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Abstract

Ore algebras are an algebraic structure used to model many different kinds
of functional equations like differential and recurrence equations. The el-
ements of an Ore algebra are polynomials for which the multiplication is
defined to be usually non-commutative. As a consequence, Gaufy’ lemma
does not hold in many Ore polynomial rings and hence the product of two
primitive Ore polynomials is not necessarily primitive. This observation
leads to the distinction of non-removable and removable factors and to the
study of desingularizing operators.

Desingularization is the problem of finding a left multiple of a given
Ore operator in which some factor of the leading coefficient of the original
operator is removed. We derive a normal form for such left factors and
unify known results for differential and shift operators into one desingu-
larization algorithm. Furthermore, we analyze the effect of removable and
non-removable factors on computations with Ore operators.

The set of operators of an Ore algebra that give zero when applied to
a given function forms a left ideal. The cost of computing an element of
this ideal depends on the size of the coefficients (the degree) and the order
of the operator. In order to be able to predict or reduce these costs, we
derive an order-degree curve. For a given Ore operator, this is a curve in
the (r,d)-plane such that for all points (r,d) above this curve, there exists
a left multiple of order r and degree d of the given operator. We show how
desingularization yields order-degree curves which are extremely accurate
in examples. When computed for the generator of an operator ideal from
applications like physics or combinatorics, the resulting bound is usually
sharp.

The generator of a left ideal in an Ore polynomial ring is the greatest
common right divisor of the ideal elements, which can be computed by the
Euclidean algorithm. Polynomial remainder sequences contain the interme-
diate results of the Euclidean algorithm when applied to (non-)commutative
polynomials. The running time of the algorithm is dependent on the size of
the coefficients of the remainders. Different methods have been studied to
make these as small as possible. The subresultant sequence of two polyno-
mials is a polynomial remainder sequence in which the size of the coefficients
is optimal in the generic case, but when taking the input from applications,



the coefficients are often larger than necessary. We generalize two improve-
ments of the subresultant sequence to Ore polynomials, in which we show
that the non-removable factors of the greatest common right divisor appear
as content. Based on this result we show how to divide out this content
during the Euclidean algorithm and derive a new bound for the minimal
coefficient size of the remainders. Our approach also yields a new proof for
the results in the commutative case, providing a new point of view on the
origin of the extraneous factors of the coefficients.
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Zusammenfassung

Bei Ore-Algebren handelt es sich um eine algebraische Struktur zur Model-
lierung von vielen verschiedenen Arten von Funktionalgleichungen wie etwa
Differential- und Rekurrenzgleichungen. Die Elemente einer Ore-Algebra
sind Polynome fir welche die Multiplikation derart definiert ist, dass das
Kommutativgesetz iiblicherweise nicht gilt. Als Folge dessen besitzt auch
Gaufl’ Lemma in vielen Ore-Polynomringen keine Giiltigkeit, so dass das
Produkt zweier primitiver Ore-Polynome nicht notwendigerweise primitiv
ist. Diese Beobachtung fithrt zu der Unterscheidung von entfernbaren und
nicht-entfernbaren Faktoren und dem Studium desingularisierender Opera-
toren.

Als Desingularisierung bezeichnet man das Problem, ein Linksvielfaches
eines gegebenen Ore-Operators zu finden, bei dem ein Faktor des fithren-
den Koeflizienten des Ausgangsoperators entfernt wurde. Neben der Her-
leitung einer Normalform fiir solche Linksfaktoren vereinen wir auch be-
kannte Ergebnisse fiir Differential- und Shiftoperatoren in einem Desingu-
larisierungsalgorithmus. Danach wenden wir uns den Auswirkungen zu,
die entfernbare und nicht-entfernbare Faktoren bei Rechnungen mit Ore-
Operatoren haben konnen.

Die Menge von Operatoren einer Ore-Algebra, die, angewandt auf eine
gegebene Funktion, Null ergeben, bilden ein Linksideal. Die Kosten zur
Berechnung eines Elements in diesem Ideal hangen von der Grofie der Koef-
fizienten (dem Grad) sowie der Ordnung des Operators ab. Um diese Kosten
vorhersagen oder reduzieren zu kénnen, bestimmen wir eine Ordnungs-Grad-
Kurve. Fiir einen gegebenen Operator ist dies eine Kurve in der (7, d)-Ebene,
so dass die Existenz eines Linksvielfachen von Ordnung r und Grad d fiir
alle Paare (r, d) oberhalb der Kurve garantiert ist. Wir zeigen, wie das Prob-
lem der Desingularisierung zur Bestimmung von Ordnungs-Grad-Kurven
herangezogen werden kann, welche in vielen Beispielen von herausragen-
der Genauigkeit sind. Fiir erzeugende Elemente von Idealen aus Anwen-
dungsfillen, wie etwa der Physik oder der Kombinatorik, ist die Schranke
in aller Regel scharf.

Das erzeugende Element eines Linksideals in einem Ore-Polynomring
ist der grofite gemeinsame Rechtsteiler der Idealelemente und kann mithilfe
des Euklidischen Algorithmus berechnet werden. Polynomielle Restefolgen
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enthalten die Zwischenergebnisse, die bei der Anwendung des Euklidischen
Algorithmus auf (nicht-)kommutative Polynome auftreten. Die Laufzeit des
Algorithmus ist von der Grofle der Koeffizienten der Reste abhéngig. Es wur-
den verschiedene Wege untersucht, um diese so klein wie moglich zu halten.
Die Subresultantenfolge zweier Polynome ist eine polynomielle Restefolge,
in der die Grofle der Koeffizienten im generischen Fall optimal, bei Berech-
nungen in Anwendungen jedoch oft gréfler als notwendig ist. Wir verall-
gemeinern zwei Optimierungen der Subresultantenfolge auf Ore-Polynome
und zeigen, in welcher Weise die nicht-entfernbaren Faktoren des grofiten
gemeinsamen Rechtsteilers als Inhalt der Reste auftreten. Basierend auf
diesem Resultat beschreiben wir, wie dieser Inhalt wahrend der Ausfiihrung
des Euklidischen Algorithmus entfernt werden kann und wir geben aufler-
dem eine neue Schranke fiir die minimale Koeffizientengrofie der Reste an.
Unser Ansatz fiihrt uns auch zu einem neuen Beweis im kommutativen Fall
und erlaubt uns so neue Einsichten beziiglich des Ursprungs der irrelevanten
Faktoren der Restekoeffizienten.
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Chapter 1

Introduction

In combinatorics, a problem which one might face frequently is the following:
assume we are given a combinatorial description of a number sequence. This
description might be something in the vein of

e Given a stepset in N? and an n € N, how many paths of length n are
there that do not leave the octant N3?

e Given an algorithm and an input of size n, how many elementary
operations are performed during the execution of the algorithm?

Most often, the answer to such questions can be given in form of a holonomic
function. In the univariate case, with which we are concerned in this thesis,
an object is called holonomic if it satisfies a linear functional equation with
polynomial coefficients, for instance a recurrence relation or a differential
equation. This class of objects contains many functions and sequences that
arise from a diverse range of applications. The Gaussian hypergeometric
function, the error function, the gamma function, trigonometric functions,
exp and log are only some of the prime examples. Salvy [45] estimated that
around 65% of the entries in Abramowitz/Stegun [4] as well as some 25%
of the entries in Sloane’s Online Encyclopedia of Integer Sequences [419] are
holonomic.

Holonomic functions proved themselves particularly useful in the area
of computer algebra which deals with special functions and combinatorial
sequences. The algebraic properties satisfied by the class of holonomic func-
tions allow the design of a number of algorithms that solve many problems
related to this class. In [50], Stanley shows that the class of holonomic ob-
jects is closed under several operations, including addition and multiplica-
tion, by giving constructive proofs. In the multivariate setting, holonomy is
also preserved under definite summation and integration, which was proven
by Zeilberger in [57], where he also gives algorithms to execute those opera-
tions. These and other algorithms for holonomic functions lead to solutions
of difficult problems in many scientific contexts, e.g. [36, 11, 7]. Among



others, such problems include the analysis of the asymptotic behavior of
holonomic sequences [55], proving holonomic function identities [46, 19, 20],
solving definite summation and integration problems [54, 56, 18, 34] and
finding solutions to linear functional equations [44, 48].

To handle holonomic objects algorithmically, one needs to be able to
represent them with a finite amount of data. Such a representation is given
by Ore operators, elements of non-commutative polynomial rings called Ore
algebras (formal definitions will be given later in Chapter 3). Under suit-
able circumstances, a holonomic object is uniquely determined by a single
(non-zero) operator that maps it to zero, plus a certain finite number of
initial values. The converse, however, does not hold. For a given holonomic
object, there are infinitely many Ore operators in a fixed Ore algebra, called
annihilating operators, that map the object to zero.

Depending on the particular computational problem at hand, certain
operators may be better than others. Often, the best choice is an operator
of minimal possible order, because any higher order operator would only
slow down the calculation.

Sequences that are represented by a linear recurrence with polynomial
coefficients are asymptotically equivalent to linear combinations of a certain
generalized series which can be obtained from the recurrence. This means
that in order to get useful information about the asymptotic behavior of a
sequence, a promising approach is to look at these generalized series obtained
from a least order operator. Operators of higher orders usually contain
additional useless series that make this task much more difficult. [23]

Differential operators can be used to prove that two functions are equal.
Equality holds if both functions satisfy the same differential equation and
share the same initial values. The number of initial values that have to
be checked depends on the order of the differential equation, so for lower
order differential equations, fewer initial values have to be computed. As an
example, one might try to prove

| s = ra,

for given complex functions f(z,t) and F(z). If these functions are of a
particular kind, one can compute a differential equation for the left hand
side by using the method of creative telescoping introduced by Zeilberger
in [5]. Such a differential equation might be of order 3 and if F'(z) is also
a solution of this differential equation, it has to be shown that the first
three initial values agree to prove the identity. If there exists a second order
differential equation for both sides of the equation, only two initial values
have to be computed, which might be considerably easier.

On the other hand, if the output of some algorithm is an Ore operator,
it is sometimes possible to gain speed by computing not the minimal order
operator but one with slightly higher order and polynomial coefficients of



much smaller degree. Such improvements recently been reported for several
different contexts [9, 10, 16, 17].

Deriving and proving a recurrence for a given sequence from its combi-
natorial description can be a difficult task. Instead, one can try to guess a
recurrence operator for the sequence [29]. Given finitely many terms of a
holonomic sequence, one can set up a linear system for the undetermined
coefficients of a recurrence operator that should give zero when applied to
the terms and try to find a non-zero solution to it. The degrees of freedom
one has in this process are choosing the order of the recurrence and the de-
gree of its polynomial coefficients. These cannot be chosen to be arbitrarily
high, but the number of known terms of the sequence limits the size of the
product orderxdegree. If one wants to find a least order operator by this
method, the number of equations in the linear system can be considerably
high and providing the necessary amount of data might not be possible, or
at least not feasible. Consider for example data from a combinatorial prob-
lem where the only known method to compute new data is of exponential
complexity. Or an integer sequence from a computation in physics where
there is enough data available, but the resulting linear system is too big to
be solvable in a justifiable amount of time.

The need for lowest order as well as higher order operators shows the
importance of the ability to convert a minimal order description into a non-
minimal order description of lower degree, and vice versa. These shall be
the two main problems we address in this thesis.

We start in Chapter 2 by recalling basic facts and definitions from (non-)
commutative algebra. After that, we give the definition of Ore Algebras in
Chapter 3. These non-commutative polynomial rings can not only be used to
model recurrences and differential equations, but also many other functional
equations. We will see how Ore operators act on a given set of functions
and how to compute intersections and sums of solutions spaces of different
operators. Two particular Ore algebras will be discussed in more detail
— the ring of linear recurrence equations and the ring of linear differential
equations with polynomial coefficients. [42, 12, 27, 32]

As an effect of the non-commutative multiplication, some statements
that hold for commutative polynomials do not carry over to Ore polynomi-
als. The fact that Gauf}’ lemma does not hold for Ore polynomials, i.e. that
the product of two primitive Ore polynomials can be non-primitive, leads us
to the problem of desingularization, which we treat in Chapter 4. Desingu-
larization is the process of removing some factors of the leading coefficient
of a given operator, called removable singularities, by multiplying it with
another operator from the left. We study which factors qualify as remov-
able, what a left factor needed to remove a singularity looks like, and how
to construct it algorithmically. The basic algorithm will be stated for gen-
eral Ore algebras, but two bounds that are required as input will be derived
specifically for shift operators and differential operators. [3, 1, 52, 15]



We will use this knowledge to deal with the two problems mentioned
above. In Chapter 5, we show how we can use desingularization to derive
order-degree bounds for left operator ideals. These bounds will allow us to
identify order-degree pairs for which we can expect an annihilating opera-
tor for a given holonomic object and it will also show why increasing the
order of an operator might be helpful to speed up certain computations.
In several examples we will see that the bounds are extremely accurate in
applications. [15]

Finally, in Chapter 6, we aim to optimize the computation of the greatest
common right divisor of two Ore polynomials with the Euclidean algorithm.
The running time of the algorithm depends on the size of the coefficients
of the intermediate results. If these are not primitive, the computation is
slowed down by the unnecessary content. For commutative polynomials as
well as for non-commutative operators, different methods have been exten-
sively studied to find factors of the content in the sequence of remainders
without computing the GCD of the coefficients of each element of the se-
quence [13, 14, 22, 41, 40]. Most notably in this respect are subresultant
sequences, where the growth of the coefficients can be reduced from expo-
nential to linear in the number of reduction steps in the Euclidean algorithm.
When taking as input operators coming from applications like combinatorics
or physics, the remainders in the subresultant sequence still have non-trivial
content in many cases. We generalize two known improvements to Ore poly-
nomials and we show that the non-removable singularities of the greatest
common right divisor of the input is responsible for the extra content. [28]



Chapter 2

Preliminaries

This chapter is a recapitulation of basic concepts that will be used through-
out the thesis. These topics are well known and, concerning commuta-
tive domains, covered in almost any (computer-)algebra textbook like [24]
or [53]. For this reason we mostly refrain from giving proofs of the state-
ments presented here. An introduction to non-commutative rings can be
found in [37, 21].

2.1 Domains

Let D be a computable domain, i.e. a not necessarily commutative com-
putable ring with an identity element and without zero divisors. A domain
is called principal left (right) ideal domain, if every left (right) ideal is gen-
erated by a single element. Such a domain is called principal ideal domain
if it is commutative. For a,b € D, we say a divides b on the right and write
a |, b if there is a ¢ € D such that b = ca. Analogously, a divides b on the
left (a]; b) if b = ac and a divides b (a | b) if a |, b and D is commutative.
In this section, we allow ourselves to drop the adjectives ‘left’ and ‘right’
outside of formal definitions and theorems, only assuming commutativity if
explicitly stated. A generator of an ideal in a principal ideal domain is given
by the greatest common divisor of the ideal elements:

Definition 2.1.1. Let D be a domain and a,b € D. A greatest common
right divisor (GCRD) for a and b is an element g € D such that

1. g|raandgl b.
2. If condition 1. holds for some other ¢’ € D, then ¢’ |, g.

Greatest common left divisors (GCLDs) and — if D is commutative — greatest
common divisors (GCDs) are defined analogously.

Two elements a,b € D are called left associates if there exists a unit
u € D such that ¢ = wb. This is an equivalence relation and if we fix



a set of representatives of the equivalence classes, then an element of D
is called wunit normal (with respect to left associates) if it is equal to the
representative of its equivalence class. The unique unit normal (w.r.t. left
associates) greatest common right divisor gerd(a,b) of a,b € D is called
the greatest common right divisor of ¢ and b and we define the greatest
common left divisor gcld(a,b) (unit normal w.r.t. right associates) as well
as the greatest common divisor ged(a,b) (unit normal w.r.t. associates) in
commutative domains accordingly. Two elements of a commutative domain
are called coprime if their GCD is a unit.

Example 2.1.2. In Z, one usually defines the unit normal elements to be
the non-negative integers. A greatest common divisor of —12 and 18 is —6,
but the unit normal GCD is 6.

While two elements always have a greatest common (left or right) divisor
in a principal (left or right) ideal domain, we might not necessarily be able to
compute it. An algorithm for GCD computation is available, if the domain
is such that we can perform division with remainder:

Definition 2.1.3. A domain E is called a left Fuclidean domain if there
exists a function deg : E \ {0} — N, called degree function, such that

1. For all a,b € £\ {0}: deg(ab) > deg(a).
2. For all a,b € E with b # 0 there exist ¢, € [E such that
a=gb+r, with deg(r) < deg(b) or r =0. (2.1.1)

We call g the left quotient lquo(a,b) of a and b and r their left remainder
Irem(a, b). In the commutative case we say quotient quo(a,b) and remainder
rem(a, b) respectively and for right Euclidean domains, (2.1.1) is changed to
a = bq + r and q is the right quotient rquo(a,b) and r the right remainder
rrem(a, b).

As indicated by the use of the definite article in Definition 2.1.3, quotients
and remainders are uniquely determined by a and b. We always assume that
lquo(a, b), rrem(a, b) etc. are computable.

The Euclidean algorithm (Algorithm 2.1.1) takes two elements of a Eu-
clidean domain as input and computes an associate of their GCD by iterated
division with remainder. It relies on the fact that in a Euclidean domain
any common divisor of two elements is also a divisor of their remainder.

A very useful representation of the GCD of two elements a, b of a prin-
cipal ideal domain is given by a linear combination of @ and b. Let P be a
principal left ideal domain. For any a,b € [P there exist s,t € IP such that

sa + tb = gerd(a, b). (2.1.2)



Algorithm 2.1.1: Euclidean algorithm (left division)
Input: a,b, elements of a left Euclidean domain.
Output: g such that g = u - gerd(a,b) for a unit w.
(ro,r1) < (a,b)

11

WHILE 7; # 0:
rit1 < lrem(ri_1,7;)
1 1+1

RETURN Ti—1

The elements s and t are called Bézout coefficients of a and b and are
not necessarily unique (see Sections 6.1 and 6.2). For principal right ideal
domains, (2.1.2) changes to:

as + bt = geld(a, b).

In Euclidean domains, a pair of Bézout coefficients can be computed by the
extended Euclidean algorithm (EEA, Algorithm 2.1.2).

Algorithm 2.1.2: Extended Euclidean algorithm (left div.)
Input: a,b, elements of a left Euclidean domain.
Output: g, s,t such that g = u - gerd(a, b) for a unit v and

g = sa + tb.

(ro,m1) + (a,b)

(80, to, 51, tl) — (1, 0,0, 1)

11

WHILE r; # 0:
(rig1, i) < (Irem(ri—1,r;),lquo(ri—1,7;))
(Sit1,tiv1) < (Si—1 — @isi tim1 — qit;)
11+ 1

RETURN (Ti—17 Si—1, ti—l)

Every (left or right) Euclidean domain is a principal (left or right) ideal
domain. In the commutative case, elements of a Euclidean domain have
a unique prime decomposition: An element p of a commutative domain U
is called prime if it is a non-zero non-unit and whenever p divides ab for
some a,b € U, then either a or b is divisible by p. An element p of a
(commutative) domain that can be written as p = ab if only if a or b is
a unit is called irreducible. Every prime element is also irreducible but
not necessarily vice versa. U is a unique factorization domain if all non-zero
non-units can be expressed as a finite product of prime elements uniquely up
to order and associates. Every commutative Euclidean domain is a unique
factorization domain. We will see in Chapter 3 that this is not true in the
non-commutative setting.



In principal (left or right) ideal domains, also the existence of least com-
mon (left or right) multiples is guaranteed:

Definition 2.1.4. Let D be a domain and a,b € D. A least common left
multiple (LCLM) for a and b is an element m € D such that

1. a|, mandb|, m.
2. If condition 1. holds for some other m’ € D, then m |, m/.

The unique unit normal (w.r.t. left associates) least common left multi-
ple lclm(a, b) of a,b is called the least common left multiple of a and b.
Least common right multiples (LCRMSs) and least common multiples (LCMs)
for commutative domains as well as their unique unit normal associates
lerm(a, b) and lem(a, b) are defined analogously.

The LCLM of two elements of a left Euclidean domain [E can be com-
puted by the extended Euclidean algorithm. When applied to a,b € [E, the
last iteration of the while loop in Algorithm 2.1.2 will give nonzero s,t € &
such that

sa+tb =0,

and thus m := sa is a common left multiple of @ and b. It can be shown
that m is a least common left multiple of a and b (see [12]).

For n € N and a domain ID with Z C D, the nth falling factorial
of a € D is o := H?:_Ol(a — i) and analogously, the rising factorial is

a" =[5 (a+1).

2.2 Commutative Polynomials

The ring of polynomials in y over a commutative domain D is denoted
by D[y] and we refer to the leading coefficient of a polynomial p € D[y]
as lc(p), to the trailing coefficient of p as tc(p), to the ith coefficient of p
as [y']p and to i € N with [y']p = lc(p) as the degree deg(p) of p (with
deg(0) := —o0). Note that lc(p) # 0 and tc(p) # 0 for all p # 0. If D is a
unique factorization domain, then so is D[y] and if D is a field, then D[y]
is a Euclidean domain. In the latter case, division with remainder can be
done algorithmically: Let a,b € D[y] with deg(a) > deg(b) > 0 and let
d := deg(a) — deg(b). We set

ag = a,
le(ay)

i = ——— 2.2.1
dd—i le(yd=tb)’ for 0 <i <d. ( )

Ai+1 = a; — qq—ib,



Then with ¢ := qqy® + qa_1y* ' + - - + qo and 7 := a — gb we have deg(r) <
deg(b) or r = 0 by construction.

When given the notion of unit normal elements in the ground domain,
we can define unit normal elements in polynomial rings in a straightforward
fashion. If D is not a fraction field, a polynomial in D[y] is called unit
normal if its leading coefficient is unit normal. In the case that K is a
fraction field of some fixed domain D, a polynomial in K[y] is unit normal if
its coefficients are fraction free and coprime in D and its leading coefficient
is unit normal in D.

Example 2.2.1. (Example 2.1.2 cont.) If we define unit normal integers
like in Example 2.1.2, then 3y? — 8y + 1 € Z[y] is unit normal, but —2y + 1
is not. The unit normal equivalent of 432 + % € Qy] is 3y* + 2.

For polynomial rings P[y| over a principal ideal domain P, the greatest
common divisor of the coefficients of a polynomial p € P[y| is called the
content cont(p) of p and p is called primitive if cont(p) is a unit. There
exists a unique representation of p of the form

p = cont(p)p,
where the primitive polynomial p is the primitive part pp(p) of p. The set
of primitive polynomials over D is closed under multiplication:
Theorem 2.2.2 (Gaufl’ Lemma). The product of two primitive polynomials
18 again primitive. O
The following corollary, which is an immediate consequence of Theo-

rem 2.2.2, will play a crucial role in our subsequent considerations.

Corollary 2.2.3. Let K be the fraction field of a principal ideal domain P
and a,b,q € Kly] such that

a = qb.
If a and b are elements of P[y| with b being primitive in Ply], then also
q € P[y].

Proof. Assume ¢ € K[y] \ P[y]. Let d be the common denominator of the
coefficients of ¢ and ¢ the content of dg in P[y]. Then a/c is an element
of P[y] because dgb is divisible by cd. We get

d
c c
N~  ——
€Py] EP[y]
Both b and dgq/c are primitive, so by Theorem 2.2.2; also da/c has to be

primitive, but cont(da/c) = d. O

It is the fact that Theorem 2.2.2 and Corollary 2.2.3 do in general not
carry over to Ore polynomials that leads to the distinction of removable and
non-removable singularities, as we will see in the next chapters.
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Chapter 3

Ore Polynomial Rings

3.1 Basic Definitions and Properties

3.1.1 Ore Polynomial Rings

Ore polynomial rings were introduced by @ystein Ore in the 1930s. They
provide a general framework for working with several different kinds of func-
tional equations in an algebraic context and most often are the method of
choice when dealing with objects like differential or recurrence equations in
symbolic computation. In this section, we motivate and state some of their
basic properties. For more details on the theory presented here, the inter-
ested reader is referred to [42] and [12], where most of the definitions and
theorems of this section can be found unless stated otherwise. All the results
in this chapter are classical and well known except for the observation that
leads to Example 3.1.13.

Before we give a formal definition, let’s look at a differential equation of
the form:

arW) f(y) + a1 () FTV W)+ + arw) f (1) + ao(y) f(y) = 0, (3.1.1)

where 7 € N and the a; are elements of K(y) for some field K. The cor-
responding Ore polynomial (or Ore operator) is obtained by taking the left
hand side of the equation and replace the ith derivative by 9%, where 0 is a
new indeterminate. This gives a polynomial A in 9 with coefficients in K(y):

A=0a,0" +a,_10" 4+ +a10 + ao. (3.1.2)

We let such polynomials act on suitable functions in a natural way by defin-
ing A(f) to be equal to the left hand side of equation (3.1.1). In the case of
A(f) being zero, we say that A annihilates f, that A is an annihilator of f
and that f is a solution of A.

We will turn the set of all polynomials of the form (3.1.2) into a ring
by equipping it with two operations, 4+ and -. The addition will be defined
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coefficientwise, so that it corresponds to the addition of equations: Let A
and B be two operators and let f, g4, gp be functions such that A(f) = ga
and B(f) = gp. Then

(A+ B)(f) = A(f) + B(f) = ga + gB-

The multiplication will be defined in such a way that it corresponds to the
composition of operators: Let A and B be two operators and let f,ga,9B
be functions such that B(f) = gp and A(gp) = ga. Then we want to have

(A-B)(f) = A(B(f)) = A(gs) = ga-

The following definition formalizes this approach and generalizes it to
other kinds of functional equations.

Definition 3.1.1. Let D be a commutative domain, D[X] the set of univari-
ate polynomials over D and let o: D — D be an injective endomorphism.

1. Amap §: D — D is called pseudo-derivation (with respect to o), if
for all a,b € D

5(a+b)=d(a)+5(b) and &(ab) = o(a)d(b) + 6(a)b.

2. Let § be a pseudo-derivation. We define the Ore polynomial ring
(D[X], 4+, ) with componentwise addition and the unique distributive
and associative extension of the multiplication rule

Xa=o0(a)X +d(a) for all a € D,

to arbitrary polynomials in D[X]. To clearly distinguish this ring from
the commutative polynomial ring over D, we denote it by D[X; o, d].

3. The set const(D[X;0,0]) := {c € D | o(c) = c and 6(c) = 0} is the set
of constants of D[X; 0, d].

An Ore polynomial ring is an algebra over its base ring, so we use the
terms Ore algebra and Ore (polynomial) ring synonymously. Operators are
denoted by capital letters and the ith coefficient of an operator by the cor-
responding lower case letter together with the index 4. In general we adapt
the basic notation used for polynomials — e.g. we refer to the leading coeffi-
cient of an operator A as lc(A) — the only exception being the polynomial
degree of A in X to which we will refer as the order ord(A) of A. (also
written as d4.) For a € D and n € N, we call 0" (a) the nth shift of a. For
negative integers n, the nth shift is defined as the element b € ID for which
o~ "(b) = a, provided that such an element exists. From now on, D will be
a commutative domain and K a field, unless otherwise stated.

Since we will often encounter products of consecutive shifts of base ring
elements, we introduce the following shorthand notation to improve read-
ability and tangibility.
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Definition 3.1.2. Let D[X;0,d] be an Ore polynomial ring and n € N.
The nth o-factorial of a € D is defined as the product

It is possible to extend D[X;0,d] to an Ore polynomial ring over the
quotient field K of D by setting o(a™') = o(a)~! and §(a/b) = (bd(a) —
ad(b))/(bo (b)) for a,b € D, b # 0 (see [39]). We will denote this ring by
K[X; 0, 0] without making it explicit that the automorphism and the pseudo-
derivation are extensions of the functions used in D[X; 0, d]. Later on, the
distinction of operators in D[X; 0, §] and operators in K[X; o, 4]\ D[X; 0, ]
will be an important aspect of this work. Our study will mostly be concerned
with the contraction of the extension of a left ideal Z in D[X;0,0]. The
extension is the smallest left ideal Z’ in K[X; 0, d] that contains Z and the
contraction then is the intersection of Z/ and D[X;0,d]. We will see in
Chapter 4 that the contraction of Z’ is usually not equal to Z.

Example 3.1.3. Commonly used Ore polynomial rings are:
1. D[X] = D[X;1,0], the ring of commutative polynomials over D.

2. If sp,: K[n] — K[n] is the forward shift in n, i.e. sy(a(n)) = a(n + 1),
then Kn|[S; sy, 0] is the ring of linear ordinary recurrence operators.
(see Section 3.2.1.)

3. K[y][o;1, %], the ring of linear ordinary differential operators. (see

Section 3.2.2.)

4. If 54 K(q)(y) = K(g)(y) is the g-shift in y, i.e. s4,(a(y)) = alqy),
then K(q)(y)[Sq; Sq,y, 0] is the ring of linear ordinary g-shift operators.

5. If 54, is as in 4. then K(q)(y)[J; Sq.y, %] is the ring of g¢-differential
operators.

We only consider univariate operators, meaning that we have Ore rings
D[X; 0,0] where the ring extension D[X;o,d]/D is generated by only one
element X. A comprehensive introduction to the multivariate case can be
found in [34].

3.1.2 Actions and Solutions

As already mentioned above, we assume that Ore algebras come equipped
with an action on a suitable class of functions such that the multiplication
of operators corresponds to their composition and that the action is linear
with respect to addition. We let the set of objects F on which an operator
can act be a D-module. While formally module elements are not necessarily
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functions, we will still refer to them as such in order to simplify terminology.
Taking F as a D-module allows us to form linear combinations of elements
of F over D and applying an operator A on a function f yields such a linear
combination of the images X*(f) € F. The action of A on f therefore is
completely specified by the action of the monomial X on the elements of F.

Definition 3.1.4. Let D[X;0,6] be an Ore polynomial ring and let F be a
D-module. A map 7 : F — F is called D-pseudo linear (with respect to o
and 0) if for all a € D and f,g,€ F:

T(f+9)=7(f)+7(9) and  7(af) =0o(a)7(f)+d(a)f.

Given an operator A = Z?ﬁo a; X" from an Ore ring D[X; 0, d] that comes

with a ID-pseudo linear map 7, the action on f € F then is defined as

da
A(f) =) ar'(f).
1=0

Example 3.1.5. Let F be the set of all analytic functions C — C. It can
be easily checked that 7 : F — F, 7(f(y)) — d%f(y), is a C[y]-pseudo linear

map with respect to o =1 and § = %. Elements of C[y][0; 1, d%] then act
on analytic functions as outlined in the beginning of this chapter.

Further Examples and more details on ID-pseudo linear maps will be
presented in Section 3.2, where we will also see that it may be necessary to
restrict F to a subclass when moving from D[X; 0, d] to K[X; 0, ], where K
is the fraction field of D.

It is easy to see that the set of constants of an Ore algebra D[X; 0,d] is a
subring of D (or a subfield if D is a field) and that the set of solutions V' (A)
of a given operator A is a module (vector space) over the constant ring (field)
of D[X;0,6]. In case of the base ring being a field, the dimension of the
solution space depends on how F, the set of functions on which an operator
can act, is chosen, but a classical argument shows that it is bounded by the
order of the operator:

Theorem 3.1.6. Let K[X;0,0] be such that either c =1 or 6 =0 and let
A € K[X;0,6] be of order r. Then dim(V(A)) < r.

Proof. Let A=3%"7_, a; X" and fo,..., fr € V(a). Then (ag,a1,...,a,) is a
non-zero solution of

fo X(fo) oo X"(fo)\ [ao
fi X(f1) o X)) | |

Lo XU . x() \a



so the rank of the matrix is less than r + 1, which means that its rows are
linearly dependent over IK. We have to show that they are linearly dependent
over const(K[X; o, d]) C K. Because of their linear dependence over K, there
exists a subset {f{,..., fi,} C {fo,..., fr} for which the vectors (f!, X (f!))
with 0 < ¢ < m are linearly dependent, but any proper non-empty subset is

not. Let ¢; € KK be such that
£ ): S < fi )
(i 2 x(m) (319

Comparing the image of the action on the first component on both sides of
equation (3.1.3) gives

X(fo) =Y X(eif)) = olchr(f) +_dc)f},
=1 =1 1=1

and comparing the second component on both sides of the equation gives:
m m
X(fo) =D eX(f)) =) er(f))
i=1 i=1

It follows that

m m

S ole)r(f) + S b fi =3 e, (3.1.4)
i=1 i=1 i=1
If 0 = 1, then this simplifies to
> dle)fi=o.
i=1

Since the f/ with ¢ # 0 are linearly independent, all the d(¢;) have to be
equal to 0. In the case of 6 =0, (3.1.4) reduces to

m

Z(U(Ci) —e)7(f;) =0,

=1

and again by the linear independence of the f/ (i # 0) we get that o(c;)
is equal to ¢; for all 4. In both cases it follows that the ¢; are elements of
the constant field, and so the f/, including f{, are linearly dependent over
const(K[X; g, 4]). O

While at first glance the conditions in Theorem 3.1.6 on ¢ and § seem
rather restrictive, we can always assume without loss of generality that they
are satisfied. The next theorem describes how to map operators into a new
Ore algebra where only ¢ is non-trivial and how to define an action for the
new algebra such that the solution space of an operator does not change.
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Theorem 3.1.7 ([2]). Let K[X;0,6] be an Ore algebra and let b € K be
such that o(b) #b. Then the map

T T )
: ) : ; Y +6(b)\’
Hy : ]K[X70‘,5] —>K[Y7070]7 Hy, (ZGZXZ) :Zai (b_a(b) )
=0 =0
s a ring isomorphism. If the set of functions on which operators from
K[X;0,0] can act is given by F, we set

p:F —=F, up(f) :Hzfl(y)(f)v

and let operators from K[Y';0,0] act on F via pn. Then every solution of an
operator A € K[X;0,0] is a solution of Hy(A) and vice versa. O

3.1.3 GCRD and LCLM

The quotient and the remainder of two commutative polynomials over a field
can be computed by the reduction algorithm presented in Chapter 2. The
same algorithm can also be applied to Ore polynomials, again provided that
the base ring is a field.

Theorem 3.1.8. Fvery Ore polynomial ring K[X; 0,0] is a left Euclidean
domain. O

For computing the left remainder, note that in (2.2.1), the term le(X4~%b)
is not equal to lc(b) but becomes 0% i(lc(b)). From Theorem 3.1.8, the
existence of the (extended) Euclidean algorithm for Ore polynomials and
hence the existence of greatest common right divisors follows immediately.
The greatest common right divisor of two operators A and B is an operator of
maximal order that divides both A and B on the right. As mentioned in the
preliminaries, it is unique up to left associates, i.e. up to left multiplication
by non-zero elements of K and also right multiplication by non-zero elements
of the constant field (which commute with the operators of the algebra).

Since the multiplication of Ore polynomials corresponds to operator com-
position, the solution space of any right hand factor of an operator A is a
subspace of V(A). This fact can be used to find common solutions of several
Ore polynomials.

Theorem 3.1.9. The solution space of the GCRD of two operators A, B €
K[X;0,0] is the intersection of the solution spaces of A and B.

Proof. Let G be the GCRD of A and B. Since there are Q 4, @p € K[X; 0, 0]
with A = Q4G and B = QpG, the solution space of G is a subspace of V(A)
and V(B). Therefore V(G) C V(A) NV (B).
Now let f be a common solution of A and B. By the extended Euclidean
algorithm we can find S,T € K[X;0,6] with G = SA+ TB and get:

G(f) = (SA)(f) + (I'B)(f) = S(A(f)) + T(B(f)) = 0.
This shows V(A) NV (B) C V(G). O
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Definition 3.1.10. The smallest left ideal I < D[X; 0, 4] that contains all
the annihilating operators of f € F is called the annihilating ideal of f in
D[X;0,9].

Example 3.1.11. Two annihilating operators for p(y) = 632 +y+4 € Q[y]
are L1, Ly € Qy][0;1, d%] with

Ly = 950% 4 (144y + 12)0 — 288, Ly = 9.

Since p(y) is an element of the solution space of L; and the solution space
of Lo, it is also contained in the solution space of G := gerd(Ly, La). We
have that

G=(6y*+y+4)0—(12y +1).

G is of order 1 and since Q[y] does not contain zero-divisors, there is no
order 0 operator that annihilates p(y). By computing the GCRD of L
and Lg, we obtained the least order annihilating operator for p(y). It is the
generator of the annihilating ideal of p(y) in Q(y)[0; 1, d%].

Note that while this often works in practice, it need not be the case that the
GCRD is the minimal order operator of a common solution of two or more

operators. Consider

Lz = (57032 + 95y + 380)9° + (864y> + 78612 + 1823y + 523)0>

+ (864y> 4 216y> + 588y — 1092)0 — (1728y* + 2016y + 1296),
Ly = (36y* + 12y + 499> + 8y + 16)9*

+ (36" + 8413 + 67y% + 57y + 20)9°

+ (=T2y* — 12y + 47)0% + (144y + 12)0 — 144.

These two operators are also annihilators of p(y), but their GCRD is of
order 2:

gerd(Ls, Ly) = (6y* +y + 4)0* + (6y* +y + 4)0 — (12y + 13).

In order to obtain an operator whose solution space is the span of V/(A)
and V(B), one can compute a least common left multiple of A and B, an
operator of minimal order that is divisible by A and B from the right. As
we have seen, this can be done by the extended Euclidean algorithm, which
also yields that the order of lelm(A, B) is bounded by ord(A) + ord(B).

Theorem 3.1.12. Let K[X;0,6] be an Ore algebra with an action defined
on F and let A, B € K[X;0,0] be such that the dimension of V(A) is equal
to the order of A and the dimension of V(B) is equal to the order of B.

Then the solution space of lclm(A, B) is the span of the solution spaces of
A and B.
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Proof. Let L be the LCLM of A and B and let Py, Pp € K[X;0,d] be such
that L = P4A = PgB. Consider a basis B4 = (ug, ..., un) of V(A) and a
basis Bg = (vo, . ..,vy) of V(B). For any co, ..., cptm+1 € const(K[X; o, d])
we have

L(coug + -+ + emUm + Cmy1v0 + -+ + Ctn+1Vn)
= L(coup + -+ + cmUm) + L(cms1v0 + -+ + Cman+10Un)
= PaA(couo + - -+ + cmm) + PBB(Cmy1vo + -+ - + Cmgnt1Vn)
=0.

This shows V(A) + V(B) C V(L).

For V(L) C V(A) + V(B), first assume that A and B have no common
non-zero solutions. Then the bases B4 and Bg are disjoint and B4 UBpg is a
basis of V(A) 4+ V(B) with ord(A) + ord(B) elements which are annihilated
by L. The quotient P4 is computed by the extended Euclidean algorithm
and thus its order is bounded by ord(B). For the order of L we have

ord(L) = ord(P4) + ord(A) < ord(B) + ord(A).

By Theorem 3.1.6, B4 U Bp is a basis of V(L).

If A and B have common non-zero solutions, they have a non-trivial GCRD
G € K[X;0,d] and B4 and Bp can be chosen such that B4 N Bp has cardi-
nality ord(G). We show that the order of L is bounded by ord(A)+ord(B)—
ord(G), which is the number of elements in B4UBg. Let Q4,Qp € K[X;0,d]
be such that

A=QaG, B=QpG.

From

L =PyA=PsQsaG = PpQpG = PpB,

we deduce that the least common left multiple of Q@4 and Qp is given by
lelm(Qa,QB) = PaQa = PpQp, which means that the order of Py is
bounded by ord(Qpg) = ord(B) — ord(G). So

ord(L) = ord(P4A) < ord(@p) + ord(A) = ord(B) — ord(G) + ord(A).
Again by Theorem 3.1.6, B4 U Bp is a basis of V(L). O

If the condition on the dimensions of the two solution spaces in Theo-
rem 3.1.12 is not met, the inclusion V(L) C V(A) + V(B) does not nec-
essarily hold. Given a vector space G and a subspace F C G, two oper-
ators in K[X;0,4d] may have solutions in G \ F for which there exists a
const(K[X; o, d])-linear combination which lives in F.
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Example 3.1.13. (S. Chen, personal communication) Consider the ring of
differential operators Q(y)[d; 1, 4] acting on F = Q(y) via the Q(y)-pseudo

' dy
linear map a(f):%f. Let
2 1 2 1
A=0°+-0, B=09"+—-—-0.
y y(y+1)

If we extend the action to the bigger space G = Q(y)(log(y)), we get the
solution spaces

VQ(A) = SpanQ(lv IOg(y))a
Vg(B) = spang(1,y +log(y)),
but over F, the solution spaces are
Vr(A) = Vg(A) N F = spang(1) = V£(B),

and so also the sum Vr(A4) + Vz(B) is equal to spang(1). On the other
hand, y is contained in both F and the sum Vg(A) + Vg(B) and thus it is
an element of Vz(lclm(A, B)). This shows that over F, the solution space
of the LCLM is bigger than the sum of the solution spaces of A and B.

Contrary to the situation in unique factorization domains, it is in general
not true that the LCLM of A and B can be obtained by taking the quotient
lquo(AB, gerd(A, B)), as we show in the next example:

Example 3.1.14. Let A, B € Q(y)[0; 1, d%] with

A= (4 —1)0*+ (—4y+2)0+4

B = (10y* 4 11y — 8) &* + (—10y + 5) 0 + 10.
Then their LCLM is

lelm(A, B) = (2y — 1) 8% + 202,
but with G := gerd(A, B) = (2y — 1)0 — 2:
lquo(AB, G) = (20y® + 32y* — 5y — 8) 9° + (—22y + 11) &°
+ (20y + 32) 9 — 20.

Another major difference to the commutative case concerns factorization.
Ore polynomials cannot necessarily be factored uniquely into irreducibles.
Despite being a big departure from the situation for commutative polyno-
mials, it will not play a big role in our work.

Example 3.1.15. ([38, 12]) Consider operators in C(y)[0;1, d%]. For any
a € C the equation

2 2 1 1+ 2ay
TR S PR S Y (s 7]
y 2 y(1+ ay) y(1+ ay)

holds.
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3.2 Ore Algebras for Holonomic Functions

To conclude the introduction to Ore algebras, we give a more in-depth de-
scription of two types of Ore polynomials, recurrence operators and differen-
tial operators with polynomial or rational function coefficients. Both have
been the topic of extensive studies and in the course of this work, most
examples will be based on one of these algebras.

3.2.1 Recurrence Operators

In discrete mathematics, combinatorics, summation theory and physics, one
often encounters recurrence relations of the form

pr(n)thrr + prfl(n)thrrfl +--+m (n)tn+1 +p0(n)tn =0,

where the p; are polynomials in n over some field K. Two prime exam-
ples of such relations are the recurrence relation satisfied by the Fibonacci
numbers Fj,,

Fn+2_Fn+1 - F, =0,

n 1

and the recurrence relation satisfied by the harmonic numbers H, = > | =,

(n + 3)Hn+2 + (—277, — 5)Hn+1 + (Tl + Q)Hn = 0.
Recall the automorphism we defined in Example 3.1.3:
sp: K[n] = K[n|, p(n)— pn+1).

These linear recurrences with polynomial coefficients are studied for example
in [25, 43] and [32], where the definitions and results stated here are taken
from.

In an Ore setting, linear recurrence equations are modeled via the Ore
algebra K[n][S; sn, 0] and its extension K(n)[S; sp, 0] to allow rational func-
tion coefficients. For Ore polynomials in K[n|[S; sy, 0], the action of an
operator is usually defined on all sequences with values in an extension field
F/K of K, i.e. we set F = FN. Operators in K[n][S;s,,0] then act on
sequences via the K[n]-pseudo linear map

T:F=F, (tn)nen = (tnt1)nen.

There are different notions for different kinds of sequences, depending
on their annihilator ideal.

Definition 3.2.1. A sequence with values in I is called
1. holonomic (or P-finite), if it has a non-zero annihilating ideal in

K([n][S; spn, 0].
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2. C-finite, if it satisfies a linear recurrence with coefficients in K, i.e. its
annihilating ideal in K[n][S; sy, 0] contains a non-zero element with
maximal coefficient degree 0.

3. hypergeometric, if it is the solution of a linear recurrence of order 1, i.e.
its annihilating ideal in K[n][S; sy, 0] contains an element of order 1.

Obviously. every C-finite sequence is sequence is holonomic. Different
classes are closed under different kinds of operations. In the next theorem
we state some of these closure properties for hypergeometric sequences that
we will encounter in some examples later on.

Theorem 3.2.2. If (ay)nen and (by)nen are two hypergeometric sequences,
then so are

1. (anbn)ne]Ny
2' (%)nEH\U
3. (auntv) for u,v € N. O

As the next example shows, these closure properties are useful to decide
whether a given sequence is hypergeometric or not.

Example 3.2.3. In later chapters, examples will often contain one of these
types of the sequences:

1. Let p(n) € K[n]. Then the sequence (p(n))nen is hypergeometric
because it is annihilated by the order 1 operator

L=pn)S—pn+1).

It is also C-finite. Let A, be the forward difference operator, i.e.
App(n) =p(n+1) — p(n). One can see easily that

AP Fp(n) =0,
yields a recurrence in K[n][S;s,,0] for (p(n))nenx with coefficients
in K.
2. The sequence (tp)nen = ((kn))pen with £ € N\ {0} fixed is hyper-
geometric but not C-finite. It is annihilated by the order 1 operator

k

S—T[ (kn+1).

=1

Let L be an operator with coefficients in K and let m € N be such
that tc(L) = l,,,. Then L(t,) can be written as

L(tn) = (k(n +m))'p(n),

21



where p is a polynomial in K[n] with [n°]p # 0. This means that the
equation (k(n 4+ m))!p(n) = 0 only holds for finitely many n, so the
sequence cannot be C-finite.

In general, the shift-quotient of a sequence (t,)neN is given by ty,41/ty.

A sequence is hypergeometric if and only if the shift-quotient is a
rational function 7 = ryum/Tden- It is then annihilated by the operator

L =7r4en(n)S — roum(n).

3. Combining parts 1 and 2 of this example and Theorem 3.2.2, we get
that the sequence (ty)nen With

(kln)!el

tn = p(n)Wy

where p € K[n], ki, k2, e1,e2 € N, is hypergeometric.

4. The sequence of harmonic numbers (Hy)nen\ {0} 18 holonomic but not
C-finite or hypergeometric.

If we extend the operator algebra K|[n|[S; sy, 0] to operators with co-
efficients in K(n), the domain of the action has to be changed so as to
preserve the correspondence between operator multiplication and operator
composition.

Example 3.2.4. For n € N, consider the sequence
(tn)ne]N = (5n,1)n€]N = (07 17 07 O> O> v )

An annihilating operator in K[n|[S;s,,0] is L = (n — 1). If we take any
P € Kin|[S; spn, 0], then it is easy to see that PL is also an annihilator of
(tn)nen, but if we set

P=1/(n—1)e€K(n)[S;sn,0],
then PL =1 does not annihilate (¢,)neNn anymore.

To avoid effects like this for operators over KK(n), we may consider two
sequences as equal if they only differ for finitely many terms. We define
two sequences (7 )nen and (t,)nen to be equivalent, denoted by (r,)pen ~
(tn)nen, if there exists an ng € N such that r, = ¢, for all n > ng. The
elements of KN/ ~ are called germs.

We let operators from K (n)[S; s,,0] act on elements of F = KN/ ~ via
the map

T F = 5, [(tn)ne]N] = [T((tn>n€]N)]v

where 7 is as above.
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As was mentioned in the previous section, the set of functions on which
an operator L € D[X;0,d] can act has to be chosen big enough in order
to have ord(L) many linearly independent solutions. It can be shown that
for recurrence operators, there are ord(L) many linearly independent formal
solutions of the form

(y/e)?"/"p¥ exp(ery™™ + -+ comry' V™) yp(y =™ Tog(y)),

where e is Euler’s constant, v is a positive integer, u is an integer, p is an
element of an algebraic extension of the coefficient field K, ¢1,...,¢c,—1 are
elements of K(p), m is a positive integer multiple of v, « is an element
of some algebraic extension of IK(p) and p is an element of K (p)(«a)[[y]][z],
where K[[y]] denotes the ring of formal power series over K.

A frequent application of recurrence operators is in symbolic summation.
The method of creative telescoping (see [43, 58]) finds recurrences for definite
summation problems. When given a bivariate hypergeometric term f(n, k)
(i.e. hypergeometric in n and in k) as input that satisfies certain properties,
it computes an operator L € K|nl[S; sy, 0] and another hypergeometric term
g(n, k) such that

L(f(n,k)) =g(n, k+1) = g(n, k),
holds. Summing both sides over k then gives a (possibly inhomogeneous)
recurrence for the sum ), f(n, k). In this context, L is called a telescoper.

An implementation of this method in Mathematica is available from [35].

Example 3.2.5. For f(n,k) == (Z), creative telescoping gives the relation

k+1 n k n
1,k)—2 k) = - . (3.21
f(n+1k) = 2/(n,k) (k:+1)—n—1<k:~|—1> k—n—1<k> (32.1)
The telescoper in this case is
L=5-2

and

T

Summing over all k in Equation (3.2.1) shows:
" n+1 " /n
- —0.
S (") 2 (i) o
k=0 k=0

23



3.2.2 Differential Operators

Linear ordinary differential equations (ODEs) with polynomial coefficients
represent a classical, yet still active field of research. Amongst others, they
appear frequently in different fields of physics and engineering. An intro-
duction to linear ODEs can be found in [27] and for more details on ODEs
in symbolic computation, the reader is refered to [34], from which the theory
presented in this section is taken.

Differential equations of the form

e FO W) + o1 W) FTTV @)+ o) () + po(y) fy) =0,

with p; € K[y] for some field K are modeled via the Ore algebra K|y][0; 1, d%]
and its extension K(y)[0;1, %] to allow rational function coefficients. We
usually let operators in K[y][0; 1, d%] act on elements of a differential field

extension F of K(y). We define the K[y|-pseudo linear map
d
T:F—F, f——Ff
dy

Like for recurrences, we distinguish different kinds of functions depending

on their annihilator ideals in K[y][0; 1, %] and K(y)[0;1, dily]

Definition 3.2.6. A function in a differential field extension of K(y) is

called
1. holonomic (or D-finite), if there is a non-zero ideal in Kly][0;1, %]
that annihilates the sequence.

2. C-finite, if it satisfies a linear differential equation with coefficients
in K, ie. its annihilating ideal in K[y|[0;1, %] contains a non-zero
element with maximal coefficient degree 0.

3. hyperexponential, if it is the solution of a linear differential equation of
order 1, i.e. its annihilating ideal in K[y][0; 1, d%] contains an element
of order 1.

Similar to the closure properties given in Theorem 3.2.2, hyperexponen-
tial functions are closed under certain operations.

Theorem 3.2.7. If f and g are two hyperexponential functions, then so are
1. f 9,

2.

=

3. f(r), where r is a rational function. O
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In later chapters, operators in examples often come from holonomic func-
tions like the following.

Example 3.2.8. We give some examples of different holonomic functions.

1. Univariate polynomials are hyperexponential and C-finite functions.
Let p € K[y]. Then

Ly =p(y)d —p'(y), L2= Hdes(p)+1

are two annihilators of p, one of order 1 and the other with coefficients
in K.

2. The function f(y) = 1/y is hyperexponential but not C-finite. An
order 1 annihilator is y0 4+ 1. The set containing f and its derivatives
is a basis of K[y~!], so a differential equation with coefficients in K
cannot exist.

3. The Gaussian hypergeometric function

X Apn,mn

Z ab"y
2F1 (a7 b7 c7y) = Cﬁn' )

n=0 ’

is holonomic but not hyperexponential or C-finite. A least order dif-
ferential equation for 9 F}(a,b,c,y) is

y(—y +1)0% + (—(a+ b+ 1)y +¢)d — ab = 0.

4. The sequence (t,)nen is a holonomic sequence if and only if the power
series given by f(y) := > iy t:y’ is a holonomic function. Algorithms
to convert a recurrence for (¢, ),enN into a differential equation for f(y)
and vice versa are available and implemented, e.g. in Sage [30].

When extending the ring of linear differential operators over polynomial
coeflicients to operators over rational function coefficients, we face a problem
similar to the situation for linear recurrence equations, where we had to move
from the set of all sequences to the set of germs. Here it is necessary to move
from functions to distributions, but giving details on this matter would be
beyond the scope of this work.

An operator L € KJy][0;1, d%] has ord(L) many linearly independent
formal solutions of the form

y —1/s
exp < /0 p(tt)dt) a(y*'*,log(y)),

where s is a positive integer, p is in Fy], ¢ is in F[[y]][z] with y { ¢ unless ¢
is zero, IF is some algebraic extension of K.
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An application of differential operators in computer algebra is sym-
bolic integration. In the integration analogue of creative telescoping in-
troduced in [5], a bivariate hyperexponential term f(y, z) is taken as input
and an operator L € K[y][0; 1, d%], called telescoper, and a hyperexponential

term ¢(y, z) are computed for which

d

holds. Integrating both sides of this equation from « to 8 along z then gives
a (possibly inhomogeneous) differential equation for the definite integral

/ 5 f(y,z)dz. An implementation of this method in Mathematica is available
from [35].

Example 3.2.9. For f(y,z) = eyZZQ\/E, creative telescoping yields the
relation

d d
- 2y@f(y, 2) = 3f(y,2) = -~ (22f(y, 2)). (32.2)
The telescoper in this case is

and

9(y,2) = 22f(y, 2).
Definite integration on both sides in Equation (3.2.2) shows that for F(y) :=
ff f(y, z)dz with «, 5 € R we get:

—2yij<y> —3F(y) = [g(y, 2))=2.
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Chapter 4

Desingularization of Ore
Operators

4.1 Removal of Singularities

In Theorem 2.2.2 it was stated that in the commutative case, the product
of two primitive polynomials is again primitive. For Ore polynomials, this
is not necessarily true. To illustrate this fact, we give an easy example of
two primitive recurrence operators whose product is not content-free.

Example 4.1.1. Let P, L € Q[n][S; s, 0] with P =S+1, L = (n—1)S+n.
Then:

PL =nS?+2nS +n =n(S*+25 + 1).

This is not an exceptional case. For non-commutative polynomials aris-
ing in applications, most often it is possible to multiply the primitive gener-
ator of a left operator ideal with another primitive operator on the left such
that the product has non-trivial content. In this chapter we study these left-
factors, the content that can appear after the multiplication and when and
how such a left-factor can be constructed. Later in Chapters 5 and 6 we will
see some of the notable consequences of this idiosyncrasy of Ore operators:
We will show how to balance order and coeflicient degrees in operator ideals
and how in the Euclidean algorithm some factors of the leading coefficients
of the input operators can unecessarily slow down the computation.

Most of the work presented here was done in collaboration with Shoashi
Chen, Manuel Kauers and Micheal F. Singer and — to a large extend — can
be viewed as as a reformulation of results given in [3] with new proofs and
slight generalizations. It was published in [15] and partly in [28].

We consider the following situation in the whole chapter. It covers many
of the Ore algebras relevant in applications, in particular the Ore algebras
presented in Chapter 3:
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Setting. Let D be a Euclidean domain with degree function deg and let IK
be its fraction field. Furthermore, let D[X; 0, 4] be an Ore polynomial ring
where ¢ is an automorphism and suppose we are given a fixed L € D[X; 0, d].
Recall that there is a unique way to extend D[X;0,4] to K[X;0,d]. (see
Section 3.1) For an operator P € D[X; 0, ] we denote the maximum of all
the coefficient degrees by deg(P).

We start our analysis by first identifying the source of new content that
can appear after multiplying L with another operator from the left. Not any
arbitrary base ring element can emerge as new content. The only candidates
are factors of the leading coefficient of L.

Theorem 4.1.2. Let L € D[X;0,6] and let p € D be irreducible and let
P € D[X;0,6] be such that P is primitive and p | cont(PL). Set i to be the
largest integer such that p; # 0 and ptp;. Then

o' (p) | le(L).

Proof. We can write P as the sum

i dp
P:ijX]—i- Z ij].
§=0 j=it1
———
=:P’ =:P"
where all the coefficients of P” are divisible by p and the leading coefficient
of P’ is not. We get that

P'L=PL- P'L,

and both, the content of PL and the content of P”L are divisible by p. This
yields that also the content of P’'L and therefore lc(P’L) is divisible by p.
The leading coefficient of P'L is equal to le(P")o?(lc(L)). Since p does not
divide the leading coefficient of P, it has to divide o?(lc(L)). O

Definition 4.1.3. Let L € D[X;0,d] and p € D. If thereisa P € D[X; 0, d]
such that each irreducible factor of p together with the primitive part pp(P)
of P meets the conditions in Theorem 4.1.2 for the same ¢ € N, we call p
removable from L and P a o~ %(p)-extracting operator for L.

Theorem 4.1.2 justifies the nomenclature of Definition 4.1.3. If we have
given a p-extracting operator P for L, the product PL can be written in the
form o(p) cont(P)L' with L' € D[X;0,d]. Here, P was used to construct a
multiple PL of L where p was extracted. By taking the primitive part of P
in Definition 4.1.3, we avoid calling P a p-extracting operator in the case
that p does not appear as a new factor in cont(PL) but just as part of the
content of P itself.
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Example 4.1.4. (Example 4.1.1 cont.) Take P and L as in Example 4.1.1.
e P is a (n — 1)-extracting operator for L.
e Set P =(n+1)S+ (n+1). Then:
PiL=(n+1)n(S*+25+1).

Here, P; is an (n — 1)-extracting operator, but not an n-extracting
operator.

e Similarly, P» = nS — n is an (n — 1)-extracting operator, but not an
(n — 1)%-extracting operator.

e P;=nS%+ S+ 1is also an (n — 1)-extracting operator, although its
order is higher than the shift with which the removable factor appears
in the product PL.

We can always clear the content of a p-extracting operator and then re-
duce its coefficients by a shift of p without violating its p-extracting property.
This will be helpful for determining necessary bounds for our desingulariza-
tion algorithm later on.

Lemma 4.1.5. Let i,p, P, L be as in Theorem j.1.2. Set

P = Z (pj divp) X7.
=0

Then also P’ is a o' (p)-extracting operator for L.

Proof. As in the proof of Theorem 4.1.2, we can split P into the sum P =
P’ + P” where all the coefficients of P” are divisible by p and the leading
coefficient of P’ is not. Then

PL=P'L+ P"L, with p| cont(P"L),

and P’ is of order 7. Since we have p | cont(PL), also cont(P’L) has to be
divisible by p. O

By extracting a factor p of the leading coefficient of L by P, we can also
remove it from the product by setting P’ = Jd%(mP € K[X;0,6]. Then P'L
still has coefficients in ID and the leading coefficient of P’L contains a shifted

version of the leading coefficient of L where the factor p was removed.

Definition 4.1.6. Let L € D[X;0,0] and let p € D be such that p | 1c(L).
We say that p is remowvable from L at order n and it is called a remowvable
singularity of L if there exists some P € K[X;0,d] with ord(P) = n and
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some w,v € D with ged(p,w) = ged(v,w) = 1 such that PL € D[X;0, ]
and w
“"(e(PL)) = — le(L).

7" (6(PL)) = 2= 1(L)
We then call P a p-removing operator for L, and PL the corresponding
p-removed operator. p is simply called removable from L if it is remov-
able at order n for some n € N. If ged(p,1c(L)/(vp)) = 1, then we say
desingulariz|able|ing|ed] instead of remov[able|ing|ed], respectively.

With w and v in Definition 4.1.6, we allow a p-removing operator to
add new factors (in case of a non-trivial choice for w), as long as they are
coprime to p, and also to remove other factors of lc(L) (in case of a non-
trivial choice for v). It should be noted that the the terms ‘removable’ and
‘desingularizeable’ as they appear here are not standardized in the literature
and are likely to differ in other publications.

It is easy to see that every p-removing operator can be turned into a
p-extracting operator by clearing denominators. For getting a p-removing
operator from a p-extracting operator P, first all the highest order coeffi-
cients which are divisible by o?(p) (where i is as in Theorem 4.1.2) have
to be set to zero and then division by an appropriate shift of p yields the
desired result. By this procedure, P3 in Example 4.1.4 gives rise to the
(n — 1)-removing operator (1/n)S + (1/n).

Usually not all factors of the leading coefficient of an operator L are re-
movable. A randomly generated operator will most likely have no removable
singularities, whereas for “meaningful” operators, i.e. operators that arise
in applications like combinatorics or physics, one often finds that some fac-
tors can be removed. In the context of holonomic functions and sequences,
removable factors can be connected to the solutions of differential and re-
currence operators. We outline this connection in an informal fashion:

Let L be an element of C[y|[D;1, d%] and let Z = 7' N Cly][D; 1, d%] be
the contraction of the left ideal 7/ < C(y)[D;1, d%] generated by L. Any
singularity of a solution of L corresponds to a root of the leading coefficient
of L, but not for any root of lc(L) there has to be a solution with a singularity
at that point. Any solution of L is also a solution of every operator in Z
and so any desingularized operator for L annihilates the solutions of L as
well. We will see that there is an operator in Z with a leading coefficient
that only contains all the non-removable singularities of L and it turns out
that for each of those roots, there is at least one solution of L that does not
admit analytic continuation to that point. Conversely, if there is a solution
of L that is analytic at a root of the leading coefficient of L, this root can be
removed completely. A more detailed description of desingularization and
removable factors of differential equations can be found in [27].

For recurrence operators, the situation is similar. In [3] it is shown that
given a numeric sequence {...,t._3,t.—2,t.—1} with ¢ € C and an annihilat-
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ing operator L € C[y][0; 1, %] where c is a root of the leading coefficient, it is

possible to uniquely extend the sequence to {...,t.—3,tc—2,tc—1,tc} if (n—c)
is a removable factor of L.

In the case that an operator L has two coprime factors p and ¢ in its
leading coefficient that are removable at the same order, it is not obvious
that there exists a pg-removed operator of that order. The next theorem
shows that this is indeed the case and that for each order > dj, there is a left
multiple of L with a minimal (in terms of divisibility) leading coefficient.

Theorem 4.1.7. Let dp € N be fized, let T < D[X;0,6] be a left ideal and
let T be any element of I of order dp such that, among all the operators of
order dp in I, its leading coefficient t is minimal with respect to the degree.
Then t is independent of the choice of T (up to multiplication by units in D)
and for any L € T with dy, < dr we have c%2=7(t) | lc(L).

Proof. Assume there are T, L € T for which the claim o9~ (¢) | lc(L)
does not hold. We set L' = X%~ [, and get lc(L') = o979 (Ic(L)), thus
t 11e(L’) by assumption. Division with remainder yields nonzero ¢, € D
such that

le(L') =gt +r, deg(r) < deg(t).

Hence the operator L' — ¢T is an element of Z of order dr whose leading
coefficient has degree less than deg(t). This contradicts the choice of T

For the uniqueness, let 7/ € Z be any other operator of order dr with
minimal leading coefficient degree. By what was just shown above, we get
le(T7) | t and ¢ | 1c(T"), so t and lc(T”) are associates. O

Definition 4.1.8. Consider Z, T' and t from Theorem 4.1.7. The shift
o~ (t) of the leading coefficient of T is called the essential part of T at
order dp. If there is no operator in Z for some order n, the essential part
of Z at order n is defined to be 1.

Before we investigate how to construct removing operators algorithmi-
cally, we conclude our analysis of removable factors by showing that among
all the essential parts of a left ideal, there exists a minimal essential part
which divides all the others.

Corollary 4.1.9. Let Z < D[X;0,0] be a left ideal and let T' be any element
of T with leading coefficient t such that o= (t) is minimal with respect to
the degree. Then t is independent of the choice of T (up to multiplication
by units in D) and for any L € T we have c%=97 (t) | 1c(L).

Proof. For operators L € Z with order smaller than or equal to dr, the
divisibility of lc(L) by o% =97 (t) follows from Theorem 4.1.7, because the
minimality of =7 (¢) implies that t is of minimal degree among all the
leading coefficients of elements of Z of order dp. Let dy, > dp be fixed. It is
sufficient to show ¢?2 =97 (¢) | lc(L) with L having minimal leading coefficient
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degree among all elements of Z of order d,, because by Theorem 4.1.7, the
leading coefficient of any operator in Z of order dy, is divisible by the leading
coefficient of L. By the choice of T', the degree of 0~ (Ic(L)) is greater than
or equal to the degree of 0~97(¢). Division with remainder gives ¢,r € D
such that

o (le(L) = qo 97 (t) + 7, deg(r) < deg(o 9 (t)) or r = 0.

If r is zero, then o~ (t) divides o~ (Ic(L)) and so also % =97 (t) | 1c(L).
Assume 7 is not zero. We set L' = L — 0% (q) X% =T, Then L' € T with
ord(L') = ord(L) and deg(oc—% (Ic(L'))) = deg(r) < deg(c~9(t)), which
contradicts the choice of T. The uniqueness of ¢ is shown as in the proof of
Theorem 4.1.7. O

Definition 4.1.10. Consider Z,T and t as in Corollary 4.1.9. We call
o7 (t) the minimal essential part of Z.

For annihilators of holonomic functions or sequences coming from appli-
cations, it can be observed that the essential parts of an annihilator ideal are
usually the same for all orders greater than the order of the generator. In
this case only the minimal essential part of the ideal has to be considered.

4.2 Desingularization by Linear System Solving

The question on how to compute a desingularizing operator for recurrence
operators was first answered in [3] and for differential operators, it is a
classical result that can be found for example in [47]. Our goal is to find a
uniform approach for all Ore algebras in which the specific properties of
special Ore rings like differential operators are used as little as possible.
Also, unlike in [3], we want to have as much control as possible over which
singularities are removed at which point and, unlike in [47], be able to reduce
the multiplicity of a singularity if it cannot be removed completely.

In order to design an algorithm for desingularization, we derive a normal
form for p-removing operators. While this normal form holds for Ore alge-
bras over any Euclidean domain, the final algorithm is based on an ansatz
and hence will only be formulated in the case of a commutative polynomial
ring as the base ring of the Ore algebra. The next lemma provides us with
the tools to normalize any p-removing operator.

Lemma 4.2.1. Let L € D[X;0,6], let p € D be removable from L, and let
P € K[X;0,6] be a p-removing operator for L.

1. If U € D[X;0,8] with ged(1c(U), 0%+ 0 (p)) = 1, then UP is also a
p-removing operator for L.

2. If P = P, + P, for some P, € K[X;0,6] with ord(P,) = ord(P) and
P, € D[X;0,0], then Py is also a p-removing operator for L.
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3. There exists a p-removing operator P’ with ord(P') = ord(P) and
with po~9" (Ic(P'L)) = lc(L), i.e. a p-removing operator that neither
removes nor adds any other factors.

Proof. Let v,w € D be as in Definition 4.1.6, i.e. ged(p, w) = ged(v,w) =1
and vpo—? (Ic(PL)) = wlc(L).

1. Since PL is an operator with polynomial coefficients, so is UPL. Fur-
thermore, with u = 1c(U) we have

vpo~ P~ (I¢(UPL)) = o~ %%~ (u)wlc(L).

Since ged(u, 0P+ (p)) = 1, we have ged(o~4P =% (u)w, p) = 1, as required.
2. Clearly, P» € DI[X;0,6] implies P,L € D[X;0,0]. Since also PL €
D[X;0,0], it follows that

P\L = (P - P)L =PL— P,L € D[X;0,6].

If ord(P2) < ord(P), then we have lc(PL) = lc(P1L), so there is nothing
else to show. If ord(P,) = ord(P), then le(P;L) = le(PL) — le(P2L) and
therefore

vpo % (Ie(PLL)) = vpo~ % (I¢(PL) — 1c(P,L))
= (w —vpo ™ (Ie(Py))) Le(L).

Since ged(p, w — vpo =9 (Ic(Py))) = ged(p, w) = 1, the claim follows.

3. By the extended Euclidean algorithm we can find s,t € D with 1 =
sw + tpv. Then o7 (s) P is p-removing of order ord(P) by part 1 (o9 (s) is
obviously coprime to 0?7 (p)), and its leading coefficient is

o’r <;%> = UdPl(pv) — P (t).

By part 2 we may discard the fraction free part o7 (t), obtaining an-
other p-removing operator P’ with ord(P’) = ord(P) and po— (Ic(P'L)) =
(1/v)le(L). Using part 1, we can obtain from here an operator with the
desired property. O

Now we can state a normal form for p-removing operators and give a
constructive proof for it.

Corollary 4.2.2. Let L € D[X;0,6] and p € D. If p* is removable from L
for k € N then there exits a p*-removing operator P for L of the form

- 1
Po P Pnol  ym-1y  ° X (42.1)

P Toeet T et o

with n, e, ...,en—1 € N, and po, ..., pn—1 € D with deg(p;) < e; deg(a™(p)).
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Proof. Let P’ be a pF-removing operator for L with ord(P’) = n such that
for each ¢ € N, the numerator and the denominator of the ith coefficient are
coprime. By Lemma 4.2.1 part 1, we can clear any factors in the denomi-
nators of the coefficients of P’ that are not of the form o™(p)¢. Next, we
need to reduce the numerator p,, of the leading coefficient to 1 and lower the
degrees of the other numerators. To this extent, we first use Lemma 4.2.1
part 3 to get the appropriate leading coefficient. Then, Lemma 4.2.1 part 2
allows us to reduce all the numerators by the corresponding denominator
which yields the desired operator. O

Example 4.2.3. Consider L € Q[n][S; sy, 0] with
L= (—15n + n+2)S + (15n* + 29n + 12).

Here, p = 3n + 4 can be removed by the operator

—20800
(15n2 + 29n + 12)

15n* 4+ 89n3 + 158n2 + 76n — 20

— n(n + 2)(1515n + 2209) 15n2 + 29n + 12

P can be brought into normal form. First we remove all unnecessary factors
in the denominators by multiplying P with (5n + 3). We get the operator

—20800
5(3n +4)
15n% + 89n3 + 158n2 + 76n — 20

— n(n + 2)(1515n + 2209) G T 4

Next we lower the degree of the numerators by reducing the numerators
with the denominators. We get the normal form p-removing operator

—21840 3360

53n+4)"  53n+4)

Note that in a normal form p-removing operator, the numerator degrees
are strictly smaller than the denominator degrees, so the maximal coefficient
degree of the p-removed operator will be lower than the maximal coefficient
degree of L.

Given L € Kly][X;0,0] where K is a field, p € K[y] and k£ € N, we
are now able to construct a pF-removing operator for L by solving a lin-
ear system, provided that we can find an upper bound FE for the e; and
an upper bound N for n as in Corollary 4.2.2. Starting from an Ore poly-
nomial P of the form (4.2.1) with undetermined numerator coefficients, we
set P/ = o™ (p)FP. If P ought to be a pF-removing operator, the equation
P'L = 0mod o™ (p)F has to hold. This gives a linear system in terms of
the undetermined coeflicients of the numerators in P and any non-trivial
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solution then gives rise to a pF-removing operator for L. If there doesn’t
exist any non-trivial solution, then p* is not removable from L.

Algorithm 4.2.1: Desingularization

Input: L € K[y|[X;0,0], p € K[y| irreducible, k, E, N € N.

Output: A p*-removing operator for L of order at most N
and coefficients with denominators dividing o?¥ (p)¥
or L if no such operator exists.

IF p*{lc(L) : RETURN L

P+ Zi]\io(Z?i%(gN(p))Efl pi;y7) X with p; ; undetermined

SOLVE : P'L =0 mod o (p)¥

IF there is no non-zero solution: RETURN L

P il

RETURN P

If we want to apply Algorithm 4.2.1 in practice, we need to derive a
bound E for the denominator and a bound NN for the order of the output.
While until now we considered general Ore algebras, at this point we need
to specialize to certain kinds of Ore polynomial rings.

4.3 Order and Denominator Bounds

4.3.1 Shift Case

We first consider Ore algebras where the pseudo-derivation is the zero-map,
as in the case of recurrence operators presented in Section 3.2.1 or g-shift
operators as in Example 3.1.3.

The key for deriving order and denominator bounds for p-removing op-
erators lies in the notion of p-bordered operators, where the leading and
the trailing coefficient share common factors (up to shifts). We can assume
without loss of generality that tc(L) = ly by dividing L by powers of X from
the right

Definition 4.3.1. ([3]) Let L € D[X;0,0] and p € D. L is called p-bordered
if p divides lc(L) and there exists a k € N such that ¢*(p) divides lo.

The maximal £ € N for which the kth shift of a factor p of the leading
coefficient of an operator divides the trailing coefficient is often called the
dispersion of p in L. It turns out that the set of p-removable operators is a
subset of the p-bordered operators. In [3], this is shown in terms of solutions
of L. We give an alternative proof based on the fact that we can reduce the
coefficients of a p-extracting operator by a shift of p.

Theorem 4.3.2. Let p € D be an irreducible and removable factor of the
leading coefficient of L € D[X;0,0]. Then L is p-bordered.
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Proof. Let P be a primitive p-extracting operator for L with tc(P) = p,, for
some m € N and o(p) | cont(PL) for i > m as in Theorem 4.1.2. Assume by
Lemma 4.1.5 without loss of generality that the maximal coefficient degree
of P is strictly less than deg(c?(p)). We have that

tc(PL) = tc(P)o™(ly),
so lp has to be divisible by o/~ (p). O

It is this difference in shifts of common factors in the leading and the
trailing coefficient that leads to a bound for the order of a p-removing oper-
ator and a bound for the denominator exponents of a p-removing operator.
We first prove the former, which is a less technically involved matter than
the latter.

Lemma 4.3.3. Let L € D[X;0,0] with lg # 0, and let p be an irreducible
factor oflc(L) such that p* is removable from L for somek > 1. Letn € N be
such that ged(a™(p),lo) # 1 and ged(a™(p),lo) = 1 for all m > n. Then p*
is removable at order n from L.

Proof. By assumption on L, there exists a pF-removing operator P, say of
order m, and by Corollary 4.2.2 we may assume that

_ Po P1 Pm m

~om(p)e  o™(p) o (p)em
for e, € N and p; € D with deg(p;) < e;deg(c™(p)) (i = 0,...,m). We
may further assume ged(o™(p),p;) =1 for ¢ = 0,...,m (viz. that the e; are
chosen minimally).
Suppose that m > n. We show by induction that then eg = e = --- =
eém—n—1 = 0, so that p, =0 for i =0,...,m —n —1, i.e., the operator P has
in fact the form

elX_|_..._|_

pm—n

_ Pm
o™ (p)em-n T npyen
Thus X" ™P € K[X;0,0] is a p¥-removing operator of order n.
Consider the operator 7' := PL € D[X;0,0]. From gm’()%lg =ty e Dit
follows that eg = 0, because

ged(a™(p), po) = ged(a™ (p), o) =1,

by the choice of py and the assumption in the lemma, respectively, and this
leaves no possibility for cancellation.

Assume now, as induction hypothesis, that eg = e; = -+ = ¢;1 = 0 for
some ¢ < m — n. Then from

Di i Pi—1 i—1 Po
t = oi(lo) + —EEL i) e 20y,
gy ” (0T e () o (p)e0
Di ;
= a*(ly),
(pyei” ()
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it follows that o™ (p)% | p;o®(lp). By the choice of p; we have that o™ (p)
and p; are coprime and by the assumption in the lemma we also have
ged(0™ 4 (p),lp) = 1 (because m — i > n), so it follows that e; = 0. In-
ductively, we obtain eg = e; = -+ = e;n—n—1 = 0, which completes the
proof. O

For the proof of the denominator exponent bound, we need to generalize
the notion of the multiplicity of a factor of an element of D, where shifts of
this factor are taken into account.

Definition 4.3.4. We call p,q € D\ {0} equivalent if there exists an n € Z
such that ¢"(p)/q is a unit in D. We write [p] for the equivalence class
of p e D\ {0}. If p, ¢ are equivalent in this sense, we write p < ¢ if 0™ (p)/q
is a unit for some n > 0, and p > ¢ otherwise.

For any irreducible factor p of u € D, let v, (p) denote the multiplicity of p
in u, and define

vy (p) == max{vu(q) g € [p]:p>q}.

Example 4.3.5. For v € Q[y] as below, the irreducible factors can be
grouped into three equivalence classes, [y], [2y + 3] and [y? + 5y + 1].

u=(y—4)(y—1y(y+1)* (2y - 5)(2y + 3)*(2y + 9)
€ly] €[2y+3]
x (y* + 5z + 1) (y* + 11y + 25)3.

€ly2+5y+1]

The values v, (p) and vy (p) for different factors p of u are v, (y —4) = 1,
vi(y—4)=0,v5(y+ 1) =3, and so on.

In Theorem 4.3.6 we now can give a denominator exponent bound for
p-removing operators. We summarize the results of this section that are
necessary to apply Algorithm 4.2.1 in a setting of Ore algebras with a trivial
pseudo-derivation.

Theorem 4.3.6. Let L € D[X;0,0] with lp # 0 be of order r and let p
be an irreducible factor of 1c(L) such that p* is removable from L for some
k> 1. Let n € N be such that gcd(c™(p),lo) # 1 and ged(a™(p),lo) = 1 for
all m > n. Then there exists a p*-removing operator P for L of the form

Po 4! Xt Dn n

P =
o (p) | on(p)er o (pyen

for some e; € N and p; € D with
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1. deg(p;) < e;deg(c™(p)) and ged(o"(p),pi) =1, and
2. ¢, <k +nvl§(L)(p),
fori=0,....n—1, and p, =1, e, = k.

Proof. Lemmas 4.2.1 and 4.3.3 imply the existence of an operator P with all
the required properties except possibly the exponent estimate. Let P be such
an operator, and consider the operator T := Y/ " t;,X* := PL € D[X;0,0].
Let e = max{er,...,e,} and P := > I p; X" := 0"(p)°P. Then p; =
o™(p)¢p; (i=0,...,n) and " (p)°T = PL and ged(po, - - . , Pn, 0" (p)) = 1.
Abbreviating v := vli( I (p), assume that e > k 4+ nv. We will show by
induction that then p; contains ¢™(p) with multiplicity more than iv for
i=mn,n—1,...,0, which is inconsistent with ged(py, ..., Pn,0"(p)) = 1.
First, it is clear that p, = o™ (p)¢ “"p,o™(l,) contains ¢™(p) with multi-
plicity > e — k > nv, because P is pF-removing. Suppose now as in-
duction hypothesis that there is an i > 0 such that o™(p)°*! | p; for
j=n,n—1,...,i+ 1. Consider the equality

Un(p)eti—H“ = ﬁzaz(lr) + ﬁi+10’i+1(l7~_1) + -+ ﬁnan(lr—n)a

where we use the convention [/; := 0 for j < 0. The induction hypothesis
implies that o™ (p)TVv+1 | p; for j =n,n —1,...,i+ 1. Furthermore, since
(i +1)v < nv < e, we have o™ (p) D+ | 6"(p)°t;1,. Both facts together
imply o™(p)+tVv+1 | 5;0%(1,). The definition of v ensures that o™(p) is
contained in o(l,.) with multiplicity at most v, so it must be contained in p;
with multiplicity more than (i + 1)v — v = i v, as claimed. O

Example 4.3.7. In the leading coefficient of L € Q[n][S; sy, 0] with
L=—n-2)n+128*+m*+2n> +n—-4)S - (n+1)(n+5),

the factor p = (n+1) appears. The dispersion of p in L is 4 and UE(L) (p)=1.
If there exists a p-removing operator, we are guaranteed to find it by running
Algorithm 4.2.1 with input k=1, N =4and F=1+4-1=25. A possible
output is

840 _, 840 _4 252 o 28 1

P = S S .
n+5 n+95 n+5 +n+5 +n+5

Here, the multiplicity of o*(p) in the denominators of the coefficients is
smaller than the bound F.
Similarly, we can try to remove p from

Ly = (n4 1)nS% 4 (3n +2)S — (n + 6).
When running the algorithm with input k=1, N=5and E=1+5-0=1,

the output is L, so ps cannot be removed from L.
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4.3.2 Differential Case

Desingularization of differential operators is classical and well-known (see
for example [47] and [27]). We include it for the sake of completeness
and describe how the classical desingularization method yields the neces-
sary bounds for Algorithm 4.2.1. For simplicity, we only consider the case
where a linear factor can be completely removed from the leading coefficient
of an operator in Cly][0; 1, d%]. In [52], more general results can be found
that also cover the case where full desingularization is not possible but the
multiplicity of a factor can be reduced. With the possible exception of the
bound for the exponents in Theorem 4.3.13, the theory in this section can
also be found in [47, 27] and [1], on which this summary is based.

As was already indicated in Section 4.1, there is a strong connection be-
tween the solutions of a differential operator and its removable factors. We
now investigate this connection in more detail. In the context of differential
equations, roots of removable factors are called apparent singularities. To
be more precise, the term ‘apparent singularity’ is defined in terms of solu-
tions of several different kinds of operators and for differential operators in
Cly][o; 1, d%}, every apparent singularity v € C of an operator corresponds
to a removable factor (y — ) of its leading coefficient and vice versa. One
also distinguishes between regular and irreqular singularities of an operator.
For our purpose it is enough to know that this distinction exists and it is
not necessary to know the formal definitions, which can be found in [27].
Points in the complex plane that are not roots of the leading coefficient of
a given operator are called ordinary points.

When considering expansions at an ordinary point or an apparent sin-
gularity, the solution space of a given operator is spanned by formal power
series solutions.

Lemma 4.3.8. Let L € Cly][0;1, d%] and v € C. Then the following are
equivalent:

1. v is either an ordinary point or an apparent singularity.

2. L has ord(L) linearly independent solutions of pairwise different orders
in Clly — 7], the ring of formal power series in (y — ). This implies
that v is not an irreqular singular point of L. ]

From this, a necessary condition for a singularity to be apparent can
be derived that does not require the computation of the formal solutions.
Let L € Cly][0;1, diy] and let f = >27 __ f.y* be a formal Laurent series
with undetermined coefficients, i.e. we assume there is an unknown minimal
index m € 7Z such that f,,, # 0 and f; = 0 for i < m. The ith derivative

of fis

3y’f: Z fz+i(z+2)7y .

Z=—00
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When substituting 0% in L by the ith derivative of f, the resulting expression

is a sum of the form
> P(Hy,

Z=—00
where P is a linear recurrence operator with polynomial coefficients. Let
P, - - -, P—k € Clz] be such that

P(f)=po(2)f: +p-1(2)fec1+ -+ p_p(2) foek.

Suppose that f is a power series solution of L of some order r. Then by
plugging in r for z in P(f) one sees that po(r) = 0 has to hold. So only
integer roots of py qualify as orders of power series solutions of L. This
approach can be generalized to series expansions at other points in the com-
plex plane by setting f = > 22 f-p® where p is an irreducible polynomial

Z=—00

in Cly]. We then call indz,(p) := po € C|z] the indicial polynomial of L at p,
where pg is obtained in the same way as above.

Lemma 4.3.9. Let L € C[y][0;1, %] and v € C. If L has a solution in

Clly — )] of order r € N, then r is a root of indr(y — 7). O
Example 4.3.10. Consider

L=(y+3)d—1and p=y+3.
We substitute 8" in L by the ith derivative of f =20 _ f.p* and get

L(f)=(y+3) > fenlz+1p"— > fp™.

=00 2=—00
Writing this as a series expanded at p, we get L(f) = > >0 P(f)p* with
P(f)=(z=1)f..
So the indicial polynomial of L at p is
indz(p) =2z — 1.
By Lemma 4.3.9, L has no solution in C[[y 4 3]] of order 0.

For an ordinary point v € C, the orders of the formal power series
solutions in C[ly — 7]] and hence also the roots of the indicial polynomial
form a sequence of consecutive integers.

Lemma 4.3.11. Let L € C[y][0;1, d%] and v € C. Then the following are
equivalent:

1. v is mot an irreqular singularity of L, the formal solutions of L at
are in C[ly — v]] and their orders are 0,1,...,dy — 1.

2. 7 is an ordinary point of L. O
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By combining Lemmas 4.3.8, 4.3.9 and 4.3.11, we get an easy way to
desingularize a differential operator L. We construct a left multiple of L
with a solution space that contains power series solutions whose orders are
the ‘missing’ roots of the indicial polynomial of L.

Lemma 4.3.12. Let L € C[y][0;1, d%] and let p = y — v be an irreducible
factor of 1c(L) such that p is desingularizable from L. Let m € N be such
that (z —m) | indz(p) and (z —m') {indr(p) for all m' > m. Set

m+1
n = deg a— .
ged(indp,(p), 2741

Then p is desingularizable at order n from L.

Proof. Let m1,...,m, € N be such that
n
ged(indg (p m+1 H z—m;) = =yl
=1

According to Lemma 4.3.8, since p is desingularizable from L, there are
ord(L) linearly independent solutions of L in C[[y —~]]. By Lemma 4.3.9, L
has no solutions of order m; in C[ly —~]] for 1 < i < n. According to
Example 3.2.8 part 1, for each p™ there is an order 1 annihilating operator
LieCly ][871,d ]. We set

L' = lelm(Ly, lelm(Ly,—q,1lclm(. .., lelm(Ly, L) ... ))).

L’ then is of order at most n + ord(L) and has n + ord(L) many linearly
independent solutions in C[[y —7]]: The ord(L) many linearly independent
solutions in C[[y — v]] of L and one solution from each L;, 1 < i < n. By
Lemma 4.3.8, v is not an irregular singularity of L', the formal solutions
of L' at v are in C[[y — 7]] and their orders are 0,1,...,ord(L") — 1. Thus
by Lemma 4.3.11, v is an ordinary point of L’. O

While the proof of Lemma 4.3.12 gives rise to a desingularization algo-
rithm for differential operators, we can also use the order bound for Algo-
rithm 4.2.1. The necessary bound for the exponents in the denominators
of the coefficients of a desingularizing operator can be obtained in a way
similar to the shift case.

Theorem 4.3.13. Let L € Cly][0; 1, dd] be of order r and let p be an irre-
ducible factor of lc(L) such that p is desmgulam'zable from L. Furthermore,
let k be the multiplicity of p in L and let n € N be as in Lemma 4.53.12.
Then there exists a p-desingularizing operator P for L of the form

—+—a+ + Lo,
peo T pen

for some e; € N and p; € Cly| with
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1. deg(pi) < e;deg(p) and ged(p,p;) = 1, and
2. e; < (n+1)k,
fori=0,....n—1, and p, =1, e, = k.

Proof. Part 1 and the form of P follow from Corollary 4.2.2. The order
of P follows from Lemma 4.3.12. We prove part 2 in the same way as
part 2 of Theorem 4.3.6. Consider the operator T := >/ t,X" := PL €
Cly][o; 1, d%] Let e = max{ei,...,e,} and P := Y1  p; X" := p°P. Then
pi =p°%p; (i=0,...,n) and p°T = PL and ged(po, . .., Pn,p) = 1.
Assume e > (n + 1)k. We show by induction that then p; contains p with
multiplicity more than ik for ¢ = n,n — 1,...,0, therefore contradicting
ged(Pos - -+ P,y p) = 1.

Since P is a p*-removing operator in normal form, its leading coefficient is
1/p¥. Thus P, contains p with multiplicity e — k > nk.

Suppose now as induction hypothesis that there is an i > 0 such that p/**! |
pj for j =n,n—1,...,7+ 1. Consider the equality

Ptivr = Pily + Piga (- ) 4+ Dal. - ),

where the cofactors of the p; are linear combinations of some (derivatives of)
coefficients of L. The induction hypothesis implies that p/**1 | pj for j =
n,n—1,...,i41. Furthermore, , since (i+1)k < nk < e, we have p(iTDk+1 |
pftipr. Both facts together imply ptts+1 | 5. The multiplicity of p in I,
is k, so p must be contained in p; with multiplicity more than (i+1)k—k = ik,
as claimed. O

Example 4.3.14. We try to remove the factor p = (y—1) from the operator
L= (y—1)(=5y — 2y + 21)9% + (16y% — 12y — 18)d — 20.

To get an order bound for the desingularizing operator, we compute the
indicial polynomial:

indz(p) = 14(z — 2)=.
In indy(p), the factor (z — 1) is missing to complete the factorial z3. This
suggests the order bound N = 1. The multiplicity of p in L is k = 1, so
as the bound for the exponents in the denominators of the coefficients of a

desingularizing operator we get £ = 2. Running Algorithm 4.2.1 with this
input yields as possible output

22

P=———
y—1

0.

p is desingularizable from L at order 1.
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Chapter 5

Order-Degree Bounds for
Annihilator Ideals

5.1 Degree-Reduction by Desingularization

A holonomic sequence or function is not only annihilated by one, but in-
finitely many operators of different orders and maximal coefficient degrees.
Usually, it is possible to find an operator of relatively low degree if the order
is chosen high enough and vice versa. Depending on the context, opera-
tors of certain order-degree combinations might be more useful than others.
An operator of lowest order has the smallest solution space, an operator
of lowest degree gives information about the non-removable factors and the
singularities of the solutions, an operator with balanced order and degree is
likely to be fast to compute, and so on. In this chapter we investigate which
properties of a generator of an annihilator ideal can be used to predict all
possible order-degree pairs (r,d) such that there exists an element in the
contraction of the ideal with order r and degree d.

We have seen that we can easily reduce the degree of a given operator
if we can remove some singularities from its leading coefficient. The normal
form of a removing operator suggests that the numerator degree is strictly
less than the denominator degree for each of its coefficients and so, the
degree in the removed operator will drop by at least 1. The main idea
behind getting good order-degree bounds is a trade-off between the leading
coefficient degree — which is minimal when considering a removing operator
for all removable factors — and the degree of all the other coefficients. We
modify removing operators in a way that allows the leading coefficient to
be bigger and in return reduce the maximal degree. The problem of order-
degree bounds was already considered in [16] for recurrence operators and
in [17] for differential operators. The new results presented here were found
in collaboration with S. Chen, M. Kauers and M. Singer and have been
published in [15]. In Section 5.2 we provide a comparison of the old and the
new results for some examples.
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Example 5.1.1. Assume we are given a finite sequence of rational numbers
that comes from a sequence (tn)nE{O,l,...} which admits a linear recurrence
equation with polynomial coefficients. If the amount of data is sufficiently
large, we are able to guess recurrence operators of some fixed order and max-
imal coefficient degree that annihilate (tn)ne{o,l,... }- For details on guessing
and implementations of the method, see [29, 26]. For example, consider

tn =i ((%;—4) +(2n—k)!+k3).

k=0

Depending on the number of terms we have given, we can guess operators of
different orders and coefficient degrees. The gray area and the green dots in
Figure 5.1.1 indicate the order-degree-pairs for which we can find recurrence
operators for the sequence t,. For the order-degree pair (6,21) represented
by the leftmost green dot we can find a generator L of the annihilating ideal
of ¢, whose leading coefficient contains a removable factor of degree 17. By
using Algorithm 4.2.1 we can construct a left multiple of L of order 7 where
the degree of the leading coefficient is reduced to 4 (indicated by the blue
dot) and the other coefficients have degrees up to 20. (indicated by the red
dot and the yellow line). The goal is to balance the degrees such that the
red and the blue dot meet at (7,12).

25| Degrf%e

20 - ......... .........

15+

o At

10k ......... ......... ........ O

5 —

T B . ............................................................................ 41_.—.

order

L I L I L H
5 10 15 20 25

Figure 5.1.1: Order-Degree pairs in the annihilating ideal from Example 5.1.1.
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We describe our approach of balancing degrees in two ways. First we
give a general overview of the method and then illustrate it in a feasible
example.

Let L be an Ore polynomial in K[y|[X;0,d] and let P € K(y)[X;0,J]
be a p-removing operator for L in normal form (Figure 5.1.2 top). To bal-
ance the degrees in PL, we proceed as follows: Take an operator @) with
undetermined coefficients of degree deg(p) — 1 and multiply it on P. In
the result QP we reduce the numerator degrees so that they are lower than
the denominator degrees (Figure 5.1.2 middle). Now, the undetermined co-
efficients of ) appear in the numerators of the coefficients of QP and we
can equate some of the highest degree coefficients to 0. This gives a linear
system and by choosing the order of ) and the number of equations in the
system carefully, we make sure that it has a non-zero solution. Multiplying
QP on L then will reduce the degree in L further than just multiplying P
on L. (Figure 5.1.2 bottom)

Example 5.1.2. Consider the recurrence operator
L= (2n% +2n 4 2)S — (2n® 4+ 6n? + 8n + 6) € Q[n][S; sn, 0],

Using Algorithm 4.2.1, we can compute an order 1 operator P that removes
the factor p = 2n% + 2n + 2:

1 1 (18n? 4 102n + 109
P=——S5S+— .

o(p) 47 a(p)
When we multiply P on L, we see that while the degree of the leading
coefficient drops to 0, the degree of the other coefficients only decreases
by 1.

2 1
PL =5+ 4—7(9712 + 24n — 68)S — 4—7(18n2 —102n — 109).

By computing the dispersion of p in L, one can see that L is of the form
L=pS—o(p),

so it is an annihilating operator of minimal order for the sequence t,, = p(n).
We have seen in Example 3.2.3 part 1 that sequences given by a polynomial
term in Q[n] admit a recurrence equation with coefficients in Q, and so,
there exists a left multiple of L where all coefficients are of degree = 0. We
aim at modifying the p-removing operator P in such a way that we can get
two left multiples of L with maximum degree 1 and 0 respectively. By this
we illustrate the proof of the main theorem of this chapter, Theorem 5.1.5,
even though in this case there are easier ways to find a recurrence with
coeflicients in @ for p.
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As was shown in Lemma 4.2.1 part 1, certain left multiples of p-removing
operators are also p-removing, so we can multiply P with some element
from Q[n] coprime to p. Furthermore, Lemma 4.2.1 part 2 allows us to
remove polynomial parts in the coefficients of p-removing operators. This
means by taking @1 € Qn] of degree < deg(p) with undetermined coef-
ficients and removing the polynomial parts in 1P, we get a p-removing
operator P, for L such that the degree maximum of AL is < 2 and the
coefficients contain the undetermined coefficients of (1. This allows us to
equate some of the higher degree coefficients to zero, solve the linear systems
in terms of the coefficients of ()1 and thereby reduce the degree of P, L.

In this particular example, we get for (01

Q1 =3n -3,
and for this choice P, becomes

p,_ =8 —1on—22
2 pr—
a(p) a(p)

Multiplying P> to L then gives a left multiple of L of order 2 with maximal
coefficient degree 1:

PyL = (3n — 8)S? + (—18n + 22)S + (15n + 22).

To further reduce the degree, one needs to increase the number of equations
in the linear system while preserving the solvability, which means having
more variables than equations. To do so, we can set ()2 to be an operator
of higher order (note that @) is an operator of order 0) with indeterminate
polynomial coefficients of degree < deg(p). As before, we then can multi-
ply Q2 to P, remove the polynomial parts to get P3 and equate some high
degree coeflicients to zero.

Here, we get (2 of the form

Q2 = S%+ (...degree 9...)S + (...degree 18...),

and after multiplying it to P and reducing the numerators of the coefficients
by the respective denominators, Ps is

1 —6n3 — 48n2 — 126n — 110
Py = g3 52
STEm T 2(p)E
6n° + 24n?% + 30n + 22 1
o(p)P o(p)’

The product P3L then is a left multiple of L with constant coefficients.
PsL = S* —45% +65% — 45 + 1.

Following the same strategy with )3 of order 1, one ends up with a linear
system that has no non-zero solution. Thus it is not possible to find Q)3 of
order 1 such that (Q3PL has constant coefficients.
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Q
qo
deg(L) — 1 - -
PL
plo
deg(p) — 1 - -
Q
9 q (numerator) qpo qp1 qp2
deg(L)1III II
QPL
gplo gply gplz gpls qpls qpls
Equate highest degree|coefficients to zero.
deg(p) — 1 deg(p) =1 - - - - - - - - - - - -
Q QP J_l_l
(numerator) qpo qp1 qp2
deg(L) —1 - - - - - - = = = = - - - - - - - - - - - - - -
QPL I I I I I I
gplo gply gplz qpls qpls qpls

Figure 5.1.2: Balancing degrees by a modified removing operator.
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Before we can formalize this approach, we prove two technical lemmas.
The first generalizes the Bézout relation to more than two polynomials and
will be used in the proof of the main theorem to show that the new operator
with balanced coefficient degrees is not zero.

Lemma 5.1.3. Let uy,...,u, € Kly| be pairwise coprime polynomials and
U = ULUQ * U, and let v1,..., vy € Kly] be such that deg(v;) < deg(u;)
(i=1,...,m). If

then vi = vy =+ = v, = 0.

Proof. Since the u; are pairwise coprime, u; { (u/u;) for all i. However,
u; | (u/uj) for all j # i. Both facts together with Y " v;u/u; = 0 imply
that u; | v; for all 4. Since deg(v;) < deg(u;), the claim follows. O

The next lemma gives a characterization of removability which is more
convenient in our context.

Lemma 5.1.4. A factor p € D is removable from L € D[X;0,0] at or-
der n if and only if there exists P € D[X;0,d] with ord(P) = n and
PL € o"(p)le(P)D[X; 0, ].

Proof. First, let P € D[X; 0, 4] be of order n and such that PL is an element

of o™ (p)lc(P)D[X; 0,d]. Then P/ = WP is a p-removing operator.
Conversely, start from a p-removing operator of the form
n—1 i 1
P/ — 7 XZ + Xn,
; o (p)© a™(p)
and set P = o™(p)¢P’ where e = max{ep,...,en—1,1} > 1. Because of

P'L € D[X;0,6] it follows that
PL € o"(p)’D[X;0,0] = c"(p)lc(P)D[X; 0, d]. O

We are ready to state the main result of this chapter, a lower bound for
the degree of left multiples of a given operator as a function of the order.

Theorem 5.1.5. Let L € K[y][X;0,0], and let p1,...,pm € K[y] be factors
of lIc(L) which are removable at orders ni, ..., ny,, respectively, so that the
o™ (p;) are pairwise coprime. Let r > ord(L) and

d > deg(L) — E;(l - T_MEEL)HY deg(pi)w,

1=

where we use the notation (x)" := max{z,0}. Then there exists an operator
Q € K(y)[X;0,0] \ {0} such that QL € K[y][X;0,0] and ord(QL) = r and
deg(QL) = d.
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Proof. Set s := r —ord(L) so that s = ord(Q). We may assume without

loss of generality that s is such that 1 — Tﬁorgﬁ =1- % >0foralli

sj—il < 0 from consideration. We

by simply removing all the p; for which 1 —
thus have s > n; for all 7.

Lemma 5.1.4 yields operators P; € Kly][X;0,0] of order n; with P,L €
o™ (pi) le(F)K[y][X; 0,0]. Set

g=11 11 o/ o (h),
i=1 j=0

where h; = lc(P;). Consider the ansatz

m s—n;

_ iy 4 ip.
9= Z Z A Uj+”i(pz‘)0j(hi)X b
=1 j=0
for undetermined polynomial coefficients ¢; ; (i =1,...,m; j =0,...,5—n;)

of degree less than deg(p;). Regardless of the choice of these coefficients, we
will always have @1 € K[y|[X;0,0] and Q1L € ¢K|y][X;0,6]. Also, for
arbitrary R € K[y|[X;0,d] and Q2 = Q1 — qR we have Q2 € K[y|[X; 0, ]
and Q2L € gK[y][X;0,0]. This means that we can replace the coefficients
in @1 by their remainders upon division by ¢ without violating any of the
mentioned properties of Q1.

Also observe that any operator (2 obtained in this way is nonzero unless all
the g; ;j are zero, because if k is maximal such that at least one of the g; ;. is
nonzero, then

- q k - q
Ic(Q1) =) ik - d"(hi) =) Gir——
; ok tni(p;)o* (hy) ; oh i (p;)

is nonzero by Lemma 5.1.3. Furthermore, we have lc(Q1) # 0 mod ¢, be-
cause deg(g; ) < deg(p;) implies deg(lc(Q1)) < deg(q).

The ansatz for the g; ; gives Y (s — n; + 1) deg(p;) variables. Plug this
ansatz into (01 and reduce all the polynomial coefficients modulo ¢ to obtain
an operator Q2 of degree less than deg(q) = >.;" (s — n; + 1)(deg(p;) +
deg(h;)). Then for each of the s + 1 polynomial coefficients in Q2 equate
the coefficients of the terms 1’ for

j > i((s —n;)deg(p;) + (s —n; + 1) deg(i%-)) n {Zﬁznjrdfg(pi)J ,
=1
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to zero. This gives altogether

m

(s+1) (Z(s —n; + 1)(deg(pi) + deg(hi))

=1
_ i((s —n;) deg(p;) + (s —n; + 1) deg(hi))
=1
B )

s+1

— (s + 1)(2 deg(p;) — {Z?ilsnidleg(pi)J _ 1>7

equations. The resulting linear system has a nontrivial solution because

#vars — #eqns

_ i(s —n; +1)deg(pi) — (s + 1) <§: deg(p) - {Zﬁl . deg(pi)J B 1>

> 2 s+1
o gm dog(pr) — (54+1) <_ LZTlsnidfg(pi)J _ 1)

> — Zn, deg(p;) + P Zn, deg(p;) = 0.
i=1 i=1

By construction, the solution gives rise to an operator Q2 € Kly][X; 0, d] of
order at most s with polynomial coefficients of degree at most

S ™ n; deg(p;
Z((s —n;) deg(p;) + (s — ni + 1) deg(h;)) + {Z’_lsn_k 1eg(p )J ,

i=1

for which Q2L € ¢K[y|[X; 0, d]. Thus if we set Q = %Qg € K(y)[X;0,6], we
have ord(QL) = ord(L) + s = r and deg(QL) is at most

deg(L) + deg(Q2) — deg(q)

< deg(L) + > _((s — n;) deg(pi) + (s — n; + 1) deg(h))

i=1
+ {Zilsnidfg(pi)J - ;(s —n; + 1)(deg(p;) + deg(hs))
i m wo(p) o | Zimt i deg(p:)
= deg(L) ;d g(pz)+{ s+ 1 J

— deg(L) — Lf;(l - Si—ll) deg(m)w,

as required. The final step uses the facts |—z| = —[z| and [z4+n] = [z]+n
for x € R and n € Z. O
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5.2 Examples and Applications

We compare the order-degree bound of Theorem 5.1.5 with the real order-
degree areas and older bounds in several specially constructed examples and
examples coming from applications. The bound in Theorem 5.1.5 turns out
to be sharp in the vast majority of the cases and we only know of one class
of examples (Example 5.2.6) that was provided by Mark van Hoeij where it
overshoots.

Example 5.2.1. (Example 5.1.1 cont.) Applying the result given in Theo-
rem 5.1.5 to the operator L in Example 5.1.1, we see that the order-degree
area in the left ideal generated by L is bounded by a curve given by (the
floor function applied to) a hyperbola:

4r — 3

r—>5
In Figure 5.2.1, it appears that for some values of r, the bound is too low,
but this only happens for non-integer values of  which are irrelevant.

J, for r > 5.

25| Degrfge

204 oo ......... ...........

15+

100 R S e

Figure 5.2.1: Order-degree bounds for Example 5.2.1.

Example 5.2.2. To obtain a recurrence operator in Q[n][S; sn, 0] with re-
movable factors with dispersion (see Section 4.3.1) greater than 1, we start
from a hypergeometric term. As mentioned in Example 3.2.3, any sequence
given by



with p € Q[n] and ¢1, co, k1, ko € N\ {0}, is hypergeometric and is annihi-
lated by the order 1 recurrence

L= Tden (TL)S — Tnum (n),

where 7 = Thum/Tden is the shift quotient of ¢,,. The shift quotient can be
written in the form
r(n) = p(n+1)(can+ci)(eain+c1—1)...(can+1)

p(n) (can+co)(can+ca—1)...(con+1)°

Assume that p is such that it does not contain a factor of the form (cin + 1)
or (can+1) for i € Z. It follows that the roots of p that are not roots of o(p)
appear in the leading coefficient of L. We show that these are removable.
To this end, we construct an annihilating operator for ¢,, whose leading
coefficient does not contain p. Observe that for all ¢ € N with ¢ > 0, the
quotient o?(t,)/t, is a rational function:

ot (tn) _ p(n+1i) (cin +ic)!  (con)! _ p(n + 1)
tn p(n) (cin)! (can +ico)! p(n)

T (n)a

for some rational function r; with numerator and denominator coprime to p.
Next, let P be an annihilating operator for the C-finite sequence p(n) of
order ord(P) =: m with coefficients p; in Q and set

1 1
L= pmism + Pm—1

m Tm—1

1
Sm*1+~~+plas+p0.

Then 1

7L,(tn) = P(p) =0.

ln
and clearing denominators in L’ will give the desired annihilator of ¢,, whose
leading coeflicient is coprime to any shift of p. Consequently, p is removable
from L.
If we choose p to be a o-factorial, we can control the dispersion of the
removable singularities: Let p = ¢¥l where ¢ € Q[y] is irreducible and
k € N. The leading coefficient of L contains the denominator of o (pl*)/pl*!
and the trailing coefficient of L contains the numerator. We have

a(p*) _ ¥ (p)

pF o p

So p is removable at order k from L.
As a concrete example, consider

[4] (2n)!3
tn = ((7” - 9)10) E5n;!2'
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Then the shift quotient is

 (Tn+19) 8(n +1)(2n +1)°
") = T 0)10 25(3m + 1)2(5n + 2)2(5m + 3)2(n + 42

and the factor (7n — 9)!° appears with dispersion 4 in L. The lowest order
desingularizing operator is of order 4. In Figure 5.2.2 it can be seen that the
order-degree curve obtained from Theorem 5.1.5 consists of a line parallel
to the order axis and a translated hyperbola given by

5640

J, for r > 3.
”

l _____ __________ _____

15+

Figure 5.2.2: Order-degree bounds for Example 5.2.2.

Example 5.2.3. Similar to the construction explained in Example 5.2.2,
we can obtain a recurrence operator whose leading coefficient contains two
coprime factors which are removable at two different orders. Consider the
hypergeometric sequence

b = ((5n3 +3n2 +7Tn+5)(n+ 1/5)“”) PaidA
Here, p1 = (5n® +3n% + Tn+5) is removable at order 1 while py = (n+1/3)
is removable at order 11. Theorem 5.1.5 suggests that the order-degree

curve is given by the minimum of two hyperbolas, one emerging from the
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desingularizing operator for p; (the red hyperbola in Figure 5.2.3) and the
other one from the desingularizing operator for both, p; and py (the blue
hyperbola in Figure 5.2.3). The superposition of these two hyperbolas (the
purple curve in Figure 5.2.3) then describes the exact order-degree area of
the annihilator ideal.

=[] ]

30+-%--F--1-K---

25

20+----- LEE

Figure 5.2.3: Order-degree bounds for Example 5.2.3.

In [16] and [17], the authors derive order-degree bounds for ideals gen-
erated by operators that come from applying hypergeometric/hyperexpo-
nential creative telescoping to summation and integration problems. In this
context, the information necessary to compute the bounds come from hyper-
geometric and hyperexponential terms and no information about the least
order operator in the ideal is required. One of the major drawbacks of The-
orem 5.1.5 is that the least order operator is usually not known. There are,
however, Examples where the bound presented here performs significantly
better than the bounds in [16] and [17].

Example 5.2.4. Consider the minimal order telescoper L for the hyperge-
ometric term
b F@2n+k)I'(n—k+2)

- T(2n—k)D(n+2k) ’
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from Example 6.2 of [16]. L is of the form

L= —10n(8 + 5n)(9 + 5n)(11 + 5n) (12 + 5n)p(n)S>
+ (... degree 15...)S% 4 (... degree 16...)S
+9(n+1)(3n+1)(3n +2)2(3n +4)p(n + 1),
where p is a certain irreducible polynomial of degree 10. This polynomial is

removable at order 1. Therefore, by Theorem 5.1.5, we expect left multiples
of L of order r and degree bounded by

{6?‘—2

, > 2.
r—2J "

In Figure 5.2.4 the curve |[(6r — 2)/(r — 2)| (blue) is contrasted with the
estimate |(8r —1)/(r —2)] (red) derived in [16] for this example. The new
curve matches precisely the boundary of the gray region, even including the
very last degree drop (which is not clearly visible on the figure): for r = 12
we have (6r—2)/(r—2) = 7 and for r = 13 we have (6r—2)/(r—2) = 6.9 < 7.

Figure 5.2.4: Order-degree bounds for Example 5.2.4.

Example 5.2.5. For the hyperexponential term h = % with

u=4y%2% + Ty%z + 9% + 5yz% + 2yz + 3y + 522 + 2 + 6,
v = 6y22% 4+ 102 + 6y + 9y2% + byz + 8y + 822 + 10z + 8,
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from Example 15.2 in [17], the minimal order telescoper L has order 3 and
degree 40. The leading coefficient contains an irreducible polynomial p of de-
gree 23 at order 1 and otherwise only non-removable factors. Theorem 5.1.5
therefore predicts left multiples of L of order r and degree

{177“—11J
— |, T>2.
r—2

Again, this estimate (blue curve in Figure 5.2.5) is accurate, while the esti-
mate | (24r—9)/(r—2) | derived in [17] (red curve in Figure 5.2.5) overshoots.

Figure 5.2.5: Order-degree bounds for Example 5.2.5.

Example 5.2.6. (M. van Hoeij, personal communication) Although the
bound of Theorem 5.1.5 appears to be tight in many cases, it is not always
tight. The operator

n?(n +2)%(n 4+ 4)*(n 4 6)(2n — 3)S
—(n+12%n+3)%*n+5)2(2n—1),

is an example: It has a left multiple of order 2 and degree 3 although
according to Theorem 5.1.5 we would expect a multiple of order 2 to have
degree at least 8 — (1 — 517)T4 = 4. (Figure 5.2.6)
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Figure 5.2.6: Order-degree bounds for Example 5.2.6.

Example 5.2.7. ([8]) Consider the following 3D-lattice walks problem for
a fixed stepset in Z3. For n € N, count all the lattice walks in the octant N3
that start from (0,0,0) and that perform exactly n steps without leaving
the octant. We denote this number by ¢,. This problem is studied in [§]
and for a certain stepset, the authors guessed a recurrence operator L €
Zi90017[1][S; sn, 0] that annihilates the sequence (t, mod 90017),en. L is of
order 95 with maximal coefficient degree 3740 and its leading coefficient
contains a factor of degree 3685 which is removable at order 1.
The order-degree bound (see Figure 5.2.7) predicted by Theorem 5.1.5 sug-
gests that guessing an operator with order slightly larger than 95 is signifi-
cantly faster than guessing the lowest order operator. The bound is

55(r — 27)

{ r—94

Example 5.2.8. ([6]) The evaluation of Feynman diagrams in elementary
particle physics leads to sequences that can be expressed in terms of general-
ized harmonic sums. Some examples require hundreds of different harmonic
sums. All these sequences are D-finite, but of very high order. The example
shown in Figure 5.2.8 was taken from [6]. The minimal order operator has
order 35 and degree 938. Its leading coefficient contains a factor of degree
893 which is removable at order 1. In [6], the authors guessed two operators
of order 53 and degree 92 and then computed their GCRD to get the minimal

order operator. This is a point on the curve given by L%J , forr > 34.

J, for r > 94.
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Figure 5.2.7: Order-degree bound for Example 5.2.7.
, GCRD at (35,938)
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Figure 5.2.8: Order-degree bound for Example 5.2.8.
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Chapter 6

Improved Polynomial
Remainder Sequences
for Ore Polynomials

6.1 Polynomial Remainder Sequences

We have seen that, given two operators in an Ore algebra D[X; 0, 0], we are
able to compute their greatest common right divisor using the Euclidean
algorithm provided that D is a field. If the base ring is merely a domain,
the computations will in general have to be carried out in its quotient field K.
The output will have coefficients in the quotient field, but by making use of
the fact that any K\ {0}-left multiple of a GCRD is again a greatest common
right divisor of the input operators, we can clear any denominators appearing
in the result and still obtain a GCRD, now with coefficients in ID. As we
will see, it is possible to extend this idea and multiply also the remainders
that appear during the execution of the algorithm by a sufficiently large,
easy to predict factor to avoid denominators and carry out all the division
steps in D[X;0,d]. An introduction to this technique in the commutative
case can be found in [24] and [41] and for Ore operators, it is stated in [40].

Avoiding computations in K can significantly improve the running time
of the algorithm, but careless multiplication by base ring elements might
result in remainders with extraordinarily large content, outweighing the
speed-up achieved by the fraction free division. To optimize the running
time, we want to make sure that no non-trivial denominators appear in the
remainder coefficients and at the same time divide out as much content as
possible. In this chapter we derive a new way of doing so where we also try
to reduce the additional costs for identifying factors of the content of the
remainders to a minimum. Before stating our own contribution, we provide
in this and the following section an overview over polynomial remainder se-
quences and subresultant theory for Ore algebras. The key results of this
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theory were first given and proved by Ziming Li in [40]. We elaborate the
theory by also proving some further theorems analogous to the commutative
case which were not needed by Li.

Like in Chapter 4, we consider the following situation throughout the
chapter. We would like to stress again that this covers many Ore algebras
relevant in applications:

Setting. Let D be a Euclidean domain with degree function deg and let
D[X;0,0] be an Ore polynomial ring where o is an automorphism. We
denote the quotient field of D by K and fix operators A, B € D[X;0,d],
B # 0 with ord(A) > ord(B). Furthermore we let G € D[X;0,0] be the
GCRD of A and B in K[X;0,0]. As stated in Section 4.1, the maximal
coefficient degree of an operator L is denoted by deg(L). In order to simplify
the analysis of the size of the intermediate results in the Euclidean algorithm,
we assume that deg(ab) < deg(a) + deg(b) for all a,b € D.

Recall that the unit normal greatest common right divisor G of A and B
by definition has coefficients in DD, is primitive in D[X; 0, d] and its leading
coefficient is unit normal in ID. Even though G has coefficients in DD, it is not
necessarily a GCRD in D[X};0,6] but in K[X;0,d]. As was established in
Chapter 4, the left quotients lquo(A, G) or lquo(B, G) can have coefficients
in K if G contains removable factors.

In order to put optimizations like the ones outlined above into prac-
tice, we need to slightly modify the division with remainder process by
introducing two base ring elements a and [ as factors in the remainder
formula (2.1.1). The first one, «, is necessary for clearing possible denom-
inators while 3 is used for dividing out known parts of the content of the
new remainder.

Example 6.1.1. Let A, B € Z[X] with
A=4X°+7X*+9X +9, B=2X"+3.
Division with remainder in Q[X] gives

A= (2X+£)B+3X—g. (6.1.1)

We can clear the denominators of the coefficients of the remainder by mul-
tiplying (6.1.1) by a = 2:

aA=(4X +7)B+6X — 3.

The new remainder now has coefficients in Z, but also content that can be
divided out. So with 8 := 3 we get

aA=(4X+T7)B+ pB(2X —1),

and one can proceed in the GCRD computation by dividing B by 2X — 1.
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In general, for two operators A and B, the remainder formula (2.1.1)
changes into

aA=QB+ PR, with ord(R) < ord(B).

We allow this refined division in each iteration of the Euclidean algorithm
and also modify the computation of the Bézout coefficients accordingly such
that (2.1.2) still holds.

Algorithm 6.1.1: Refined extended Euclidean algorithm
Input: A, B € D[X;0,d] and two sequences
(2)ieq1,...eys (Bi)ieqr,....ey in K\ {0}
Output: G, S, T such that G = u - gerd(A, B) for some u € K
and G = SA+TB.
(Ro, 1) < (A, B)
(So, To, 517 Tl) — (1, 0, 0, 1)
141
WHILE R; # 0:
(RiJrl, Qz) — (ﬁ;l lrem(aiRi,l, Rz)7 lquo(aiRi,l, Rl))
(Sit1, Tiv1) < (B; HaiSi—1 — QiS), B HewTiy — QiT;))
14—1+4+1
RETURN (R;_1,Si-1,Ti-1)

In order to show that Algorithm 6.1.1 is correct and to derive good
choices for the «; and f;, a thorough investigation of all the intermediate
results in the execution of the algorithm is necessary. Formally, we treat
these as sequences of operators and base ring elements.

Definition 6.1.2. Let (Ri)icqo,....e41}, (Qi)icf1,...e3> (Sidieqo,....e41) as well
as (Ti)ieqo,....e+13 be sequences in K[X;0,0], (di)icqo,....4 @ sequence in N
and let ()ieqi,... ¢y and (Bi)ieq1,... e—1} be sequences in K such that

Ro = A, Rl = B, di = ord(Ri),
;R = QiR + BiRiy1, diy1 <dj,
R, = S;A+T;B, ord(S,-) =dy —d;_1, OI‘d(Tl‘) =dy—d;_1,

and all R; are non-zero except for Ry, 1. We call the sequence (R;);cqo,....e+1}
a polynomial remainder sequence (PRS) for A and B. A PRS is called
normal if d; =d;—1 — 1 for 1 <¢ </,

Whenever we talk about a PRS (R;)icqo,.....+1}, We allow ourselves to
refer to the related sequences (Qi)ieq1,....e3» (di)ieqo,....¢y €tc. as in the above
definition without explicitly introducing them.

Before we get into any further analysis of possible advantages of this
refined division approach, we show that we are indeed free to choose the «;
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and G; and still get a GCRD in the second to last division step. This proves
the correctness of Algorithm 6.1.1. (The correctness of the new formulas for
the Bézout coefficients can be shown easily by hand calculation.)

Theorem 6.1.3. Let (R;)icqo,.. 041} and (Ri)ie{o ) be two PRSs for A
and B. Then £ = { and there exist 7z, ..., 741 € K\ {0} such that

Ri =~iR; for all2 <i</{+1.

Also, for each choice of vy, ..., vy, € K\{0} and vy =] = 1, the sequence
(ViRi)icqo,....e+1y 15 a PRS for A and B.

Proof. 1t suffices to show that for any two operators A, B € K[X;0,4] and
base field elements «, 8 € KK\ {0}, there exists v € K\ {0} with Irem(A, B) =
v - lrem(aA, BB). Set v = o~ 1. Then there is a Q € K[X; 0, ] such that:

v - lrem(aA, fB) = v(aA — QBB) = A — <;Q6> B.
\w‘—/
-0

By the uniqueness of the left quotient of two operators, Q is equal to
lquo(A, B) and thus v - lrem(aA, BB) = Irem(A, B).
The second part of the theorem follows by defining a PRS (R});c(o,....e+1}

forAandBwithai:mndﬁi:W 0

A PRS for A and B is uniquely determined by specifying the «; and ;,
which is an immediate consequence of the uniqueness of the quotient and
the remainder of two Ore operators. Next we will study how to choose these
factors in order to improve the running time of the Euclidean algorithm.

An upper bound for the possible denominators in the remainder coeffi-
cients and thus a suitable choice for the a; can be found easily: From the
non-commutative analog of (2.2.1) it follows that the common denominator

of the coeflicients of the remainder of two operators A and B can be at most
IC(B)[dAdeJrl} )

Definition 6.1.4. Set o = lc(B)[44=95+1  Then the pseudo-remainder
prem(A, B) and the pseudo-quotient pquo(A, B) of A and B are defined as

prem(A, B) := lrem(«A, B), pquo(A, B) := lquo(a4, B).  (6.1.2)

Both, the pseudo-remainder and the pseudo-quotient of A and B have
coefficients in ID. It can happen that « as in Definition 6.1.4 contains too
many factors which then appear as content in the pseudo-remainder. In
implementations of the refined Euclidean algorithm, these factors should be
removed from « — provided that they are known — before it is multiplied
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to A. In the development of the theory however, we are free to include such
factors in our choice of 8 and thus we will always set

a; = le(Ry)ldi—1—di+1] (6.1.3)

in any PRS with remainders in D[X;0,6]. It should be noted that most
of the content generated by pseudo-remaindering usually is not a result of
choosing the «a; too big.

Example 6.1.5. Let a; be as in (6.1.3) and set

1. B; = 1. This is called the pseudo PRS for A and B. Here, no content
will be divided out.

2. Bi = cont(a;R;—1 — Q;R;). This is called the primitive PRS for A
and B. The coefficients of the remainders will be as small as possible,
but it is necessary to compute the GCD of the coefficients of each
remainder in order to get the (;.

While in both of the above PRSs all the remainders are elements of
D[X;0,0], the degrees of the coefficients can differ drastically, as illustrated
in the following example. It can be observed that the degrees of the coeffi-
cients in the pseudo PRS typically grow exponentially with ¢, which renders
this PRS practically useless. (See [53] for an analysis of the coefficient growth
in case of commutative polynomials.) The growth in the primitive PRS is
linear in i, if deg(o(a)) < deg(a) and deg(d(a)) < deg(a) for all a € D
(Theorem 6.3.15).

Example 6.1.6. We have seen in Example 5.1.1 that the method of guessing
can be used to get annihilating operators of different orders and degrees for
a holonomic sequence of which we just know finitely many terms. The cost
of guessing is proportional to orderxdegree and hence, the (most often) hy-
perbolic shape of the order-degree bound derived in Chapter 5 suggests that
guessing a minimal order operator is usually more expensive than guessing
an operator with balanced order and degree. To get a reasonable candidate
for the lowest order operator, we can use the Euclidean algorithm, since
the greatest common right divisor of two annihilators guessed at different
orders and degrees has a high chance of being the generator of the whole
annihilator ideal. Consider the sequence from Example 5.1.1,

tnzéo ((2";4> +(2n—k)!+k:3>.

Given the first 300 terms of this sequence, we can find two operators A
and B in Q[n][S; sy, 0] with d4 = 14, dp = 13 and maximal coefficient de-
gree deg(A) = 5, deg(B) = 6 respectively. Both operators annihilate the
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given sequence, but none of them is of minimal order. To get an annihilating
minimal order operator, we compute the GCRD of A and B in Q(n)[S; sy, 0].
Table 6.1.1 shows the maximal coefficient degrees of the remainders for dif-
ferent PRSs for A and B.

PRS Ry | Ry | Ry | Rs | Re | R7 | Rsg
pseudo 11 | 22 | 49 | 114 | 271 | 650 | 1565
primitive | 9 | 12 | 15 | 18 | 21 24 21

Table 6.1.1: Maximal coefficient degrees for different PRSs in Example 6.1.6.

The example confirms that the degrees in the pseudo PRS grow exponen-
tially. This behavior is typical for generic input as well as for input coming
from applications. While the primitive PRS only has linear growth in the
degrees, the GCD of the coefficients of each remainder has to be computed.

Our goal is to find a choice for the 5; that reduces the computational
overhead to a minimum while still determining most if not all of the content
of the remainders. The improvements presented in this work are based on the
subresultant PRS. In this PRS, the content that is generated systematically
by pseudo-remaindering will be cleared from the remainders, resulting in
linear coefficient growth.

6.2 Subresultant Theory

In this section we aim to provide a comprehensible and coherent introduction
to the theory of subresultants in the non-commutative case, that also gives
enough insight into the motivation behind the ideas of this rather technical
but well-understood topic. A deep understanding is crucial for the proofs
in Section 6.3 and we advise the reader to be henceforth exceedingly at-
tentive to the distinction between operators in D[X; o, 4] and operators in
K[X;0,0]. The basic outline of the next two subsections follows the texts on
resultants and subresultants in the commutative case in [53] and [24]. Many
of the main ideas that are used for subresultants in Section 6.2.2 already
emerge in a less technical fashion in Section 6.2.1, where we deal with the
concept of the resultant of two Ore polynomials. For commutative polyno-
mials, the theory of subresultants was intensively studied in [13, 14, 22, 41].

6.2.1 Resultant

Given two Ore polynomials A and B, is there a way to tell whether they
have a non-trivial GCRD without actually computing it? This question is
the first step towards the definition of the resultant of A and B and our
main motivation behind it. An answer can be found by taking a closer look
at the Bézout relation and syzygys of A and B.
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Theorem 6.2.1. A and B have a non-trivial GCRD if and only if there
exist non-zero S, T € K[X;0,0] such that

SA+TB =0, dg<dg anddy < dg. (6.2.1)

Proof. If the GCRD G of A and B is non-trivial, the last iteration in the
extended Euclidean algorithm gives S,T € K|[X;0,6] with SA+TB =0
and ds =dp —da <dp and dyr =dg — dg < d4.

Conversely, let S,T € K[X;0,d] satisfy (6.2.1) and assume G = 1. Then
again the EEA will give S,T € K([X;0,6] with SA+TB =0 and dg = dp
and dj = da. Since SA = —TB, we get that SA is a common left multiple
of A and B. On the other hand SA is the least common left multiple of A
and B, and it follows that dg > d g = dp, which contradicts the order-bound
given in (6.2.1). O

We can restate the result of Theorem 6.2.1 in terms of linear alge-
bra. For that purpose, let K[X;0,0]q be the set of all Ore polynomials
in K[X;0,6] with order strictly less than d € N. We regard K[X;0o,0d]4
as a const(K[X; o, d])-vector space. Any IK[X; o, d]-linear combination of A
and B of the form

SA+TB, dgs<dpanddy <djy, (6.2.2)
can be expressed by the linear map

PAB: ]K[X;J, 6](13 X ]K[X;U, 5](1,4 — ]K[X;J, 6]dA+dB’
(S,T) — SA+TB.

If S and T are as in Theorem 6.2.1, it means that (S,7) is an ele-
ment of the kernel of ¢4 5. Thus, A and B have a non-trivial greatest
common right divisor if and only if the kernel of ¢4 p is non-zero. For
K[X; 0, 0]q, we fix the ordered basis By = (X%, X972 ..., X9) and for the
product space K[X;0,d]4, x K[X;0,0d]4,, we fix the ordered basis By, 4, =
(Xh=10),(XN=2)0),...,(X°0), (0, X%~ (0, X%=2), ... (0,X°)). The
matrix representation of ¢4 p with respect to the bases By, 4, and By, 4,
is given by the transpose of the Sylvester matrix.

Definition 6.2.2. The Sylvester matriz Syl(A, B) is defined to be the ma-
trix of size (da + dp) x (da + dp) with the following entries: If 1 < i < dp
and 1 < j < dg + dp, the entry in the ith row and jth column is the
(da + dp — j)th coefficient of X% 7"A. If dg+1<1i < dy+dp and 1 <
j < da+dp, the entry in the ith row and jth column is the (d4 +dp — j)th
coefficient of X?a=(—ds) B,

The determinant det(Syl(A, B)) is called the resultant res(A, B) of A and B.
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le(X9B=1A) o v o o e [XO)(XdB-1A)
. : dp

le(X4a=1B) oo oot o o [XO)(XdaT1R)
da

Figure 6.2.1: The form of the Sylvester matrix of A and B. Entries outside of the gray area are
Z€ro.

Corollary 6.2.3. The GCRD of A and B is non-trivial if and only if
res(A, B) = 0. O

In the next theorem we will see that the resultant can be written in
the form (6.2.2) and in the proof we make use of the central technique to
connect the resultant (and later subresultants) to other linear combinations
of A and B.

Theorem 6.2.4. There exist non-zero S,T € D[X;0,0] such that
SA+TB=res(A,B), ds<dp, dr<dj. (6.2.3)

Proof. If the resultant is zero, then the existence of S and T follows by
clearing denominators of the cofactors in K[X; o, ], which exist because of
Theorem 6.2.1 and Corollary 6.2.3. Let res(A, B) # 0. By Corollary 6.2.3,
the GCRD of A and B is 1 and so there are S = Zf;fo_l 5X" and T =
Z?;‘O_ 1#: X" with coefficients in K such that

SA+TB=1.

This equation can be written as

Sdp—1

: 0
Syl(A, B)T Edsol - O ,

-

: 1

to

and by Cramer’s rule, the §; and ¢; are of the form res(pTiB) with the p; € D

being the determinants of some submatrices of Syl(A, B). Thus, setting
S =res(A, B)S and T = res(A, B)T gives S,T € D[X; 0, 0] for which (6.2.3)
holds. O
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If res(A, B) is non-zero, it is an element of D \ {0} and the GCRD of A
and B is 1. Therefore, by Theorem 6.1.3 there exists a PRS such that its last
non-zero element, the result of the GCRD computation, is equal to res(A, B)
and the extended Euclidean algorithm gives S and 7" as in Theorem 6.2.4.

Example 6.2.5. Let A, B € Z11[n][S; sp,0] with
A= (9n+1)8%+ (9n + 3)5% + (8n 4 6)S + (8n + 1),

B = (2n+3)S% + (10n+2)S + (5n + 6).

Running the extended Euclidean algorithm on A and B gives S and T in
Z11[n][S; s, 0] such that SA+ TB = 0 with

S = (6n* + 9n® + 4n% 4 6n + 2)S + (In* + Tn® + 4n + 2),
T = (6n*+2n3+7n%+5)S%+(Tn* + T2 +9n* +4n+8) S+ (n* +8n>+10n>+7).
The Sylvester matrix of A and B is

In+10 9n+1 8n+3 8&&n+9 0
0 Im+1 M+3 8n+6 8n+1

2n + 7 10n on + 5 0 0 ,
0 2n+5 10n+1 5n 0
0 0 2n+3 10n+2 dn+6

and by writing S and T as the vector v = (51, 80, o, t1, t0), we get

Syl(A, B)Tv = 0 = res(A, B).

6.2.2 Subresultants

The GCRD of two Ore polynomials is a K-multiple of the last non-zero
element in any of their polynomial remainder sequences, which is the re-
mainder of lowest finite order. The results from the previous subsection can
be generalized to any other finite order, giving access to all the remainders
in a polynomial remainder sequence. Again, we start by looking at Bézout
relations.

Theorem 6.2.6. Let (R;)icqo,..¢+1} be the PRS for A and B with o; =
Bi =1 and let n € N withn < dg. There exists no i € N with d; = n if and
only if there are non-zero S, T" such that

ord(SA+TB) <n, ds<dp—n anddp <ds—n. (6.2.4)

Proof. First, let there be no ¢ such that n = d;. Unless n < dy, we let
Jj € N be such that d;_1 > n > d; and otherwise we let j = £+ 1. Then
we can take S = S; and T' = Tj, because ord(S;A + T;B) = dj < n and
ord(S;) =da —dj—1 <da —n and ord(T}) =dp — d;j—1 < dp — n.
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Coversely, let S and T be such that (6.2.4) holds and assume there is an 4
such that d; = n. Following the constructive proof of the LCLM existence
in [12], we set

Co=T, Cy =-S5,

Cj+1 = Cj_l — Cij for 1 < j <.

Assume that the following holds for 1 < j <i+ 1:

ord(Cj_le — CjR]’_l) <n, (6.2.5)
Cj-18; — C;S;—1 = (=1)718. (6.2.6)
Setting j =i+ 1 in (6.2.5) gives
ord(C’i R7;+1 —Ci+1 R; ) <nmn,
—— ~
order < n order =n
so we get
ord(C;) > ord(Cit1), (6.2.7)
and setting j =i+ 1 in (6.2.6) gives
C; Siv1—Cip1 Si = (1) S,
— ~~

order =dg —n order <dp —n order < dg —n

and so
ord(C;) < ord(Cyiy1),

which contradicts (6.2.7). To finish the proof, it remains to show that (6.2.5)
and (6.2.6) hold. We do this by induction on j. For j = 1, we get:

OI‘d(Cj_le — CjRj_l) = Ol"d(TB + SA) <n,

and
Cj1S; — C;S;_1 = TO+ S1 = S.
Now assume (6.2.5) and (6.2.6) hold for j —1 for a fixed 2 < j <i+1. Then
ord(Cj_1R; — CjRj_1) =
ord(Cj1(Rj—2 = Qj1Rj1) — (Cj2 — Cj1Qj1)Rj1) =
ord(Cj—1Rj—2 — Cj_2R;_1) <m,

and
Cj_lSj — Cij_l =
Cj-1(Sj—2 — @j-15-1) = (Cj—2 — Cj1Q;-1)Sj-1 =
Cj-18j-2 = Cj2Sj1 = (-1)(-1)/7*S = (-1))7'S.
This completes the proof. ]
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Theorem 6.2.1 is a special case of Theorem 6.2.6 when taking n = 0.
As before, we express the result of Theorem 6.2.6 in terms of linear algebra.
This time we are not interested in the actual result of the linear combination
SA+ TB, but only whether or not the order is less than some given n. For
this reason, we modify the linear map that was described in the previous
section in a way such that lower order terms are ignored. We do this by
taking the left quotient of the linear combination and X™. While the result
will live in the vector space K[X;0,0]4,+dz—2n, it actually represents the
higher order part of the linear combination, namely the coefficients with
index greater than or equal to n.

Any pair of cofactors S, T of a linear combination of A and B satisfying

ord(SA+TB) <n, dg<dp—nanddr<dyg—n, (6.2.8)
lies in the kernel of the linear map

PABn - K[X,O', 5]dB—n X IK[X’O-> 5]dA—TL — K[X707 6]dA+dB—2na
(S,T) — lquo(SA+TB,X").

The matrix representation of this map is given by the transpose of a sub-
matrix of the Sylvester matrix.

Definition 6.2.7. For n € N with 0 < n < dp, the matrix Syl, (A, B) of
size (dga+dp—2n) x (dga+dp —2n) is obtained from Syl(A, B) by removing
the rows 1 to n, the rows dg + 1 to dg + n, the columns 1 to n and the
last n columns. We call its determinant the nth principal subresultant of A

and B.

1,...,n da+dp—(n—1),...,da+dp
— ~—
>1,.,.,n

dB+17
>d3+n

Figure 6.2.2: Sketch of Syl,, (A, B).

Corollary 6.2.8. No remainder sequence for A and B contains a remainder
of order n if and only if det(Syl,, (A4, B)) = 0. ]
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In Theorem 6.2.4 we have seen that the resultant of A and B can always
be expressed as a D[X; o, ]-linear combination of A and B where the cofac-
tors satisfy a certain order bound and if the GCRD is trivial, there is a PRS
in which the last non-zero element is equal to the resultant. A similar state-
ment is true for the principal subresultants. Let n € N with 0 < n < dp.
We will see in Corollary 6.2.13 that there exist non-zero S,T € D[X}; 0, d]
such that for R := SA + T'B with the nth coefficient r,, we have

ord(R) <n, r,=Syl,(A,B), ds<dp—mn, dr<ds—n,

and there is a PRS that contains R. The question arises if not only the
nth coefficient but also any of the other coefficients of R can be expressed
as a Sylvester submatrix determinant. Like we were able to set up a linear
system for the nth coefficient, we can do the same for all the lower order
coefficients.

Definition 6.2.9. For n,m € N with 0 < m < n < dp, the matrix
Syl.m(A, B) of size (da+dp—2n)x (da+dp—2n) is obtained from Syl(A, B)
by removing the rows 1 to n, the rows dp + 1 to dp + n, the columns 1 to n
and the last n + 1 columns except for the column dy + dg — m. Note that

if n = m, then Syl, ,, (A, B) = Syl,,(4, B).

1,...,n da+dp—mn,...,da+dp
= —
>1,...,n

: dp +1,
' >d3+n

Figure 6.2.3: Sketch of Syl,, ,,,(A, B). The lines indicate the removed rows and columns. The
column under the dotted line is added again.

For fixed n, all the Syl, ,,,(A, B) agree except for the last column. This
together with Cramer’s rule allows us to construct a PRS such that all the
coefficients of the remainders in the sequence can be expressed in terms of
determinants of matrices of the form given in Definition 6.2.9.

Definition 6.2.10. For 0 < n < dp, the polynomial

sres, (A, B) := Y _ det(Syl, (A, B))X™,

m=0
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is called the nth (polynomial) subresultant of A and B. If the order of
sres, (A, B) is strictly less than n, the nth subresultant of A and B is called
defective, otherwise it is called reqular.

Some of these subresultants will be the elements of the subresultant
polynomial remainder sequence for A and B.

Theorem 6.2.11. Let (Ri)cqo,.. 041} be the monic PRS for A and B, i.e.
a; =1 and B; = 1/1c(Ri+1), and let i,n € N be such that R; is of order n.
If j € N is such that sresj(A, B) is of order n as well, then

sres;j (A, B) = det(Syl; (A, B))R;.

Proof. For sresj(A, B) to be of order n, j has to be greater than or equal to n
and Syl; (A, B) has to be regular. Similar to the proof of Theorem 6.2.4,
we use Cramer’s rule to get v € D% T98-27 guch that

0
A, B)Tv = : , (6.2.9)

0
det(Syl; (A, B))

We show that v is a solution of

Syl (A, B)Tv = O : (6.2.10)
det(Syl; (4, B))

for any 0 < [ < j. First, assume det(Syl;;(4,B)) = 0. For 1 < k <
da +dp — 2j =: m, denote the the kth row of Syl; (4, B)T by rj.. Because
the matrix is singular, there exist ¢y, ..., ¢, € K with

Tm =C1T1+ "+ Cn—1Tm—1- (6211)

Furthermore, since the first & — 1 rows of Syl;;(A, B) are the same as the
first & — 1 rows of Syl; (A, B), we conclude from (6.2.9) that:

TV =790 =+ =Tp_10 = 0.
Combining this and (6.2.11) yields

TmU = (€171 4+ + Cm—1Tm—1)v =
criv+ -+ e 1Tm—10 =
0 = det(Syl; (4, B)).
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This shows (6.2.10) in the case that det(Syl;;(A, B)) = 0.

Now let det(Syl;;(A, B)) # 0. Then equation (6.2.10) has a unique solution
and by Cramer’s rule, every component of the solution is the determinant
of some submatrix of Syl;;(A4, B). In each of these submatrices, the last
column of Syl;;(A, B) is removed and therefore, they don’t depend on .
This means that we get the same solution to (6.2.10) for all [, in particular
for | = n. This proves (6.2.10) for all 0 <[ < j.

Next, we set v/ € D¥+T9872" t4 he the vector one gets by adding zeros in v
at the places corresponding to the rows that have to be added when going
from Syl;(A, B) to Syl,,(A, B). Then

Syl,, (A, B)Tv/ = 0 )

det(Syl; (A, B))

holds. Since by Corollary 6.2.8, Syl,, (A, B) is regular, this solution is unique
and therefore its components have to be the coefficients of the operators
det(Syl; ,,(A, B))S; and det(Syl; (A, B))T;, where S; and T; are the unique
cofactors such that S; A + T; B = R;. This completes the proof. O

Not all the subresultants of A and B are regular and in both the regular
and the defective case, a subresultant carries information about the order
of subresultants with lower index. In [40], Li proves the subresultant block
structure: For ¢ € N, the ith subresultant is either regular or defective. If
it is regular, it is of order ¢ and all other subresultants with lower index are
of strictly lower order. If it is defective with the (i + 1)st subresultant being
regular, its order is equal to the order of the next regular subresultant with
index j < 4, provided that such a j exists. In that case, all the subresultants
with indices j < k < i are zero. If there is no regular subresultant with an
index lower than 7, then the ith and all subsequent subresultants are zero.

Example 6.2.12. We investigate the subresultants of A and B, both ele-
ments in the Z1[n][S; s, 0] with
A= (10n° + 8n° + 5n* + n® + 6n% +n +2)5*
+ (n% + 205 + 3nt 4+ 8n3 4 4n + 4)53
+ (208 + Tt 4+ n? + 1002 + 2)52
+ (8n° + 5n* 4 8n® + n? + 5n +4)S + (9n° + 3n* + 8n? + 8),
and
B = (2n° + 9n* + 8n3 + 8n? 4+ 8n +2)83
+ (Tn® 4 5n* + Tn? + 5n 4 4)5?
+ (2n* 4+ % 4+ 6n% + 2n + 5)S + (4n* + T3+ 4n% +n £ 7).
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In any polynomial remainder sequence for A and B we get the order sequence
(4,3,1,0). The 2nd coefficient of sress (A, B) is the determinant of the matrix
Syly 2(A, B) which consists of the rows 71,72, 73 with:

r1 = (10n% + 8n® 4+ 5n* + n® + 602 +n + 2,
2n° + 8n* 4 9n® + Tn? + 6n + 4,0),
ro = (n% 4 2n° 4 3n* + 8n® + dn + 4,
™’ 4+ Tnt 4+ 2n% + 8n% 4+ 8n + 6,2n° 4+ In* 4 8n® + 8n?% + 8n + 2),
r3 = (2n% + 70t + 03 + 1002 + 2,
2nt 4 4n® 4 6n% + 100, Tn° + 5nt 4+ Tn? 4 5n 4 4).
This determinant is 0. So the 2nd subresultant is defective and accordingly,

there is no remainder of order 2 in any PRS for A and B. The next regular
subresultant is sres; (A, B), so sresg(A, B) is of order 1.

In Figure 6.2.4, we illustrate an example of a sequence of subresultants
where all the effects that are described in the subresultant block structure
appear. There, the 6th subresultant is defective and all the coefficients of
the next two subresultants, sress(A, B) and sress(A, B), turn out to be zero,
because the next regular subresultant is of order 3.

Order
12

10

110 9 8 7 6 5 4 3 2 1 0

Figure 6.2.4: Orders for different sres; (A, B). Blue bars represent the order of regular, red bars
the order of defective subresultants.
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It is easy to compute A and B in Q[y][0;1, %] such that their subre-
sultants are as in this example, but their coefficients are usually to big for
stating them here.

With the subresultant block structure, we can now show that in a PRS
that consists of subresultants, also the intermediate results of the Bézout

coefficients are fraction free.

Corollary 6.2.13. Leti € N. Then there exist S;,T; € D[X;0,0] such that
S;A+T;B =sres;(A,B), ds, <dp—1i anddp <djs —1.

Proof. First consider the case sres;(A, B) = 0. Then Syl;(4, B) is singu-
lar and there exists a non-zero solution v € D%Atd8=2i of the equation
Syl;(A, B)Tv = 0. Since all the det(Syl; ;(A, B)) with j < i are zero as well,
it can be shown as in the proof of Theorem 6.2.11 that v is also a solution
to Sylzj(A, B)v = 0. The components of v correspond to the coefficients of
some S; and T; that are as required.

Now suppose sres;(4, B) is of order n € N. By the subresultant block
structure, there is a remainder R in the monic PRS for A and B of order n.
Then S; and T; can be constructed as in the proof of Theorem 6.2.11. [

As stated in Corollary 6.2.8, if there is a remainder of order n in any
PRS for A and B, then there is at least one subresultant of that order. On
the other hand, the subresultant block structure suggests that there can be
two subresultants of the same order. If one wants to construct a PRS that
only contains subresultants, a decision has to be made for either of the two.
The fact that the size of the Syl,(A, B) increases with decreasing i suggests
choosing the subresultant with higher index.

Definition 6.2.14. The subresultant sequence of A and B of the first kind
is the subsequence of

(A, B,sresq,—1(A, B),sresq,—2(A, B),...,sreso(A4, B),0),

that contains A, B, the trailing zero and all non-zero sres;(A, B) for which
sres;+1(A, B) is regular.

Example 6.2.15. If the order of the subresultants of A and B are as in
Figure 6.2.4, the subresultant sequence for A and B of the first kind contains
the subresultants with indices 11,10,8,7,6, 2, 1.

From Theorem 6.2.11, Theorem 6.1.3 and the subresultant block struc-
ture, it is clear that there exists a PRS for A and B that is equal to the
subresultant sequence for A and B of the first kind, but it is not clear how
to choose a; and (; in the refined Euclidean algorithm without having to
compute the determinants of the Syl;(A, B). In the non-commutative case,
this problem was solved by Z. Li in [40].
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Theorem 6.2.16 ([40]). The polynomial remainder sequence given by
i = Te(Ry) st

B = G ifi =1,
) le(Rimr)o ()l fa < <01,

where
-1, ifi=1,
;= —1e(R;_q))ldi—2—di-1]
O‘(djiil)[di—2*di—1*1]
s equal to the subresultant sequence for A and B of the first kind. O

We call the PRS in Theorem 6.2.16 the subresultant polynomial remain-
der sequence for A and B. The degrees of the remainders in the subre-
sultant PRS grow linearly with ¢, provided that deg(o(a)) < deg(a) and
deg(d(a)) < deg(a) for all a € D.

Theorem 6.2.17. Let (R;)icqo,.. 041} be the subresultant PRS for A and B.
Fizie {2,...,0} and let b; € N be such that

deg(X*A)) < b; d deg(X*B)) < b;.
v o, Max(deg(XTA)) < b and - max(deg(XTB)) <

Then
deg(R;) < (da +dp — 2(di—1 — 1))b;.

Proof. Let Sp, be the symmetric group of degree m € N. By our assumption
on the degree function deg and the formula

det(A) = Z sgn(f) Hak,f(k)’
k=1

fESm

the degree of the determinant of an m x m matrix A with entries a;; € D
is bounded by md where d is the maximal degree of the entries.

Suppose now that R; is the jth subresultant of A and B. Then, by the
definition of the subresultant sequence of the first kind and the definition
of the subresultant PRS, the (j 4+ 1)st subresultant of A and B is regular.
Because of this and the subresultant block structure, R;_1 is of order j + 1
and so j is equal to d;_1 — 1. The bound for R; then follows from the
determinant bound above with m =ds +dp —2(d;—1 — 1) and d =b;. [

Example 6.2.18. (Example 6.1.6 cont.) Running the GCRD computation
of Example 6.1.6 with the a; and (; from the subresultant PRS gives the
following maximal coefficient degrees:
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PRS Ry | Rs | Ry | Rs | Re | R7 | Rsg
subresultant | 11 | 16 | 21 | 26 | 31 | 36 | 41
primitive 9 |12 |15 | 18 | 21 |24 | 21

Table 6.2.5: Maximal coefficient degrees for different PRSs in Exmaple 6.2.18.

Like the primitive PRS, the subresultant PRS shows linear growth. At the
same time, the degrees in the subresultant PRS are not as small as possible.
While this usually cannot be observed for randomly chosen input, it is very
common for operators coming from applications. For randomly generated
operators, the subresultant PRS and the primitive PRS usually coincide.
Our next goal is to understand the difference between randomly generated
input and the operators A and B as above and to identify the source of some
(and most often all) of the additional content in the subresultant PRS.

6.3 Improved Polynomial Remainder Sequences

To derive improvements of the subresultant PRS, we proceed in two stages:
First we identify the source of the additional content that appears systemati-
cally when computing the GCRD of operators coming from applications. To
make use of this knowledge, we will then adjust the formulas for a; and 5;
from Theorem 6.2.16 so that we get a PRS with smaller degrees without
having to compute the content of every remainder.

In contrast to the theory in Sections 6.1 and 6.2, the results of this section
present original research by the author that was first published in [28].

6.3.1 Sources of Additional Content

In the case of commutative polynomials, some results are known for de-
tecting additional content. An approach worth pursuing when looking for
content is to make use of the representation of subresultants in terms of
determinants of the matrices Syl; ;(A, B). By exploiting the special form of
these matrices as well as the correspondence between rows of the Sylvester
matrix and monomial multiples of A and B, we generalize two known im-
provements in the commutative case to the Ore setting. The first, The-
orem 6.3.1, is a generalization of an observation mentioned in [13], which
carries over quite easily to the Ore case. The second, Theorem 6.3.5, usually
performs better in terms of coefficient size of the remainders, but a heuristic
argument is necessary to use it algorithmically (see Section 6.3.2).

We have a closer look at the structure of the Sylvester matrix. Its first
column only contains two non-zero entries, shifts of the leading coefficients
of A and B. This structure carries over to the Syl; ;(A, B), so any common
factor of these shifts appears as content in the subresultants (in a shifed
version).
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Theorem 6.3.1. With t := gcd(0?8 71 (Ic(A)), 0%~ (1c(B))) and ~; :=
o7 (t) for 0 <i<dp—1, we get:

i | cont(sres; (A, B)). (6.3.1)

Proof. Let i be fixed. The coefficients of sres;(A, B) are the determinants
of the matrices Syl; ;(A, B) for 0 < j < i. The first column of all of these
matrices is

(0?8711 (1c(A)),0,...,0,094 717 (1c(B)),0,...,0)T.
Laplace expansion along this column proves the claim. ]

Not every subresultant of A and B is an element of the subresultant
PRS for A and B. To make use of Theorem 6.3.1 for a new PRS, we
specialize the statement to the subresultant sequence of the first kind and
restate formula (6.3.1) for this sequence in order to be able to compute the ~;
inductively.

Corollary 6.3.2. Let (R;)icqo,.....+1} be the subresultant PRS for A and B
(not necessarily normal). If we choose

t = ged(09271(1c(A)), 04 Y(1e(B))), 72 = o~ 9B (1),
vi = o2 di-1 (1) for 2 < i <4,

then ; | cont(R;) for 2 <i <.

Proof. Suppose R; is the jth subresultant of A and B. As in the proof of
Theorem 6.2.17, we have that j is equal to d;—1 —1. Then, by Theorem 6.3.1,
the content of R; is divisible by o~%-1F1(¢). It is easy to see that o~%-171(¢)
is equal to ;. O

By the result in Theorem 6.3.1, it is possible to reduce the size of the
coeflicients of any non-zero subresultant of A and B by a value independent
of the index of the particular subresultant. Comparing the degrees in the
subresultant PRS and the primitive PRS in Table 6.2.5, however, we see that
the degree of the content in the subresultant PRS in this example increases
with the index of the remainder. (And so it increases with a decreasing
index of the subresultant.) This means that the factors identified in this first
improvement do not cover all the content that may appear in applications.

In the commutative case, a second source of additional content was de-
termined, although this result does not seem to be widely known. Assume
that A, B are commutative polynomials. A factor that certainly appears
in the leading coefficient of both A and B is the leading coefficient of their
GCD G. To be more precise, it not only appears in A and B but in all the
elements of the contraction of the ideal generated by G, which includes all
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subresultants of A and B and also all intermediate results a; in the divi-
sion with remainder process described by (2.2.1). This means that in the
pseudo-remainder formula, the choice for «; in (6.1.3) contains the leading
coefficient of G as an extraneous factor that then appears as content in the
subresultants. In [33], D. Knuth proves the following theorem.

Theorem 6.3.3. (/33]) Let A, B € D[X] be such that the subresultant PRS
for A and B is normal, i.e. di1 =d; +1 for1 < i < ¥, and let G be the
GCD of A and B. Then 1¢(G)20=Y | cont(R;) for 2 <i < (. O

Adapting this theorem to Ore operators is not straightforward. From
now on, we denote by Z the contraction of the left ideal generated by G in
K[X;0,6]. We have seen that the leading coefficient of a left multiple of G
of order n € IN does not necessarily contain all the factors of 1c(G) but only
the essential part of Z at order n.

Example 6.3.4. (Example 6.2.18 cont.) If we take A and B as in Exam-
ple 6.2.18, then the leading coefficient of the GCRD of A and B is (n+9)p(n),
where p(n) is a polynomial of degree 17 and (n+9) is the minimal essential
part of Z in a shifted version. The subresultant PRS for A and B turns out
to be normal and Ry is of order do = 12. By Theorem 6.3.3, if the polynomi-
als were elements of ID[X], cont(Rz) would be divisible by lc(G)? and a naive
translation of the theorem to the non-commutative case suggests divisibility
by a polynomial of degree at least 36. The (monic) content of Ry, though,
is only (n + 16)(n + 17), which is equal to o7 (n + 9)2.

Again in the commutative case, let @4, @p € D[X] be such that A =
Q4G and B = @pG. Knuth proves Theorem 6.3.3 by showing that if

(Ri)icqo,....e+1) is the subresultant PRS of A and B and (R;);eqo,....e+1) is the
subresultant PRS for @4, @Qp, then

Qi =1c(G)*"VR;. (6.3.2)

This approach is problematic for Ore polynomials, because there the @Q;’s
and the R;’s have coefficients in K and not necessarily in D. This means
that even after showing that a o-factorial analog of Equation (6.3.2) holds
for Ore polynomials (which can be easily done by induction) the left factor
1c(G)?=1 and the denominators in the coefficients of R; might not be co-
prime and thus lead to cancellation. In order to see which essential parts
of 7 appear as content and why they do not cancel out, we again investi-
gate the linear map defined by the Syl ;(A, B) as well as the effects of the
structure of the Sylvester matrix on the determinant. This new approach
not only allows us to generalize Theorem 6.3.3 to the Ore case, but also to
remove the restriction to normal remainder sequences.
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Theorem 6.3.5. Leti € {0,...,dp — 1} and A :=da +dp — 2i. If ty is
the kth shift of the essential part of T at order k fori < k < A+i—1, then

A+i—1
( H tk> | cont(sres;(A, B)).

k=i+1

Proof. For any j € {0,...,i}, Syl; ;(A, B) is of size A x A and if the last
column is removed, the resulting matrix does not depend on j anymore. For
ne{l,...,A —1}, let M;,, be the set of all n x n matrices obtained by
removing the last A —n columns and any A —n rows from Syl, ;(A4, B). The
jth coefficient of sres;(A, B) is the determinant of Syl, ;(A, B) and Laplace
expansion along the last column shows that it is a D-linear combination of
the elements of M; A_1. By induction on n we show that the determinant
of any element of M; ;, is divisible by tati—ntAti—(n—1)---tAati—1. The the-
orem is then proven by setting n = A — 1.
For n = 1, the only entry in a matrix in M is either zero or the leading
coeflicient of a monomial left multiple of A or B of order A + i — 1, so the
claim follows from Theorem 4.1.7.
Now suppose the claim is true for 1 <n < A —1 and let M be any element
of M n41. If the determinant of M is zero, then there is nothing to show.
Consider the case where det(M) # 0. Then there is a v € K"*! such that
MTv =(0,...,0,1)7. By Cramer’s rule, the jth component v; of v is of the
form p;/ det(M) where p; € D is the determinant of some element of M, ,.
By induction hypothesis, p; is divisible by tAyi—ntAti—(n—1)---ta+i-1. Ev-
ery row in M corresponds to an operator of the form X*A or X*B for
k € N, minus some of the lower order terms. For the jthrow, 1 < j <n+1,
we denote the corresponding operator by L;. By the definition of v, the
operator ?;L& vjL; € K[X;0,0] will have order A+1i— (n+1) and leading
coefficient 1. So if we set

, det (M)

v =

— vE IDn-‘rl
)
tA+i—ntA+i—(n—1) - - - tAti-1

and L = Z;Li& v:Lj, then L is an element in Z with order ord(L) = A +1i—
(n+ 1) and its leading coefficient is

det(M)/(tA+i—ntA+i_(n_1) . tA—f—i—l) e D.

Theorem 4.1.7 yields that lc(L) is divisible by ta;—(nt1), SO We get in total
Invic(mt)tation - tAti—1 | det(M). ]

We have shown in Corollary 6.2.13 that the non-zero subresultants are
elements of the ideal generated by A and B in D[X;0,d]. The same is true
for the subresultants with the content identified in Theorem 6.3.5 being
cleared.
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Corollary 6.3.6. Fiz i € N with 0 < ¢ < dg — 1 and sres;(A, B) being
non-zero. Let ty be as in Theorem 6.5.5 fori < k < A+41i—1. Then there
exist non-zero S;, T; € D[X;0,0] such that

S;A+T,;B = sres; (A, B), ds<dp—1i, dp <ds —i.

Ati—1
k=i+1 "k

Proof. Suppose sres;(A, B) is of order n € N. By Corollary 6.2.13, there are
operators S; = Z;lBO (Hl)s X7 and T; = Z?ia(iﬂ) t; X7 with 3;,t; € D
such that

S;A+T,B = sres; (A, B),

and so

. . T
SYLin (A, B) (Bag—(i41)s- - - » 80, tay—(i41)s - - -» T0) =

=v

(0,0, det(Syl; , (4, B))T,

with det(Syl; ,(A, B)) # 0. By Cramer’s rule, the jth component v; of v is
of the form

bj
det(Syl, (A, B = p;
(§) ( Yz,n( ) ))det(Sylw(A, B)) p]7
where p; € D is the determinant of some element of M; A_1 (as in Theo-
rem 6.3.5). Therefore, by what was shown in the proof of Theorem 6.3.5,
the v; are divisible by [T5F 7 ). Setting

k=i+1
1 - 1 -
Si TTA+i—1, 1 Si’ i A+i— 1 T‘i’
k= z+1 k= z+1
completes the proof. ]

As was already noted in Chapter 4, all removable singularities can usually
be removed by an order 1 operator if the ideal generator G comes from
applications. In the context of Theorem 6.3.5, this means that the essential
part of 7 is the same at every order n > ord(G): the minimal essential part
introduced in Definition 4.1.10. When only considering one essential part,
the statement of the theorem simplifies in a way that makes it more useful
for the Euclidean algorithm. We only have to obtain information about one
essential part instead of several essential parts at different orders.

Corollary 6.3.7. Leti € {0,...,dg—1} and A :=ds+dp—2i. Ift is the
essential part of T at order d4 +dp — 1, then

o)A | cont(sres; (A, B)).
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Proof. According to Theorem 4.1.7, t divides the essential part of Z at order
j for any dg < j < ds+dp—1. Theorem 6.3.5 yields that cont(sres;(4, B))
is divisible by

O.i+1(t)gi+2(t) o O_A+i—1(t) _ O_i—i—l(t)[A—l]‘ ]

As for Theorem 6.3.1, an adjustment of Corollary 6.3.7 to the subresul-
tant sequence of the first kind is needed in order to construct a new PRS.

Corollary 6.3.8. Let (R;)icqo,...¢4+1} be the subresultant PRS for A and B
(not necessarily normal) and let t be the essential part of T at order da +
dp — 1. If we set yy = o8 (t)[da—ds+1 gpnq

v = odi-1 (t)[di72_difl},yi_lo-dA+dB_di—2+1(t)[di72_di71] for2<i<H{,
then ~; | cont(R;) for 2 <i < /.

Proof. Suppose R; is the jth subresultant of A and B. As in the proof of
Theorem 6.2.17, we have that j is equal to d;—1—1. So by Corollary 6.3.7, the
content of R; is divisible by g% 1 (t)ldatds=2di-1+1] " Simple hand calculation
shows that this is equal to ~;. O

6.3.2 Algorithm and Examples

To incorporate the results of the preceding section into the Euclidean algo-
rithm, we derive new formulas for the «; and 3; for PRSs that contain the
elements of the subresultant sequence of the first kind with the additional
content found in Theorems 6.3.1 and 6.3.5 divided out.

We start with a technical lemma to connect the pseudo-quotient of two
operators to the pseudo-quotient of IK-multiples of the same operators.

Lemma 6.3.9. For yi,72 € K\ {0}, we get:

da—d 1
pquo(114,72B)y2 = 1%~ pquo(4, B).

Proof. By Lemma 2.3 in [40], the pseudo-remainder of 1 A and 2B is the
(dp — 1)st subresultant of v1 A and 72 B (up to sign). Consequently, its co-
efficients are determinants of submatrices of Syl(y1 A4, v2B) that contain one
row corresponding to the operator v1 A and d4 — dp + 1 rows corresponding
to operators of the form Xiv,B, 0 < i < dq — dg. Thus, by Lemma 2.2
in [40], it follows that

prem(114,72B) = 7,954~ prem(a, B). (6.3.3)
The pseudo-remainder formula (6.1.2) applied to 1A and 2B gives
le(y2B)M4=45 1ty A = pquo(1 4, 72B)72 B + prem(m1 4,72 B).

Combining this with (6.3.3) and then dividing the resulting equation by

fylfygdA_dB U from the left yields the desired result. O
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This now allows us to state «; and B; for improved polynomial remain-
der sequences, based on the formulas for the subresultant PRS given in
Theorem 6.2.16:

Theorem 6.3.10. Let (R;);cqo,.. e+1} be the subresultant PRS for A and B
and let (Vi)iefo,....e+1y be any sequence in K\ {0} with 49 = v = 1. Set
R, = %RZ Then (Ri)ie{o,...,ul} is a PRS for A and B with:

i = lo(ft) -4,

) _U(%){drdl}:ﬁ? ifi=1,
where
1 ifi=1,
bi=1 (=1 lc(Rz'—l))[di‘rdi_l], if2<i<l—1.

g(q&i_l)[di—Q_di—l_l]
Proof. From the definition of R; and the equations
di—1—d; ~
a;iRi 1 = QiR + BiRi11 and o = ’Y,[ il

it follows that

&R = QiR + By Ri (6.3.4)

For the first summand on the right hand side, Lemma 6.3.9 yields

Qivi = %[di*lidiﬂ]%fléi- (6.3.5)

For the second summand, observe that since v; lc(R;) equals lc(R;), we have
that v; equals v; for all 1 <+4¢ < £. Thus

d;_1—d; A

Bivigr =7 i1 (6.3.6)
The proof is concluded by combining (6.3.4), (6.3.5) and (6.3.6) and dividing
the resulting equation by 'yi[di_lfdiﬂ]%,l from the left. O

Based on these new «a; and f3;, we present two new polynomial remainder
sequences for Ore polynomials.

Definition 6.3.11. Let ¢ be the essential part of Z at order ds + dg — 1.
In Definition 6.1.2, set

1. 2 = ged(lc(A), 0?98 (1c(B))), v = 0%-2"%-1(4;_1) and a; and §; as
in Theorem 6.3.10. This is the stmple improved polynomial remainder
sequence for A and B.
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2. 4o = g8 (t)lda—dsHl] and

v = gdi—1 (t) [di72_difl],-yi_la.dA‘f‘dB_difQ'f‘l (t)[di—Z_di—l} ,

and «; and §; as in Theorem 6.3.10. This is the essential polynomial
remainder sequence for A and B.

By Corollaries 6.3.2 and 6.3.8, the remainders in the simple improved
PRS and the essential PRS for A and B have coefficients in D.

Computing the simple improved PRS is straightforward, but in order to
compute the essential polynomial remainder sequence for A and B with the
refined Fuclidean algorithm, one needs to know the essential part at order
da +dp — 1 of Z. This knowledge is usually not available and there is no
known way to compute it without considerable computational overhead. To
bypass this problem, we give a reasonable guess for the essential part. By
Theorem 4.1.7 shifts of the essential part ¢ at order d4 + dg — 1 divide the
leading coefficients of all operators in Z of order < d4 +dp — 1, in particular
the leading coefficient of A and the leading coefficient of B. So we get

o4 (t) | ged(lc(A), 0?4 =8 (1c(B))). (6.3.7)

In practice, it is most often the case that lc(A) and ¢%4~92(Ic(B)) share no
other factors, so the GCD on the right hand side of (6.3.7) will be equal to
the dath shift of t. We recommend to use this guess in implementations of
the refined Fuclidean algorithm to compute the essential PRS for A and B.
Also, if the guess is correct (or too small), then all the content that is
detected in the simple improved PRS is also detected in the essential PRS.
Otherwise, if the guess is too big, this can be fixed during the execution of
the algorithm (see Example 6.3.13 below).

Example 6.3.12. (Example 6.2.18 cont.) We now will use Theorem 6.3.10
and Corollaries 6.3.2 and 6.3.8 to compute new PRSs for A and B as in
Example 6.1.6. The essential part of Z at order d4 +dp — 1 is (n + 3), so
0% (n +3) = (n + 17), which is also the guess given by the right hand side
of (6.3.7). Applying Corollary 6.3.2 yields the factors

Yo=n+17, ~v3=n+18, ... v =n4+16+4+1:—1,
whereas Corollary 6.3.8 gives
vo=(n+16)2 As=m+15)M, . 4= (n+16—i+2)B0D]
The improvements in the simple improved PRS are marginal, while the

degrees in the essential PRS are equal to the degrees in the primitive PRS,
except for the very last step:
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PRS Ry | R3| Ry | Rs | Rg | Ry | Rg
subresultant 11 [ 16 | 21 | 26 | 31 | 36 | 41
simple improved | 10 | 15 | 20 | 25 | 30 | 35 | 40
essential 9 | 12 | 15 | 18 | 21 | 24 | 27
primitive 9 |12 |15 | 18 | 21 | 24 | 21

Table 2: Maximal coefficient degrees for the subresultant, simple improved, essential and
primitive PRS in Example 6.3.12.

Example 6.3.13. Although the remainders in the essential polynomial re-
mainder sequence are usually primitive when starting from randomly gen-
erated operators or operators that come from some applications, it is not
guaranteed that this is always the case. As an example, consider

A, B € Q[y][X],
A=X"+yX?+yX +y,
B = X3+yXx2

The second subresultant of A and B is sreso(A, B) = (y + y?) X% + yX + 9,
so cont(sresy(A, B)) = y, but in the essential PRS, no content will be found.
As mentioned, it may also happen that the guess for the essential part of 7
at order d4 + dg — 1 is too large, for example:

A,B € QlD, 1, £,

A= (y+1)D*+D*+ D* +yD +1,

B=(y+1)D?+ D? +1.

Here, cont(R3) in the subresultant PRS is (y + 1), but a factor (y + 1)? is
predicted. The mistake in predicting the essential part can be noticed on
the fly during the execution of the algorithm as soon as a remainder with
coefficients in Q(y) \ Q[y] appears. It is then possible to either switch to
another PRS or to refine the guess of the essential part. One strategy to do
so is to remove all the factors from the guess that could be responsible for
the occurance of denominators. Let ¢t be the guess for the essential part of
7T at order d4 +dg — 1 and let ¢ be the non-trivial common denominator of
the coefficients of a remainder R; in the essential PRS. Furthermore let M
be the set of all integers m such that ged(o™(c),t) # 1. Update R;, 7; and ¢
with

RZ' — CRZ',
Vi < E?
C
t
t

— )
ng(ta HmEM O'm(C))
Yig1 < otimdB()ldatds=2dit1] *(ee the proof of Cor. 6.3.8)
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and continue the computation with these new values. For differential op-
erators in Cly][D;1, %], we have M = {0} and for recurrence operators in
C[n][Sn; $n,0], M contains all the integer roots of res,(c(n+m),t) € Q[m].

The assumption that it is sufficient to consider only one essential part
usually holds, but we have seen in Example 5.2.3 that it can happen that
different factors of the leading coefficient of a generator of an operator ideal
are removable at different orders. This leads to different essential parts
at different orders and hence, not all the content will be detected in the
essential PRS. It is highly unlikely that this happens for operators that are
not specially designed for this purpose.

Example 6.3.14. We can guess two operators A and B in Q[n][S; sn, 0] of
order d4 = 16, dp = 14, respectively that annihilate the sequence

th = (Tn® + 502 +n+1)((n+1/7)2)

The GCRD of A and B is of order 1 and the essential part of Z at order
da + dp — 1 is of degree 4. The essential part of Z at order 11, however, is
of degree 11, so here we are in the rare case where the essential part of Z at
order dg + dp — 1 is only contained but not equal to the essential part at
lower orders. Formula (6.3.7) only predicts the essential part of Z at order
da+dp and during the GCRD computation, content that comes from lower
order essential parts emerges.

PRS Ry | R3 | Ry | Rs | Re | R7 | Rsg
essential | 31 | 44 | 57 | 70 | 83 | 96 | 109
primitive | 31 | 44 | 50 | 56 | 62 | 68 | T4
Table 3: Maximal coefficient degrees for the first few remainders in the essential and primitive

PRS in Example 6.3.14.

It is possible to also guess the essential part of Z at lower orders and then
use Theorem 6.3.5 to get the primitive remainders, but like in the direct
computation of the primitive PRS, GCD computations in the base ring
would be necessary after each division step.

Besides the practical use of the improvements presented in this chapter
for the computation of the greatest common right divisor of Ore polynomials,
we can also give a new upper bound for the maximal coefficient degree of
the remainders in the primitive PRS in terms of the essential parts of Z.

Theorem 6.3.15. Let (R;i)icqo,..c+1} be the primitive PRS for A and B.
Fizie{2,...,0} and let b; € N be such that

deg(X*A)) < b; d deg(X¥B)) < b;.
ve o, Max(deg(XA) < b and - max({deg(XTB)) <

85



If t;, denotes the kth shift of the essential part of T at order k € N, then

da+dp—d;_1+1

deg(R;) < (da +dp — Q(di_l —1))b; — Z deg(tk).
k=d;_1

Proof. The bound is an immediate consequence of Theorem 6.2.17 and
Corollary 6.3.8. O
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Appendix A

The Ore Algebra Package for
Sage

The group for algorithmic combinatorics at RISC offers a software package
for the mathematics software system Sage (see [51]) developed by Manuel
Kauers, Fredrik Johansson and the author. It is available for free download
together with an extensive documentation from

http://www.risc.jku.at/research/combinat/software/ore_algebra/

Among many other features, the packages allows to desingularize recur-
rence and differential operators as described in Chapter 4 and to compute
the GCRD of two Ore polynomials by using different polynomial remainder
sequences, including the essential PRS as introduced in Chapter 6. Here are
some use cases where we desingularize a recurrence operator and compute
the GCRD of two differential operators.

First, we load the package and define the Ore rings.

sage: # Load the package.

sage: from ore_algebra import *

sage: # Define the base rings for the Ore algebras.
sage: Abase.<y> = PolynomialRing(QQ)

sage: Bbase.<n> = PolynomialRing(QQ)

sage: # Define a differential Ore algebra
sage: # and set Dy to be its generator.
sage: A.<Dy> = OreAlgebra(Abase)

sage: # Define a recurrence Ore algebra.
sage: # and set Sn to be its generator.
sage: B.<Sn> = OreAlgebra(Bbase)

To get an Ore polynomial with a removable factor in the leading coefhi-
cient, we take a polynomial in Q[n] and its order 1 annihilator.
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sage:
sage:
sage:

P =2%n"3 - 8%n"2 + 1
L = p*Sn-p(n+1)
L

(2*n"3 - 8*n"2 + 1)*Sn - 2*n"3 + 2*n"2 + 10*n + 5

sage:
sage:

# Check that L is an annihilator of p.
L(p)
0

Desingularization then yields an operator with a leading coefficient in Q.
The trailing coefficient, however, is not as small as possible.

sage:
sage:
sage:

sage:
sage:

sage:
sage:

L2 = L.desingularize()
# L2 is also an annihilator of p.
L2(p)
0
# The leading coefficient of L2 has degree O.
L2.leading_coefficient() .degree()
0
# But the trailing coefficient is of degree >O0.
L2.coeffs() [0] .degree()
9

Next we take two differential operators and compute their greatest com-
mon right divisor and their Bézout coefficients.

sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:
sage:

sage:
sage:
sage:
sage:

# Create two Ore polynomials L1 and L2
# with non-trivial GCRD G.
G = A.random_element (2)
L1, L2 = A.random_element(7), A.random_element(5)
while L1.gcrd(L2) != 1: L2 = A.random_element(5)
L1, L2 = L1*G, L2*G
# Compute the GCRD of L1 and L2 and compare it
# to unit normal G.
L1.gcrd(L2) .normalize() == G.normalize()
True
# Compute the GCRD of L1 and L2 and
# the corresponding Bezout coefficients.
(L3, S, T) = L1l.xgcrd(L2)
S*xL1 + TxL2 == L3
True

Different polynomial remainder sequences can be used to compute the
GCRD. Note that the output will always be the unit normal GCRD and
therefore it won’t be visible that different PRSs are used:
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sage: # Create random differential operators
sage: L1, L2 = A.random_element(3), A.random_element(2)
sage: # Compute the GCRD with various PRSs which
sage: # can be specified via different keywords.
sage: algs = ["improved", "classic", "monic",
"subresultant"]
sage: [L1.gcrd(L2, prs=a) for a in algs]
[1,1,1,1]

For a comprehensive tutorial on how to use many of the features provided
by the package, see [31].
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Appendix B

Notation

The table given below contains explanations and references to the definitions
of the mathematical notation and symbols used throughout the thesis in

order of appearance.

Chapter 2

albyalb,al;b

ged(a, b), gerd(a, b),
geld(a, b)

quo(a, b), rquo(a, b),
lquo(a, b)
rem(a, b), rrem(a, b),

Irem(a, b)

lem(a, b), lerm(a, b),
lclm(a, b)

a divides b (on the right or left).
— Section 2.1.

The unit normal greatest common (right or left)
divisor of a and b.
— Definition 2.1.1.

The (right or left) quotient of a and b.
— Definition 2.1.3.

The (right or left) remainder of a and b.
— Definition 2.1.3.

The unit normal least common (right or left)
multiple of a and b.
— Definition 2.1.4.

The nth falling factorial of a: [/~ (a — ).
— Section 2.1.

The nth rising factorial of a: H;:Ol(a +1).
— Section 2.1.

Commutative polynomial ring in x over ID.
— Section 2.2.

The leading, the trailing and the i¢th coefficient
of a polynomial p in x.
— Section 2.2.
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deg(p)

The degree of a commutative polynomial p.
— Section 2.2.

cont(p) The content of a polynomial p.
— Section 2.2.
pp(p) The primitive part of a polynomial p.
— Section 2.2.
Chapter 3
DI[X;0,0] Ore polynomial ring in X over D with endomor-

const(D[X; 0,4])

phism ¢ and pseudo-derivation 6.
— Definition 3.1.1.

The set of constants of the Ore Algebra
D[X;0,4].
— Definition 3.1.1.

ord(A),d The order of A € D[X;0,4], i.e. the degree of A
in X.
— Section 3.1.1.

o"(a) The nth shift of a.
— Section 3.1.1.

al”! The nth o-factorial of a: ac(a)...o" 1(a).
— Definition 3.1.2.

Sn, Shift function in n: p(n) — p(n + 1).
— Example 3.1.3.

Sq.y ¢-Shift in y: p(y) — p(qy).
— Example 3.1.3.

A(f) The image of the action of an operator A ap-
plied to a function f.
— Definition 3.1.4.

V(A),V(A)g Set of solutions of an operator A (in G).
— Section 3.1.2.

Chapter 4

deg(L) The maximum of all the degrees of the coeffi-
cients of an operator L.
— Section 4.1.

vy (p) The multiplicity of an irreducible element p in w.

— Definition 4.3.4.
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indy, (p)

The backward-shift multiplicity of an irreducible
element p in u.
— Definition 4.3.4.

The indicial polynomial of L € K[y][d;1, 4]

» 0 dy
at p € K[y].
— Section 4.3.2.
Chapter 6
prem(A, B), The pseudo-remainder and the pseudo-quotient
pquo(A, B) of two operators A and B.
— Definition 6.1.4.
Syl(A4, B) The Sylvester matrix of A and B.
— Definition 6.2.2.
res(A, B) The resultant of A and B.
— Definition 6.2.2.
Syl;(A, B), Submatrices of the Sylvester matrix of A and B.
Syl; ; (A, B) — Definition 6.2.7.
sres; (A, B) The ith polynomial subresultant of A and B.

— Definition 6.2.9.
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