
Initial Results on Modeling in PRISM
Mobile Cellular Networks

with Spectrum Renting∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

April 9, 2013

Abstract

We report in this paper on our initial results on modeling in the probabilistic model
checker PRISM the system described in the paper “A New Finite-Source Queueing Model
for Mobile Cellular Networks Applying Spectrum Renting” by Tien v. Do et al. That paper
proposes a new finite-source retrial queueing model to consider spectrum renting in mobile
cellular networks; numerical results are there produced with the MOSEL-2 tool. Our results
show that the model can be described and analyzed in PRISM in a very transparent way;
however, due to an apparent system bug we are not yet able to check models of the same
size as in MOSEL-2.

∗Supported by the project HU 10/2012 of the Austrian Academic Exchange Service (ÖAD).

1

mailto:Wolfgang.Schreiner@risc.jku.at

Contents

1. Introduction 3

2. The Model 3

3. The Properties 8

4. Conclusions 13

A. The PRISM Model and Properties 14

2

1. Introduction

We report on initial results to model and analyze the mobile cellular network system introduced
in [2] by using the probabilistic model checker PRISM. In this model, a number of sources
(cell phone subscribers) compete for access to a number of servers (channels). Sources produce
requests at rate λ which a free server processes at rate µ . However, the number of available
channels is not fixed: if the number of free channels gets to small, the cell phone operator may
rent additional frequency blocks from another operator, partition these blocks into channels, and
use the new channels for its own subscribers; these blocks may be released, if sufficiently many
channels have become free again.

The model also describes the behavior of the subscribers: if they cannot get immediately
access to a channel, they are offered a return call to indicate when a channel becomes available;
if this offer is accepted, the subscriber request is placed into a “queue” which is served in a
first-come-first-serve discipline. However, if the user becomes impatient, she may opt to leave
the queue and retry the call (she is then placed into an “orbit” where calls are retried with rate ν)
or to give up the call at all, upon which she is returned to the overall pool of subscribers.

In [2] the model is formalized and analyzed with the help of the MOSEL-2 tool [1]. The goal
of this paper is to do the same with the probabilistic model checker PRISM [3]; for this we
use the newest developer version 4.1beta available since December 2012 from the PRISM web
site [4].

The rest of this paper is organized as follows: in Section 2, we describe the PRISM model
and its peculiarities; in Section 3, we describe the properties to be analyzed and the results of the
application of PRISM to this analysis; in Section 4, we present our (preliminary) conclusions.
Appendix A lists the full source code of the model and the properties.

2. The Model

The model is a “Continuous Time Markov Chain” model introduced by the declaration

ctmc

We then introduce the model parameters

// renting thresholds
const int t1; // block renting threshold
const int t2 = 6; // block release threshold

// bounds
const int K = 50; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2*r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate

3

const double eta = 1/300; // rate of queueing users getting impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release rate

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later (-> orbit)
const double p_1o = 0.8; // prob. impatient user retries (-> orbit)
const double p_1s = 1-p_1o; // prob. impatient user gives up (-> sources)
const double p_r = 0.8; // block rental success probability
const double p_f = 1-p_r; // block rental failure probability

The values of these parameters are the same as those used in [2] except for the population size
K = 50 (in [2], K = 100 is used). The reason for this deviation will be explained in Section 3.

Analogous to [2], we use an abbreviation

formula servAvail = n+blocks*r;

to denote the total number of servers (channels) that have been rented and are available for use,
which depends on the value of the model variable blocks introduced below; in contrast to blocks,
servAvail is a syntactic abbreviation whose value is not stored in the model and does therefore
not contribute to the size of the state space of the system.

The model is composed of the following modules:

• Sources models the subscribers who are currently not performing (respectively attempting
to perform) a call.

• Servers models the subscribers that are currently performing a call.

• Queue models the subscribers that are placed in the queue to wait for a return call indicat-
ing that a channel is free.

• Orbit models the subscribers that have opted to leave the queue and that are retrying a call
on their own.

The number of subscribers in these modules is described by the corresponding model variables
sources, servers, queue, orbit which satisfy the invariant K = sources+ servers+queue+orbit.
All transitions in the model describe how a subscriber moves from one module (decrementing
the corresponding variable) to another module (incrementing the corresponding variable) such
that the invariant is preserved. Each move is performed by a synchronized transition which is
simultaneously performed by two modules:

• sservers moves a subscriber from Sources to Servers.

• squeue moves a subscriber from Sources to Queue.

• sorbit moves a subscriber from Sources to Orbit.

• ssources moves a subscriber from Servers to Sources.

4

• qorbit moves a subscriber from Queue to Orbit.

• qservers moves a subscriber from Queue to Servers.

• qsources moves a subscriber from Queue to Sources

• osources moves a subscriber from Orbit to Sources.

Since each transition describes a synchronized step of two modules, it is listed in two modules:
in the “active” module where the move originates and in the “passive” one where the move
terminates. The rate r for each transition is always indicated in the “active” module with the
passive module having (implicitly) assigned rate 1. The rate of the synchronized transition is
then the product r ·1 = r.

If a module can participate in multiple transitions, guard conditions may ensure that in each
state only one of the transitions is possible. If, however, in a state e.g. 2 transitions with rate r are
possible, then their probabilities p1 and p2 = 1− p1 are used to adjust the rates of the transitions
to r · p1 and r · p2.

In addition to the closely interacting modules above we have a largely independently executing
module Blocks which describes the management of the frequency blocks with a variable blocks
indicating the number of rented blocks. The management of the blocks is performed by the
following transitions:

• success successfully rents a new block.

• failure fails to rent a block.

• retrial returns after a failed attempt to rent a block to a state where the module retries to
rent a block.

• interrupt returns after a failed attempt to rent a block to a state where the module does not
retry to rent a block.

• release returns a rented block.

In more detail, the modules are described below.

Sources This module has one system variable sources whose value is in interval [0,K] which
is managed by three “active” transitions sservers, sorbit, and squeue, and three “passive” ones,
ssources, osources, qsources.

module Sources
sources: [0..K] init K;
[sservers] sources > 0 & servers < servAvail ->
sources*lambda : (sources’ = sources-1);

[sorbit] sources > 0 & servers = servAvail ->
sources*lambda*p_o : (sources’ = sources-1);

[squeue] sources > 0 & servers = servAvail ->
sources*lambda*p_q : (sources’ = sources-1);

[ssources] sources < K -> (sources’ = sources+1);

5

[osources] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);

endmodule

Among the active transitions, if servers < servAvail, only sservers is enabled; if servers =
servAvail, transition sorbit is taken with probability po, transition squeue is taken with proba-
bility pr; with probability pb = 1− po − pr, the module stays in its state (which need not be
indicated explicitly).

In the passive transitions, the condition sources < K might not seem necessary, because in ev-
ery reachable system state the transition will only be attempted, when this condition is ensured;
however, if we omit the condition, PRISM will complain, because it checks the validity of the
module with respect to every possible state (also those that are not reachable).

This module differs somewhat from the original formulation in MOSEL-2 where subscribers
from Sources were moved first into a state Requests in which the decision was made, whether it
is possible to enter Servers or whether the user may be offered to enter the Queue or the Orbit.
However, this intermediate state is only virtual, in the sense that the transition from Sources to
Requests takes zero time, i.e., it does not correspond to a transition in the real system. Since
there are no zero-time transitions in PRISM, we omit this intermediate state.

Servers This module has one system variable servers which is managed by one active transi-
tion ssources and two passive transitions sservers and qservers.

module Servers
servers: [0..M] init 0;
[sservers] servers < M -> (servers’ = servers+1);
[qservers] servers < M -> (servers’ = servers+1);
[ssources] servers > 0 -> servers*mu : (servers’ = servers-1);

endmodule

Again the passive transitions are guarded by the redundant condition servers < M, to avoid
PRISM complaining.

Queue this model has one system variable queue which is managed by the active transitions
qservers, qorbit, and qsources, and the passive transition squeue:

module Queue
queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[qservers] queue > 0 & servers < servAvail ->
9999 : (queue’ = queue-1); // "immediately"

[qorbit] queue > 0 & servers = servAvail ->
queue*eta*p_1o : (queue’ = queue-1);

[qsources] queue > 0 & servers = servAvail ->
queue*eta*p_1s : (queue’ = queue-1);

endmodule

The passive transition is guarded by the redundant condition queue < K − n to avoid com-
plaints of PRISM. Among the active transitions, in a state with servers< servAvail, only qservers

6

is enabled which moves a message from Queue to Servers. In the MOSEL-2 model, this tran-
sition is performed with time 0; in the PRISM model, we reflect this by an “infinite” rate 9999.
However, we consider this “zero-time” transition a deficiency of the MOSEL-2 model and have
contacted one of the authors to reconsider that aspect.

In a state with servers = servAvail, transitions qorbit and qsources are taken with probability
p1o and p1s = 1− p1o, respectively. In [2], however this condition is missing, which may or may
not indicate a deficiency of the model; we have asked one of the authors for clarification.

Orbit This module encapsulates a system variable orbit with active transition osources and
passive transitions sorbit and qorbit (which are guarded by the redundant conditions orbit <
K −n to avoid PRISM complaints).

formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true; // (orbit’ = orbit+1);
[qorbit] orbit < K-n -> true; // (orbit’ = orbit+1);
[osources] orbit > 0 -> orbit*nu : true; // (orbit’ = orbit-1);

endmodule

However, rather than modeling orbit by an explicit state variable, we remember our sys-
tem invariant K = sources+ servers+ queue+ orbit, from which we can deduce that orbit =
K − (sources+ servers+ queue), i.e., the value of orbit can be deduced from the other system
variables. Since the size of the state space of a system is the crucial factor for the time needed
for checking system properties, we therefore decided to make this variable virtual, i.e., replace
it by the term K− (sources+ servers+queue). Model checking time was thus decreased by one
order of magnitude (approximately a factor of 10).

Blocks This module encapsulates two state variables blocks and trial where blocks models the
number of rented frequency blocks and trial becomes 1 by a failed attempt to rent a block.

module Blocks
blocks: [0..m] init 0;
trial: [0..1] init 0;
[success] trial = 0 & servAvail-servers <= t1 & blocks < m ->
lam_r*p_r: (blocks’ = blocks+1);

[failure] trial = 0 & servAvail-servers <= t1 & blocks < m ->
lam_r*p_f: (trial’ = 1);

[retrial] trial = 1 & servAvail-servers <= t1 ->
nu_r : (trial’ = 0);

[interrupt] trial = 1 & servAvail-servers > t1 ->
9999 : (trial’ = 0); // "immediately"

[release] servAvail-servers >= t2+r & blocks > 0 ->
mu_r : (blocks’ = blocks-1);

endmodule

If it is decided that an attempt is to be made to rent a block (servAvail − servers ≤ t1), then
this attempt succeeds with probability pr and fails with probability p f = 1− pr. In the later

7

case, we enter state trial = 1, from which another attempt will be made only after returning to
state trial = 0. The transition from state trial = 1 to trial = 0 is made with rate νr unless, it
is detected that a retrial is not necessary (servAvailservers > t1); in this case, the transition is
taken immediately (with “infinite” rate 9999). If it is detected, that sufficiently many blocks are
available (servAvail − servers ≥ t2 + r), a block is released.

Above module differs from the one presented in[2] which moves from a state where it has
been decided that a block should be allocated by a “zero-time” transition to a state Blocks, if the
attempt is successful, respectively to state RentOrbit where the retrial shall be attempted. We
avoid this transition in our model above.

However, we did not see how to model the “Interruption” that may take in a retrial state except
by adding the “zero-time” transition interrupt indicated above.

The Order of Modules While logically the order of modules in a PRISM model is of no
significance, it may have a major impact on model checking time: every state is represented
by a bit vector where the variables are represented in the order in which they are listed in the
model (i.e., in the order of the modules). States and state sets are respresented in PRISM by
binary decision diagrams (BDDs) where the time required for specific operations is sensitive to
the order of bits by which a state is represented. As a general strategy, “important” variables
should occur first.

From an original model, where module Server was listed last to one where it was listed first,
we observed a speedup by a factor of 2–4; after some experiments, we deemed the order of
modules listed in Section A as the most efficient one.

3. The Properties

All the properties listed in [2] can be formulated with the help of a number of state rewards, i.e.,
values assigned to every system state (the term max(0,orbit) used below only required because
of the “virtual” definition of orbit which for unreachable states may yield negative values, such
that PRISM complains):

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls

8

rewards "mC"
true: servers;

endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

The corresponding queries can be then performed as follows, very much in the style also
shown in [2]:

/ mean number of active requests
"mM" : R{"mM"}=? [S] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [S] ;

// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of rented blocks
"mB" : R{"mB"}=? [S] ;

// mean number of available servers
"mS" : n+"mB"*r ;

// mean number of idle servers
"mAS" : "mS"-"mC" ;

// utilization of available servers
"Sutil" : "mC"/"mS" ;

// blocking probability
"Pblock" : S=? [servers = servAvail] ;

const int B;

// probability that B blocks are partially utilized
"Pb" : S=? [n+r*(B-1) < servers & servers <= n+r*B] ;

// mean queue length
"mQ" : R{"mQ"}=? [S] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length

9

"mO" : R{"mO"}=? [S] ;

// mean time spent in orbit
"mTO" : "mO" / "m1" ;

These queries depend only on calculation of steady state rewards such as

"mO" : R{"mO"}=? [S] ;

and steady state probabilites such as

"Pblock" : S=? [servers = servAvail] ;

In the computation of times (e.g., query “mTO”), Little’s Law is applied; as discussed in [5], we
may investigate in the future also explicit time measurement for this purpose.

As for the actual application of PRISM to check these probabilities, we found it most efficient
to use the “Sparse” engine and the “Gauss-Seidel” solver; for larger models, it was necessary
to increase the maximum memory size allocated to the CUDD package for manipulating binary
decision diagrams from its default of 400 MB to more than 1 GB; otherwise the model creation
would fail with an error message (a segmentation violation of the Java process, corresponding
hints can be found in the FAQ section of the PRISM web site [4]).

With these settings and the optimization of “virtualizing” the variable orbit as described in
Section 2, it is possible to check models for K = 50 in a few (2–4) seconds; without the virtu-
alization, it took more than half a minute). Since increasing K by a value of 10 approximately
doubles the model checking time, we could expect checking for K = 100 in a couple of minutes
(which seems significantly slower than MOSEL which needs for a check about half a minute).

However, when increasing the parameter to K ≥ 60, we encountered the problem that the
setup of the linear equation system for the “Sparse” engine which looks for K = 50 like

Building sparse matrix... [n=80678, nnz=381238, compact] [1.5 MB]
Creating vector for diagonals... [dist=40401, compact] [473.2 KB]
Allocating iteration vector... [630.3 KB]
TOTAL: [2.6 MB]

for K = 60 stops at the point

Building sparse matrix... [n=166513, nnz=803018, compact] [3.2 MB]
Creating vector for diagonals...

with the process continuing to consume CPU time but not producing any output (or error); we
suspect this to be a bug in PRISM and have informed the developers of PRISM correspondingly.

Since this bug prevents the use of the “Sparse” and also of the “Hybrid” engine (and the other
engines “MTBDD” and “Explicit” were much too slow), we were only able ro run preliminary
tests for K = 50, rather than for K = 100 as in [2]. The results are shown in Figures 1 and 2,
which depict for K = 50 the results shown for K = 100 in Figures 3 and 4 of [2].

The diagram for “Mean Number of Channels” in Figure 1 and all the diagrams in Figure 2
look qualitatively similar (with different quantitative values) as the corresponding ones in [2].
However, while the other diagrams in Figure 1 have similar trends, they do not form smooth
monotonously growing curves like those depicted in [2], but depict some “down” bumps when
ρ is a multiple of 1.6. We are not sure whether this corresponds to the original model or not; we
have asked one of the authors of [2] for corresponding diagrams for K = 50.

10

Figure 1: Performance Measures for t2 = 6

11

Figure 2: Performance Measures for t2 = 6

12

4. Conclusions

As shown in this paper, it seems feasible to create and model in PRISM 4.1 systems analogously
to those presented in [2] using MOSEL-2. The PRISM models seem to us more transparent than
that in MOSEL because they correspond more directly to the intuition; essentially each block
depicted in Figure 1 of [2] becomes one PRISM module and the interaction between the blocks
become shared transitions of the corresponding modules forwarding values from one module to
the other.

We also identified some aspects of the MOSEL model (a zero time transition between the
“Queue” component and the “Server” component and an apparently missing guard condition in
the “Queue” model) which seem questionable to us and about which we have asked one of the
authors of [2] for clarification. There is also one aspect of our model (a zero-time transition in
module “Blocks”) which we do not like particularly well and would like to revise.

As for analyzing the model, we saw that all the queries performed in MOSEL can be per-
formed in an analogous way in PRISM (with the possibility of explicit time measurement as
described in [5] still to be investigated). For the model checking time, however, we had to per-
form quite some optimizations (considering the order of system modules/variables, virtualizing
a system variable) to get in a similar order of magnitude than the checks performed by MOSEL.

Unfortunately, we ultimately failed to analyze models of the same size as in [2] due to an
apparent bug in the PRISM model checker, about which we have contacted the PRISM develop-
ers. Until the bug is fixed or the authors of [2] produce numerical results for smaller models, we
cannot be sure that our models yield the same results. While this seems to be the case at least
for some of the queries, for other ones the outcome is still questionable.

References

[1] K. Begain, G. Bolch, and Herold H. Practical Performance Modeling Application of the
MOSEL Language. Kluwer Academic Publisher, 2012.

[2] Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik, and Hermann de Meer. “A
New Finite-Source Queueing Model for Mobile Cellular Networks Applying Spectrum
Renting”. In: Asia-Pacific Journal of Operational Research (2013). To appear.

[3] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided Verifi-
cation (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in
Computer Science. Springer, 2011, pp. 585–591.

[4] David A. Parker, ed. PRISM — Probabilistic Symbolic Model Checker. Department
of Computer Science, University of Oxford, UK. 2013. URL: http : / / www .
prismmodelchecker.org.

[5] Wolfgang Schreiner. Experiments with Measuring Time in PRISM 4.0. Technical Re-
port. Johannes Kepler University Linz, Austria: Research Institute for Symbolic Compu-
tation (RISC), Mar. 2013. URL: http://www.risc.jku.at/publications/
download/risc_4684/main.pdf.

13

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
http://www.risc.jku.at/publications/download/risc_4684/main.pdf
http://www.risc.jku.at/publications/download/risc_4684/main.pdf

A. The PRISM Model and Properties

// --
// Spectrum.prism
// A model for mobile cellular networks applying spectrum renting.
//
// The model is described in
//
// Tien v. Do, Patrick Wüchner, Tamas Berczes, Janos Sztrik,
// Hermann de Meer: A New Finite-Source Queueing Model for
// Mobile Cellular Networks Applying Spectrum Renting,
// September 2012.
//
// Use for fastest checking the "Sparse" engine and the "Gauss-Seidel" solver;
// for larger K, it may be necessary to increase the CUDD maximum memory size
// to more than 1 GB, otherwise model construction fails.
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
// Copyright (C) 2013, Research Institute for Symbolic Computation
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
// --

// continuous time markov chain (ctmc) model
ctmc

// --
// system parameters
// --

// renting thresholds
const int t1; // block renting threshold
const int t2 = 6; // block release threshold

// bounds
const int K = 50; // population size
const int r = 8; // number of servers/channels per block
const int m = 5; // maximum number of blocks that can be rented
const int n = 2*r; // minimum number of servers/channels
const int M = n+r*m; // maximum number of simultaneous calls

// rates
const double rho; // normalized traffic intensity
const double mu = 1/53.22; // service rate
const double lambda = rho*n*mu/K; // call generation rate
const double nu = 1; // retrial rate
const double eta = 1/300; // rate of queueing users getting impatient
const double lam_r = 1/5; // block renting rate
const double nu_r = 1/7; // block rental retrial rate
const double mu_r = 1; // block release rate

// probabilities
const double p_b = 0.1; // prob. that user gives up (-> sources)
const double p_q = 0.5; // prob. that user presses button (-> queue)
const double p_o = 1-p_b-p_q; // prob. that user retries later (-> orbit)

14

const double p_1o = 0.8; // prob. that impatient user retries later (-> orbit)
const double p_1s = 1-p_1o; // prob. that impatient user gives up (-> sources)
const double p_r = 0.8; // block rental success probability
const double p_f = 1-p_r; // block rental failure probability

// --
// system model
// note that the order of the modules influences model checking time
// heuristically, this seems to be the best one
// --

// number of currently available servers/channels
formula servAvail = n+blocks*r;

// blocks are rented at rate lam_r and released at rate mu_r
// renting is successful with probability p_r and fails with probability p_f
// retrying a failed attempt is performed at rate nu_r
module Blocks

blocks: [0..m] init 0;
trial: [0..1] init 0;
[success] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_r: (blocks’ = blocks+1);
[failure] trial = 0 & servAvail-servers <= t1 & blocks < m ->

lam_r*p_f: (trial’ = 1);
[retrial] trial = 1 & servAvail-servers <= t1 ->

nu_r : (trial’ = 0);
[interrupt] trial = 1 & servAvail-servers > t1 ->

9999 : (trial’ = 0); // "immediately"
[release] servAvail-servers >= t2+r & blocks > 0 ->

mu_r : (blocks’ = blocks-1);
endmodule

// available servers accept requests
module Servers

servers: [0..M] init 0;
[sservers] servers < M -> (servers’ = servers+1);
[qservers] servers < M -> (servers’ = servers+1);
[ssources] servers > 0 -> servers*mu : (servers’ = servers-1);

endmodule

// generate requests at rate sources*lambda
module Sources

sources: [0..K] init K;
[sservers] sources > 0 & servers < servAvail ->

sources*lambda : (sources’ = sources-1);
[sorbit] sources > 0 & servers = servAvail ->

sources*lambda*p_o : (sources’ = sources-1);
[squeue] sources > 0 & servers = servAvail ->

sources*lambda*p_q : (sources’ = sources-1);
[ssources] sources < K -> (sources’ = sources+1);
[osources] sources < K -> (sources’ = sources+1);
[qsources] sources < K -> (sources’ = sources+1);

endmodule

15

// if no server is available, requests are redirected
// with probability p_o to the orbit
formula orbit = K-(sources+servers+queue); // make variable virtual
module Orbit

// orbit: [0..K-n] init 0;
[sorbit] orbit < K-n -> true; // (orbit’ = orbit+1);
[qorbit] orbit < K-n -> true; // (orbit’ = orbit+1);
[osources] orbit > 0 -> orbit*nu : true; // (orbit’ = orbit-1);

endmodule

// if no server is available, requests are redirected
// with probability p_q to the queue
module Queue

queue: [0..K-n] init 0;
[squeue] queue < K-n -> (queue’ = queue+1);
[qservers] queue > 0 & servers < servAvail ->

9999 : (queue’ = queue-1); // "immediately"
[qorbit] queue > 0 & servers = servAvail ->

queue*eta*p_1o : (queue’ = queue-1);
[qsources] queue > 0 & servers = servAvail ->

queue*eta*p_1s : (queue’ = queue-1);
endmodule

// --
// system rewards
// --

// mean number of active requests
rewards "mM"

true : max(0, orbit)+queue+servers;
endrewards

// mean number of calls in orbit
rewards "mO"

true : max(0, orbit);
endrewards

// mean number of calls in queue
rewards "mQ"

true: queue;
endrewards

// mean number of active calls
rewards "mC"

true: servers;
endrewards

// mean number of active blocks
rewards "mB"

true: blocks;
endrewards

// --

16

// Spectrum.props
// --

// mean number of active requests
"mM" : R{"mM"}=? [S] ;

// mean number of active sources
"mK" : K-"mM" ;

// mean throughput (served and unserved)
"m1" : "mK"*lambda ;

// mean number of active calls
"mC" : R{"mC"}=? [S] ;

// mean goodput
"m1good" : "mC"*mu ;

// probability that arriving customer gets served
"Pgood" : "m1good"/"m1" ;

// mean response time (served and unserved)
"mT" : "mM"/"m1" ;

// mean number of rented blocks
"mB" : R{"mB"}=? [S] ;

// mean number of available servers
"mS" : n+"mB"*r ;

// mean number of idle servers
"mAS" : "mS"-"mC" ;

// utilization of available servers
"Sutil" : "mC"/"mS" ;

// blocking probability
"Pblock" : S=? [servers = servAvail] ;

const int B;

// probability that B blocks are partially utilized
"Pb" : S=? [n+r*(B-1) < servers & servers <= n+r*B] ;

// mean queue length
"mQ" : R{"mQ"}=? [S] ;

// mean time spent in queue
"mTQ" : "mQ" / "m1" ;

// mean orbit length
"mO" : R{"mO"}=? [S] ;

// mean time spent in orbit

17

"mTO" : "mO" / "m1" ;

18

	Introduction
	The Model
	The Properties
	Conclusions
	The PRISM Model and Properties

