Theorema 2.0: An Open-Source Mathematical Assistant System for Automated and Interactive Reasoning

Wolfgang Windsteiger

RISC, JKU Linz 4232 Hagenberg, Austria

Wolfgang.Windsteiger@risc.jku.at

www.risc.jku.at/home/wwindste/

October 24, 2013

Theorema 2.0 at PAS'2013

- \approx 1995: Project initiated by Bruno Buchberger.
 - Goal 1: create a system that does proofs "like us".
 - Goal 2: create an integrated system (algorithms + proofs in one system).

First Implementation

- Implementation based on Mathematica 3 (and higher):
 - + Notebook interface and two-dimensional syntax.
 - Many proving components implemented by various people (Buchberger, Jebelean, Windsteiger, etc.).
 - + Proofs generated and printed in natural style.
 - System architecture reached its limits (combination of the components).
 - Although user interface was always counted as a plus, the system was difficult to use in practice.
 - Execution of algorithms not efficient enough (translation Mathematica \leftrightarrow Theorema).

Re-Design and Re-Implementation

• Implementation based on Mathematica 7 (and higher):

- Preserve the "+" and improve on the "-".
- GUI elements as part of the Mathematica programming language (dynamic expressions).
- Create an appealing/nice/easy to use interface.
- Consider interactive proving in the system design from the beginning.
- Integration of computation and proving.
- Speed: Implementation in Mathematica programming language \rightsquigarrow try to use efficient built-in operations as much as possible.

In This Talk: Mostly Demo

Program Verification: Theorema could be used as a frame for it.

- **1** Computation on top-level
- **2** Computation in proof
- **3** Execution of algorithm in proof (does not work yet)
- 4 Algorithm is an object in the language

In This Talk: Mostly Demo

Program Verification: Theorema could be used as a frame for it. Proving: General mechanism / On the use of rewriting. Computation: On the use of rewriting. GUI: on the fly!

Demo Warm-up: An Easy Proving Example

- **1** Select proof goal
- 2 Compose KB
- 3 activate/deactivate rules
- 4 activate/deactivate output
- **5** restore settings
- 6 automatic status of cells
- 7 proof display in notebook: tree \rightsquigarrow nested cells
- 8 proofs are human-readable
- **9** proofs are human-comprehensible
- $\underline{\tt IO}$ how to input formulas \rightsquigarrow global quantifiers, parentheses

On the Role of Rewriting

Modus Ponens rule: If we know $A \Rightarrow B$ and A then we can infer B.

How would we implement it: If we have $A \Rightarrow B$ in the KB then search for A in the KB and add B to the KB in case of success.

In mathematics very frequently: We know $\forall A_{x,y,\dots} \Rightarrow B_{x,y,\dots}$ and have $A_{t,s,\dots}$. We then want to infer $B_{t,s,\dots}$. (Combination of instantiation and Modus Ponens.)

How would we implement it: If we have $\forall _{x,y,\ldots} A_{x,y,\ldots} \Rightarrow B_{x,y,\ldots}$ in the KB then search for a substitution σ such that $A_{x,y,\ldots}\sigma$ is in the KB (see it as a hint for instantiation!) and add $B_{x,y,\ldots}\sigma$ to the KB in case of success.

On the Role of Rewriting: Implementation Aspects

- Main Goal: Try to implement efficiently in Mathematica.
- E.g. use pattern matching and rewrite rules from Mathematica instead of implementing matching and replacement for Theorema expressions in the Mathematica programming language.
- Modus Ponens: turn A ⇒ B into A:>B and apply it to A, technically Replace[A,A:>B] gives B.

• Quantified Modus Ponens: turn $\underset{x,y,\dots}{\forall} A_{x,y,\dots} \Rightarrow B_{x,y,\dots}$ into

$$A_{x_{-},y_{-},\ldots} :> B_{x,y,\ldots}$$

When this is applied to $A_{t,s,\ldots}$, Mathematica will match the patterns $\mathbf{x}_{-}, \mathbf{y}_{-}, \ldots$ against t, s, \ldots , thus find the substitution σ , and give $B_{t,s,\ldots}$, i.e. $B_{x,y,\ldots}\sigma$.

On the Role of Rewriting: Implementation Aspects

Use the same idea for the situation where we know $\forall A_{x,y,\dots} \Rightarrow B_{x,y,\dots}$ and have to prove $B_{t,s,\dots}$. It suffices to prove $A_{t,s,\dots}$.

Turn
$$\bigvee_{x,y,\dots} A_{x,y,\dots} \Rightarrow B_{x,y,\dots}$$
 into

 $B_{x_{-},y_{-},\ldots}:>A_{x,y,\ldots}$

When this is applied to $B_{t,s,\ldots}$, we get $A_{t,s,\ldots}$.

On the Role of Rewriting: How it is Applied

Whenever a new formula comes to the KB, all universal quantifiers at the beginning are stripped and all conditions on the quantified variables are collected (from special ranges and explicit conditions).

$$\bigvee_{x_1} \dots \bigvee_{x_l} P_{x_1,\dots,x_l} \rightsquigarrow \{P_{x_1,\dots,x_l}, \{C_1,\dots,C_l\}, \{x_1,\dots,x_l\}\}$$

where the C_i are the conditions on the x_i .

For forward application:

$$\mathtt{C}_{\mathtt{1}\mathtt{x}_1,\ldots,\mathtt{x}_1-} :> \mathtt{P}_{\mathtt{x}_1,\ldots,\mathtt{x}_1} \quad \text{and check } \mathtt{C}_{\mathtt{j}\mathtt{x}_1,\ldots,\mathtt{x}_{1-}} \in \mathrm{KB} \text{ for } j \neq 1$$

For backward application:

$$P_{\mathtt{x}_{1-},\ldots,\mathtt{x}_{1-}} \colon > C_{\mathtt{1}\mathtt{x}_{1},\ldots,\mathtt{x}_{1}} \land \ldots \land C_{\mathtt{1}\mathtt{x}_{1},\ldots,\mathtt{x}_{1}}$$

Content

On the Role of Rewriting: How it is Applied

Special cases:

- P has the form $C \Rightarrow Q$: C is an additional condition.
- $P \Rightarrow Q$ is equivalent to $\neg P \Rightarrow \neg Q \rightsquigarrow$ various rewrite rules for negated occurrences.
- P has the form $P_1 \land \ldots \land P_n$: For backward application:

$$\mathsf{P}_{\mathtt{j}_{\mathtt{x}_{1-,\dots,\mathtt{x}_{1}}}} :> \mathtt{C}_{\mathtt{1}_{\mathtt{x}_{1},\dots,\mathtt{x}_{1}}} \land \dots \land \mathtt{C}_{\mathtt{1}_{\mathtt{x}_{1},\dots,\mathtt{x}_{1}}} \text{ for each } j = 1,\dots,n$$

Similar Situations

- **1** Expanding definitions
- **2** Rewriting using equalities
- **3** Rewriting using equivalences

Equalities/equivalences are used bi-directional: the one that can be applied first deletes the other one in order to avoid cycles. (No experience yet, but think of x = y.)

Demo: Rewriting

- **1** Use Goal-Rewriting AND Knowledge Rewriting (interestingly an alternative is proved twice)
- **2** Use Knowledge Rewriting **ONLY**
- **3** Use Goal-Rewriting **ONLY**
- **4** Show proof simplification

Demo: Interactive Proving

- **1** Select next step
- **2** Instantiate existential goal

Availability

- Via GitHub.
- Hopefully still 2013.
- www.risc.jku.at/research/theorema

Future work:

Availability

- Via GitHub.
- Hopefully still 2013.
- www.risc.jku.at/research/theorema

Future work:

