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Abstract

H(curl) conforming finite element discretizations are a powerful tool for the numerical
solution of the system of Maxwell’s equations in electrodynamics. In this paper we construct
a basis for conforming high-order finite element discretizations of the function space H (curl) in
3 dimensions. We introduce a set of hierarchic basis functions on tetrahedra with the property
that both the L2-inner product and the H(curl)-inner product are sparse with respect to the
polynomial degree. The construction relies on a tensor-product based structure with properly
weighted Jacobi polynomials as well as an explicit splitting of the basis functions into gradient
and non-gradient functions. The basis functions yield a sparse system matrix with O(1)
nonzero entries per row.

The proof of the sparsity result on general tetrahedra defined in terms of their barycentric
coordinates is carried out by an algorithm that we implemented in Mathematica. A rewriting
procedure is used to explicitly evaluate the inner products. The precomputed matrix entries
in this general form for the cell-based basis functions are available online.

1 Introduction

The main result of this paper is the construction of high order finite element basis functions for
H(curl) on tetrahedra yielding a sparse system matrix. These basis functions are defined via certain
Jacobi-type polynomials. For the proof of the sparsity, integrals over the products of these basis
functions and their partial derivatives need to be evaluated. Even though Jacobi polynomials have
been studied extensively in the past, for this evaluation several identities are needed that are not
yet folklore in the literature. For obtaining these necessary relations we invoke recently developed
computer algebra algorithms. Furthermore the amount of data that needs to be handled forbids
classical hand computations and we employ a program implemented in Mathematica to carry out
this task.

The symbolic component in the construction of the basis functions and the proof of their
properties is the main focus of the present work. The gain of invoking symbolic computation is
twofold: on the one hand it is used as a practical tool to derive necessary identities and relations,
on the other hand it is inevitable for dealing with the large number of integrals to be evaluated in a
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systematic manner. For the proof of the main result we use the packages “HolonomicFunctions” [2§]
and “SumCracker” [27] that are explained in more detail below. These are among several available
tools for dealing with special functions in a symbolic way, such as, e.g., [45, 17, [16] 35, 36, 43].
The proof of the main result proceeds by a rewrite procedure of the given integrals that relies on
identities discovered using these packages.

Finite element methods are nowadays the preferred tool for numerically solving partial dif-
ferential equations (PDEs) on complicated domains, see e.g. [33] [13]. In the presence of smooth
solutions the convergence rate of this approximation procedure can be accelerated significantly
if basis functions of high polynomial degrees are used. This is called the p- and hp-version of
the FEM, see e.g. [38, 19, 5]. The implementation of these methods however then becomes very
involved and every simplification is most welcome [IT], 31, [42], 25] 22, [37].

This note is the last in a series of papers dealing with the construction of sparsity optimized basis
functions for different Sobolev spaces [8, [0, [6, @] [7]. Except for the first one [J] that dealt with
basis functions defined on triangles only, the computations were handed over to a computer algebra
system. Still, the focus of these papers was on the numerical aspects of the construction.

H(curl) conforming basis functions are chosen to be as piecewise polynomial functions on tetrahe-
drons with globally continuous tangential components along the interfaces of the tetrahedrons, see
[111, 3T, 42| 22]. The construction of the basis functions for the vector valued space H (curl) follows
the approach presented by Zaglmayr [37, [44]. They are built starting from (in principle) any set of
H'-conforming, i.e. globally continuous, basis functions and they are divided into curl-free basis
functions and a set of non-curl-free basis functions that complete the basis. As we show below,
they yield sparse system matrices and this is of advantage in the numerical computation concerning
both computing time and memory requirement.

The outline of the paper is as follows. Section [2| gives an overview about the mathematical
background from partial differential equations which is required to motivate the following sections.
Namely, the Maxwell equations and FEM are described very briefly. Finally, the importance of the
sparsity of the system matrix is motivated. The basis functions are defined in section [3] The main
results are also formulated in this part of the paper. Section 4] summarizes the most important
properties of Jacobi polynomials needed.

For the proof of the sparsity properties of the basis functions multi-integrals over certain Jacobi
polynomials and weights over general tetrahedra have to be computed. We are evaluating these
integrals symbolically using a rewrite procedure that we implemented in Mathematica and that is
described in Section Bl

2  Maxwell’s equations and the Finite Element Method

Variational formulation and the function space H(curl) In this paper, we investigate the
following problem in variational formulation: Find v € H(curl, Q) such that

alu,v) ::/Qu_lcurlu-curlv—&—/ﬂfiu-v:/Qf-v:: F(v) Vv e H(curl,Q) (2.1)

holds. For ease of notation, we assume Neumann boundary conditions. The bilinear form af(,-)
and the linear form F(-) are well-defined and bounded for f € [L2(2)]® and p, x € [Loo(Q)]? with
@ >0 and &, u are assumed to be piecewise constant. The variational formulation is well-defined
for square-integrable vector-valued functions v :  — R3 with square-integrable rotation. We



denote the according function space by
H(curl, Q) := {u € [L2(Q)]* : curlu € [La(Q)]}. (2.2)

The variational formulation is obtained from the discretization of the Maxwell equations [29]
by multiplication with a test function v, integration over the domain 2 and applying Green’s
formula to the curl-curl part. We refer the interested reader to [30] 24, 12] for more informations
concerning this topic.

For complicated geometries €2 and real-life data it is not possible to solve the Maxwell equa-
tions analytically. The finite element method (FEM) provides a general method for the
numerical solution of partial differential equations. It is based on the variational formulation of
the underlying PDE and provides a profound analysis.

Finite element discretization of H(curl,)) Galerkin methods such as, e.g., FEMs are among
the most powerful methods for the solution of boundary value problems of the form ‘ The
Galerkin approximation relies on the orthogonal projection of the implicitly given solution u in
onto an N-dimensional subspace Vy C H(curl, 2) with respect to the bilinear form a(-,-). There-
fore, we construct a sequence of finite dimensional spaces Vy C H(curl,Q) and consider the
solution of on Vy (see e.g. [18, 9] or the textbooks [33] [13]), namely

Find uy € Vy such that alun,vny) = F(uy) Yoy € Vy. (2.3)

The finite element method provides a special construction of these discrete spaces V y by piecewise
polynomial functions on an admissible subdivision (see [I8]) 7} of € into simplices 75, with s =
1,...,nel, ie.,

Vy = {u e H(cur, Q) : ul,, € PP(r,)° Y7y € Tn}, (2.4)

where PP is the space of all polynomials defined on 75 of maximal total degree p. The elements
T are chosen such that x and p are constant on the elements. In hp-finite element methods the
polynomial degree p can vary on each element 7, which provides extraordinary fast convergence
of the finite element method with respect to the number of degrees of freedom N = dim(V ), see
e.g. [38]. This is crucial for the solution of real world problems of the form (2.1)).

Since the space Vy is finite dimensional, the space is equipped with a row vector of basis functions
(U] := [¢1,...,%n]. The basis functions ¢; are chosen such that they have local support (see
e.g. [18]).

Then using the ansatz uy(z) = Zi\;l u;¢i(x) and setting v = ¢; for j = 1,...,N in the
problem becomes equivalent to solving the following system of IV linear algebraic equations

FindueRY: Ku=f (2.5)

for the coefficient vector u := [u;])Y.;, where the system matrix and right hand side vector are given
by the relations K = [a(il)jﬂ/)i)]ﬁvj:l € RV*N and f = [F(z/Jj)];V:l € RV, respectively. Note that
the matrix K depends on the choice of the basis functions.

Efficient solution of algebraic system In practical problems, the dimension N usually be-
comes very large (= 10°). Tterative methods as the preconditioned GMRES method or the precon-
ditioned conjugate gradient-method (pcg-method) for positive definite systems are preferred for
the solution of . The two main important issues for the fast solution of the system Ku = f
are

e the fast multiplication Ku,



e the choice of a good preconditioner C~! for K such that the condition number x(C 1K)
becomes small,

in order to obtain a fast convergence of the iterative solver for the solution of . If Kisa
dense matrix, the operation Ku requires N2 flops. If K is a sparse matrix with a bounded number
¢ of nonzero entries per row, the computational complexity of the matrix vector-multiplication is
bounded by ¢N. Since K in depends on the choice of the basis [¥] it is essential to choose
a basis with as many orthogonality relations as possible with respect to the bilinear form a(-,-).
The choice of the basis heavily influences the properties of the matrix K:

e the local support of finite element basis functions yields sparse system matrices K and hence
a cheap matrix vector multiplication Ku

o the condition number of K and C 'K, respectively, stability and less iterations in iterative
solution methods.

In the lower order version of FEM, i.e., the h-version, multigrid solvers are the most powerful
methods for discretizations of Maxwell’s equations, see [4, [34] 23] and the references therein. For
hp-FEM this strategy is combined with appropriate local smoothers and static condensation. We
also refer to [20].

hp-FEM and choice of basis functions In hp-FEM, the local polynomial degree ps on the
elements may be large. Despite of the local support of the basis functions [¥], the local dimension
ns grows as O(p?). Hence we are interested in a bounded number of nonzero entries in the
system matrix independent of the polynomial degrees. Let [®,] = [¢; s]i%; be the set of all basis
functions v; with supp ¢;N7s # 0, e.g. [®4] = [¥]Ls with the (boolean) ﬁmte element connectivity
matrices L.

In finite element methods, the global system matrix K is the result of assembling local matrices,
see [18]. In our case, one obtains

nel

K= / Leurl[w) " - curl[W] 4 Z/ Leurl[W] " - curl[W] 4 & [¥] " - [W].

Together with [®4] = [V]L, on 7, this implies

nel
K=> LIK,L, (2.6)
s=1

with the local stiffness and mass matrices

K, / (peurl[@,]T - curl[®,] + w[@,]T - [2,]) (2.7)

,us/ curl[<I>5}—r -curl[®4] + Ks/ [<I>S]T @] = psAs + ks M

s

on the elements 75, respectively, where us = i |-, and k5 = K |, are constants.

Therefore, the sparsity of the matrices K, in implies sparsity of the matrix K, cf. (2.6). Our
aim is to develop a local polynomial basis [®;] such that the matrices As and M in ave a
bounded number of nonzero entries per row. The global basis is the obtained in the usual way, see
e.g. [20].
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F1=A ABC
F2=A ACD
F3=A BCD
F4=A ABD

A:(_l!_lv_l) B:(l,—l,—l)

Figure 1: Notation of the vertices and edges/faces on the reference element A.

Model problem For ease of presentation, we are focusing on the following model problem: Let
A\ denote an arbitrary non degenerated simplex A C R3. Find a polynomial basis [®] = [rbi]?:(z{)
of degree p with ¢; : A + IR? such that the matrices

e :H AR (28)

[/ curl ¢; - curl (bz} ' = / curl[®] " - curl[®]
A i,j=1 AN

M

A

have O(n) nonzero entries. This basis should be suited for H(curl) conformity, [3I]. This re-
sult is formulated as our main result of this paper, Theorem Nevertheless, the suggested
basis functions can be applied in any variational problem setting based on a H (curl)-conforming
discretization.

3 Definition of the basis function

In this section we first define the basis functions, also referred to as shape functions, on a general 3-
dimensional simplex 7, which are appropriate for tangential continuous, i.e. H (curl)-conforming,
discretizations and imply sparse element stiffness and mass matrices. Note that enforcing tan-
gential continuity prohibits to construct basis functions that are orthogonal with respect to the
bilinear form a(-,) on the given subdivision, hence the goal is to find sparsity optimized bases. In
order to allow for globally varying polynomial degree we use as common an edge-face-cell-based
construction [2, T9] of the basis functions. For ease of notation we assume a uniform polynomial
degree p.

Let A denote an arbitrary non-degenerated simplex A C R3, its set of four vertices by V =
V1, Va, V3, Vi), Vi € R® and Ap, Ao, A3, Ay € PL(A) its barycentric coordinates uniquely defined by
Ai(Vj) = 8i;, see Figure [1| The general construction concept follows [44]: The set of edge-based
shape functions consists of the lowest-order Nédélec function shape functions and curl-free shape
functions. The set of face-based shape functions and the set of interior based shape functions
are split into a set of gradient and a set of non-gradient completion functions. Aiming at special
orthogonality relations between the different basis functions we adapt the polynomial building
blocks in the tensor-product construction. A detailed motivation based on the de-Rham complex
is given in [§].



For this purpose we introduce properly weighted Jacobi-type polynomials as follows: For n >
0,a,8> —1and z € [-1,1] let

Pl () = ST —(;1)2:(1 — dd; (1 = z)™+e (1 + 2)"*5) (3.1)

be the nth Jacobi polynomial with respect to the weight function (1 — 2)®(1 + x)?. The function
P{*? (2) is a polynomial of degree n, i.e. P (x) € P,,((~1,1)), where IP,,(I) is the space of all
polynomials of degree n on the interval I. In the special case a = 8 = 0, the functions poo (x)
are called Legendre polynomials. Mainly, we will use Jacobi polynomials with 3 = 0. For sake of

simple notation we therefore omit the second index in (3.1]) and write p&(z) := pie0 (z). Moreover
for n > 1, let

s = [ () dy, with py(e) =1, (3.2)

be the nth integrated Jacobi polynomial. Some properties of this type of Jacobi polynomials and
relations between different Jacobi and integrated Jacobi polynomials are stated in section [d] For
more details on Jacobi polynomials we refer the interested reader to the books of Abramowitz and
Stegun [I], Szegé [40], and Tricomi [41].

Now, the basis functions can be defined as follows.

Edge-based shape functions For each edge E,, = [e1,ea], m = 1,...,6, characterized by the
vertices, we introduce the lowest-order Nédélec function [32] corresponding to the edge [eq, 2]

Sol,Em, = V)\el >\62 - )\81 VAEQ (33)

and the high order functions gradient fields of scalar functions, [37],

Aes — Ae i .
0iE =V <ﬁ? <21> Aes + Ac ) , 2<i<p+1 (3.4)
)\62 +>\el ( 2 1)

The vector of the edge based basis functions of one fixed edge e is denoted by
(@] == [Sﬁi,e]?illa
the vector of all edge based basis functions by

@p] = [®r] [®m,) [Pm] [®m] [Pm] [®m]]. (3.5)

Face-based shape functions For each face f = [f1, fa, f3], characterized by the vertices Vy,, V7,
and V7,, we choose face based basis functions as

Fi1 ;
P15 = (VApAp = V)\f2>\fl)vfj’ Il<j<p-1
@5’1 = Vu, v}y — Volul 2<ul<jii+j<p+l, (3.6)
@5’2;:V(ufvf;), 2<41<gi+5<p+1

using the face-based Jacobi-type polynomials

~ A 2 A 1 i ~DG—
uf = p? (M) ()‘fz + /\fl) ) Uz’}; = p? 1()‘f3 —Ap— )‘f1)' (3.7)



£l p—1 Fi i+j<p+1 F2 i+j<p+1
Let [®7] := H‘Pu } ) {Wij } 7[ ij ]
j=1

basis functions of one fixed face f, and

[@p] = [ [@1] [@F2] [@F%] [@f] ] (3.8)

,] denote the row vector of the face based

i=2,j=1 i=2,j=1

be the row vector of all face based basis functions.

Interior (cell-based) shape functions The interior (cell-based) basis functions are constructed
in two types. First we define the curl-free shape functions by the gradients

@Ej?g(xayvz) :V(uz(x,y,z) ’Uij(iE,y,Z) wijk(xay?z))a ZEQ’JakZ 1’ Z+]+k§p+1 (39)

and complete the basis with the non-curl free cell-based shape functions

@g?i(%yaz) = Y1,E; (m7yaZ)’Ulj(x7yuz)w1jk(x7yaz)7 .77k 2 1a j+ k S p— 17

@gi(m,y,Z) = vui(wvyaZ)vij(xayvz)wijk(xay,Z)a ? 2 2;j7k 2 ]-; 7’+J + k S p+ ]-7 (310)

@Eji(xayaz) = ui(xay,z)vij(x,yvz)vwijk(xay,Z)a ? 2 2;.77k 2 1; Z+] + k S p+ ]-7

where @1 g, is the Nédélec function (3.3). Furthermore, we introduce the auxiliary functions u;, v;;
and w;; by the mixed-weighted Jacobi-type polynomials

Ao+ Aq

oi1 (223 — (1 =X
vz‘j(xayaz)5:p?z 1< 31_()\4 )

and  wij(x,y,2) = py 02 (20 — 1),

Ao — A )
wi(@,y,2) = 5 () o+ A0,

> (1— ), (3.11)

respectively. Finally, we denote the row vectors of the corresponding basis functions as [®,] =

[wijk(x’y’z)}i227j1k21 and [] = [%j’“(z)} k=1 > [®o] = [(Pijk(x’y’z)]iZZ,j,k,Zl and @] =
~(c) iHjtksp+l o L
[%‘ jk(a:, Y, z)} . The vector of the interior shape functions is denoted by
i>2,5,k,>1
(@] := [ [@] [@2] ] with [@5]= [ [B] [ [Bd] | (3.12)
and the vector of all basis functions is given by
(@] := [ [®5] [®F] [@1] ]. (3.13)

Lemma 3.1. Letp > 1. Then, the shape functions [®] are linearly independent spanning (PP(T))3.
Moreover, the rotations [V x ®3] span (PP~Y(T))3|g.

Proof. The proofs of [44] also hold for the auxiliary functions (3.11)), which implies the result. O
With these basis functions, see (3.13), the inner block of the system matrix is sparse and the
number of nonzero entries is proportional to its dimension, where the blocks corresponding to the
interior bubbles [®;] (3.12)) are defined by the relations

MM ::/ [®;]" - [®;] and A ::/ curl[ @] - curl[®;]. (3.14)
A A

This result is summarized in Theorem Note that the statements below describe an upper
bound only.



Figure 2: Inner block of mass (left) and stiffness matrix (right) for p = 14

Theorem 3.2. Let M'' and KT be inner blocks of the mass matriz and stiffness matriz, respec-
tively, see (3.14]).

The inner block of the mass matriz M1 has in total O(p®) nonzero matriz entries. More precisely,
Mt =0 if li=1|>20r|i—=l+j—m|>6or|i—l+j—m+k—n|>6.

The inner block of the stiffness matriz A has in total O(p*) nonzero matriz entries. More

precisely, Afjlk;lmnzoif\i—l|>2 orli—l+j—m|>4or|i—Il+j—m+k—n|>4.

Proof. Explicit computation of the matrix entries using the algorithm described in Section [5| see
also [§]. O

Remark 3.3. The result considers only the inmer blocks for the element mass matriz M and
element stiffness matriz A on A\, see (2.8]). Because of , also edge and face based shape
functions are involved in the definition of the local basis functions [®]. However, the asymptotically
biggest portion of basis functions belong to [®;], since the dimensions of [Pg| and [Pr] grow only
as O(p) and O(p?), respectively, cf. and . Besides that, with the definition of
the edge and face based functions in terms of Jacobi-type polynomials similar orthogonality effects
can be observed for the coupling blocks between [Pg], [Pr] and [P;] as well as for the face and edge
blocks.

If this sparsity pattern is taken into account, only O(p®) matrix entries need to be considered for
computation in the case of a polygonal domain and piecewise constant coefficients.

The explicit values for the mass and stiffness matrix entries on a general element defined by its
barycentric coordinates are available online at

http://www.risc. jku.at/people/vpillwei/hcurl/ .

4  Algorithms for special functions

Sparsity optimization of high-order basis functions on simplices relies on using particularly chosen
Jacobi-type polynomials and some of their basic properties that are introduced in this section. First
recall that we use the notation p%(z) to denote Jacobi polynomials with parameter 8 = 0.
These polynomials are orthogonal with respect to the weight (1 — ), i.e., there holds

1
o, (0% (03 (0% 2a+1
[1(1 —)*p§ (@)p]' (z) dv = pfdj, where pf = m~ (4.1)


http://www.risc.jku.at/people/vpillwei/hcurl/

This orthogonality relation is the basic ingredient for computing the entries of the different blocks of
the mass and stiffness matrices. Recall also the definition of the integrated Jacobi polynomials ({3.2))
forn>1and a > —1,

P2 (z) = / P () dy, with pg(a) = L.
1

Obviously, p%(—1) = 0 for n > 1, and, by the orthogonality relation (4.1)), integrated Legendre
polynomials vanish at both endpoints of the interval (—1,1). Summarizing, one obtains

po(=1)=0, p°(1)=0 forn>2a>—1. (4.2)

Factoring out these roots, integrated Jacobi polynomials (3.2)) can be expressed in terms of Jacobi
polynomials (3.1) with modified weights, i.e.,
1 _
B = P, e, (43)
n
122 o

5, —gin-2 (), n=2 (4.4)

pn(x) =
The identity is widely known and can be found in many introductory textbooks on high order
finite element methods [26]. The other identity is less well known, hence a short computer algebra
proof for is given below. Note that this gives yet another motivation to utilize computer
algebra as a tool in everyday’s work. Often a particular identity that would be needed is either
hard to dig out in the literature or not known at all, but with a simple application of symbolic
computation algorithms it can be delivered in no time automatically.
The proof of the sparsity pattern detailed below proceeds by exact evaluation of the integrals
following a rewrite procedure that turns the given integrand into a linear combination of integrals
of the form (4.1), i.e., integrals where the orthogonality relation can be applied. For this process
several identities relating different types of Jacobi polynomials and/or integrated Jacobi polyno-
mials are needed. The key relations that enter the computations are summarized in Lemma [4.1
below. In [9] (6, [10] classical proofs for these identities were provided. In this note we want to stress
that this type of identities need not be proven by hand, but should rather be discovered (and thus
proven) automatically using symbolic computation. To illustrate how this can be carried out,
we introduce briefly two particular packages that can handle these tasks, “SumCracker” [27] and
“HolonomicFunctions” [28], both implemented in the computer algebra system Mathematica and
both available for download at

http://www.risc. jku.at/research/combinat/software/ .

There also more detailed descriptions of the algorithms as well as examples on how to apply the
packages can be found.

SumCracker is a package developed by Kauers [27] containing algorithmic procedures for treating
sequences that are described via certain systems of difference equations (recurrence relations).
These systems can be possibly nonlinear, but with shifts in a single variable only. It can be
used for proving known or conjectured identities as well as for discovering new identities. One
advantage of this package as well as the package HolonomicFunctions is that they allow to enter
Jacobi polynomials as symbolic expressions in standard Mathematica syntax.

In short the algorithm implemented in SumCracker proceeds by translating the given expres-
sions that may be defined via systems of recurrence relations into polynomial form. Then using
Grobner bases computations [I4] algebraic relations can be found on the polynomial level and
translated back into the original setting. The scope of the package includes finding of linear re-
currence relations (as a particular instance of an algebraic dependency) or closed form relations.


http://www.risc.jku.at/research/combinat/software/

We illustrate these different approaches by using one easy example, the treatment of the sum
f(n) = > 4_o(2k + 1)pQ(z). Firstly we want to evaluate the sum in a simple closed form. The
standard Mathematica notation for Legendre polynomials p?(z) is LegendreP[k, z] and the stan-
dard notation for a sum would be “Sum”. In order to distinguish from the Mathematica built-in
command in SumCracker sums are denoted by “SUM”:

injt}:= Crack[SUM[(2k + 1)LegendreP[k, z], {k, 0, n}]]

1 1
out[1]= %(LegendreP[n,x]—LegendreP[l—l—n,a:]) (in standard notation: f(n) = % (P () — p2+1(m))>

By default SumCracker uses the expressions that are given in the input to express the solution. It
is also possible to express the solution in different terms using the “Into” option (if such a closed
form exists):

in2l= Crack[SUM[(2k + 1)LegendreP|[k, x|, {k, 0, n}], Into — {n, JacobiP[n, 1,0, z]}]

outel= (1 + n)JacobiP[n, 1,0, z] (in standard notation: f(n) = (n+ 1)p711(:6))

Also “JacobiP” is the standard notation in Mathematica for Jacobi polynomials. As final example,
we show how to obtain a recurrence relation for f(n):

injzl= GetLinearRecurrence[SUM[(2k 4 1)LegendreP[k, x|, {k, 0, n}], In — n,Head — f]

1+ 15z + 16nz + 4n2x 54 2n
1 —
Grmeran -3,/

oupl= fln+2]=

In this case the result is a second order homogeneous recurrence for f(n). Note again that this
result is not approximate in any way but has been derived by a rigorous proving procedure. For
further options and more details we refer to [27].

Jacobi polynomials (including integrated Jacobi polynomials) satisfy linear differential equations
with respect to « and also linear difference equations (i.e., recurrence relations) with respect to n, «
and B with polynomial coefficients. In other words, they are holonomic functions and many
algorithms are known and implemented that deal with this type of objects [45, [I7]. Holonomic
functions are closed under several operations such as addition, multiplication (both Hadamard
and Cauchy), partial summation or integration of the given sequences or functions. As a data
structure for holonomic functions we use the defining difference/differential relations usual written
in operator notation, where D, denotes the standard derivative w.r.t. the unknown z and S,
denotes the forward shift in the variable z, i.e., S, f(2) = f(z+1). Note that the operators D, S,
commute with each other, D, and n as well as S,, and z commute, but D, does not commute with
x neither S, with n (i.e., they do not commute with the variables they are acting on).

Given a sequence/function that needs to be summed/integrated in the first step a set of annihilat-
ing linear operators in terms of shifts and/or derivatives with polynomial coefficients is computed.
This set builds a basis for an annihilating ideal of the given input. Starting from this representa-
tion, i.e., a (system of) linear difference/differential equation(s) the defining difference/differential
equation(s) for the desired sum/integral can be discovered entirely algorithmically. This procedure
extends to multivariate input and covers also mixed difference-differential relations.

Koutschan implemented algorithms capable of carrying out these tasks in his Mathematica package
“HolonomicFunctions” [28]. Also this package allows for a simple input structure following Math-
ematica notation. Annihilating operators for the given expression can be obtained, e.g., using the
“Annihilator” command and the operators for shift and derivation are denoted by S[-] and Der[-],
respectively. We illustrate the use of this package again with some simple examples. First we
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compute the basis for an annihilating ideal for the sum over Legendre polynomials with respect to
shifts in n and derivation with respect to x:

n@l:= ann = Annihilator[Sum[LegendreP[k, ], {k, 0, n}], {S[n], Der[x]}]

oug= {2(1 —2)*(1 +2)D2 — 2(1 +n)2Sn — (1 — 2)(3 + 2n + Tz + 2nz) Dy + (n + 2)(2n + z + 1),
—(1—2)SnDs — (14 n)Sn — (1 —2)Ds + (24 n),
(2+n)S2 — (34 2n)(1 +2)Sn — 2(1 — 2%) Dy + (2 +n)(1 + 22)}

With f,,(z) = > p_, pL(z) the application of the output of “Annihilator” to f,(z) reads in standard
notation as:

21 — ) (1 + 2) f () — 2(1 + 1) fry1(x) — (1 — 2)(3 4+ 2n + Tz + 2na

) ful@
+(n+2)2n+z+1)fn(x
—(1=a)fp(@) = A+ n)frpr(z) = 1= 2)fp(2) + 2+ n) fulz

(2+ 1) fara(z) = 3+ 20) (1 + &) far1(2) — 2(1 — 2?) f (2) + (2 + 1) (1 + 22) fu (2
The annihilator command gives a basis for all possible relations in the operators S,, D,. Using

the “FindRelation” command specific identities can be constructed. Say we are interested in a
recurrence relation for the given sum f,(z) then the command would be as follows:

0,
0,
0

)
)
)
)

msi= FindRelation[ann, Support — {1, S[n], S[n]2, S[n]3}]
ouppl= {(n 4 3)S3 + (=2nz — n — 5z — 3)S2 + (2nz 4+ n + 5z + 2)S, + (—n — 2)}

If the support is chosen with fewer shifts then the output will be the empty set, i.e., there is no
recurrence of order two in the computed annihilating ideal. Spelled out in traditional notation the
above reads as

(n+3) fats(x) = ((n+3) + 2(2n +5)) fura(x) + (0 +2) + 2(2n +5)) futa(2) — (n+2) fu(z) = 0.

Keep in mind that this recurrence is the output of a proving procedure. The underlying computa-
tions are also using Grobner bases, this time in a non-commutative setting. For further informations
we refer to [28]. In particular for dealing with sums or integrals the method of creative telescoping
is applied [45]. For proving we use the corresponding HolonomicFunctions-command “Cre-
ativeTelescoping” explicitly. The identity p%(z) = H'TIP,(LQ_l’l)(ac) can be easily guessed. In order
to verify it, we compute recurrence relations for both sides of the identity. For the right hand side
we use as input for the Jacobi polynomials the well known sum representation [3]

o a+1)p = (—n)i(n+a+p+1 1—2\"
Pl () = ¢ n!) Z( )k((oz+1)k.k! )k( . ) ’

k=0

where (a)y =ala+1)---(a+ k — 1) denotes the Pochhammer symbol (or rising factorial). Below
we replace the Mathematica built-in command “Pochhammer” by the corresponding symbol for
better readability. With this we obtain for the left hand side:

injel:= annLHS = CreativeTelescoping[Annihilator[Integrate[

(o4 — —-n n 0% — k
Do ot Dule e (L29)7 fy, —1,23], {SIH], ST}, ST — 1. S[l)[1]

ouel= {2(n+2)(n+a+1)2n+a)S2 — (2n+a+1) (4n2x + dnza + dng + o + 2za + o — 20) Sp
+2n(n+a—-1)2n+ a+2)}

11



For the right hand side it suffices to use the Annihilator command once more
7= annRHS = Annihilator[(1 4+ x)/nJacobiP[n — 1,a — 1,1, x], {S[n]}]

oul= {2(n+2)(n+a+1)2n+a)S2 — 2n+a+1) (4n2ac + dnzo + 4nz + zo® + 2za + a? — 2a) S,
+2n(n+a—1)2n+ a+2)}

Hence both sides satisfy the same recurrence relation and checking initial values completes the
proof. There is an overlap of features covered by HolonomicFunctions and the Maple implementa-
tions “Mgfun” [I7], 15 [16] or “Gfun” [35].

Next we state the main relations that are needed in the evaluation of the bilinear forms.

Lemma 4.1. Let p%(z) = pi0) (x) denote the nth Jacobi polynomial and p%(x) the nth integrated
Jacobi polynomial as defined in (3.1). Then we have for n > 1

1

P = gl api(@) —npi_y(2)], a>-1, (45

M) = 3oy (i”jaajll) G Gn et 2En-+a) +adpi(@)
"W i(?)&?(j?ﬂ)oézii) ayPn-1(@) az-l  (46)
(™) = Gt Z(ﬁ 4{)?2)71 TP @t g —23)(271 P @)
T (2nta 2(7;)(_2:1)+ s LR az-l, (47
50) = g @) + P ) a1 (48)
(o =Dy (2) = (1 =) py_y () + 292 (2), a> 1. (4.9)

Proof. For the proofs below we utilize the packages described earlier in this section. Note that
both SumCracker and HolonomicFunctions are using forward shifts only. Hence the formulas given
by these algorithms are shifted versions of the normalized results stated in the lemma.

Proof of (4.5)):

inigl:= Crack[JacobiP[n + 1, a, 0, z], Into — {n, JacobiP[n,a + 1,0, z]}]

1 2
—LJaCObiP[n, a+1,0,z] + wJacobiP[n +1,a+1,0,2]
2n4+a+3 2n+a+3

Out[8]=
For the proof of (4.9) we use the rewriting (4.3) of integrated Jacobi polynomials in terms of
standard Jacobi polynomials in the input for SumCracker:

14+

+ 1 JacobiP[n, a, 1, ], Into — {JacobiP[n, a + 1, 0, ], JacobiP[n,a — 1,0, x]}]

inpl:= Crack|
n +

1—x

2
JacobiP[n,a + 1,0, 2] + —JacobiP[n + 1,a — 1,0, z]
a

Out[9]=

Note that is merely the standard three term recurrence for Jacobi polynomials for 3 = 0. For
the remaining identities we use HolonomicFunctions. In the first step we compute a basis for the
annihilating ideal for integrated Jacobi polynomials with respect to the operators S, S,, D, and
in the next step we search the ideal for relations of a certain type:

14+ ax

inj10.= annlJ = Annihilator| JacobiP[n — 1, — 1,1, z], {S[n], S[a], Der[z]}]

12



oupo)= {(@4n)Sy —(1+2)Dy — (n+a —1),2(n+ 1)(a+n)S, + (1 —z2)(2n + o) D,
—(a+n—1D(a+z@2n+a)),(x?-1)D2+a(x+1)D: —n(a+n—1)}

Identity (4.7) is a relation with a certain support and coefficients not depending on x:
na= FindRelation[annlJ, Support — {S[n], S[n]2Der|x], S[n]Der|x], Der[z]}, Eliminate — {x}]

ouitl= {2(a +n +1)(a +2n)S2Dy + 2a(a + 2n +1)S, Dy
—(a+2n)(a+2n+1)(a+2n+2)S, — 2n(a+2n+ 2)D,}

The missing identity (4.8]) is proved completely analogously:
inj12= FindRelation[annlJ, Support — {S[«a], Der[x], Der[x]S[n]}]

oufzl= {25,Dy + (—a —2n)Sy + 2D, }

5 Proof of Theorem [3.2|

In this section we turn to describing the algorithm that evaluates the integrals which yield the
entries of the inner blocks of the local system matrices. The input for the program is a linear
combination of products of u;, vi;, wijk, or partial derivatives thereof, and the output is the integral
of such a function over a general tetrahedron specified by its barycentric coordinates as a linear
combination of products of Kronecker deltas with rational coefficients in ¢, j and k. The basic idea
for evaluating the integrals is to rewrite the given integrands until the orthogonality relation

for Jacobi polynomials
1 a
1—=x 251
() (z) de = ——9
/( > ) P @) (@) do =

can be used. For this rewriting procedure the identities summarized in Lemma relating Jacobi
and integrated Jacobi polynomials are needed. In theory these steps can also be carried out by hand
and this has been done for the corresponding continuous basis functions for H! on triangles [9].
Already in the two dimensional case it is obviously a tedious task to carry out the necessary
transformations. The situation becomes worse in the tetrahedral case for H' and hopeless if we
pass to H(curl) (or H(div)).

Whereas in the H'! case for the mass matrix only products of Gijk = UiVi; Wiim Need to be evaluated,
which in fact can be done using paper and pencil, for H(curl) already for the mass matrix entries
partial derivatives of the basic polynomials enter, see and . Taking the partial derivatives
blows up the input significantly. Even though derivatives of Jacobi polynomials are again Jacobi
polynomials with shifted parameters, i.e.,

d n+a« 1

L P = %eré‘flﬁ)(z), (5.1)
the number of terms in the input increases beyond being suitable for hand computations. The
situation becomes even worse when computing the stiffness matrix entries. The computerized
method described in this paper follows the human approach.

The first step in the computations consists of decoupling integrals over a tetrahedral element using
a well known substitution, the Duffy transformation which maps the tetrahedron to the unit cube.
Let us illustrate this step using the reference tetrahedron depicted in Figure [l The barycentric
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coordinates for this tetrahedron are given by

—4r—2y—z+1 dr — 2y —z+1
)\1(3%2%2) = 28/ B} /\ ($ Y,z ) +a
2u—z+1 1+=2
/\3(a:,yz) = y?) /\4($79az) = 9

The basic template integral that needs to be considered is of the form

I (;‘y) i (122) o)

12yz

// o A (=) 2 () Ao,

where f; are products of certain Jacobi or integrated Jacobi polynomials and Jacobi weight func-
tions. For the Jacobi weight functions we introduce the abbreviation

wnio) = (152)

5=y the integrands decouple and we obtain

/11 hiw) df"’/l1 (12‘1/) fa(y) dy/l1 <1 3 Z>2f3(z) dz

For the computation of the matrix entries we still have a dependency of the integrands via the
discrete parameters that appear as the polynomial degrees of the basis functions as well as in the
polynomial parameters (i) = 2i — 1 and S(i,j) = 2i + 2j — 2. This gives a natural order to
carry out integration first with respect to x, then y and finally z. Note that the additional factors
introduced by the Duffy substitution above are just contributing to the Jacobi weight functions.

The algorithm Let us fix the integration variable £ € {z,y,z}. After performing the Duffy
substitution, the input in each step is an integrand that is a finite linear combination of products

of Jacobi and/or integrated Jacobi polynomials and certain weight functions. For instance, if

we consider the first component of the integrand [x pr;c(x Y, 2 )(pl(nzn(x y,z) d(z,y, z) over the

reference tetrahedron depicted in Figure[I] then after decoupling the integrals it reads as follows,
1 1
no= [ @ de [ R ) dy
-1 —

1
X/ ﬁiz+2ji2(z)ﬁil+2m_2(Z)wi+j+z+m(Z) dz.
-1

Integrating with respect to x just requires an application of the Jacobi orthogonality relation and
yields

2511 ! N ~20— ! ~21425— ~20+42m—
T gt [ B R ) dy [ TR s (2)
- -1
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In the next step the integrand needs to be rewritten in terms of Jacobi polynomials using iden-
tity (4.7) in order to invoke the orthogonality relation and the result is

L /16(j — 1)(20+ 5 — 3)05.10,—2.m 2ito o
T — _ 2,tY] M A20425—2 72i+25—6 ; .
! /_1 ( (20 —1)(2i +2j — 2)5 Py (2)pn (2)wait2;-2(2)

16(2i — 3)0;,105 1,m 2i+2j—2, \ ~2i12j—
(2i+2j — 1])é B T (2P T (2 waigaj 1 (2)

32(j% + 2ij — 2j + 44° — 8i 4 3)8: 10 m 2i12j-2, \ 2422

16(2i — 3)0i,10,m—1 .2i+2j—2
2i+258 %

16(j +1)(J + 20 — 1)04,105,m—2 2it2j—2

_ $2i42j+2 - ds.

(2)p2 " (2)waig2j41(2)

Here a® = a(a — 1) (a — k + 1) denotes the falling factorial. If we use P, ,(£),Q,..(£) to denote
the generic polynomials and w.(, ,)(§) to denote the weight function, then the general form of the
integrand is

int = Z Cp,LPp,L(g)vab(é-)w'Y(PvL)(5)7
st

where C),, are rational functions in the degree parameters and Kronecker deltas, but independent
of . If P, ,,Q,,. are Jacobi polynomials of the same kind and the w.,,,) the corresponding weight
function, then an evaluation of

1
/_1 Pp,b(g)QP,L(f)wv(p,L) (f) dg
amounts to a mere application of the Jacobi orthogonality relation - as in the first step in the
example above. In all other cases the polynomials need to be expressed as linear combinations
of these base cases such that the orthogonality applies. This is achieved by applying various
transformations of Lemma in a systematic manner. This rewriting procedure is carried out
automatically and the algorithm proceeds as follows:

1. Collect the list of integrands and their coefficients

2. For each entry in the list of integrands, rewrite the integrated Jacobi polynomials in terms

of Jacobi polynomials using (4.7)), (4.8]), or (4.9)

3. Update the list of integrands and their coefficients

4. For each entry in the list of integrands, adjust Jacobi polynomials to the appearing weight
function w.(, ) ()

5. Update the list of integrands and their coefficients
6. For each entry in the list of integrands, evaluate the integral using orthogonality relation (4. 1))

If the rewriting procedure returns expressions that do not fit to the evaluation pattern in step 6 a
warning is issued and these terms remain unevaluated. The two steps of the algorithm that need
further explanations are steps 2 and 4. In step 2 it needs to be decided which of the relations —
leads to a proper integrand. Hence for each integrand in the list, we consider the weight
function w,(§) and each of the polynomials P,, (), separately. If one of them is an integrated
Jacobi polynomial p% (&) then
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2. rewrite w,(§)pS(€) in terms of Jacobi polynomials by

(a) v—a > 0: transforming integrated Jacobi polynomials to Jacobi polynomials with same

parameter using (4.7)).

(b) v — @ = —1: transforming integrated Jacobi polynomials to Jacobi polynomials with
parameter o — 1 using (4.8).
(¢) v — a = —2: using the mixed relation (4.9) to obtain

2

ws (€)= 7 (s () + v (©n1F0))

In step 4 the list of polynomials consists of classical Jacobi polynomials only. In order to make
them fit to the orthogonality relation the polynomial parameter « needs to be adjusted to
the given weight w.,(§). This adjustment with fixed, finite support can only be done by increasing
the polynomial parameter using . If the situation is such that v < «a, then the term has to be
returned unevaluated, since Jacobi polynomials p%(§) cannot be expressed as a fixed, finite number
of linear combinations of p}(€). This step in the computations is potentially a very expensive one
as it might increase the number of terms significantly. The transformation (in the case v — « > 0)
can be stated explicitly as

o= > (- (7,0 o

m (2n 4+~ —m + 1)2=otL

y—a—m,m

(2n = 2m +v + 1)p, (),

m=0

where a® = a(a — 1) --- (a — k + 1) again denotes the falling factorial.

The final output after execution of the program is a linear combination of Kronecker deltas with
rational coefficients. Below we give a concrete example. Table[[]summarizes the number of integrals
that need to be evaluated in each step for the different products of basis functions. The last column
is to be understood as the number of different triples d;1 ;6 4/ mOk+tr’ »n in the result. Note that
for some integrands the number of integrals blows up significantly in the integration with respect
to z just to collapse to a smaller number again in the final result. This is due to a high number of
integrands of the form p]_ ., (§)p;, 1 (§)w, () that give rise to a single dx,, in the end.

An example To illustrate the execution of the algorithm we choose only a small example since
the basis functions for H(curl) written explicitly are too large to be displayed here. The integrand
we consider (already after decoupling of the variables) is

R 24\ 21— 2425 =1 A -
Tijiamn (2., 2) = P7(2)p) (2)wis 131 0)DT ()P (W) Wigi4jemaa ()P 2 (2)pa 2" (2).
Already this seemingly simple integrand gives rise to a linear combination of 176 different products
of Kronecker deltas. The first integration is with respect to . The weight function is obviously 1,
i.e., v = 0. For pY(z) no rewriting is necessary and for p?(z) Case 2(a) applies and we rewrite in
terms of Legendre polynomials p?(x) using (4.7). This way for the first integral we obtain

1 ) 20, 20,142
ﬁlp?(x)p?(x) =G i) @i 3)(;’ —1)

The final output of the algorithm is of this form, i.e., rational functions in the polynomial degrees
times a product of Kronecker deltas relating (i,1), (j,m) and (k, n), respectively. The evaluation
of the integral with respect to = assigns values to [ in the remaining polynomials. If we continue
with the first term above, then the remaining integrand after replacing [ < 7 reads as

W2i+1 (y)ﬁ% (y)ﬁ%_ ! (y)w2i+j+m+2 (Z)ﬁii+2j_ ! (z)ﬁff“m‘l (2).
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int | y z | NNZ
o 9] 216 [ 287 [ 369 :

e 16| s2 [ a0 | 108 it @)y |z | NNZ
kPhmm | 6] 99 [ 206 | 252 G, | 107 [2s7] 81
e o 6] 151 | 237 | 369 oW Ta| 78 [ 246 | 98
P, 9] 25 | 381 ] 117 e [6] 78 |165] 08
e 4] 27 [333] 154 2D Tals0 [ 11| 75
B a P | 4] 42 | 343 | 187 202 16| 62 | 55 | 100
e [al2s 115 ] 135 295 9] 65 | 35 | 125
soe [ 4] 58 | 140 | 252

g | 4] 67 | 165 | 243

Table 1: Number of integrals to be evaluated for the mass (left) and stiffness matrix (right) w.r.t.
the different variables and final number of nonzero entries

Proceeding with the integration with respect to y following the algorithm we first transform inte-
grated Jacobi polynomials into Jacobi polynomials with same parameter using (4.7). Then we need
to lift the polynomial parameter to adjust to v = 2i 4+ 1 using (4.5)) once, respectively twice. This
results in an output of a linear combination of d; m—4,0jm—3,...,0;m+3. Each of these evaluations
defines a product of polynomials in z with m replaced by the corresponding expression in j. For
instance for m = j the remaining integrand is
20425 =1/ N\ A2i42j—
w2i+2j+2(Z)Pkl ’ (Z)P?«LHQJ 1(2)

The series of transformations is as before and results in a linear combination of §x y—a, .. ., Ok, m+a.
For m = j — 4 the integrand is

W2i+25—2 (Z)ﬁii+2j_ ! (Z)ﬁiﬂh?j_g (2)-

Here we run into Case 2(b) in the rewriting of the first polynomial ]ﬁi”zj 71(2) in order to be able
to match the appearing weight function.

If we define the variable “integrand” as Z;jk.imn, then the evaluation using our program executes
precisely the above mentioned steps:

inj13)= eval = ComputeMatrixEntries[integrand, x, y, z, Infolevel — True];
1. Collecting integrands depending on x
— finished collecting (0.004 sec.)
— 1 integrands
2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(a) for phatli, 0, x]
— finished rewriting (0.004001 sec.)
3. Collecting integrands depending on x
— finished collecting (0.012 sec.)
— 2 integrands
6. Evaluate integrals using Jacobi orthogonality relation
— finished evaluating (0.004001 sec.)
1. Collecting integrands depending on y
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— finished collecting (0.004 sec.)

— 2 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(b) for phatlj, 2 i, y]

Case 2(a) for phat[m, -5 + 2 i, y]

Case 2(a) for phatlj, 2 i, y]

Case 2(a) for phat[m, -1 + 2 i, y]

— finished rewriting (0.192012 sec.)

3. Collecting integrands depending on y

— finished collecting (0. sec.)

— 15 integrands

4. Adjusting Jacobi polynomials to appearing weight functions

— finished adjusting (0.148009 sec.)

6. Evaluate, 34 integrals using Jacobi orthogonality relation

— finished evaluating (0.060004 sec.)

1. Collecting integrands depending on z

— finished collecting (0.644041 sec.)

— 8 integrands

2. Rewriting integrated Jacobi polynomials in terms of Jacobi polynomials
Case 2(a) for phat[k, -1 + 21 + 2 j, 7

Case 2(b) for phat[n, 7+ 21+ 2 j, 7

— finished rewriting (2.09613 sec.)

3. Collecting integrands depending on z

— finished collecting (0.348022 sec.)

— 69 integrands

4. Adjusting Jacobi polynomials to appearing weight functions
— finished adjusting (12.4128 sec.)

6. Evaluate, 244 integrals using Jacobi orthogonality relation
— finished evaluating (1.22408 sec.)

These computations were carried out on an 8 cores (2.33GHz), 16 Gb shared memory machine.
Concerning the implementation of the algorithm one crucial step is to normalize both the input
and output. Most of the steps rely on pattern matching and thus the representation needs to be
uniform. E.g., a polynomial ﬁi(lﬂ)(z) has to be recognized to be the same as ﬁi”zj(z). This
becomes particularly tricky when collecting the different weight functions that might appear as
factors (y — 1) that need to included in the standard notation for weights w,(y) = (kTy)v The
transformation to standard form is done as first step before the evaluation starts and for large
integrands that are assembled from different partial derivations this can become a very costly step.
Another computational issue is related to simplification of the coefficients. Certainly no undetected
zeros should be carried along, not only for memory reasons, but also since the evaluation with finite
support may rely on cancellation to happen. The final outcome of the program is neither fully
simplified nor factored. The matrix entries that have been put online however are in simplified
form, which was done in a post processing step that added significantly to the overall computation
times.

The basis polynomials @g% (z,y, z) are only linear in z. Thus for the direct product gbg% . @g%n (or
corresponding derivatives), it is handy to carry out the integration with respect to = beforehand
separately. For mixed products with other basis polynomials the constant coefficient with respect
to x of @g% is replaced by pJ(x) = 1 times this coefficient. Analogously the linear term z is

replaced by p{(x).
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This concludes the proof.
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