A bound for the error term in the Brent-McMillan algorithm

Richard P. Brent * Fredrik Johansson ${ }^{\dagger}$

Abstract

The Brent-McMillan algorithm B3 (1980), when implemented with binary splitting, is the fastest known algorithm for high-precision computation of Euler's constant. However, no rigorous error bound for the algorithm has ever been published. We provide such a bound and justify the empirical observations of Brent and McMillan. We also give bounds on the error in the asymptotic expansions of functions related to the Bessel functions $I_{0}(x)$ and $K_{0}(x)$ for positive real x.

1 Introduction

Brent and McMillan [3, 5] observed that Euler's constant

$$
\gamma=\lim _{n \rightarrow \infty}\left(H_{n}-\ln (n)\right) \approx 0.5772156649, \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k},
$$

can be computed rapidly to high accuracy using the formula

$$
\begin{equation*}
\gamma=\frac{S_{0}(2 n)-K_{0}(2 n)}{I_{0}(2 n)}-\ln (n), \tag{1}
\end{equation*}
$$

where $n>0$ is a free parameter (understood to be an integer), $K_{0}(x)$ and $I_{0}(x)$ denote the usual Bessel functions, and

$$
S_{0}(x)=\sum_{k=0}^{\infty} \frac{H_{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}
$$

The idea is to choose n optimally so that an asymptotic series can be used to compute $K_{0}(2 n)$, while $S_{0}(2 n)$ and $I_{0}(2 n)$ are computed using Taylor series.

When all series are evaluated using the binary splitting technique (see [4, §4.9]), the first d digits of γ can be computed in essentially optimal time $O\left(d^{1+\varepsilon}\right)$.

[^0]This approach has been used for all recent record calculations of γ, including the current world record of $29,844,489,545$ digits set by A. Yee and R. Chan in 2009 [9].

Brent and McMillan gave three algorithms (B1, B2 and B3) to compute γ via (11). The most efficient, B3, approximates $K_{0}(2 n)$ using the asymptotic expansion

$$
\begin{equation*}
2 x I_{0}(x) K_{0}(x)=\sum_{k=0}^{m / 2-1} \frac{b_{k}}{x^{2 k}}+T_{m}(x), \quad b_{k}=\frac{[(2 k)!]^{3}}{(k!)^{4} 8^{2 k}} \tag{2}
\end{equation*}
$$

where one should take $m \approx 4 n$. The expansion (2) appears as formula 9.7.5 in Abramowitz and Stegun [1, and 10.40.6 in the Digital Library of Mathematical Functions [7. Unfortunately, neither work gives a proof or reference, and no bound for the error term $T_{m}(x)$ is provided. Brent and McMillan observed empirically that $T_{4 n}(2 n)=O\left(e^{-4 n}\right)$, which would give a final error of $O\left(e^{-8 n}\right)$ for γ, but left this as a conjecture.

Brent [2] recently noted that the error term can be bounded rigorously, starting from the individual asymptotic expansions of $I_{0}(x)$ and $K_{0}(x)$. However, he did not present an explicit bound at that time. In this paper, we calculate an explicit error bound, allowing the fastest version of the Brent-McMillan algorithm (B3) to be used for provably correct evaluation of γ.

To bound the error in the Brent-McMillan algorithm we must bound the errors in evaluating the transcendental functions $I_{0}(2 n), K_{0}(2 n)$ and $S_{0}(2 n)$ occurring in (11) (we ignore the error in evaluating $\ln (n)$ since this is well-understood). The most difficult task is to bound the error associated with $K_{0}(2 n)$. For reasons of efficiency, the algorithm approximates $I_{0}(2 n) K_{0}(2 n)$ using the asymptotic expansion (2), and then the term $K_{0}(2 n) / I_{0}(2 n)$ in (1) is computed from $I_{0}(2 n) K_{0}(2 n) / I_{0}(2 n)^{2}$.

Sections 23 contain bounds on the size of various error terms that are needed for the main result. For example, Lemma 1 bounds the error in the asymptotic expansion for $I_{0}(x)$, which is nontrivial as the terms do not have alternating signs.

The asymptotic expansion (2) can be obtained formally by multiplying the asymptotic expansions (see (3)-(41) below) for K_{0} and I_{0}. To obtain m terms in the asymptotic expansion, we multiply the polynomials $P_{m}(-1 / z)$ and $P_{m}(1 / z)$ occurring in (3)-(4), then discard half the terms (here $z=1 / x$ is small when $x \approx 2 n$ is large, so we discard the terms involving high powers of z). To bound the error, we show in Lemma 4 that the discarded terms are sufficiently small, and also take into account the error terms R_{m} and Q_{m} in the asymptotic expansions for K_{0} and I_{0}.
The main result, Theorem 1, is given in Section 4 Provided the parameter N (the number of terms used to approximate $S_{0}(2 n)$ and $I_{0}(2 n)$) is sufficiently large, the error is bounded by $24 e^{-8 n}$. Corollary 2 shows that it is sufficient to take $N \approx 4.971 n$.

2 Bounds for the individual Bessel functions

Asymptotic expansions for $I_{0}(x)$ and $K_{0}(x)$ are given by Olver [8, pp. 266-269] and can be found in [7, §10.40]. They can be written as

$$
\begin{equation*}
K_{0}(x)=e^{-x}\left(\frac{\pi}{2 x}\right)^{1 / 2}\left(P_{m}(-x)+R_{m}(x)\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{0}(x)=\frac{e^{x}}{(2 \pi x)^{1 / 2}}\left(P_{m}(x)+Q_{m}(x)\right), \tag{4}
\end{equation*}
$$

where $R_{m}(x)$ and $Q_{m}(x)$ denote error terms,

$$
\begin{equation*}
P_{m}(x)=\sum_{k=0}^{m-1} a_{k} x^{-k}, \text { and } a_{k}=\frac{[(2 k)!]^{2}}{(k!)^{3} 32^{k}} . \tag{5}
\end{equation*}
$$

For $n \geq 1$,

$$
\begin{equation*}
\sqrt{2 \pi} n^{n+1 / 2} e^{-n} \leq n!\leq e n^{n+1 / 2} e^{-n}, \tag{6}
\end{equation*}
$$

so the coefficients a_{k} in (5) satisfy

$$
\begin{equation*}
a_{k} \leq \frac{e^{2}}{\pi^{3 / 2} 2^{1 / 2}} \frac{1}{k^{1 / 2}}\left(\frac{k}{2 e}\right)^{k}<\frac{1}{k^{1 / 2}}\left(\frac{k}{2 e}\right)^{k} \tag{7}
\end{equation*}
$$

for $k \geq 1$ (the first term is $a_{0}=1$).
For $x>0$, we also have the global bounds

$$
\begin{equation*}
0<K_{0}(x)<e^{-x}\left(\frac{\pi}{2 x}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{0}(x)>\frac{e^{x}}{(2 \pi x)^{1 / 2}} . \tag{9}
\end{equation*}
$$

Observe that the bound on $K_{0}(x)$ and equation (3) imply that

$$
\begin{equation*}
\left|P_{m}(-x)+R_{m}(x)\right|<1 . \tag{10}
\end{equation*}
$$

For $x>0$, the series (3) for $K_{0}(x)$ is alternating, and the remainder satisfies

$$
\begin{equation*}
\left|R_{m}(x)\right| \leq \frac{a_{m}}{x^{m}}<\frac{1}{m^{1 / 2}}\left(\frac{m}{2 e}\right)^{m} \frac{1}{x^{m}} . \tag{11}
\end{equation*}
$$

The series (4) for $I_{0}(x)$ is not alternating. The following lemma bounds the error $Q_{m}(x)$.

Lemma 1. Let $Q_{m}(x)$ be defined by (4). Then for $m \geq 1$ and real $x \geq 2$ we have

$$
\left|Q_{m}(x)\right| \leq 4\left(\frac{m}{2 e x}\right)^{m}+e^{-2 x}
$$

Proof. The identity $I_{0}(x)=i\left(K_{0}(-x)-K_{0}(x)\right) / \pi$ gives

$$
\begin{equation*}
Q_{m}(x)=R_{m}(-x)-\frac{i}{\pi} \frac{(2 \pi x)^{1 / 2}}{e^{x}} K_{0}(x) . \tag{12}
\end{equation*}
$$

According to Olver [8, p. 269],

$$
\begin{equation*}
\left|R_{m}(-x)\right| \leq 2 \chi(m) \exp \left(\frac{1}{8} \pi x^{-1}\right) a_{m} x^{-m} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi(m)=\pi^{1 / 2} \frac{\Gamma(m / 2+1)}{\Gamma(m / 2+1 / 2)} \leq \frac{\pi}{2} m^{1 / 2} \tag{14}
\end{equation*}
$$

(the bound on $\chi(m)$ follows as $\chi(m) / m^{1 / 2}$ is monotonic decreasing for $m \geq 1$).
Since $x \geq 2$, applying (77) gives

$$
\begin{equation*}
\left|R_{m}(-x)\right| \leq \pi e^{\pi / 16}\left(\frac{m}{2 e}\right)^{m} \frac{1}{x^{m}}<4\left(\frac{m}{2 e x}\right)^{m} \tag{15}
\end{equation*}
$$

Combined with the global bound (8) for $K_{0}(x)$, we obtain

$$
\begin{equation*}
\left|Q_{m}(x)\right| \leq\left|R_{m}(-x)\right|+\frac{1}{\pi} \frac{(2 \pi x)^{1 / 2}}{e^{x}} K_{0}(x) \leq 4\left(\frac{m}{2 e x}\right)^{m}+e^{-2 x} \tag{16}
\end{equation*}
$$

Corollary 1. For $x \geq 2$, we have $0<I_{0}(x) K_{0}(x)<1 / x$.

Proof. The first inequality is obvious, since both $I_{0}(x)$ and $K_{0}(x)$ are positive. Also, using (4) and (16) with $m=1$ gives

$$
I_{0}(x) \leq \frac{e^{x}}{(2 \pi x)^{1 / 2}}\left(1+e^{-1}+e^{-4}\right)
$$

so from (8) we have

$$
I_{0}(x) K_{0}(x) \leq \frac{1+e^{-1}+e^{-4}}{2 x}<\frac{1}{x}
$$

Lemma 2. If $R_{m}(x)$ and $Q_{m}(x)$ are defined by (3) and (4) respectively, then

$$
\begin{equation*}
\left|R_{4 n}(2 n)\right| \leq \frac{e^{-4 n}}{2 n^{1 / 2}} \text { and }\left|Q_{4 n}(2 n)\right| \leq 5 e^{-4 n} \tag{17}
\end{equation*}
$$

Proof. Taking $x=2 n$ and $m=4 n$, the inequality (11) gives the first inequality, and Lemma 1 gives the second inequality.

We also need the following lemma.

Lemma 3. If $P_{m}(x)$ is defined by (5), then

$$
\begin{equation*}
\left|P_{4 n}(2 n)\right|<2 \text { and }\left|P_{4 n}(-2 n)\right|<1 \tag{18}
\end{equation*}
$$

Proof. Using (5) and (7), we have

$$
\begin{aligned}
P_{4 n}(2 n) & =1+\sum_{k=1}^{4 n-1} \frac{a_{k}}{(2 n)^{k}} \\
& \leq 1+\sum_{k=1}^{4 n-1} k^{-1 / 2}\left(\frac{k}{4 e n}\right)^{k} \\
& \leq 1+\sum_{k=1}^{4 n-1} e^{-k}<\frac{e}{e-1}<2 .
\end{aligned}
$$

The right inequality in (18) can be proved in a similar manner, taking the sign alternations into account.

3 Bounds for the product

We wish to bound the error term $T_{m}(x)$ in (2) when evaluated at $x=2 n$, $m=4 n$. The result is given by the following lemma.
Lemma 4. If $T_{m}(x)$ is defined by (2), then $T_{4 n}(2 n)<7 e^{-4 n}$.
Proof. In terms of the expansions for $I_{0}(x)$ and $K_{0}(x)$, we have

$$
\begin{align*}
2 x I_{0}(x) K_{0}(x)= & \left(P_{m}(-x)+R_{m}(x)\right)\left(P_{m}(x)+Q_{m}(x)\right) \\
= & P_{m}(x) P_{m}(-x)+ \\
& {\left[\left(P_{m}(-x)+R_{m}(x)\right) Q_{m}(x)+P_{m}(x) R_{m}(x)\right] } \tag{19}
\end{align*}
$$

It follows from (10), (17) and (18) that the expression $[\cdots]$ in (19), evaluated at $x=2 n, m=4 n$, is bounded in absolute value by

$$
\begin{equation*}
5 e^{-4 n}+e^{-4 n} / n^{1 / 2} \leq 6 e^{-4 n} \tag{20}
\end{equation*}
$$

Next, we rewrite

$$
P_{m}(x) P_{m}(-x)=\sum_{i=0}^{m-1} \sum_{j=0}^{m-1}(-1)^{i} a_{i} a_{j} x^{-(i+j)}
$$

as $L+U$, where

$$
\begin{equation*}
L=\sum_{k=0}^{m-1}\left(\sum_{j=0}^{k}(-1)^{j} a_{j} a_{k-j}\right) x^{-k} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
U=\sum_{k=m}^{2 m-2}\left(\sum_{j=k-(m-1)}^{m-1}(-1)^{j} a_{j} a_{k-j}\right) x^{-k} \tag{22}
\end{equation*}
$$

The "lower" sum L is precisely $\sum_{k=0}^{m / 2-1} b_{k} x^{-2 k}$. Replacing k by $2 k$ in (21) (as the odd terms vanish by symmetry), we have to prove

$$
\begin{equation*}
\sum_{j=0}^{2 k} \frac{(-1)^{j}[(2 j)!]^{2}[(4 k-2 j)!]^{2}}{(j!)^{3}[(2 k-j)!]^{3} 32^{2 k}}=\frac{[(2 k)!]^{3}}{(k!)^{4} 8^{2 k}} \tag{23}
\end{equation*}
$$

This can be done algorithmically using the creative telescoping approach of Wilf and Zeilberger. For example, the implementation in the Mathematica package HolonomicFunctions by Koutschan [6] can be used. The command

```
a = ((2j)!)^2 / ((j!)^3 32^j);
CreativeTelescoping[(-1)^j a (a /. j -> 2k-j),
    {S[j]-1}, S[k]]
```

outputs the recurrence equation

$$
(8+8 k) b_{k+1}-\left(1+6 k+12 k^{2}+8 k^{3}\right) b_{k}=0
$$

matching the right-hand side of (23), together with a telescoping certificate. Since the summand in (23) vanishes for $j<0$ and $j>2 k$, no boundary conditions enter into the telescoping relation, and checking the initial value ($k=0$) suffices to prove the identity 1

It remains to bound the "upper" sum U given by (22). The coefficients of $U=\sum_{k=m}^{2 m-2} c_{k} x^{-k}$ can also be written as

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{2 m-k-1}(-1)^{j+k+m} a_{k-m+j} a_{m-j} . \tag{24}
\end{equation*}
$$

By symmetry, this sum is zero when k is odd, so we only need to consider the case of k even. We first note that, if $1 \leq i<j$, then $a_{i} a_{j} \geq a_{i+1} a_{j-1}$. This can be seen by observing that the ratio satisfies

$$
\begin{equation*}
\frac{a_{i} a_{j}}{a_{i+1} a_{j-1}}=\frac{(i+1)(2 j-1)^{2}}{j(2 i+1)^{2}} \geq 1 . \tag{25}
\end{equation*}
$$

Thus, after adding the duplicated terms, c_{k} can be written as an alternating sum in which the terms decrease in magnitude, e.g.

$$
\begin{equation*}
-2 a_{1} a_{11}+2 a_{2} a_{10}-\ldots+2 a_{5} a_{7}-a_{6} a_{6} \tag{26}
\end{equation*}
$$

and its absolute value can be bounded by that of the first term, $2 a_{1+k-m} a_{m-1}$, giving

$$
\begin{equation*}
\left|\sum_{k=m}^{2 m-2} \frac{c_{k}}{x^{k}}\right| \leq \sum_{k=m}^{2 m-2} t_{k}, \quad t_{k}=\frac{2 a_{1+k-m} a_{m-1}}{x^{k}} . \tag{27}
\end{equation*}
$$

[^1]Evaluating at $x=2 n, m=4 n$ as usual, the term ratio

$$
\begin{equation*}
\frac{t_{k+1}}{t_{k}}=\frac{(3+2 k-8 n)^{2}}{16 n(2+k-4 n)} \tag{28}
\end{equation*}
$$

is bounded by 1 when $4 n \leq k \leq 8 n-2$. Therefore, using (7),

$$
\begin{equation*}
\sum_{k=m}^{2 m-2} t_{k} \leq(m-1) t_{m} \leq e^{-4 n} \frac{(4 n-1)^{4 n-1 / 2}}{2^{8 n-1} n^{4 n}}<e^{-4 n} \tag{29}
\end{equation*}
$$

Adding (20) and (29), we find that $\left|T_{4 n}(2 n)\right|<7 e^{-4 n}$.

4 A complete error bound

We are now equipped to justify Algorithm B3. The algorithm computes an approximation $\widetilde{\gamma}$ to γ. Theorem 1 bounds the error $|\widetilde{\gamma}-\gamma|$ in the algorithm, excluding rounding errors and any error in the evaluation of $\ln n$. The finite sums S and I approximate $S_{0}(2 n)$ and $I_{0}(2 n)$ respectively, while T approximates $I_{0}(2 n) K_{0}(2 n)$.

Theorem 1. Given an integer $n \geq 1$, let $N \geq 4 n$ be an integer such that

$$
\begin{equation*}
\frac{2 n^{2 N} H_{N}}{(N!)^{2}}<\varepsilon_{0} \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{0}=\frac{e^{-6 n}}{(4 \pi n)^{1 / 2}\left(1+H_{N}\right)} \tag{31}
\end{equation*}
$$

Let

$$
S=\sum_{k=0}^{N-1} \frac{H_{k} n^{2 k}}{(k!)^{2}}, \quad I=\sum_{k=0}^{N-1} \frac{n^{2 k}}{(k!)^{2}}, \quad T=\frac{1}{4 n} \sum_{k=0}^{2 n-1} \frac{[(2 k)!]^{3}}{(k!)^{4} 8^{2 k}(2 n)^{2 k}},
$$

and

$$
\widetilde{\gamma}=\frac{S}{I}-\frac{T}{I^{2}}-\ln n
$$

Then

$$
\begin{equation*}
|\widetilde{\gamma}-\gamma|<24 e^{-8 n} \tag{32}
\end{equation*}
$$

Proof. Let

$$
\begin{aligned}
& \varepsilon_{1}=S_{0}(2 n)-S \\
&=\sum_{k=N}^{\infty} \frac{H_{k} n^{2 k}}{(k!)^{2}} \\
& \varepsilon_{2}=I_{0}(2 n)-I=\sum_{k=N}^{\infty} \frac{n^{2 k}}{(k!)^{2}}
\end{aligned}
$$

Inspection of the term ratios for $k \geq N$ shows that ε_{1} and ε_{2} are bounded by the left side of (30). Using (9) to bound $1 / I_{0}(2 n)$, it follows that

$$
\begin{aligned}
\left|\frac{S+\varepsilon_{1}}{I+\varepsilon_{2}}-\frac{S}{I}\right| & =\left|\frac{\varepsilon_{1} I-\varepsilon_{2} S}{\left(I+\varepsilon_{2}\right) I}\right| \\
& \leq \frac{\varepsilon_{0}(I+S)}{\left(I+\varepsilon_{2}\right) I} \\
& =\varepsilon_{0}\left(\frac{1}{I_{0}(2 n)}\right)\left(1+\frac{S}{I}\right) \\
& <\frac{e^{-6 n}}{(4 \pi n)^{1 / 2}\left(1+H_{N}\right)}\left(\frac{(4 \pi n)^{1 / 2}}{e^{2 n}}\right)\left(1+H_{N}\right) \\
& =e^{-8 n} .
\end{aligned}
$$

We have $T+\varepsilon_{3}=I_{0}(2 n) K_{0}(2 n)$ where, from Lemma 4 $\left|\varepsilon_{3}\right|<7 e^{-4 n} /(4 n)$. Thus, from Corollary 1

$$
T \leq \frac{1}{2 n}+\frac{7 e^{-4 n}}{4 n}<\frac{1}{n}
$$

Therefore, using (9) again,

$$
\begin{aligned}
\left|\frac{T+\varepsilon_{3}}{\left(I+\varepsilon_{2}\right)^{2}}-\frac{T}{I^{2}}\right| & =\left|\frac{\varepsilon_{3} I^{2}-T \varepsilon_{2}\left(2 I+\varepsilon_{2}\right)}{\left(I+\varepsilon_{2}\right)^{2} I^{2}}\right| \\
& \leq \frac{\left|\varepsilon_{3}\right|}{\left(I+\varepsilon_{2}\right)^{2}}+T \varepsilon_{2} \frac{\left(2 I+\varepsilon_{2}\right)}{\left(I+\varepsilon_{2}\right)^{2} I^{2}} \\
& \leq \frac{\left|\varepsilon_{3}\right|}{I_{0}(2 n)^{2}}+T \varepsilon_{2} \frac{3}{I_{0}(2 n)^{3}} \\
& <7 \pi e^{-8 n}+e^{-8 n} \\
& <23 e^{-8 n} .
\end{aligned}
$$

Thus, the total error $|\widetilde{\gamma}-\gamma|$ is bounded by $e^{-8 n}+23 e^{-8 n}=24 e^{-8 n}$.
Remark 1. We did not try to obtain the best possible constant in (32). A more detailed analysis shows that we can reduce the constant 24 by a factor greater than two if n is large. See also Remark 3,

Since the condition on N in Theorem is rather complicated, we give the following corollary.
Corollary 2. Let $\alpha \approx 4.970625759544$ be the unique positive real solution of $\alpha(\ln \alpha-1)=3$. If $n \geq 138$ and $N \geq \alpha n$ are integers, then the conclusion of Theorem 1 holds.

Proof. For $138 \leq n \leq 214$ we can verify by direct computation that conditions (30)-(31) of Theorem 1 hold. Hence, in the following we assume that $n \geq 215$. Since $N \geq \alpha n$, this implies that $N \geq\lceil 215 \alpha\rceil=1069$.
Let $\beta=N / n$. Then $\beta \geq \alpha$, so $\beta(\ln \beta-1) \geq 3$. Thus $2 n(\beta \ln \beta-\beta-3) \geq 0$.
Taking exponentials and using $\beta=N / n$, we obtain

$$
\begin{equation*}
N^{2 N} \geq e^{2 N+6 n} n^{2 N} \tag{33}
\end{equation*}
$$

Define the real analytic function $h(x):=\ln x+\gamma+1 /(2 x)$. The upper bound $H_{N} \leq h(N)$ follows from the Euler-Maclaurin expansion

$$
H_{N}-\ln (N)-\gamma \sim \frac{1}{2 N}-\sum_{k=1}^{\infty} \frac{B_{2 k}}{2 k} N^{-2 k}
$$

since the terms on the right-hand-side alternate in sign.
Using our assumption that $N \geq 1069$, it is easy to verify that

$$
\begin{equation*}
\sqrt{\pi \alpha N} \geq 2 h(N)(h(N)+1) \tag{34}
\end{equation*}
$$

Since $\beta \geq \alpha$, it follows from (34) that

$$
\begin{equation*}
\sqrt{\pi \beta N} \geq 2 h(N)(h(N)+1) \tag{35}
\end{equation*}
$$

Substituting $\beta=N / n$ in (35), it follows that

$$
\begin{equation*}
\pi N>2 h(N)(h(N)+1)(\pi n)^{1 / 2} \tag{36}
\end{equation*}
$$

Using (33), this gives

$$
\begin{equation*}
\pi N^{2 N+1}>2 n^{2 N} h(N)(h(N)+1)(\pi n)^{1 / 2} e^{2 N+6 n} \tag{37}
\end{equation*}
$$

From the first inequality of (6) we have $(N!)^{2} \geq 2 \pi N^{2 N+1} e^{-2 N}$. Using this and $h(N) \geq H_{N}$, we see that (37) implies

$$
\begin{equation*}
(N!)^{2}>4 n^{2 N} H_{N}\left(1+H_{N}\right)(\pi n)^{1 / 2} e^{6 n} \tag{38}
\end{equation*}
$$

However, it is easy to see that (38) is equivalent to conditions (30) (31) of Theorem 1 Hence, the conclusion of Theorem 1 holds.

Remark 2. If $0<n<138$ then Corollary 2 does not apply, but a numerical computation shows that it is always sufficient to take $N \geq \alpha n+1$.

Remark 3. As indicated in Table 11 the bound in (32) is nearly optimal for large n. Our bound $24 e^{-8 n}$ appears to overestimate the true error by a factor that grows slightly faster than order $n^{1 / 2}$, which is inconsequential for highprecision computation of γ.

n	N	$\|\widetilde{\gamma}-\gamma\|$	$24 e^{-8 n}$
10	50	$7.68 \cdot 10^{-38}$	$4.34 \cdot 10^{-34}$
100	498	$5.32 \cdot 10^{-349}$	$8.81 \cdot 10^{-347}$
1000	4971	$1.96 \cdot 10^{-3476}$	$1.06 \cdot 10^{-3473}$
10000	49706	$2.85 \cdot 10^{-34746}$	$6.64 \cdot 10^{-34743}$

Table 1: The error $|\widetilde{\gamma}-\gamma|$ compared to the bound (32).

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York, 1964. http://www.math.sfu.ca/~cbm/aands/.
[2] R. P. Brent. Ramanujan and Euler's Constant. Presented at the CARMA Workshop on Exploratory Experimentation and Computation in Number Theory, Newcastle, Australia, July 2010. http://maths-people.anu.edu. au/~brent/pd/Euler_CARMA_10.pdf.
[3] R. P. Brent and E. M. McMillan. Some new algorithms for high-precision computation of Euler's constant. Mathematics of Computation, 34(149):305312, 1980.
[4] R. P. Brent and P. Zimmermann. Modern Computer Arithmetic. Cambridge University Press, Cambridge, 2010.
[5] J. D. Jackson and W. K. H. Panofsky. Edwin Mattison McMillan 1907-1991. Biographical Memoirs Nat. Acad. Sci. (USA), 69:213-237, 1996.
[6] C. Koutschan. HolonomicFunctions (User's Guide). Technical Report 10-01, RISC Report Series, University of Linz, Austria, 2010.
[7] National Institute of Standards and Technology. Digital Library of Mathematical Functions. http://dlmf.nist.gov/, 2013.
[8] F. W. J. Olver. Asymptotics and Special Functions. A K Peters, Wellesley, MA, 1997.
[9] A. J. Yee. Euler-Mascheroni Constant. http://www.numberworld.org/ digits/EulerGamma/, 2011.

[^0]: *Mathematical Sciences Institute, Australian National University, Canberra, Australia [gamma@rpbrent.com]; supported by Australian Research Council grant DP140101417.
 ${ }^{\dagger}$ RISC, Johannes Kepler University, 4040 Linz, Austria [fredrik.johansson@risc.jku.at]; supported by the Austrian Science Fund (FWF) grant Y464-N18.

[^1]: ${ }^{1}$ Curiously, the built-in Sum function in Mathematica 9.0.1 computes a closed form for the sum (23), but returns an answer that is wrong by a factor 2 if the factor $[(4 k-2 j)!]^{2}$ in the summand is input as $[(2(2 k-j))!]^{2}$.

