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A bound for the error term in the
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Abstract

The Brent-McMillan algorithm B3 (1980), when implemented with
binary splitting, is the fastest known algorithm for high-precision com-
putation of Euler’s constant. However, no rigorous error bound for the
algorithm has ever been published. We provide such a bound and justify
the empirical observations of Brent and McMillan. We also give bounds on
the error in the asymptotic expansions of functions related to the Bessel
functions I0(x) and K0(x) for positive real x.

1 Introduction

Brent and McMillan [3, 5] observed that Euler’s constant

γ = lim
n→∞

(Hn − ln(n)) ≈ 0.5772156649, Hn =

n∑

k=1

1

k
,

can be computed rapidly to high accuracy using the formula

γ =
S0(2n)−K0(2n)

I0(2n)
− ln(n) , (1)

where n > 0 is a free parameter (understood to be an integer), K0(x) and I0(x)
denote the usual Bessel functions, and

S0(x) =
∞∑

k=0

Hk

(k!)2

(x
2

)2k

.

The idea is to choose n optimally so that an asymptotic series can be used to
compute K0(2n), while S0(2n) and I0(2n) are computed using Taylor series.

When all series are evaluated using the binary splitting technique (see [4, §4.9]),
the first d digits of γ can be computed in essentially optimal time O(d1+ε).
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This approach has been used for all recent record calculations of γ, including
the current world record of 29,844,489,545 digits set by A. Yee and R. Chan in
2009 [9].

Brent andMcMillan gave three algorithms (B1, B2 and B3) to compute γ via (1).
The most efficient, B3, approximates K0(2n) using the asymptotic expansion

2xI0(x)K0(x) =

m/2−1∑

k=0

bk
x2k

+ Tm(x) , bk =
[(2k)!]3

(k!)482k
, (2)

where one should take m ≈ 4n. The expansion (2) appears as formula 9.7.5 in
Abramowitz and Stegun [1], and 10.40.6 in the Digital Library of Mathematical
Functions [7]. Unfortunately, neither work gives a proof or reference, and no
bound for the error term Tm(x) is provided. Brent and McMillan observed
empirically that T4n(2n) = O(e−4n), which would give a final error of O(e−8n)
for γ, but left this as a conjecture.

Brent [2] recently noted that the error term can be bounded rigorously, starting
from the individual asymptotic expansions of I0(x) and K0(x). However, he did
not present an explicit bound at that time. In this paper, we calculate an explicit
error bound, allowing the fastest version of the Brent-McMillan algorithm (B3)
to be used for provably correct evaluation of γ.

To bound the error in the Brent-McMillan algorithm we must bound the errors
in evaluating the transcendental functions I0(2n), K0(2n) and S0(2n) occurring
in (1) (we ignore the error in evaluating ln(n) since this is well-understood).
The most difficult task is to bound the error associated with K0(2n). For rea-
sons of efficiency, the algorithm approximates I0(2n)K0(2n) using the asymp-
totic expansion (2), and then the term K0(2n)/I0(2n) in (1) is computed from
I0(2n)K0(2n)/I0(2n)

2.

Sections 2–3 contain bounds on the size of various error terms that are needed
for the main result. For example, Lemma 1 bounds the error in the asymptotic
expansion for I0(x), which is nontrivial as the terms do not have alternating
signs.

The asymptotic expansion (2) can be obtained formally by multiplying the
asymptotic expansions (see (3)–(4) below) for K0 and I0. To obtain m terms in
the asymptotic expansion, we multiply the polynomials Pm(−1/z) and Pm(1/z)
occurring in (3)–(4), then discard half the terms (here z = 1/x is small when
x ≈ 2n is large, so we discard the terms involving high powers of z). To bound
the error, we show in Lemma 4 that the discarded terms are sufficiently small,
and also take into account the error terms Rm and Qm in the asymptotic ex-
pansions for K0 and I0.

The main result, Theorem 1, is given in Section 4. Provided the parameter N
(the number of terms used to approximate S0(2n) and I0(2n)) is sufficiently
large, the error is bounded by 24e−8n. Corollary 2 shows that it is sufficient to
take N ≈ 4.971n.
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2 Bounds for the individual Bessel functions

Asymptotic expansions for I0(x) and K0(x) are given by Olver [8, pp. 266–269]
and can be found in [7, §10.40]. They can be written as

K0(x) = e−x
( π

2x

)1/2

(Pm(−x) +Rm(x)) (3)

and

I0(x) =
ex

(2πx)1/2
(Pm(x) +Qm(x)) , (4)

where Rm(x) and Qm(x) denote error terms,

Pm(x) =

m−1∑

k=0

akx
−k, and ak =

[(2k)!]2

(k!)332k
. (5)

For n ≥ 1, √
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, (6)

so the coefficients ak in (5) satisfy

ak ≤ e2

π3/221/2
1

k1/2

(
k

2e

)k

<
1

k1/2

(
k

2e

)k

(7)

for k ≥ 1 (the first term is a0 = 1).

For x > 0, we also have the global bounds

0 < K0(x) < e−x
( π

2x

)1/2

(8)

and

I0(x) >
ex

(2πx)1/2
. (9)

Observe that the bound on K0(x) and equation (3) imply that

|Pm(−x) +Rm(x)| < 1. (10)

For x > 0, the series (3) for K0(x) is alternating, and the remainder satisfies

|Rm(x)| ≤ am
xm

<
1

m1/2

(m

2e

)m 1

xm
. (11)

The series (4) for I0(x) is not alternating. The following lemma bounds the
error Qm(x).

Lemma 1. Let Qm(x) be defined by (4). Then for m ≥ 1 and real x ≥ 2 we
have

|Qm(x)| ≤ 4
( m

2ex

)m

+ e−2x.
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Proof. The identity I0(x) = i(K0(−x)−K0(x))/π gives

Qm(x) = Rm(−x)− i

π

(2πx)1/2

ex
K0(x). (12)

According to Olver [8, p. 269],

|Rm(−x)| ≤ 2χ(m) exp(18πx
−1)amx−m, (13)

where

χ(m) = π1/2 Γ(m/2 + 1)

Γ(m/2 + 1/2)
≤ π

2
m1/2 (14)

(the bound on χ(m) follows as χ(m)/m1/2 is monotonic decreasing for m ≥ 1).

Since x ≥ 2, applying (7) gives

|Rm(−x)| ≤ πeπ/16
(m

2e

)m 1

xm
< 4

( m

2ex

)m

. (15)

Combined with the global bound (8) for K0(x), we obtain

|Qm(x)| ≤ |Rm(−x)|+ 1

π

(2πx)1/2

ex
K0(x) ≤ 4

( m

2ex

)m

+ e−2x. (16)

Corollary 1. For x ≥ 2, we have 0 < I0(x)K0(x) < 1/x.

Proof. The first inequality is obvious, since both I0(x) and K0(x) are positive.
Also, using (4) and (16) with m = 1 gives

I0(x) ≤
ex

(2πx)1/2
(1 + e−1 + e−4),

so from (8) we have

I0(x)K0(x) ≤
1 + e−1 + e−4

2x
<

1

x
.

Lemma 2. If Rm(x) and Qm(x) are defined by (3) and (4) respectively, then

|R4n(2n)| ≤
e−4n

2n1/2
and |Q4n(2n)| ≤ 5e−4n. (17)

Proof. Taking x = 2n and m = 4n, the inequality (11) gives the first inequality,
and Lemma 1 gives the second inequality.

We also need the following lemma.
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Lemma 3. If Pm(x) is defined by (5), then

|P4n(2n)| < 2 and |P4n(−2n)| < 1. (18)

Proof. Using (5) and (7), we have

P4n(2n) = 1 +

4n−1∑

k=1

ak
(2n)k

≤ 1 +

4n−1∑

k=1

k−1/2

(
k

4en

)k

≤ 1 +

4n−1∑

k=1

e−k <
e

e− 1
< 2.

The right inequality in (18) can be proved in a similar manner, taking the sign
alternations into account.

3 Bounds for the product

We wish to bound the error term Tm(x) in (2) when evaluated at x = 2n,
m = 4n. The result is given by the following lemma.

Lemma 4. If Tm(x) is defined by (2), then T4n(2n) < 7e−4n.

Proof. In terms of the expansions for I0(x) and K0(x), we have

2xI0(x)K0(x) = (Pm(−x) +Rm(x))(Pm(x) +Qm(x))

= Pm(x)Pm(−x) +

[(Pm(−x) +Rm(x))Qm(x) + Pm(x)Rm(x)] . (19)

It follows from (10), (17) and (18) that the expression [· · · ] in (19), evaluated
at x = 2n, m = 4n, is bounded in absolute value by

5e−4n + e−4n/n1/2 ≤ 6e−4n. (20)

Next, we rewrite

Pm(x)Pm(−x) =

m−1∑

i=0

m−1∑

j=0

(−1)iaiajx
−(i+j)

as L+ U , where

L =
m−1∑

k=0




k∑

j=0

(−1)jajak−j



x−k (21)

and

U =

2m−2∑

k=m




m−1∑

j=k−(m−1)

(−1)jajak−j


 x−k. (22)
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The “lower” sum L is precisely
∑m/2−1

k=0 bkx
−2k. Replacing k by 2k in (21) (as

the odd terms vanish by symmetry), we have to prove

2k∑

j=0

(−1)j [(2j)!]2[(4k − 2j)!]2

(j!)3[(2k − j)!]3322k
=

[(2k)!]3

(k!)482k
. (23)

This can be done algorithmically using the creative telescoping approach of Wilf
and Zeilberger. For example, the implementation in the Mathematica package
HolonomicFunctions by Koutschan [6] can be used. The command

a = ((2j)!)^2 / ((j!)^3 32^j);

CreativeTelescoping[(-1)^j a (a /. j -> 2k-j),

{S[j]-1}, S[k]]

outputs the recurrence equation

(8 + 8k)bk+1 −
(
1 + 6k + 12k2 + 8k3

)
bk = 0

matching the right-hand side of (23), together with a telescoping certificate.
Since the summand in (23) vanishes for j < 0 and j > 2k, no boundary condi-
tions enter into the telescoping relation, and checking the initial value (k = 0)
suffices to prove the identity.1

It remains to bound the “upper” sum U given by (22). The coefficients of

U =
∑2m−2

k=m ckx
−k can also be written as

ck =

2m−k−1∑

j=1

(−1)j+k+mak−m+jam−j. (24)

By symmetry, this sum is zero when k is odd, so we only need to consider the
case of k even. We first note that, if 1 ≤ i < j, then aiaj ≥ ai+1aj−1. This can
be seen by observing that the ratio satisfies

aiaj
ai+1aj−1

=
(i+ 1)(2j − 1)2

j(2i+ 1)2
≥ 1. (25)

Thus, after adding the duplicated terms, ck can be written as an alternating
sum in which the terms decrease in magnitude, e.g.

− 2a1a11 + 2a2a10 − . . .+ 2a5a7 − a6a6, (26)

and its absolute value can be bounded by that of the first term, 2a1+k−mam−1,
giving ∣∣∣∣∣

2m−2∑

k=m

ck
xk

∣∣∣∣∣ ≤
2m−2∑

k=m

tk, tk =
2a1+k−mam−1

xk
. (27)

1Curiously, the built-in Sum function in Mathematica 9.0.1 computes a closed form for the
sum (23), but returns an answer that is wrong by a factor 2 if the factor [(4k − 2j)!]2 in the
summand is input as [(2(2k − j))!]2.
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Evaluating at x = 2n,m = 4n as usual, the term ratio

tk+1

tk
=

(3 + 2k − 8n)2

16n(2 + k − 4n)
(28)

is bounded by 1 when 4n ≤ k ≤ 8n− 2. Therefore, using (7),

2m−2∑

k=m

tk ≤ (m− 1)tm ≤ e−4n (4n− 1)4n−1/2

28n−1n4n
< e−4n. (29)

Adding (20) and (29), we find that |T4n(2n)| < 7e−4n.

4 A complete error bound

We are now equipped to justify Algorithm B3. The algorithm computes an
approximation γ̃ to γ. Theorem 1 bounds the error |γ̃ − γ| in the algorithm,
excluding rounding errors and any error in the evaluation of lnn. The finite
sums S and I approximate S0(2n) and I0(2n) respectively, while T approximates
I0(2n)K0(2n).

Theorem 1. Given an integer n ≥ 1, let N ≥ 4n be an integer such that

2n2NHN

(N !)2
< ε0, (30)

where

ε0 =
e−6n

(4πn)1/2(1 +HN )
. (31)

Let

S =

N−1∑

k=0

Hkn
2k

(k!)2
, I =

N−1∑

k=0

n2k

(k!)2
, T =

1

4n

2n−1∑

k=0

[(2k)!]3

(k!)482k(2n)2k
,

and

γ̃ =
S

I
− T

I2
− lnn .

Then
|γ̃ − γ| < 24e−8n. (32)

Proof. Let

ε1 = S0(2n)− S =

∞∑

k=N

Hkn
2k

(k!)2
,

ε2 = I0(2n)− I =

∞∑

k=N

n2k

(k!)2
.
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Inspection of the term ratios for k ≥ N shows that ε1 and ε2 are bounded by
the left side of (30). Using (9) to bound 1/I0(2n), it follows that

∣∣∣∣
S + ε1
I + ε2

− S

I

∣∣∣∣ =
∣∣∣∣
ε1I − ε2S

(I + ε2)I

∣∣∣∣

≤ ε0(I + S)

(I + ε2)I

= ε0

(
1

I0(2n)

)(
1 +

S

I

)

<
e−6n

(4πn)1/2(1 +HN )

(
(4πn)1/2

e2n

)
(1 +HN )

= e−8n.

We have T + ε3 = I0(2n)K0(2n) where, from Lemma 4, |ε3| < 7e−4n/(4n).
Thus, from Corollary 1,

T ≤ 1

2n
+

7e−4n

4n
<

1

n
.

Therefore, using (9) again,
∣∣∣∣
T + ε3

(I + ε2)2
− T

I2

∣∣∣∣ =
∣∣∣∣
ε3I

2 − Tε2(2I + ε2)

(I + ε2)2I2

∣∣∣∣

≤ |ε3|
(I + ε2)2

+ Tε2
(2I + ε2)

(I + ε2)2I2

≤ |ε3|
I0(2n)2

+ Tε2
3

I0(2n)3

< 7πe−8n + e−8n

< 23e−8n.

Thus, the total error |γ̃ − γ| is bounded by e−8n + 23e−8n = 24e−8n.

Remark 1. We did not try to obtain the best possible constant in (32). A
more detailed analysis shows that we can reduce the constant 24 by a factor
greater than two if n is large. See also Remark 3.

Since the condition on N in Theorem 1 is rather complicated, we give the
following corollary.

Corollary 2. Let α ≈ 4.970625759544 be the unique positive real solution of
α(lnα − 1) = 3. If n ≥ 138 and N ≥ αn are integers, then the conclusion of
Theorem 1 holds.

Proof. For 138 ≤ n ≤ 214 we can verify by direct computation that condi-
tions (30)–(31) of Theorem 1 hold. Hence, in the following we assume that
n ≥ 215. Since N ≥ αn, this implies that N ≥ ⌈215α⌉ = 1069.

Let β = N/n. Then β ≥ α, so β(lnβ − 1) ≥ 3. Thus 2n(β lnβ − β − 3) ≥ 0.
Taking exponentials and using β = N/n, we obtain

N2N ≥ e2N+6nn2N . (33)

8



Define the real analytic function h(x) := lnx + γ + 1/(2x). The upper bound
HN ≤ h(N) follows from the Euler-Maclaurin expansion

HN − ln(N)− γ ∼ 1

2N
−

∞∑

k=1

B2k

2k
N−2k,

since the terms on the right-hand-side alternate in sign.

Using our assumption that N ≥ 1069, it is easy to verify that

√
παN ≥ 2h(N)(h(N) + 1). (34)

Since β ≥ α, it follows from (34) that

√
πβN ≥ 2h(N)(h(N) + 1). (35)

Substituting β = N/n in (35), it follows that

πN > 2h(N)(h(N) + 1)(πn)1/2. (36)

Using (33), this gives

πN2N+1 > 2n2Nh(N)(h(N) + 1)(πn)1/2e2N+6n. (37)

From the first inequality of (6) we have (N !)2 ≥ 2πN2N+1e−2N . Using this and
h(N) ≥ HN , we see that (37) implies

(N !)2 > 4n2NHN (1 +HN )(πn)1/2e6n. (38)

However, it is easy to see that (38) is equivalent to conditions (30)–(31) of
Theorem 1. Hence, the conclusion of Theorem 1 holds.

Remark 2. If 0 < n < 138 then Corollary 2 does not apply, but a numerical
computation shows that it is always sufficient to take N ≥ αn+ 1.

Remark 3. As indicated in Table 1, the bound in (32) is nearly optimal for
large n. Our bound 24e−8n appears to overestimate the true error by a factor
that grows slightly faster than order n1/2, which is inconsequential for high-
precision computation of γ.

n N |γ̃ − γ| 24e−8n

10 50 7.68 · 10−38 4.34 · 10−34

100 498 5.32 · 10−349 8.81 · 10−347

1000 4971 1.96 · 10−3476 1.06 · 10−3473

10000 49706 2.85 · 10−34746 6.64 · 10−34743

Table 1: The error |γ̃ − γ| compared to the bound (32).
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