗) [20].

Note that some of these languages allow an explicit size factor for string
variables, restricting the length of strings they can be instantiated with. We do
not have size factors, but can express this information easily with constraints.
For instance, to indicate the fact that a hedge variable x can be instantiated with
a hedge of minimal length 1 and maximal length 3, we can write a disjunction
x
.
= x∨x .

= (x1, x2)∨x .
= (x1, x2, x3), where the lower case x’s are term variables.

Flexibility and the expressive power of CLP(H) has its price: Equational con-
straints with hedge variables, in general, may have infinitely many solutions [15].
Therefore, any complete equational constraint solving procedure with hedge
variables is nonterminating. The solver we describe in this paper is sound and
terminating, hence incomplete for arbitrary constraints. However, there are frag-
ments of constraints for which it is complete, i.e., computes all solutions. One
such fragment is so called well-moded fragment, where variables in one side of
equations (or in the left hand side of the membership atom) are guaranteed to
be instantiated with ground expressions at some point. This effectively reduces
constraint solving to hedge matching (which is known to be NP-complete [16]),
plus some early failure detection rules. Another fragment for which the solver
is complete is named after the Knowledge Interchange Format, KIF [12], where
hedge variables are permitted only in the last argument positions. We identify
forms of CLP(H) programs which give rise to well-moded or KIF constraints.

We can easily model lists with ordered function symbols and multisets with
the help of unordered ones. In fact, since we may have several such symbols,
we can directly model colored multisets. Constraint solving over lists, sets, and
multisets has been intensively studied, see, e.g., [11] and references there, and the
CLP schema can be extended to accommodate them. In our case, an advantage
of using hedge variables in such terms is that hedge variables can give immediate
access to collections of subterms via unification. It is very handy in programming.

The paper is organized as follows: We start with motivating examples in
Sect. 2. In Sect. 3 we describe the syntax of CLP(H). Sect. 4 is about semantics.
The constraint solver is introduced in Sect. 5. The operational semantics of
CLP(H) is described in Sect. 6. In Sect. 7, we introduce well-moded and KIF
fragments of CLP(H) programs, for which the constraint solver is complete.

2 Motivating Examples

In this section we show how to write programs in CLP(H). For illustration, we
chose two examples: the rewriting of terms from some regular hedge language
and an implementation of the recursive path ordering with status.

Example 1. The general rewriting mechanism can be implemented with two
CLP(H) clauses: The base case rewrite(x, y)← rule(x, y) and the recursive case
rewrite(X(x, x, y), X(x, y, y)) ← rewrite(x, y), where x, y are term variables,
x, y are hedge variables, and X is a function symbol variable. It is assumed that
there are clauses which define the rule predicate. The base case says that a term
x can be rewritten to y if there is a rule which does it. The recursive case rewrites
a nondeterministically selected subterm x of the input term to y, leaving the
context around it unchanged. Applying the base case before the recursive case
gives the outermost strategy of rewriting, while the other way around implements
the innermost one.

An example of the definition of the rule predicate is

rule(X(x1, x2), X(y))← x1 in f(a∗) · b∗, x1
.
= (x, z), y

.
= (x, f(z)),

where the constraint5 x1 in f(a∗) ·b∗ requires x1 to be instantiated by hedges from
the language generated by the regular hedge expression f(a∗) · b∗ (that is, from
the language {f, f(a), f(a, a), . . . , (f, b), (f(a), b), . . . , (f(a, . . . , a), b, . . . , b), . . .}).

With this program, the goal ← rewrite(f(f(f(a, a), b)), x) has two answers:
{x 7→ f(f(f(a, a), f))} and {x 7→ f(f(f(a, a), f(b)))}.

Example 2. The recursive path ordering (rpo) >rpo is a well-known term order-
ing [9] used to prove termination of rewriting systems. Its definition is based on
a precedence order � on function symbols, and on extensions of >rpo from terms
to tuples of terms. There are two kinds of extensions: lexicographic >lex

rpo, when

terms in tuples are compared from left to right, and multiset >mul
rpo , when terms

in tuples are compared disregarding the order. The status function τ assigns to
each function symbol either lex or mul status. Then for all (ranked) terms s, t,
we define s >rpo t, if s = f(s1, . . . , sm) and

1. either si = t or si >rpo t for some si, 1 ≤ i ≤ m, or
2. t = g(t1, . . . , tn), s >rpo ti for all i, 1 ≤ i ≤ n, and either

(a) f � g, or (b) f = g and (s1, . . . , sn) >
τ(f)
rpo (t1, . . . , tn).

To implement this definition in CLP(H), we use the predicate rpo for >rpo be-
tween two terms, and four helper predicates: rpo all to implement the comparison
s >rpo ti for all i; prec to implement the comparison depending on the precedence;
ext to implement the comparison with respect to an extension of >rpo; and status
to give the status of a function symbol. The predicate lex implements >lex

rpo and

5 In the notation defined later, strictly speaking, we need to write this constraint
as f(a(eps)∗) · b(eps)∗, where eps is the regular expression for the empty hedge.
However, for brevity and clarity of the presentation we omit eps here.

mul implements >mul
rpo . The symbol 〈〉 is an unranked function symbol, and {}

is an unordered unranked function symbol. As one can see, the implementation
is rather straightforward and closely follows the definition. >rpo requires four
clauses, since there are four alternatives in the definition:

1. rpo(X (x , x , y), x). rpo(X (x , x , y), y)← rpo(x , y).

2a. rpo(X (x),Y (y))← rpo all(X (x), 〈y〉), prec(X ,Y).

2b. rpo(X (x),X (y))← rpo all(X (x), 〈y〉), ext(X (x),X (y)).

rpo all is implemented with recursion:

rpo all(x , 〈 〉). rpo all(x , 〈y , y〉)← rpo(x , y), rpo all(x , 〈y〉).

The definition of prec as an ordering on finitely many function symbols is
straightforward. More interesting is the definition of ext :

ext(X (x),X (y))← status(X , lex), lex (〈x 〉, 〈y〉).
ext(X (x),X (y))← status(X ,mul),mul({x}, {y}).

status can be given as a set of facts, lex needs one clause, and mul requires three:

lex (〈x , x , y〉, 〈x , y , z 〉)← rpo(x , y).

mul({x , x}, {}). mul({x , x}, {x , y})← mul({x}, {y}).
mul({x , x}, {y , y})← rpo(x , y), mul({x , x}, {y}).

That’s all. This example illustrates the benefits of all three kinds of variables we
have and unordered function symbols.

3 Preliminaries

For common notation and definitions, we mostly follow [14]. The alphabet A
consists of the following pairwise disjoint sets of symbols:

– VT: term variables, denoted by x, y, z, . . .,
– VH: hedge variables, denoted by x, y, z, . . .,
– VF: function variables, denoted by X,Y, Z, . . .,
– Fu: unranked unordered function symbols, denoted by fu, gu, hu, . . .,
– Fo: unranked ordered function symbols, denoted by fo, go, ho, . . .,
– P: ranked predicate symbols, denoted by p, q,

The sets of variables are countable, while the sets of function and predicate
symbols are finite. In addition, A also contains

– The propositional constants true and false, the binary equality predicate
.
=,

and the unranked membership predicate in.
– Regular operators: eps, ·,+, ∗.
– Logical connectives and quantifiers: ¬, ∨, ∧, →, ↔, ∃, ∀.

– Auxiliary symbols: parentheses and the comma.

Function symbols, denoted by f, g, h, . . ., are elements of the set F = Fu ∪ Fo. A
variable is an element of the set V = VT ∪ VH ∪ VF. A functor, denoted by F , is a
common name for a function symbol or a function variable.

We define terms, hedges, and other syntactic categories over A as follows:

t ::= x | f(H) | X(H) Term

T ::= t1, . . . , tn (n ≥ 0) Term sequence

h ::= t | x Hedge element

H ::= h1, . . . , hn (n ≥ 0) Hedge

We denote the set of terms by T (F ,V) and the set of ground (variable-free)
terms by T (F). For readability, we put parentheses around hedges, writing, e.g.,
(f(a), x, b) instead of f(a), x, b. The empty hedge is written as ε. Besides the
letter t, we use also r and s to denote terms. Two hedges are disjoint if they do
not share a common element. For instance, (f(a), x, b) and (f(x), f(b, f(a))) are
disjoint, whereas (f(a), x, b) and (f(b), f(a)) are not.

An atom is a formula of the form p(t1, . . . , tn), where p ∈ P is an n-ary
predicate symbol. Atoms are denoted by A.

Regular hedge expressions R are defined inductively:

R ::= eps | (R · R) | R + R | R∗ | f(R)

where the dot · stands for concatenation, + for choice, and ∗ for repetition.
Primitive constraints are either term equalities

.
= (t1, t2) or membership for

hedges in(H,R). They are written in infix notation, such as t1
.
= t2, and H in R.

Instead of F1()
.
= F2() and fo(H1)

.
= fo(H2) we write F1

.
= F2 and H1

.
= H2

respectively. We denote the symmetric closure of the relation
.
= by '.

A literal L is an atom or a primitive constraint. Formulas are defined as usual.
A constraint is an arbitrary first-order formula built over true, false, and primitive
constraints. The set of free variables of a syntactic object O is denoted by var(O).
We let ∃VN denote the formula ∃v1 · · · ∃vnN , where V = {v1, . . . , vn} ⊂ V . ∃VN
denotes ∃var(N)\VN . We write ∃N (resp. ∀N) for the existential (resp. universal)
closure of N . We refer to a language over the alphabet A as L(A).

A substitution is a mapping from term variables to terms, from hedge variables
to hedges, and from function variables to functors, such that all but finitely many
term, hedge, and function variables are mapped to themselves. Substitutions
extend to terms, hedges, literals, conjunction of literals.

A (constraint logic) program is a finite set of rules of the form ∀(L1∧· · ·∧Ln →
A), usually written as A← L1, . . . , Ln, where A is an atom and L1, . . . , Ln are
literals (n ≥ 0). A goal is a formula of the form ∃(L1 ∧ · · · ∧ Ln), n ≥ 0, usually
written as L1, . . . , Ln.

We say a variable is solved in a conjunction of primitive constraints K =
c1 ∧ · · · ∧ cn, if there is a ci, 1 ≤ i ≤ n, such that

– the variable is x, ci = x
.
= t, and x occurs neither in t nor elsewhere in K, or

– the variable is x, ci = x
.
= H, and x occurs neither in H nor elsewhere in K,

or
– the variable is F , ci = X

.
= F and X occurs neither in F nor elsewhere in K,

or
– the variable is x, ci = x in f(R) and x does not occur in membership

constraints elsewhere in K, or
– the variable is x, ci = x in R, x does not occur in membership constraints

elsewhere in K, and R has the form R1 · R2 or R∗1.

In this case we also say that ci is solved in K. Moreover, K is called solved if for
any 1 ≤ i ≤ n, ci is solved in it. K is partially solved, if for any 1 ≤ i ≤ n, ci is
solved in K, or has one of the following forms:

– Membership atom:
• fu(H1, x,H2) in fu(R).
• (x,H) in R where R has a form R1 · R2 or R∗1.

– Equation:
• (x,H1)

.
= (y,H2) where x 6= y, H1 6= ε and H2 6= ε.

• (x,H1)
.
= (T, y,H2), where x 6∈ var(T), H1 6= ε, and T 6= ε. The variables

x and y are not necessarily distinct.
• fu(H1, x,H2)

.
= fu(H3, y,H4) where (H1, x,H2) and (H3, y,H4) are dis-

joint.

A constraint is solved, if it is either true or a non-empty quantifier-free
disjunction of solved conjunctions. A constraint is partially solved, if it is either
true or a non-empty quantifier-free disjunction of partially solved conjunctions.

4 Semantics

For a given set S, we denote by S∗ the set of finite, possibly empty, sequences
of elements of S, and by Sn the set of sequences of length n of elements of
S. The empty sequence of symbols from any set S is denoted by ε. Given a
sequence s = (s1, s2, . . . , sn) ∈ Sn, we denote by perm(s) the set of sequences
{(sπ(1), sπ(2), . . . , sπ(n)) | π is a permutation of {1, 2, . . . , n}}.

A structure S for a language L(A) is a tuple 〈D, I〉 made of a non-empty
carrier set of individuals and an interpretation function I that maps each function
symbol f ∈ F to a function I(f) : D∗ → D, and each n-ary predicate symbol
p ∈ P to an n-ary relation I(p) ⊆ Dn. Moreover, if f ∈ Fu then I(f)(s) = I(f)(s′)
for all s ∈ D∗ and s′ ∈ perm(s). A variable assignment for such a structure is
a function with domain V that maps term variables to elements of D, hedge
variable to elements of D∗, and function variables to functions from D∗ to D.

The interpretations of our syntactic categories w.r.t. a structure S = 〈D, I〉
and variable assignment σ is shown below. The interpretations [[H]]S,σ of hedges
(including terms) is defined as follows (v ∈ VT ∪ VH):

[[(H1, . . . ,Hn)]]S,σ := ([[H1]]S,σ, . . . , [[Hn]]S,σ), [[v]]S,σ := σ(v),

[[f(H)]]S,σ := I(f)([[H]]S,σ), [[X(H)]]S,σ := σ(X)([[H]]S,σ).

Note that terms are interpreted as elements of D and hedges as elements of
D∗. We may omit σ and write simply [[E]]S for the interpretation of a ground
expression E. The interpretation of regular expressions is defined as follows:

[[eps]]S := {ε}, [[f(R)]]S := {I(f)(H) | H ∈ [[R]]S}, [[R1 + R2]]S := [[R1]]S ∪ [[R2]]S,

[[R1 · R2]]S := {(H1, H2) | H1 ∈ [[R1]]S, H2 ∈ [[R2]]S}, [[R∗]]S := [[R]]∗S.

Primitive constraints are interpreted w.r.t. a structure S and variable assignment
σ as follows: S |=σ t1

.
= t2 iff [[t1]]S,σ = [[t2]]S,σ; S |=σ H in R iff [[H]]S,σ ∈ [[R]]S;

and S |=σ p(t1, . . . , tn) iff I(p)([[t1]]S,σ, . . . , [[tn]]S,σ) holds. The notions S |= N
for validity of an arbitrary formula N in S, and |= N for validity of N in any
structure are defined in the standard way.

An intended structure is a structure I with the carrier set T (F) and interpre-
tations I defined for every f ∈ F by I(f)(H) := f(H). Thus, intended structures
identify terms and hedges by themselves. Also, if R is any regular hedge expression
then [[R]]I is the same in all intended structures, and will be denoted by [[R]].
Other remarkable properties of intended structures I are: Variable assignments
are substitutions, I |=ϑ t1

.
= t2 iff t1ϑ = t2ϑ, and I |=ϑ H in R iff Hϑ ∈ [[R]].

Given a program P , its Herbrand base BP is, naturally, the set of all atoms
p(t1, . . . , tn), where p is an n-ary user-defined predicate in P and (t1, . . . , tn) ∈
T (F)n. Then an intended interpretation of P corresponds uniquely to a subset
of BP . An intended model of P is an intended interpretation of P that is its
model. We will write shortly H-structure, H-interpretation, H-model for intended
structures, interpretations, and models, respectively.

As usual, we will write P |= G if G is a goal which holds in every model of P .
Since our programs consist of positive clauses, the following facts hold:

1. Every program P has a least H-model, which we denote by lm(P,H).

2. If G is a goal then P |= G iff lm(P,H) is a model of G.

A partially solved form of a constraint C1 is a constraint C2 such that C2 is
partially solved and I |= ∀

(
C1 ↔ ∃var(C1)C2

)
for any H-structure I.

A ground substitution ϑ is a H-solution (or simply solution) of a constraint
C if I |= Cϑ for all H-structures I. The notation |=H C stands for I |= C for all
H-structures I.

Theorem 1. If the constraint D is solved, then I |= ∃D holds.

Proof. Since D is solved, each disjunct K in it has a form v1
.
= e1∧· · ·∧vn

.
= en∧

v′1 in R1 ∧ · · · ∧ v′m in Rm where m,n ≥ 0, vi, v
′
j ∈ V and ei is an expression

corresponding to vi. Moreover, v1, . . . , vn, v
′
1, . . . , v

′
m are distinct and [[Rj]] 6= ∅ for

all 1 ≤ j ≤ m. Assume σ′i is a grounding substitution for ei for all 1 ≤ i ≤ n, and
let e′j be an element of [[Rj]] for all 1 ≤ j ≤ m. Then σ = {v1 7→ e1σ

′
1, . . . , vn 7→

enσ
′
n, v
′
1 7→ e′1, . . . , v

′
m 7→ e′m} solves K. Therefore, I |= ∃D holds.

5 Solver

We consider constraints in DNF: K1 ∨ · · · ∨ Kn, where K’s are conjunctions of
of true, false, and primitive constraints. The solver defined below transforms a
constraint into a partially solved form. The solver is formulated in a rule-based
way. The number of rules is not small (as it is usual for such kind of solvers,
cf., e.g., [10, 8]). To make their comprehension easier, we group them so that
similar ones are collected together in subsections. Within each subsection, for
better readability, they are put in frames. In the rules, K stands for a maximal
conjunction of primitive constraints. The rules are applied in any context.

5.1 Rules

Logical Rules. There are eight logical rules which are applied at any depth in
constraints, modulo associativity and commutativity of disjunction and conjunc-
tion. N stands for any formula. We denote the whole set of rules by Log.

N ∧N N N ∨N N H
.
= H true true ∧N N

false ∧N false false ∨N N ε in R true, if ε ∈ [[R]] true ∨N true

Failure Rules. The first two rules perform occurrence check, rules (F3) and
(F5) detect function symbol clash, and rules (F4), (F6), (F7) detect inconsistent
primitive constraints. We denote the set of rules (F1)–(F7) by Fail.

(F1) x ' (H1, F (H), H2) false, if x ∈ var(H).

(F2) x ' (H1, t,H2) false, if x ∈ var(H1, t,H2).

(F3) f1(H1) ' f2(H2) false, if f1 6= f2.

(F4) ε ' (H1, t,H2) false.

(F5) f1(H) in f2(R) false, if f1 6= f2.

(F6) ε in R false, if ε 6∈ [[R]],

(F7) (H1, t,H2) in eps false.

Decomposition Rules. Each of the decomposition rules operates on a conjunc-
tion of constraint literals and gives back either a conjunction of constraint literals
again, or constraints in DNF. We denote the set of rules (D1) and (D2) by Dec.

(D1) fu(H) ' fu(T) ∧ K
∨

T ′∈perm(T)

(
H

.
= T ′ ∧ K

)
,

where H and T are disjoint.

(D2) (t1, H1) ' (t2, H2) t1
.
= t2 ∧H1

.
= H2, where H1 6= ε or H2 6= ε.

Deletion Rules. These rules delete identical terms or hedge variables from
both sides of an equation. We denote this set of rules by Del.

(Del1) (x,H1) ' (x,H2) H1
.
= H2.

(Del2) fu(H1, h,H2) ' fu(H3, h,H4) fu(H1, H2)
.
= fu(H3, H4).

(Del3) x ' H1, x,H2 H1
.
= ε ∧H2

.
= ε, if H1 6= ε.

Variable Elimination Rules. These rules eliminate variables from the given
constraint keeping only a solved equation for them. They apply to disjuncts. The
first two rules replace a variable with the corresponding expression, provided
that the occurrence check fails:

(E1) x ' t ∧ K x
.
= t ∧ Kϑ,

where x 6∈ var(t), x ∈ var(K) and ϑ = {x 7→ t}. If t is a variable
then in addition it is required that t ∈ var(K).

(E2) x ' H ∧ K x
.
= H ∧ Kϑ,

where x 6∈ var(H), x ∈ var(K), and ϑ = {x 7→ H}. If H = y for
some y, then in addition it is required that y ∈ var(K).

The next two rules (E3) and (E4) assign to a variable an initial part of the
hedge in the other side of the selected equation. The hedge has to be a sequence
of terms T in the first rule. The disjunction in the rule is over all possible splits
of T . In the second rule, only a split of the prefix T of the hedge is relevant and
the disjunction is over all such possible splits of T . The rest is blocked by the
term t due to occurrence check: No instantiation of x can contain it.

(E3) (x,H) ' T ∧ K
∨

T=(T1,T2)

(
x
.
= T1 ∧Hϑ

.
= T2 ∧ Kϑ

)
,

where x 6∈ var(T), ϑ = {x 7→ T1}, and H 6= ε.

(E4) (x,H1) ' (T, t,H2) ∧ K
∨

T=(T1,T2)

(
x
.
= T1 ∧H1ϑ

.
= (T2, t,H2)ϑ ∧ Kϑ

)
where x 6∈ var(T), x ∈ var(t), ϑ = {x 7→ T1}, and H1 6= ε.

Finally, there are three rules for function variable elimination. Their behavior
is standard:

(E5) X ' F ∧ K X
.
= F ∧ Kϑ,

where X 6= F , X ∈ var(K), and ϑ = {X 7→ F}. If F is a function
variable, then in addition it is required that F ∈ var(K).

(E6) X(H1) ' F (H2) ∧ K X
.
= F ∧ F (H1)ϑ

.
= F (H2)ϑ ∧ Kϑ.

where X 6= F , ϑ = {X 7→ F}, and H1 6= ε or H2 6= ε.

(E7) X(H1) ' X(H2) ∧ K
∨
f∈F

(
X

.
= f ∧ f(H1)ϑ

.
= f(H2)ϑ ∧ Kϑ

)
,

where ϑ = {X 7→ f}, and H1 6= H2.

We denote the set of rules (E1)–(E7) by Elim.

Membership Rules. The membership rules apply to disjuncts of constraints
in DNF, to preserve the DNF structure. They provide the membership check,
if the hedge H in the membership atom H in R is ground. Nonground hedges
require more special treatment as one can see.

To solve membership constraints for term sequences of the form (t,H) with
t a term, we rely on the possibility to compute the linear form of a regular
expression, that is, to express it as a finite sum of concatenations of regular
hedge expressions that identify all plausible membership constraints for t and H.
Formally, the linear form of a regular expression R, denoted lf (R), is a finite set
of pairs (f(R1),R2) called monomials, which is defined recursively as follows:

lf (eps) = ∅. lf (R∗) = lf (R)� R∗. lf (f(R)) = {(f(R), eps)}.
lf (R1 + R2) = lf (R1) ∪ lf (R2).

lf (R1 · R2) = lf (R1)� R2, if ε /∈ [[R1]].

lf (R1 · R2) = lf (R1)� R2 ∪ lf (R2), if ε ∈ [[R1]].

These equations involve an extension of concatenation � that acts on a linear form
and a regular expression and returns a linear form. It is defined as l�eps = l, and
l�R = {(f(R1),R2 ·R) | (f(R1),R2) ∈ l,R2 6= eps} ∪{(f(R1),R) | (f(R1), eps) ∈
l}, if R 6= eps.

The rules are as follows:

(M1) (x1, . . . , xn) in eps ∧ K ∧ni=1 xi
.
= ε ∧ Kϑ,

where ϑ = {x1 7→ ε, . . . , xn 7→ ε}, n > 0.

(M2) (t,H) in R ∧ K
∨

(f(R1),R2)∈lf (R)

(
t in f(R1) ∧H in R2 ∧ K

)
,

where H 6= ε and R 6= eps.

(M3) (x,H) in f(R) ∧ K (
x in f(R) ∧H .

= ε ∧ K
)
∨
(
x
.
= ε ∧H in f(R) ∧ K

)
,

where H 6= ε.

(M4) t in R∗ t in R.

(M5) t in R1 · R2 ∧ K
(
t in R1 ∧ ε in R2 ∧ K

)
∨
(
ε in R1 ∧ t in R2 ∧ K

)
.

(M6) t in R1 + R2 ∧ K
(
t in R1 ∧ K

)
∨
(
t in R2 ∧ K

)
.

(M7) (x,H) in R1 + R2 ∧ K
(

(x,H) in R1 ∧ K
)
∨
(

(x,H) in R2 ∧ K
)
.

(M8) v in R1 ∧ v in R2 v in R, where v ∈ VT ∪ VH, [[R]] = [[R1]] ∩ [[R2]].

Next, we have rules which constrain singleton hedges to be in a term language.
They proceed by the straightforward matching or decomposition of the structure.

Note that in (M12), we require the arguments of the unordered function symbol to
be terms. (M10) and (M9) do not distinguish whether f is ordered or unordered:

(M9) x in f(R) ∧ K x
.
= x ∧ x in f(R) ∧ K{x 7→ x},where x is fresh.

(M10) X(H) in f(R) ∧ K X
.
= f ∧ f(H){X 7→ f} in f(R) ∧ K{X 7→ f}.

(M11) fo(H) in fo(R) H in R.

(M12) fu(T) in fu(R) ∧ K
∨

T ′∈perm(T)

(
T ′ in R ∧ K

)
.

We denote the set of rules (M1)–(M12) by Memb.

5.2 The Constraint Solving Algorithm

In this section, unless otherwise stated, by a constraint we mean a formula
K1 ∨ · · · ∨Kn, where K’s are conjunctions of true, false, and primitive constraints.
We present an algorithm that converts such a constraint C into a partially solved
form D.

First, we define the rewrite step

step := first(Log, Fail, Del, Dec, Elim, Memb).

When applied to a constraint, step transforms it by the first applicable rule of
the solver, looking successively into the sets Log, Fail, Del, Dec, Elim, and Memb.

The constraint solving algorithm implements the strategy solve defined as a
computation of a normal form with respect to step:

solve := NF(step).

That means, step is applied to a constraint repeatedly as long as possible. It
remains to show that this definition yields an algorithm, which amounts to
proving that a constraint to which none of the rules Log, Fail, Del, Dec, Elim, and
Memb applies, is produced by NF(step) for any constraint C.

Theorem 2 (Termination of solve). solve terminates on any input constraint.

Proof. We define a complexity measure cm(C) for quantifier-free constraints in
DNF, and show that cm(C′) < cm(C) holds whenever C′ = step(C).

For a hedge H (resp. regular expression R), we denote by size(H) (resp.
by size(R)) its denotational length, e.g., size(eps) = 1, size(f(f(a)), x) = 4,
and size(f(f(a · b∗))) = 6. The complexity measure cm(K) of a conjunction of
primitive constraints K is the tuple 〈N1,M1, N2,M2,M3〉 defined as follows ({||}
stands for a multiset):

– N1 is the number of unsolved variables in K.
– M1 := {|size(H) | H in R ∈ K, H 6= ε|}.
– N2 is the number of primitive constraints in the form v in R where v ∈ V

plus the number of primitive constraints in the form x in R in K .

– M2 := {|size(R) | H in R ∈ K|}.
– M3 := {|size(t1) + size(t2) | t1

.
= t2 ∈ K|}.

The complexity measure cm(C) of a constraint C = K1 ∨ · · · ∨ Kn is defined
as {|cm(K1), . . . , cm(Kn)|}. Measures are compared by the multiset extension of
the lexicographic ordering on tuples. The Log rules strictly reduce the measure.
For the other rules, the table below shows which rule reduces which component
of the measure, which implies termination of the algorithm solve.

Rule N1 M1 N2 M2 M3

(M1),(M10),(E1)–(E7) >
(F5),(F7),(M2),(M3), (M11), (M12) ≥ >
(M8), (M9) ≥ ≥ >
(F6),(M4)–(M7) ≥ ≥ ≥ >
(D1), (D2), (F1)–(F4), (Del1)–(Del3) ≥ ≥ ≥ ≥ >

The next lemma is needed to prove that the solver reduces a constraint to its
equivalent constraint:

Lemma 1. If step(C) = D, then |=H ∀
(
C ↔ ∃var(C)D

)
.

Proof (Sketch). By case distinction on the inference rules of the solver, selected
by the strategy first in the application of step. We illustrate here two cases, when
the selected rules are (E3) and (M2). In (E3), C has a disjunct K = (x,H)

.
= T ∧K′

with x 6∈ var(T), and D is the result of replacing K in C with the disjunction
C′ =

∨
T=(T1,T2)

(x
.
= T1 ∧ Hϑ

.
= T2 ∧ K′ϑ) where ϑ = {x 7→ T1}. Therefore,

it is sufficient to show that I |= ∀(K ↔ ∃var(C)C′). Since var(C′) = var(K),
this amounts to showing that for all ground substitutions σ of var(K) we have
I |= (xσ,Hσ)

.
= Tσ ∧ K′σ iff I |= (

∨
T=(T1,T2)

(x
.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ.

– Assume I |= (xσ,Hσ)
.
= Tσ ∧ K′σ. We can split Tσ into T1σ and T2σ

such that xσ = T1σ and Hσ = T2σ. Now, we show vϑσ = vσ for all
v ∈ var(x,H, T). Indeed, if v 6= x, the equality trivially holds. If v = x, we
have xϑσ = T1σ = xσ. Hence, I |= (

∨
T=(T1,T2)

(x
.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ.

– Assume I |= (
∨
T=(T1,T2)

(x
.
= T1 ∧Hϑ

.
= T2 ∧ K′ϑ))σ. Then there exists the

split T = (T1, T2) such that I |= (xσ
.
= T1σ∧Hϑσ

.
= T2σ∧K′ϑσ). Again, we

can show vϑσ = vσ for all v ∈ var(x,H, T). Hence, I |= (xσ,Hσ) = Tσ∧K′σ.

Now, let the selected rule be (M2). C has a disjunct K = (t,H) in R ∧ K′
with H 6= ε and R 6= eps. Then D is the result of replacing K in C with
C′ =

∨
(f(R1),R2)∈lf (R)(t in f(R1) ∧H in R2 ∧ K′). Therefore, to show I |= ∀(C ↔

∃var(C)D), it is enough to show that I |= ∀(K ↔ ∃var(C)C′). Since var(C′) =
var(K), this amounts to showing that for all ground substitutions σ of var(K) we
have I |= (tσ,Hσ) in R∧K′σ iff I |= (

∨
(f(R1),R2)∈lf (R)(t in f(R1)∧H in R2∧K′))σ.

– Assume I |= (tσ,Hσ) in R ∧ K′σ. Proposition 5 of [1] can be easily extended
for regular hedge expressions, obtaining the following statement: For all

R, [[R]] = o(R) ∪ [[lf (R)]], where [[lf (R)]] =
⋃
〈f(R1),R2〉∈lf (R)[[f(R1) · R2]], and

o(R) is defined as follows: If ε ∈ [[R]], then o(R) = {ε}, otherwise o(R) = ∅.
Then I |= (tσ,Hσ) in R ∧ K′σ implies I |= (tσ,Hσ) in lf (R) ∧ K′σ by the
definitions of intended structures and entailment. Hence, we can conclude
I |= (

∨
(f(R1),R2)∈lf (R)(tσ in f(R1) ∧Hσ in R2 ∧ K′σ)).

– Assume I |= (
∨

(f(R1),R2)∈lf (R)(tσ in f(R1) ∧Hσ in R2 ∧K′σ)). Then we have

I |= (tσ,Hσ) in lf (R) ∧ K′σ. By the extended version of Proposition 5 of [1],
stated in the previous item, we can conclude I |= (tσ,Hσ) in R ∧ K′σ.

Theorem 3. If solve(C) = D, then |=H ∀
(
C ↔ ∃var(C)D

)
and D is a partially

solved form of C.

Proof. |=H ∀
(
C ↔ ∃var(C)D

)
follows from Lemma 1 and the following property:

If |=H ∀
(
C1 ↔ ∃var(C1)C2

)
and |=H ∀

(
C2 ↔ ∃var(C2)C3

)
, then |=H ∀

(
C1 ↔

∃var(C1)C3
)
. The property itself relies on the fact that |=H ∀

(
∃var(C1)∃var(C2)C3 ↔

∃var(C1)C3
)
, which holds because all variables introduced by the rules of the solver

in C3 are fresh not only for C2, but also for C1.
As for the partially solved form, by the definition of solve and Theorem 2,

D is in a normal form. Assume by contradiction that it is not partially solved.
By inspection of the solver rules, based on the definition of partially solved
constraints, we can see that there is a rule that applies to D. But this contradicts
the fact that D is in a normal form. Hence, D is partially solved. By Lemma 1,
we conclude that D is a partially solved form of C.

6 Operational Semantics of CLP(H)

In this section we describe the operational semantics of CLP(H), following the
approach for the CLP schema given in [14]. A state is a pair 〈G ‖ C〉, where G
is the sequence of literals and C = K1 ∨ · · · ∨ Kn, where K’s are conjunctions
of true, false, and primitive constraints. The definition of an atom p(t1, . . . , tm)
in program P , defnP (p(t1, . . . , tm)), is the set of rules in P such that the head
of each rule has a form p(r1, . . . , rm). We assume that defnP each time returns
fresh variants.

A state 〈L1, . . . , Ln ‖ C〉 can be reduced with respect to P as follows: Select a
literal Li. Then:

– If Li is a primitive constraint literal and solve(C ∧ Li) 6= false, then it is
reduced to 〈L1, . . . , Li−1, Li+1, . . . , Ln ‖ solve(C ∧ Li)〉.

– If Li is a primitive constraint literal and solve(C ∧ Li) = false, then it is
reduced to 〈� ‖ false〉.

– If Li is an atom p(t1, . . . , tm), then it is reduced to

〈L1, . . . , Li−1, t1
.
= r1, . . . , tm

.
= rm, B, Li+1, . . . , Ln ‖ C〉

for some (p(r1, . . . , rm)← B) ∈ defnP (Li).

– If Li is a atom and defnP (Li) = ∅, then it is reduced to 〈� ‖ false〉.

A derivation from a state S in a program P is a finite or infinite sequence of
states S0� S1� · · ·� Sn� · · · where S0 is S and there is a reduction from
each Si−1 to Si, using rules in P . A derivation from a goal G in a program P
is a derivation from 〈G ‖ true〉. The length of a (finite) derivation of the form
S0 � S1 � · · · � Sn is n. A derivation is finished if the last goal cannot be
reduced, that is, if its last state is of the form 〈� ‖ C〉 where C is partially solved
or false. If C is false, the derivation is said to be failed.

Example 3. Consider again the program from Example 1. One of the finished
derivations from the goal ← rewrite(f(f(f(a, a), b)), x) is the following:

〈rewrite(f(f(f(a, a), b)), x) ‖ true〉�
〈X0(x0, x0, y0)

.
= f(f(f(a, a), b)), X0(x0, y0, y0)

.
= x, rewrite(x0, y0) ‖

true〉�
〈X0(x0, y0, y0)

.
= x, rewrite(x0, y0) ‖

X0
.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b) ∧ y0

.
= ε〉�

〈rewrite(x0, y0) ‖
x
.
= f(y0) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b) ∧ y0

.
= ε〉�

〈x0
.
= X(x1, x2), y0

.
= X(y), x1 in f(a∗) · b∗, x1

.
= (x′, z), y

.
= (x′, f(z)) ‖

x
.
= f(y0) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b) ∧ y0

.
= ε〉�

〈y0
.
= X(y), x1 in f(a∗) · b∗, x1

.
= (x′, z), y

.
= (x′, f(z)) ‖(

x
.
= f(y0) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= ε ∧ x2

.
= (f(a, a), b) ∧ y0

.
= ε
)
∨(

x
.
= f(y0) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= f(a, a) ∧ x2

.
= b ∧ y0

.
= ε
)
∨(

x
.
= f(y0) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= (f(a, a), b) ∧ x2

.
= ε ∧ y0

.
= ε
)
〉�

〈x1 in f(a∗) · b∗, x1
.
= (x′, z), y

.
= (x′, f(z)) ‖(

x
.
= f(f(y)) ∧ y0

.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= ε ∧ x2

.
= (f(a, a), b) ∧ y0

.
= ε
)
∨(

x
.
= f(f(y)) ∧ y0

.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= f(a, a) ∧ x2

.
= b ∧ y0

.
= ε
)
∨(

x
.
= f(f(y)) ∧ y0

.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= (f(a, a), b) ∧ x2

.
= ε ∧ y0

.
= ε
)
〉�

〈x1
.
= (x′, z), y

.
= (x′, f(z)) ‖(

x
.
= f(f(y)) ∧ y0

.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= f(a, a) ∧ x2

.
= b ∧ y0

.
= ε
)
∨

(
x
.
= f(f(y)) ∧ y0

.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b)∧

X
.
= f ∧ x1

.
= (f(a, a), b) ∧ x2

.
= ε ∧ y0

.
= ε
)
〉�

〈y .
= (x′, f(z)) ‖(
x
.
= f(f(y)) ∧ x′ .= f(a, a) ∧ z .

= ε ∧ y0
.
= f(y) ∧X0

.
= f ∧ x0

.
= ε∧

x0
.
= f(f(a, a), b) ∧X .

= f ∧ x1
.
= f(a, a) ∧ x2

.
= b ∧ y0

.
= ε
)
∨(

x
.
= f(f(y)) ∧ x′ .= f(a, a) ∧ z .

= b ∧ y0
.
= f(y) ∧X0

.
= f ∧ x0

.
= ε∧

x0
.
= f(f(a, a), b) ∧X .

= f ∧
x1

.
= (f(a, a), b) ∧ x2

.
= ε ∧ y0

.
= ε
)
〉�

〈� ‖(
x
.
= f(f(f(a, a), f)) ∧ y .

= (f(a, a), f) ∧ x′ .= f(a, a) ∧ z .
= ε∧

y0
.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b) ∧X .

= f ∧
x1

.
= f(a, a) ∧ x2

.
= b ∧ y0

.
= ε
)
∨(

x
.
= f(f(f(a, a), f(b))) ∧ y .

= (f(a, a), f(b)) ∧ x′ .= f(a, a) ∧ z .
= b∧

y0
.
= f(y) ∧X0

.
= f ∧ x0

.
= ε ∧ x0

.
= f(f(a, a), b) ∧X .

= f ∧
x1

.
= (f(a, a), b) ∧ x2

.
= ε ∧ y0

.
= ε
)
〉

From the obtained solved constraint, we can extract two possible instantiations
for x: {x 7→ f(f(f(a, a), f))} and {x 7→ f(f(f(a, a), f(b)))}.

7 Well-Moded and KIF Programs

In this section we consider syntactic restrictions that lead to well-moded and
KIF style CLP(H) programs. They are interesting, because the constraints that
appear in derivations for such programs can be completely solved by solve.

7.1 Well-Moded Programs

A mode for an n-ary predicate symbol p is a function mp : {1, . . . , n} −→ {i, o}.
If mp(i) = i (resp. mp(i) = o) then the position i is called an input (resp.
output) position of p. The predicates in and

.
= have only output positions. For

a literal L = p(t1, . . . , tn) (where p can be also in or
.
=), we denote by invar(L)

and outvar(L) the sets of variables occurring in terms in the input and output
positions of p.

A sequence of literals L1, . . . , Ln is well-moded if the following hold:

1. For all 1 ≤ i ≤ n, invar(Li) ⊆
⋃i−1
j=1 outvar(Lj).

2. If for some 1 ≤ i ≤ n, Li is t1
.
= t2, then var(t1) ⊆

⋃i−1
j=1 outvar(Lj) or

var(t2) ⊆
⋃i−1
j=1 outvar(Lj).

3. If for some 1 ≤ i ≤ n, Li is a membership atom, then the inclusion var(Li) ⊆⋃i−1
j=1 outvar(Lj) holds.

A conjunction of literals G is well-moded if there exists a well-moded se-
quence of literals L1, . . . , Ln such that G =

∧n
i=1 Li modulo associativity and

commutativity. A formula in DNF is well-moded if each of its disjuncts is. A state
〈L1, . . . , Ln ‖ K1∨· · ·∨Kn〉 is well-moded, where K’s are conjunctions of true, false,
and primitive constraints, if the formula (L1∧· · ·∧Ln∧K1)∨· · ·∨(L1∧· · ·∧Ln∧Kn)
is well-moded. A clause A← L1, . . . , Ln is well-moded if the following hold:

1. For all 1 ≤ i ≤ n, invar(Li) ⊆
⋃i−1
j=1 outvar(Lj) ∪ invar(A).

2. outvar(A) ⊆
⋃n
j=1 outvar(Lj) ∪ invar(A).

3. If for some 1 ≤ i ≤ n, Li is H1
.
= H2, then var(H1) ⊆

⋃i−1
j=1 outvar(Lj) ∪

invar(A) or var(H2) ⊆
⋃i−1
j=1 outvar(Lj) ∪ invar(A).

4. If for some 1 ≤ i ≤ n, Li is a membership atom, then outvar(Li) ⊆⋃i−1
j=1 outvar(Lj) ∪ invar(A).

A program is well-moded if all its clauses are well-moded.

Example 4. In Example 1, if the first argument is the input position and the
second argument is the output position in the user-defined predicates, it is easy
to see that the program is well-moded. In Example 2, for well-modedness we
need to define both positions in the user-defined predicates to be the input ones.

Well-modedness is preserved by program derivation steps:

Lemma 2. Let P be a well-moded CLP(H) program and 〈G ‖ C〉 be a well-moded
state. If 〈G ‖ C〉� 〈G′ ‖ C′〉 is a reduction using clauses in P , then 〈G′ ‖ C′〉 is
also a well-moded state.

Proof. Let G = L1, . . . , Li, . . . , Ln and C = K1 ∨ · · · ∨Km. Assume that Li is the
selected literal. Then G′ = L1, . . . , Li−1, Li+1, . . . , Ln. We consider four possible
cases, according to the definition of operational semantics:

Case 1. Let Li be a primitive constraint and solve(C ∧Li) 6= false. We have to
show well-modedness of 〈G′ ‖ solve(C ∧Li)〉. For this, it is sufficient to show that
〈G′ ‖ step(C ∧Li)〉 is well-moded. The lemma will then follow from the definition
of solve.

Hence, we have to show that well-modedness is preserved by any rule of the
solver used in performing the derivation step. For illustration, we use the rule
(E3) here.

Let Li be (x,H)
.
= T . Assume that the solver step is performed by the rule

(E3). Then step(C∧Li) =
∨
T=(T1,T2)

x
.
= T1∧Hϑ

.
= T2∧Cϑ, where ϑ = {x 7→ T1}.

By the definition of well-modedness of a state, it is enough to show that the state
〈G′ ‖ x .

= T1 ∧Hϑ
.
= T2 ∧ Cϑ〉 is well-moded, which means that we have to show

well-modedness of the states 〈G′ ‖ x .
= T1 ∧Hϑ

.
= T2 ∧ Kjϑ〉 for all 1 ≤ j ≤ m.

By assumption, 〈G ‖ C〉 is a well-moded state. By the definition of well-
modedness, we can write that SL, (x,H)

.
= T,SL′ is a well-moded sequence,

where literals SL and SL′ are sequences of literals, such that SL,SL′ is some
permutation of literals taken from G′ and Kj . Slightly abusing the notation, we
write outvar(SL) for ∪L∈SLoutvar(L). Let SLϑ (resp. SL′ϑ) be obtained from SL

(resp. from SL′) by replacing in it each literal L from Kj with the literal Lϑ from
Kjϑ.

Since SL, (x,H)
.
= T,SL′ is well-moded, we have either var(x,H) ⊆ outvar(SL)

or var(T) ⊆ outvar(SL).
First, assume var(x,H) ⊆ outvar(SL). Consider the sequence SLϑ, x

.
= T1,

Hϑ
.
= T2,SL′ϑ. We have

– Either x ∈ outvar(SLϑ) or var(T1) ∈ outvar(SLϑ).
– Each variable of Hϑ appears either in outvar(SLϑ) or in T1.
– Each input variable in SL′ϑ appears in the output variables of the literals

before (for those not affected by ϑ this is obvious, the others appear in T1).
– Each variable in one of the sides of an equation in SL′ϑ appears in the output

variables of the literals before (for those not affected by ϑ this is obvious, the
others appear in T1).

– Each variable in a membership atom in SL′ϑ appears in the output variables
of the literals before (for those not affected by ϑ this is obvious, the others
appear in T1).

– SLϑ is well-moded.

These facts imply that SLϑ, x
.
= T1, Hϑ

.
= T2,SL′ϑ is well-moded.

Now assume var(T) ⊆ outvar(SL). Consider again SLϑ, x
.
= T1, Hϑ

.
= T2,

SL′ϑ. Then we have

– var(T1) ∈ outvar(SLϑ).
– var(T2) ∈ outvar(SLϑ).
– Each input variable in SL′ϑ appears in the output variables of the literals

before (for those not affected by ϑ this is obvious, the others appear in T1).
– Each variable in one of the sides of an equation in SL′ϑ appears in the output

variables of the literals before (for those not affected by ϑ this is obvious, the
others appear in T1).

– Each variable in a membership atom in SL′ϑ appears in the output variables
of the literals before (for those not affected by ϑ this is obvious, the others
appear in T1).

– SLϑ is well-moded.

These facts imply that SLϑ, x
.
= T1, Hϑ

.
= T2,SL′ϑ is well-moded.

Hence, in both case SLϑ, x
.
= T1, Hϑ

.
= T2,SL′ϑ is well-moded. It means that

〈G′ ‖ x .
= T1 ∧Hϑ

.
= T2 ∧ Kjϑ〉 is well-moded.

Case 2. If Li is a primitive constraint and solve(c ∧ Li) = false, the theorem
trivially holds.

Case 3. Let the selected Li be an atom p(t1, . . . , tk, . . . , tm). Assume that
P contains a clause p(r1, . . . , rk, . . . , rm) ← B. Assume also {1, . . . , k} are
the input positions of p and {k + 1, . . . ,m} are the output ones. The state
〈L1, . . . , Li−1, p(t1, . . . , tk, . . . , tm), Li+1, . . . , Ln ‖ C〉 will reduce to the state
〈L1, . . . , Li−1, t1

.
= r1, . . . , tk

.
= rk, . . . , tm

.
= rm, B, Li+1, . . . , Ln ‖ C〉. From

these assumptions, by the definition of well-modedness we have that for all
1 ≤ j ≤ m, var(t1, . . . , tk) ⊆ outvar(SLj), where SLj is a sequence of lit-
erals taken from G′ and Kj . We also know var(rk+1, . . . , rm) ⊆ outvar(B) ∪

var(r1, . . . , rk). Input variables of literals from B remain within output variables
of literals from B and from t1

.
= r1, . . . , tk

.
= rk. Therefore, we can conclude that

〈L1, . . . , Li−1, t1
.
= r1, . . . , tk

.
= rk, . . . , tm

.
= rm, B, Li+1, . . . , Ln ‖ Kj〉 is well-

moded for all 1 ≤ j ≤ m, which implies that 〈L1, . . . , Li−1, t1
.
= r1, . . . , tk

.
= rk,

. . . , tm
.
= rm, B, Li+1, . . . , Ln ‖ Kj〉 is well-moded.

Case 4. If defnP (Li) = ∅, then the theorem trivially holds.

The solver reduces well-moded constrains either to a solved form of to false:

Lemma 3. Let C be a well-moded constraint and solve(C) = C′, where C′ 6= false.
Then C′ is solved.

Proof. Lemma 2 implies that each rule of the solver transforms a well-moded
constraint into a well-moded one. Since C′ 6= false, by Theorem 3 and Lemma 2
we can assume that C′ = K1 ∨ · · · ∨Km is partially solved and well-moded, which
means each Kj , 1 ≤ j ≤ m, is partially solved and well-moded. By definition,
Kj is well-moded if there exists a permutation of its literals c1, . . . , ci, . . . , cn
which satisfies the well-modedness property. Assume c1, . . . , ci−1 are solved. By
this assumption and the definition of well-modedness, each of c1, . . . , ci−1 is an
equation whose one side is a variable that occurs neither in its right hand side
nor in any other primitive constraint. Then well-modedness of Kj guarantees
that the other side of these equations are ground terms. Assume by contradiction
that ci is partially solved, but not solved. If ci is a membership constraint, well-
modedness of Kj implies that ci does not contain variables and, therefore, can not
be partially solved. Now let ci be an equation. Since all variables in c1, . . . , ci−1
are solved, they can not appear in ci. From this fact and well-modedness of Kj ,
ci should have at least one ground side. But then it can not be partially solved.
The obtained contradiction shows that C′ is solved.

The theorem below is the main theorem for well-moded CLP(H) programs. It
states that any finished derivation from a well-moded goal leads to a solved
constraint or to a failure:

Theorem 4. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with
respect to a well-moded CLP(H) program, starting from a well-moded goal G. If
C′ 6= false, then C′ is solved.

Proof. We prove a slightly more general statement: If 〈G ‖ true〉� · · ·� 〈G′ ‖
C′〉 is a derivation with respect to a well-moded program, starting from a well-
moded goal G and ending with G′ that is either � or consists only of atomic
formulas without arguments (propositional constants). If C′ 6= false, then C′ is
solved.

To prove this statement, we use induction on the length n of the derivation.
When n = 0, then C′ = true and it is solved. Assume the statement holds when
the derivation length is n, and prove it for the derivation with the length n+ 1.
Let such a derivation be 〈G ‖ true〉� · · ·� 〈Gn ‖ Cn〉� 〈Gn+1 ‖ Cn+1〉. There
are two possibilities to make the last step:

1. Gn has a form (modulo permutation) L, p1, . . . , pn, where L is primitive
constraint, the p’s are propositional constants, Gn+1 = p1, . . . , pn, and Cn+1 =
solve(Cn ∧ L).

2. Gn has a form (modulo permutation) q, p1, . . . , pn, where q and p’s are
propositional constants, Gn+1 = p1, . . . , pn, and Cn+1 = Cn.

In the first case, note that by Lemma 2, 〈Gn ‖ Cn〉 is well-moded. Since the
p’s have no influence on well-modedness (they are just propositional constants),
Cn ∧ L is well-moded. By Lemma 3 we get that if Cn+1 = solve(Cn ∧ L) 6= false
then Cn+1 is solved.

In the second case, since Gn consists of propositional constants only, by
the induction hypothesis we have that if Cn is not false, then it is solved. But
Cn = Cn+1. It finishes the proof.

7.2 Programs in the KIF Form

A term is in the KIF form (KIF-term) if hedge variables occur only below
ordered function symbols,6 and they occupy only the last argument position in
each subterm where they appear. For example, the term fo(x, fo(a, x), fu(x, b), x)
is in the KIF form, while fo(x, a, x), fu(x, fo(a, x), fu(x, b), x) are not. A hedge
(T, h) is in the KIF form, if T is a sequence of KIF-terms and h is either a
KIF-term or a hedge variable.

An atom p(t1, . . . , tn) (including t1
.
= t2) is in the KIF form, if each ti,

1 ≤ i ≤ n, is a KIF-term. A membership atom H in R is in the KIF-form, if H is
a KIF-hedge. A CLP(H) program is in the KIF form, if it is constructed from
literals in the KIF form. Note that the programs in examples 1 and 2 are not
KIF programs. One could rewrite them in this form, but the code size would
become a bit larger.

The notion of KIF form extends naturally to constraints and states, requiring
that all their literals should be in the KIF form. KIF-programs, kike well-moded
ones discussed above, also show a good behavior: Reductions preserve the KIF
form, the solver is complete, and finished non-failed derivations lead to solved
constraints. These results are formally stated below.

Lemma 4. Let P be a CLP(H) program in the KIF form and 〈G ‖ C〉 be a KIF-
state. If 〈G ‖ C〉� 〈G′ ‖ C′〉 is a reduction using clauses in P , then 〈G′ ‖ C′〉 is
also a KIF-state.

Proof. Inspecting the rules of the solver, one can easily see that KIF-constraints
are transformed into KIF-constraints, which implies the lemma.

Lemma 5. Let C be a KIF-constraint and solve(C) = C′, where C′ 6= false. Then
C′ is solved.

6 If the language does not contain unordered function symbols, then hedge variables
are permitted under function symbols as well.

Proof. Note that for KIF-constraints, solve never uses the rules (E3), (E4), and
(M3). As for the other ones, it is easy to see that one of them necessarily applies
to a constraint which is not solved. Hence, at the end we either get false or a
solved constraint.

We illustrate how to solve a simple KIF constraint:

Example 5. Let C = f(x, x)
.
= f(g(y), a, y) ∧ x in a(eps)∗ ∧ y in a(eps) ·

a(b(eps)∗)∗. Then solve performs the following derivation:

C 2 x
.
= g(y) ∧ x .

= (a, y) ∧ (a, y) in a(eps)∗ ∧ y in a(eps) · a(b(eps)∗)∗

 x
.
= g(y) ∧ x .

= (a, y) ∧ y in a(eps)∗ ∧ y in a(eps) · a(b(eps)∗)∗

 x
.
= g(y) ∧ x .

= (a, y) ∧ y in a(eps) · a(eps)∗

The obtained constraint is solved.

Theorem 5. Let 〈G ‖ true〉 � · · · � 〈� ‖ C′〉 be a finished derivation with
respect to a CLP(H) program in the KIF form, starting from a KIF-goal G. If
C′ 6= false, then C′ is solved.

Proof. Similar to the proof of Theorem 4.

8 Conclusion

We defined an algebraic semantics for CLP(H) programs and introduced a solver
for positive equational and membership constraints over hedges. The solver, in
general, is incomplete. It is natural, since hedge unification is infinitary. We
identified two special cases of CLP(H) programs which lead to constraints, for
which the solver computes a complete set of solutions, and proved soundness
and completeness theorems for them. The constraints we consider in this paper
are positive, but for well-moded programs one can easily enrich them with
negation. Well-modedness guarantees that the eventual test for disequality/
nonmembership in constraints will be performed on ground hedges, which can be
effectively decided.

Acknowledgments

This research has been partially supported by LIACC through Programa de
Financiamento Plurianual of the Fundação para a Ciência e Tecnologia (FCT),
by the FCT fellowship (ref. SFRH/BD/62058/2009), by the Austrian Science
Fund (FWF) under the project SToUT (P 24087-N18), and the Rustaveli Science
Foundation under the grants DI/16/4-120/11 and FR/611/4-102/12.

References

1. V. M. Antimirov. Partial derivates of regular expressions and finite automata
constructions. In STACS, pages 455–466, 1995.

2. E. Balland, P. Brauner, R. Kopetz, P.-E. Moreau, and A. Reilles. Tom: Piggybacking
rewriting on Java. In Proc. RTA’07, volume 4533 of LNCS, pages 36–47. Springer,
2007.

3. M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. L.
Talcott, editors. All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture
Notes in Computer Science. Springer, 2007.

4. J. Coelho and M. Florido. CLP(Flex): constraint logic programming applied to
XML processing. In R. Meersman and Z. Tari, editors, CoopIS/DOA/ODBASE
(2), volume 3291 of LNCS, pages 1098–1112. Springer, 2004.

5. J. Coelho and M. Florido. VeriFLog: a constraint logic programming approach to
verification of website content. In H. T. Shen, J. Li, M. Li, J. Ni, and W. Wang,
editors, APWeb Workshops, volume 3842 of LNCS, pages 148–156. Springer, 2006.

6. J. Coelho and M. Florido. XCentric: logic programming for XML processing. In
I. Fundulaki and N. Polyzotis, editors, WIDM, pages 1–8. ACM, 2007.

7. A. Colmerauer. An introduction to Prolog III. Commun. ACM, 33(7):69–90, 1990.
8. H. Comon. Completion of rewrite systems with membership constraints. Part II:

constraint solving. J. Symb. Comput., 25(4):421–453, 1998.
9. N. Dershowitz. Orderings for term-rewriting systems. Theor. Comput. Sci., 17:279–

301, 1982.
10. A. Dovier, C. Piazza, E. Pontelli, and G. Rossi. Sets and constraint logic program-

ming. ACM Trans. Program. Lang. Syst., 22(5):861–931, 2000.
11. A. Dovier, C. Piazza, and G. Rossi. A uniform approach to constraint-solving for

lists, multisets, compact lists, and sets. ACM Trans. Comput. Log., 9(3), 2008.
12. M. R. Genesereth and R. E. Fikes. Knowledge Interchange Format, Version 3.0

Reference Manual. Technical Report Logic-92-1, Stanford University, Stanford, CA,
USA, 1992.

13. H. Hosoya and B. C. Pierce. Regular expression pattern matching for XML. J.
Funct. Program., 13(6):961–1004, 2003.

14. J. Jaffar, M. J. Maher, K. Marriott, and P. J. Stuckey. The semantics of constraint
logic programs. J. Log. Program., 37(1-3):1–46, 1998.

15. T. Kutsia. Solving equations with sequence variables and sequence functions. J.
Symb. Comput., 42(3):352–388, 2007.

16. T. Kutsia and M. Marin. Solving, reasoning, and programming in Common Logic.
In SYNASC, pages 119–126. IEEE Computer Society, 2012.

17. M. Marin and T. Kutsia. Foundations of the rule-based system ρlog. Journal of
Applied Non-Classical Logics, 16(1-2):151–168, 2006.

18. A. Rajasekar. Constraint logic programming on strings: Theory and applications.
In SLP, page 681, 1994.

19. M. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser,
and J. Visser. The ASF+SDF meta-environment: A component-based language
development environment. In R. Wilhelm, editor, CC, volume 2027 of Lecture Notes
in Computer Science, pages 365–370. Springer, 2001.

20. C. Walinsky. CLP(Σ∗): constraint logic programming with regular sets. In G. Levi
and M. Martelli, editors, ICLP, pages 181–196. MIT Press, 1989.

21. S. Wolfram. The Mathematica book. Wolfram-Media, fifth edition, 2003.

