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Abstract. We consider the classical problem of finding the best uniform approxi-
mation by polynomials of 1/(x − a)2, where a > 1 is given, on the interval [−1, 1].
First, using symbolic computation tools we derive the explicit expressions of the poly-
nomials of best approximation of low degrees and then give a parametric solution of
the problem in terms of elliptic functions. Symbolic computation is invoked then
once more to derive a recurrence relation for the coefficients of the polynomials of
best uniform approximation based on a Pell-type equation satisfied by the solutions.
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1. Introduction

The aim of this paper is to show how symbolic computation tools can be integrated
in the study of classical problems in uniform approximation theory. To exemplify this,
we consider the problem of finding the polynomial of best uniform approximation of
the function 1/(x − a)2, where a > 1 is given, on the interval [−1, 1]; more precisely,
we are looking for p∗n ∈ Πn, where Πn := {pn : pn(x) =

∑n
i=0 cix

i, ci ∈ R}, such that

(1)

|| 1

(x− a)2
− p∗n|| := max

x∈[−1,1]
| 1

(x− a)2
− p∗n(x)|

= min
pn∈Πn

max
x∈[−1,1]

| 1

(x− a)2
− pn(x)|.

We call p∗n the polynomial of best approximation, respectively

yn(x) :=
1

(x− a)2
− p∗n(x) and Ln := || 1

(x− a)2
− p∗n(x)||

error function of best approximation and minimum deviation.
An asymptotic expression for the minimum deviation is well-known, e.g. [5, p. 122],

Ln ∼
n

(a2 − 1)(n+1)/2

1

(a+
√
a2 − 1)n

,

however explicit expressions for the error function of best approximation and the min-
imum deviation do not seem to appear in the classical textbooks on approximation
theory, we mention here [1, 2, 5]. The reason behind this omission is most probably
the fact that not all the parameters involved in the description of the solution, which
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can be done in terms of elliptic functions, can be given explicitly. As we will also see
here, a pair of parameters is defined as the solution of a system of equations rather
involved, but which can be easily solved numerically in any of the available computer
algebra systems.

The case of a function having a simple pole, namely 1/(x− a), where a > 1 is given,
is significantly simpler, explicit expressions for the polynomial of best approximation as
well as for the minimum deviation in terms of elementary functions being well-known,
see e.g. [5, p. 120]. These polynomials were recently used in [14] to provide simple con-
vergence analysis for the algebraic multilevel methods, a three term recurrence relation
for the polynomials being derived for this analysis. Naturally it would be interesting
whether the polynomials of best approximation corresponding to the problem (1) also
satisfy such a recurrence relation, however we will not dwell on this here, but rather
study recurrence relations for their coefficients.

The paper is organized as follows: in Section 2 we give the explicit solution of
the problem (1) in terms of elliptic functions as well as explicit expressions for the
polynomials of lower degrees. Section 3 is devoted to the proof of the explicit solution
and some additional remarks. In the concluding Section 4 we comment on how to derive
a recurrence relation for the coefficients of the polynomials of best approximation.

2. Main results

By the Chebyshev Alternation Theorem, see e.g. [1, p. 55], the error function of best
approximation yn(x) must have at least n+ 2 alternation points in the interval [−1, 1].
It is easy to show that the derivative of a function of the form 1/(x − a)2 + pn(x),
pn ∈ Πn, has at most n real zeros. Hence y′n(x) has precisely n distinct real zeros
ξ1, ..., ξn ∈ (−1, 1) and two complex conjugate zeros z1, z2, and thus the alternation
points of yn(x) are −1 < ξ1 < ... < ξn < 1. In addition, yn(x) decreases from +∞ to
−∞ on the interval (a,∞).

With this clear view of how the graph of the error function of best approximation
looks like, we determined with the help of Mathematica the explicit expressions of p∗n(x)
and Ln for n = 1 and n = 2 and arbitrary a > 1, see also Figure 2. More precisely,

for n = 1 :

In[1]:= p∗
1[x , a ] := (1− a2 + 3(a(−1 + a2))2/3)/(2(a2 − 1)2) + 2a/(a2 − 1)2x

In[2]:= L1[a ] := (1 + 3a2 − 3(a(a2 − 1))2/3)/(2(a2 − 1)2)

for n = 2 :

In[3]:= r[a ] := Root[−16+28a+45a2−90a3−35a4+84a5+16a6−32a7+(−60+70a+
200a2−230a3−168a4+172a5+80a6−64a7)#1+(−99+42a+383a2−196a3−
350a4 +44a5 +176a6)#12 +(−88− 64a+352a2 +84a3− 176a4− 172a5)#13 +
(−38− 100a + 99a2 + 94a3 + 73a4)#14 + (−4− 38a− 8a2 − 14a3)#15 + (1−
2a + a2)#16&, 1]

In[4]:= c0[a ] := ((a− 1)−2 + (a + 1)−2 + 2(2− 3a + r[a])/((a− 1)2(a− r[a])3))/2
In[5]:= c1[a ] := 2(1− 2a + a2 + 2r[a]− 3ar[a] + r[a]2)/((a− 1)2(a− r[a])3)
In[6]:= c2[a ] := −(2− 3a + r[a])/((a− 1)2(a− r[a])3)
In[7]:= p∗

2[x , a ] := c0[a] + c1[a]x + c2[a]x
2

In[8]:= L2[a ] := −2(1 + r[a])2(1− 2a2 + ar[a])/((a2 − 1)2(a− r[a])3)
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For the computation of these explicit formulas Gröbner bases [7, 17, 9] were used, a
well established tool in symbolic computation for solving systems of polynomial equa-
tions. Gröbner bases computations may be computationally very expensive depending
exponentially on the number of variables in the input and also badly on the polyno-
mial degrees. Finding the linear polynomial of best approximation is an easy task
that can be solved on any computer algebra system. However starting from degree 2
the computations become very involved and we used Singular [10] via a Mathematica
interface [11].

In order to determine the polynomial of best approximation, we use a generic ansatz
for the polynomial p∗n(x) =

∑n
k=0 ckx

k. Using that the n + 2 alternation points are
−1, ξ1, . . . , ξn, 1 (sorted in increasing order) and that the interior alternation points ξj
are extreme points, hence their first derivative vanishes, we obtain a system of 2n+ 1
equations in the 2n+ 1 unknowns c0, . . . , cn, ξ1, . . . , ξn :

(2)
yn(−1) = (−1)n+1yn(1), and yn(ξj) = (−1)n+jyn(1), 1 ≤ j ≤ n
y′n(ξj) = 0, 1 ≤ j ≤ n.

Even though ultimately we only need to determine the coefficients ck, currently we
do not see how to set up a system without using the alternation points. Bringing
everything to common denominator and equating the numerators of these equations to
zero yields the polynomial system. The coefficients ck appear only linearly and the ξk
appear in monomials up to degree n + 2. This increase in numbers of variables and
degrees explains why we are reaching a limit in our computations quickly. For n = 2
it is still possible to obtain the coefficients comparably fast for symbolic a. Also for
degree 3 it is still possible to obtain the coefficients in reasonable time (less than 10
minutes) for specific choices of a. Note that these choices are not floating point numbers
and the result is still exact and can be evaluated to arbitrary precision. Starting from
degree 4 we could not find closed form solutions, not even for specific choices of a.
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Figure 1. Graphs of y1(x), y2(x) and y3(x) for a = 2.

For n = 3 and a = 2 the coefficients of the polynomial of best approximation are
algebraic numbers that are approximately given by

c0 = 0.2339547125, c1 = 0.2062172304, c2 = 0.3018857394, c3 = 0.2382272140.
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The minimal polynomial for, e.g., c3 is given by:

χ(α) = 215892499727278669824α11 − 5459947971497905618944α10

+ 1699378437698250434795520α9 + 4985576127353627620088832α8

− 1487598201477303010010019α7 + 49652231802046011126432α6

− 128259012822418301760α5 − 39565695530318777856α4

+ 1028117822899995648α3 − 23136252868952064α2

+ 277724396519424α− 1099511627776.

A Gröbner basis is a basis for the polynomial ideal spanned by the given set of
polynomials that is unique once a monomial ordering on the variables has been fixed,the
basis is normalized to be monic and it is auto-reduced. If the monomial ordering
is lexicographic, then a Gröbner basis has the elimination property, i.e., if we are
computing in the polynomial ring K[x1, . . . , xn] (for some field K) with a lexicographic
ordering such that x1 < · · · < xn then (with k < n)

I ∩K[x1, . . . , xk] = 〈G ∩K[x1, . . . , xk]〉,

for I being the ideal spanned by the input, G its Gröbner basis and 〈S〉 denotes the
polynomial ideal spanned by the set S. This property allows to use Gröbner bases for
solving polynomial systems of equations.

In our computations in the first step we eliminate the variables ck from the given
system. Certainly it would be desirable to eliminate the ξk and solve the remaining
equations for the coefficients, however this is computationally too expensive. In the
second step, we determine the solutions ξk of the remaining equations. From this
solution set we pick the solution satisfying −1 < ξ1 < · · · < ξn < 1. Plugging into the
original system gives the coefficients ck we are after.

The following theorem gives the parametric solution to the problem (1) for arbi-
trary n ∈ N. As usual K := K(k) is the complete integral of the first kind of modulus

k, 0 < k < 1, K ′ := K ′(k) := K(k′) where k′ :=
√

1− k2, sn(u) := sn(u; k) is the
Jacobi elliptic function and Θ(u) := Θ(u; k), H(u) := H(u; k), H1(u) := H1(u; k) and
Θ1(u) := Θ1(u; k) are the four Jacobi theta functions.

Theorem 2.1. Let k, 0 < k < 1, and ρ, 0 < ρ < K, be defined by the system:

(3)



(
n(a− 1) +

2(a− α)(a− β)− (a2 − 1)(2a− α− β)√
(a2 − 1)(a− α)(a− β)

)
cn ρdn ρ

sn ρ

− 2n
Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK′)

Θ(ρ̂+ iK ′)
− 2πi

K
= 0

sn
(
ρ̂+ iK ′

)
−
√
a+ 1

a− 1
sn ρ = 0,

where

(4) α =
1 + k2sn2ρ

1− k2sn2ρ
, β =

1 + sn2ρ

1− sn2ρ
and ρ̂ =

K

2
− n

2
ρ,
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and let

(5) x =
sn2u+ sn2ρ

sn2u− sn2ρ
.

Then the solution of the approximation problem is

(6) yn(x) = (−1)n−1Ln
2

{[
H(ρ+ u)

H(ρ− u)

]n [Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

+

[
H(ρ− u)

H(ρ+ u)

]n [Θ(ρ̂− u)

Θ(ρ̂+ u)

]2
}
,

(7) Ln =
−e−

π
2
K′
K

2

[Θ′(−iK ′)]2

k′2
[Θ(ρ− ρ̂)]n+4

[Θ(ρ+ ρ̂)]n−4

Θ6(0)

Θ2
1(0)H2

1(0)Θ4(ρ)H4(ρ)H4(2ρ̂)
.

The proof of the theorem given in the next section is based on the functional equa-
tion (9) satisfied by the error function of best approximation yn(x), recalling Pell’s
equation from number theory. This equation is the key tool in deriving a recurrence
relation for the coefficients of p∗n(x), see Section 4.

Pell-type equations are satisfied by many polynomials appearing in approximation
theory, like Chebyshev polynomials, Zolotarev polynomials, and Achieser polynomials,
see e.g. [1]. We refer to the survey paper [15] for further details on this topic. Therefore,
the approach we used here to derive a recurrence relation for the coefficients of the
polynomials of best approximation to 1/(x− a)2, a > 1, can be carried over also to the
above mentioned cases.

3. Proof of Theorem 2.1

The key tool in obtaining the solution of the approximation problem (1) we are con-
sidering here is a Pell-type equation satisfied by the error function of best approximation
yn(x). To write down this equation, let a < α < β be such that yn(α) = −yn(β) = Ln.
Based on the explanation from the beginning of the previous section and denoting
p∗n(x) = cnx

n + cn−1x
n−1 + · · ·+ c0, we have:

(8)

[yn(x)]2 − L2
n = c2

n

(x− ξ1)2 · · · (x− ξn)2(x2 − 1)(x− α)(x− β)

(x− a)4

y′n(x) = −ncn
(x− ξ1) · · · (x− ξn)(x− z1)(x− z2)

(x− a)3
.

Combining the two relations, we conclude that yn(x) satisfies the following Pell-type
equation:

(9)
[y′n(x)]2

[yn(x)]2 − L2
n

= n2 (x2 − γ1x+ γ2)2

(x− a)2

1

(x2 − 1)(x− α)(x− β)

where γ1 := z1 + z2, γ2 := z1z2. The formulas of γ1 and γ2 can be easily obtained using
the explicit form of yn(x) = 1/(x− a)2− (cnx

n + . . . c0) and of y′n(x) derived from this
one, in combination with equations (8), namely:

(10)

γ1 = 2a− 2a(a− α)(a− β) + (a2 − 1)(2a− (α+ β))

n
√

(a2 − 1)(a− α)(a− β)

γ2 = a2 − 2(a− α)(a− β) + a(a2 − 1)(2a− (α+ β))

n
√

(a2 − 1)(a− α)(a− β)
.
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Equation (9) implies that

(11) log
yn(x) +

√
y2
n(x)− L2

n

±Ln
=

∫ x

−1

n
(
x2 − γ1x+ γ2

)
(x− a)

√
(x2 − 1)(x− α)(x− β)

dx,

where on the right hand-side we have an elliptic integral, which we solve by making a
suitable substitution. For this, let x(u) be the conformal mapping from the rectangle
with vertices at the points u = 0,K,K + iK ′, iK ′, with K and K ′ of modulus k,
0 < k < 1, onto the upper half-plane with the following normalization:

x(0) = −1, x(iK ′) = 1, x(K + iK ′) = α, x(K) = β.

The conformal mapping is given by

(12) x(u) =
sn2u+ sn2ρ

sn2u− sn2ρ

where k, 0 < k < 1, and ρ, 0 < ρ < K, are defined by

k =

√
α− 1

α+ 1

β + 1

β − 1
and sn2ρ =

β − 1

β + 1
.

The expression (12) was found as x = g ◦f, where f is the conformal mapping from the
rectangle with vertices at the points u = 0,K,K + iK ′, iK ′, onto the upper half-plane
with the normalization f(0) = 0, f(K) = 1, f(K + iK ′) = 1/k2, f(iK ′) = ∞, and g
is the conformal mapping of the upper half-plane onto the upper half-plane with the
normalization g(0) = −1, g(1) = β, g(∞) = 1, g(1/k2) = α. We have f(u) = sn2u, by
writing first the expression of the inverse map with the help of the Schwarz-Christoffel

formula, and g(u) = (β+1)u+(β−1)
(β+1)u−(β−1) obtained as a linear fractional transform satisfying

the first three normalizing conditions and then obtaining k from the last one. The
substitution we use in the computation of the elliptic integral in (11) is then

x =
z2 + λ2

z2 − λ2
with λ2 =

β − 1

β + 1
, k2 =

α− 1

α+ 1

β + 1

β − 1

which implies

(13) α =
1 + k2sn2ρ

1 + k2sn2ρ
, β =

1 + sn2ρ

1 + sn2ρ
.

Therefore∫ x

−1

x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=
1

a− 1

√
(1− λ2)(1− k2λ2)

λ

∫ z

0

(1− γ1 + γ2)z4 + 2(1− γ2)λ2z2 + (1 + γ1 + γ2)λ4

(z2 − λ2)(z2 − a+1
a−1λ

2)
√

(1− z2)(1− k2z2)
dz,
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and, after partial fraction decomposition, we arrive at∫ x

−1

x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=
1− γ1 + γ2

a− 1

√
(1− λ2)(1− k2λ2)

λ

∫ z

0

dz√
(1− z2)(1− k2z2)

− 2λ
√

(1− λ2)(1− k2λ2)

∫ z

0

dz

(z2 − λ2)
√

(1− z2)(1− k2z2)

+
2(a2 − aγ1 + γ2)

(a− 1)2
λ
√

(1− λ2)(1− k2λ2)

∫ z

0

dz

(z2 − a+1
a−1λ

2)
√

(1− z2)(1− k2z2)
.

For the second and third integral in the last equality above, let ρ and ρ̃ be defined by

sn ρ = λ and sn ρ̃ =
√

a+1
a−1λ, respectively. We note here that the two conditions imply

that

(14) a =
sn2ρ̃+ sn2ρ

sn2ρ̃− sn2ρ
,

hence ρ̃ is the pre-image of a through the conformal mapping (12) and thus it is of the
form ρ̃ = ρ̂+ iK ′, ρ̂ ∈ (0,K). With the above notation for ρ and using [18, p. 523], it
can be easily shown that∫ z

0

dz

(z2 − λ2)
√

(1− z2)(1− k2z2)
=

1

sn ρ cn ρdn ρ

[
1

2
log

H(ρ− u)

H(ρ+ u)
+

Θ′(ρ)

Θ(ρ)
u

]
,

with a similar expression holding for the third integral. Therefore, using the fact that

n(a2 − aγ1 + γ2)

(a− 1)2

sn ρ cn ρ dn ρ

sn ρ̃ cn ρ̃ dn ρ̃
= −2,

we arrive at∫ x

−1
n

x2 − γ1x+ γ2

(x− a)
√

(x2 − 1)(x− α)(x− β)
dx

=

[
n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̃)

Θ(ρ̃)

]
u+ n log

H(ρ+ u)

H(ρ− u)
+ 2 log

H(ρ̃+ u)

H(ρ̃− u)
.

Taking into account also that ρ̃ = ρ̂ + iK ′ we have thus by (11) and the reduction
formulas for Jacobi theta functions:

(15)

log
yn(x) +

√
y2
n(x)− L2

n

±Ln

=

[
n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK ′)

Θ(ρ̂+ iK ′)
− 2πi

K

]
u

+ log

[
H(ρ+ u)

H(ρ− u)

]n
+ log

[
Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

.

From the condition that yn(x) has n+ 2 alternation points in [−1, 1] we must have

n(1− γ1 + γ2)

a− 1

cn ρdn ρ

sn ρ
− 2n

Θ′(ρ)

Θ(ρ)
− 4

Θ′(ρ̂+ iK ′)

Θ(ρ̂+ iK ′)
− 2πi

K
=

(
n
ρ

K
+ 2

ρ̂

K
− 1

)
π

K ′
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and from the condition that yn(x) strictly decreases from Ln to −Ln in [α, β] that

n
ρ

K
+ 2

ρ̂

K
− 1 = 0.

Combining these two we conclude from (15) that

yn(x) = (−1)n−1Ln
2

{[
H(ρ+ u)

H(ρ− u)

]n [Θ(ρ̂+ u)

Θ(ρ̂− u)

]2

+

[
H(ρ− u)

H(ρ+ u)

]n [Θ(ρ̂− u)

Θ(ρ̂+ u)

]2
}

with ρ and k defined by (3) and α, β and ρ̂ by (4).
The value of Ln follows now from the condition that lim

x→a
(x− a)2yn(x) = 1. By (12)

and (14) we get that x− a is equal to

(16) g(u) :=
2sn2ρ

sn2ρ− sn2(ρ̂+ iK ′)

sn2u− sn2(ρ̂+ iK ′)

sn2u− sn2ρ
,

and therefore

(17) Ln =
1

lim
u→ρ̂+iK′

f(u)g(u)2

which is easily shown to be equal to

Ln =
(−1)n−1

8

Hn(ρ− ρ̂− iK ′)
Hn(ρ+ ρ̂+ iK ′)

[Θ′(−iK ′)]2(sn2ρ− sn2(ρ̂+ iK ′))4

Θ2(2ρ̂+ iK ′)sn4ρ [sn(ρ̂+ iK ′) cn(ρ̂+ iK ′) dn(ρ̂+ iK ′)]2

and, after some transformations, to (7).
The proof of the theorem is complete up to the fact that the system (3) has a unique

solution which satisfies 0 < k < 1 and, since ρ, ρ̂ ∈ (0,K), that 0 < ρ < K/n. We do
not consider this matter here, but rather give the numerical solutions of the system for
a = 2 and n = 1, 2, . . . , 8, which were found with the help of the command FindRoot
in Mathematica:

n k ρ

1 0.988912134768707 0.846885238283369
2 0.998506984080587 0.793161228023789
3 0.999760160023856 0.764276888897998
4 0.999957225505635 0.745744327757575
5 0.999991825727615 0.732764470377829
6 0.999998359426700 0.723151786732571
7 0.999999658473260 0.715743316327916
8 0.999999926858805 0.709858166486558

We note that we have chosen to prove the theorem by computing the elliptic integral
on the right-hand side of (11), rather than introducing Riemann surfaces and consid-
ering rational functions on them, in the hope for availability of algorithms for dealing
with such integrals. Even though many integrals over special functions nowadays can
be dealt with by symbolic computation [6, 3], these particular ones are still out of
scope. We consider this paper also as a challenge to derive new methods that extend
to this class of integrals.
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We conclude this section with some remarks concerning the best uniform approxi-
mation on the interval [−1, 1] of the function 1

(x−a)2
+ B

x−a , where a > 1 and B ∈ R, by

polynomials of degree n ∈ N.
In the case when B = 0, the expression of the error function of best approximation

was given in Theorem 2.1 in terms of elliptic functions. As we will briefly explain in
what follows, with a different choice of the parameters ρ and k, this expression describes
the solution also when B is in some small neighborhood of 0. More precisely, a function
defined by (6), with Ln and ρ̂ given by (7) and (4), respectively, and with k ∈ (0, 1) and
ρ ∈ (0,K/n) arbitrary, is a rational function of the form ỹn(x) = 1

(x−a)2
+ B

x−a + pn(x),

where pn ∈ Πn and

(18)

B =
e
πi
4K

(2K+4ρ̂+3iK′)

8(1− k2)

[Θ′(−iK ′)]2Θ6(0)Θ2(ρ− ρ̂)Θ2(ρ+ ρ̂)

H′(0)Θ2(ρ)H2(ρ)Θ2(ρ̂)Θ2
1(ρ̂)H2(ρ̂)H2

1(ρ̂)

[
4Θ′(2ρ̂+ iK ′)

+

(
(n+ 2)

H′(ρ− ρ̂− iK ′)
H(ρ− ρ̂− iK ′)

+ (n− 2)
H′(ρ+ ρ̂+ iK ′)

H(ρ+ ρ̂+ iK ′)

)
Θ(2ρ̂+ iK ′)

]
.

It is easy to show that indeed also in this general case yn(x) is a rational function with
a single pole x = a of order two, while as we already stated, the definition of Ln is
such that the coefficient of 1/(x−a)2 is equal to 1, see (17) above. The expression (18)
was then found as B = lim

x→a
(yn(x)(x − a)2 − 1)/(x − a), making use of (6) and (16).

Now when u runs in the segment from 0 to iK ′, then |H(ρ + u)/H(ρ − u)| = 1 and
|Θ(ρ̂ + u)/Θ(ρ̂ − u)| = 1, hence |yn(x)| ≤ Ln on [−1, 1]. In addition, by a simple
application of the Argument Principle, yn(x) alternates at least n + 2 times between
±Ln on [−1, 1]. Hence the Chebyshev Alternation Theorem can be applied, and thus
for those values of B in some neighborhood of 0 for which the system in the unknowns
k and ρ formed by (18) and the second equation in (3) has a solution, we obtain the
best approximation to 1

(x−a)2
+ B

x−a . That is, plugging in the solution values for k and

ρ, then yn(x) defined by (6), with Ln given by (7) and ρ̂ by (4), is the corresponding
error function of best approximation.

On the other hand, in the case when B = 2a+n
√
a2−1

a2−1
, the expression of the error

function of best approximation yn(x) of 1
(x−a)2

+ B
x−a by polynomials of degree n can

be given in terms of elementary functions; namely with x = 1
2(z + 1

z ), |z| = 1, then

yn(x) =
Ln
2

{
zn
(
λ− z
1− λz

)2

+ z−n
(

1− λz
λ− z

)2
}
, Ln =

8λn+4

(1− λ2)4
,

where λ := a−
√
a2 − 1. This follows immediately by Chebyshev Alternation Theorem,

using again the Argument Principle.

4. Recurrence relation for the polynomials of best approximation

With k and ρ defined by the system (3) from Theorem 2.1, we have α and β defined
by (4), γ1 and γ2 defined by (10) and the Pell-type equation (9) for yn(x). By differen-
tiating relation (9) we obtain the following linear differential equation for yn(x) with
polynomial coefficients

(19) 2f0(x)f1(x)y′′n(x) +
(
f ′0(x)f1(x)− f0(x)f ′1(x)

)
y′n(x)− 2f2

1 (x)yn(x) = 0,
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where

f0(x) = (x2 − 1)(x− a)2(x− α)(x− β) and f1(x) = n2(x2 − γ1x+ γ2)2.

It is well known that this type of differential equations can be turned into a re-
currence relation for the coefficients in the series expansion of yn(x) around x0 = 0.
Also the given function 1

(x−a)2
satisfies a linear differential equation with polynomial

coefficients. Hence the difference p∗n(x) = 1/(x − a)2 − yn(x) satisfies such a differen-
tial equation and a recurrence for its coefficients in the monomial expansion can be
computed. This transfer from differential to recurrence equation can be done entirely
automatically using symbolic computation. The framework for this are holonomic
functions, i.e., functions (discrete and/or continuous) satisfying systems of linear dif-
ference/differential relations with polynomial coefficients. Algorithms for executing the
transfer between differential equation for the function and recurrence relation for the
coefficients or for executing closure properties, e.g., given recurrences for two sequences
return the recurrence for the termwise sum of these sequences, have been implemented
in different computer algebra systems [8, 12]. Here we use Koutschan’s Mathematica
implementation [13] “HolonomicFunctions”1.

The algorithms implemented in HolonomicFunctions deal with difference/differential
equations in operator form over some appropriate algebra. For the underlying compu-
tations again Gröbner bases are involved, this time also in non-commutative rings. We
use this tool to derive a recurrence relation for the coefficients bk of the power series
expansion yn(x) =

∑
k≥0 bkx

k. After loading the package in the first step we translate

the given differential equation (19) into operator notation:

In[9]:= annY = ToOrePolynomial[ode, y[x]];

Then in the second step we pass from the differential equation of yn to the recur-
rence relation for the coefficients bk using the “DFiniteDE2RE” command (differential
equation to recurrence equation). The output is again in operator notation, but we
can use the “ApplyOreOperator” command to write it in traditional form.

In[10]:= annB = DFiniteDE2RE[annY, {x}, {k}];
In[11]:= recB = ApplyOreOperator[annB, b[k]];

Out[11]= {2(a− 1)a2(a+ 1)(k+ 7)(k+ 8){αβ(a−α)(a−β)(a6n− a5n(α+β) + a4(n(αβ− 1)− 2R)

+ a3(n+R)(α+ β)− a2nαβ + aR(α+ β)− 2Rαβ)b[k + 8]
. . .
− 2(a− 1)2(a+ 1)2n(a− α)2(a− β)2(k − n)(k + n)b[k]}

Here we omit the full output because of size and abbreviate the root expression
R =

√
(a2 − 1)(a− α)(a− β) for better readability. The resulting recurrence is of order

eight, because the polynomial coefficients of the given ordinary differential equation are
up to degree eight. The polynomial coefficients in the recurrence are of degree 2 in the
variable k each.

1available at http://www.risc.jku.at/research/combinat/software/
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The Taylor series expansion of 1/(x− a)2 around x0 = 0 is well known and thus we
have

yn(x) =
∑
k≥0

bkx
k =

1

(x− a)2
− p∗n(x) =

∑
k≥0

(k + 1)

(
1

a

)k+2

xk −
n∑
k=0

ckx
k.

In other words, bk = (k+ 1)a−k−2 for k > n, which is also reflected by the factor n− k
in the trailing coefficient of the recurrence above. Given a recurrence for the coefficients
of yn(x) and a recurrence for (k + 1)a−k−2 (that is easily calculated), by holonomic
closure properties a recurrence for the coefficients ck of the polynomial of best uniform
approximation can be computed:

In[12]:= annF = Annihilator[a−k−2(k + 1), {S[k]}]
Out[12]= {a(k + 1)Sk − (k + 2)}
In[13]:= annC = DFinitePlus[annB, annF];
In[14]:= Support[annC]

Out[14]= {{S8
k , S

7
k , S

6
k , S

5
k , S

4
k , S

3
k , S

2
k , Sk, 1}}

In[15]:= rec = ApplyOreOperator[annC, c[k]]

Out[15]= {−2a2(a2 − 1)αβ(k2 + 15k+ 56)(a−α)(a− β)(a6n− a5n(α+ β) + a4(n(αβ − 1)− 2R) +

a3(α+ β)(n+R)− αa2βn+ aR(α+ β)− 2αβR)c[k + 8]
. . .
+ 2(a2 − 1)2n(a− α)2(a− β)2(k2 − n2)c[k]}

As can be seen from the Mathematica output above, the resulting recurrence is also
of order eight, where we do not display the full output2 and reuse the abbreviation
R =

√
(a2 − 1)(a− α)(a− β). For the recursive evaluation of the coefficients we follow

the approach in [16]. First of all, we need the numerical values from the table of
the previous section in order to initialize the parameters α and β. The recurrence is
unwinded starting from the coefficient cn down to c0. As initial value first we normalize
cn = 1 and, since we know that p∗n(x) is polynomial, all cn+m for m = 1, . . . , 7 are set
to zero. In the second step the coefficients are adjusted to match Ln as the minimum
deviation. Using the precomputed values from the previous section, α, β and Ln can
be computed and using the recurrence relation we obtain the approximations

p̃∗7(x) = 0.0378802x7 + 0.056484x6 + 0.0243862x5 + 0.0569877x4

+ 0.13294x3 + 0.192055x2 + 0.249238x+ 0.249851,

and

p̃∗8(x) = 0.0227427x8 + 0.0345011x7 + 0.0110035x6 + 0.0303003x5 + 0.0854089x4

+ 0.129983x3 + 0.186372x2 + 0.249608x+ 0.250028,

for the polynomials of best uniform approximation for degree n = 7 and n = 8, respec-
tively, and a = 2. Figure 4 below displays the error functions of best approximation
in these cases. It is clearly visible that the approximation is a rather accurate one,
showing also the required number of alternation points, at least approximately.

2for the complete recurrence see the Mathematica notebook available for download at
http://www.risc.jku.at/people/vpillwei/Results.nb
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Figure 2. Error function for n = 7, 8 for the approximate polynomials p̃∗n(x)

In [16] also a recursive evaluation for the Zolotarev polynomials in Chebyshev ex-
pansion is given. We note that such a recurrence for the coefficients of yn(x) can be
obtained similarly entirely automatic using the results of Benoit and Salvy [4].
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