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1. Introduction

The Radon transform, studied by Johann Radon in the early twentieth century, is the theoretical foundation

for tomography methods for shape reconstruction of objects with non-homogeneous density. These methods

were intensively studied in the 1960s and continue to find many applications in medicine, electronic microscopy,

geology, plasma investigations, finding defects in nuclear reactors, etc. From the mathematical point of view, the
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problem is to recover a multivariate function using information based on line integrals of the unknown function.

Among the difficulties the recovery methods have to face are: huge amount of data necessary to achieve high

accuracy; impossibility to get enough data due to technical reasons; incomplete projection data; measurement

noise in the given data. The employed methods may be loosely grouped into integral and algebraic type. The

integral methods are based on the inverse Radon transform. Here all considerations are in continuous form and

they come to discretization immediately before the implementation of the recovery algorithm. In the algebraic

methods, discretization of the problem is carried out immediately, and the problem is then reduced to solving a

linear or nonlinear system of equations.

In the present work, we consider an algebraic method where the solution is sought by means of an interpolation

problem. More precisely, for given values of some Radon projections, we seek a polynomial function which matches

these data exactly.

An idea suggested by B. Bojanov is to incorporate additional knowledge about the function to be recovered into

approximation methods. It is to be expected that this can improve the accuracy of the approximation while

reducing the amount of input data required as well as the computational effort. In applications, such problem-

specific knowledge is often provided in the form of a partial differential equation which the unknown satisfies.

In the present work, we concern ourselves with the simple case when the unknown is harmonic, i.e., satisfies the

Laplace equation ∆u = 0. This elliptic partial differential equation is important both as a model problem as well

as in actual applications, like heat transport, diffusion problems or Stokes flow of incompressible fluids.

One natural tool for approximating harmonic functions are harmonic polynomials. These polynomials belong to

the class of holonomic functions, a class for which over the past decades several symbolic algorithms have been

developed to deal with, e.g., problems of symbolic integration and/or summation. We use symbolic techniques,

such as creative telescoping and recurrence solving, to derive a closed form for Radon projections of the harmonic

basis functions. We then use this result to derive a class of regular interpolation schemes for harmonic functions

with Radon projections as given data.

2. Preliminaries and related work

Let I(θ, t) denote a chord of the unit circle at angle θ ∈ [0, 2π) and distance t ∈ (−1, 1) from the origin (see

Figure 1). The chord I(θ, t) is parameterized by

s 7→ (t cos θ − s sin θ, t sin θ + s cos θ)>, where s ∈ (−
√

1− t2,
√

1− t2). (1)

Definition 2.1.
Let f(x, y) be a real-valued bivariate function in the unit disk in R2. The Radon projection Rθ(f ; t) of f in
direction θ is defined by the line integral

Rθ(f ; t) :=

∫
I(θ,t)

f(x) dx =

∫ √1−t2

−
√

1−t2
f(t cos θ − s sin θ, t sin θ + s cos θ) ds.
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Figure 1. The chord I(θ, t) of the unit circle.

Johann Radon [24] showed in 1917 that a differentiable function f is uniquely determined by the values of its

Radon transform,

f 7→
{
Rθ(f ; t) : −1 ≤ t ≤ 1, 0 ≤ θ < π

}
.

In the following we formulate the problem of recovery of a polynomial from a finite number of values of its Radon

transform. Essentially, this may be viewed as a bivariate interpolation problem where the traditional point values

are replaced by the means over chords of the unit circle.

Let Π2
n =

{∑
i+j≤n αijx

iyj : αij ∈ R
}

denote the space of real bivariate polynomials of total degree at most n.

This space has dimension
(
n+2
2

)
. Assume that a set I =

{
Im = I(θm, tm) : m = 1, . . . ,

(
n+2
2

)}
of chords of the

unit circle is given. Furthermore, to each chord I ∈ I a given value γI ∈ R is associated. Then, the aim is to find

a polynomial p ∈ Π2
n such that ∫

I

p(x) dx = γI ∀I ∈ I. (2)

If this interpolation problem has a unique solution for every choice of values {γI}, then the scheme I of chords

is called regular. The question of how to construct such regular schemes has been extensively studied. The first

general result was given by Marr [20] in 1974, who proved that the set of chords connecting n+ 2 equally spaced

points on the unit circle is regular for Π2
n. A more general result for Rd and general convex domains was published

by Hakopian [14] in 1982. Applied to the unit disk in R2, it states that even the chords connecting any n + 2

distinct points on the unit circle form a regular scheme for Π2
n.

Another family of regular schemes was provided by Bojanov and Georgieva [2]. They showed that a scheme

consisting of
(
n+2
2

)
chords partitioned into n + 1 subsets such that the k-th subset consists of k parallel chords

is regular for Π2
n, provided that the distances t satisfy some additional conditions. Particular choices of suitable

distances t were later given by Georgieva and Ismail [10] in terms of zeroes of Chebyshev polynomials of the

second kind, as well as Georgieva and Uluchev [11] in terms of zeroes of Jacobi polynomials.

Bojanov and Xu [5] proposed a regular scheme consisting of
(
n+2
2

)
chords partitioned into 2b(n+1)/2c+1 equally

spaced directions, such that in every direction there are bn/2c+ 1 parallel chords. The distances t of the chords

are zeroes of Chebyshev polynomials of the second kind.
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A mixed regular scheme which incorporates Radon projections and point evaluations on the unit circle was given

by Georgieva, Hofreither, and Uluchev [9].

Many other mathematicians have worked on problems with applications in the mathematical foundations of

computer tomography, among them [6–8, 15, 16, 19, 21]. Recovery of polynomials in two variables based on

Radon projections is also considered in [1, 3, 4, 12, 13, 22].

3. Interpolation by harmonic polynomials

Assume that we know a priori that the function to be interpolated is harmonic. Then it seems natural to work

in the space Hn of real bivariate harmonic polynomials of total degree at most n, which has dimension 2n + 1.

Analogous to (2), we prescribe chords I = {I1, I2, . . . , I2n+1} of the unit circle and associated given values {γI},

and wish to find a harmonic polynomial p ∈ Hn such that

∫
I

p(x) dx = γI ∀I ∈ I. (3)

Again we call I regular if the interpolation problem (3) has a unique solution for all given values {γI}. In the

following, we show how to construct one class of such regular schemes.

3.1. Harmonic basis

We use the basis of the harmonic polynomials

φ0(x, y) = 1, φk,1(x, y) = Re (x+ iy)k, φk,2(x, y) = Im (x+ iy)k.

An expansion of the polynomial p ∈ Hn is then given by

p(x, y) = p0 +

n∑
k=1

pk,1 φk,1(x, y) +

n∑
k=1

pk,2 φk,2(x, y),

with the coefficient vector p = (p0, p1,1, p1,2, . . . , pn,1, pn,2)T ∈ R2n+1. The interpolation problem (3) results

then in the system of linear equations

Ap = γ (4)

with

A =



∫
I1

1
∫
I1
φ1,1

∫
I1
φ1,2 . . .

∫
I1
φn,1

∫
I1
φn,2∫

I2
1

∫
I2
φ1,1

∫
I2
φ1,2 . . .

∫
I2
φn,1

∫
I2
φn,2

...
...

...
. . .

...
...∫

I2n+1
1
∫
I2n+1

φ1,1

∫
I2n+1

φ1,2 . . .
∫
I2n+1

φn,1
∫
I2n+1

φn,2


.

The question whether the interpolation problem has a unique solution is thus equivalent to the question whether

the matrix A has non-zero determinant.
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Using the binomial theorem, it is easy to obtain the representations

φk,1(x, y) =

bk/2c∑
`=0

(
k

2`

)
(−1)`xk−2`y2`, (5)

φk,2(x, y) =

bk/2c∑
`=0

(
k

2`+ 1

)
(−1)`xk−(2`+1)y2`+1, (6)

which give an expansion of the harmonic basis in terms of the monomial basis xiyj of the polynomials. For Radon

projections of monomials, we can obtain the following formula.

Lemma 3.1.
For arbitrary i, j ∈ N0 and an arbitrary chord I(θ, t) of the unit disk with angle 0 ≤ θ < 2π and distance to the
origin t ∈ (−1, 1), we have

∫
I(θ,t)

xiyj dx =
i∑

p=0

j∑
q=0

(
i

p

)(
j

q

)
tp+q(cos θ)j+p−q(sin θ)i−(p−q) ×

× (−1)i−p

i+ j − p− q + 1
(1− t2)

1
2
(i+j−p−q+1)

(
1− (−1)i+j−p−q+1

)
.

Proof. Making use of the parameterization (1), we get

∫
I(θ,t)

xiyj dx =

∫ √1−t2

−
√

1−t2
(t cos θ − s sin θ)i(t sin θ + s cos θ)j ds.

The statement follows by applying the binomial theorem and simple integration.

Making use of the linearity of the Radon transform, we can combine the above formula with (5) and (6) to get,

for k ≥ 1,

∫
I(θ,t)

φk,1 =

bk/2c∑
`=0

(
k

2`

)
(−1)`

k−2`∑
p=0

2∑̀
q=0

(
k−2`

p

)(
2`

q

)
tp+q(cos θ)2`+p−q(sin θ)k−2`−(p−q)

× (−1)k−2`−p

k − p− q + 1
(1− t2)

1
2
(k−p−q+1)

(
1− (−1)k−p−q+1

)
(7)

and

∫
I(θ,t)

φk,2 =

bk/2c∑
`=0

(
k

2`+1

)
(−1)`

k−2`−1∑
p=0

2`+1∑
q=0

(
k−2`−1

p

)(
2`+1

q

)
tp+q(cos θ)2`+1+p−q(sin θ)k−2`−1−(p−q)

× (−1)k−2`−1−p

k − p− q + 1
(1− t2)

1
2
(k−p−q+1)

(
1− (−1)k−p−q+1

)
. (8)

In this work, for the most part, we restrict ourselves to the case where the chords I form a regular (2n+ 1)-sided

convex polygon inscribed in the unit circle (cf. Figure 2, first picture), i.e., Im = I(θm, tm) with

θm =
2πm

2n+ 1
, tm = t = cos

π

2n+ 1
for m = 1, . . . , 2n+ 1. (9)
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4. Symbolic Simplifications

We are now going to evaluate the complicated integrals, respectively sums (7) and (8). While it may be a tedious

job to simplify these expressions by hand, we employ computer algebra methods which can be of great help in

such tasks. These algorithms are designed to work on the class of holonomic functions [25]; in short, these are

functions and sequences which satisfy “sufficiently many” linear differential equations and recurrence equations.

These equations, together with some initial values, are used as a data structure to represent such functions. The set

of holonomic functions is closed under many operations—such as addition, multiplication, certain substitutions,

definite summation and integration—which can be executed algorithmically. Thus the strategy for tackling

expressions (7) and (8) is to use the above mentioned closure properties to derive a difference-differential equation

for the whole expression. Together with some initial values this may even give rise to a closed-form solution.

A more detailed introduction into the topic is given in [17], here we only outline the basic ideas with a simple

example. Consider the expression

fn(t) =

2n+1∑
k=0

sn,k(t) =

2n+1∑
k=0

(
2n+ 1

k

)
k2tk.

For the following computations we make use of the Mathematica package HolonomicFunctions1 [18] that has

been developed by the third-named author. The defining difference equations of the summand can be determined

entirely automatically using this package with the Annihilator command:

In[1]:= Annihilator[Binomial[2n + 1, k]k
2
t
k
, {S[k], S[n]}]

Out[1]= {(k − 2n− 3)(k − 2n− 2)Sn − 2(n+ 1)(2n+ 3), k
2
Sk + (k + 1)t(k − 2n− 1)}

Here S[µ] and, in the output, Sµ, denote the forward shift in the variable µ, i.e., Sµa(µ) = a(µ+ 1). The defining

equations for the summand are relatively easy to obtain since it is composed of very basic objects, like powers,

binomials, and polynomials. The same holds for the input (7) that we are interested in. Starting from the defining

difference equations for sn,k(t) a recurrence relation for the sum fn(t) can be computed by the method of creative

telescoping which was proposed by Zeilberger [26]. This method constructs a recurrence for the summand which

is of a special form, namely it consists of two parts with the following properties. The first part contains only

shifts in the main variable n and coefficients that are independent of the summation variable k. The second part

is of the form (Sk − 1) · Q · sn,k(t), where Q is an operator with shifts in both n and k and rational function

1 freely available for download at http://www.risc.jku.at/research/combinat/software/HolonomicFunctions/
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coefficients in n, k and t. Hence, in our example this relation may take the form

(2n+ 1)(2nt+ t+ 1)sn+1,k(t)− (2n+ 3)(1 + t)2(2nt+ 3t+ 1)sn,k(t)

+ (Sk − 1) ·
(
c1(n, k, t)sn,k(t) + c2(n, k, t)sn,k+1(t) + c3(n, k, t)sn+1,k(t)

)
= 0.

Since in this example the quotients sn,k+1(t)/sn,k(t) and sn+1,k(t)/sn,k(t) are rational functions, we can actually

get c2 = c3 = 0 here. Summing over this difference equation with respect to k yields a recurrence relation for

fn(t) from the first part of the operator. The second part is easily evaluated by telescoping, i.e., by

k1∑
k=k0

(a(k + 1)− a(k)) = a(k1 + 1)− a(k0).

In many cases in practice this part simply telescopes to zero as in our example. Thus we end up with the following

recurrence and initial value:

(2n+ 1)(2nt+ t+ 1)fn+1(t)− (2n+ 3)(t+ 1)2(2nt+ 3t+ 1)fn(t) = 0, f0(t) = t.

Using HolonomicFunctions this recurrence could also be obtained by merely plugging in the sum symbolically in

Mathematica notation, i.e.,

In[2]:= Annihilator[Sum[Binomial[2n + 1, k]k
2
t
k
, {k, 0, 2n + 1}], {S[n]}]

Out[2]= {(2n+ 1)(2nt+ t+ 1)Sn − (2n+ 3)(t+ 1)
2
(2nt+ 3t+ 1)}

Having a recurrence relation at hand it might even be possible to derive a closed form solution using a recurrence

solver. In our example the solution is easily determined to be

fn(t) = (2n+ 1)(2nt+ t+ 1)t(1 + t)2n−1,

under appropriate assumptions on the range of t. This algorithm can be extended to multiple sums (such as (7)

and (8)) and integrals, but still proceeds by the same ideas that were demonstrated above (for doing symbolic

integration, the shifts need to be replaced by partial derivatives).

Coming back to the integral over φk,1 expanded as a triple sum in (7): the defining equations for the summand are

again easy to obtain since it is composed of very basic objects, like powers, binomials, and polynomials. Applying

the method of creative telescoping as outlined above delivers the following recurrence relation for the integrals:

(k + 5)F (k + 4)− 4t cos(θ)(k + 4)F (k + 3) + 2(k + 3)(2 cos2(θ) + 2t2 − 1)F (k + 2)

− 4t cos(θ)(k + 2)F (k + 1) + (k + 1)F (k) = 0,
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where F (k) =
∫
I(θ,t)

φk,1. Similarly it is found that
∫
I(θ,t)

φk,2 satisfies the same recurrence (with different initial

values). Since our software can deal with integrations equally well, we can also evaluate the definite integral that

is obtained from the parametrization (1) and by plugging in the representations (5) and (6); the result is exactly

the same fourth-order recurrence that is displayed above.

Next, Petkovšek’s algorithm Hyper [23] is used to compute a basis of hypergeometric solutions to this recurrence.

Since its order is 4, there are at most four such solutions, but it is very likely that some or even all solutions are

not hypergeometric, in which case the algorithm returns fewer solutions. However, in our examples we are lucky

and obtain all four solutions, one of which is

1

k + 1

(
t cos(θ) +

√
sin2(θ)(t2 − 1) +

√
cos2(θ)(2t2 − 1)− t2 + 2t cos(θ)

√
sin2(θ)(t2 − 1)

)k−1

(the others differ by signs only).

Comparing initial values yields (quite complicated) closed-form representations of the integrals (7) and (8), which

are linear combinations of the four basis solutions. Further algebraic simplifications, using the assumption of a

regular convex polygon (9), lead to the following evaluation of the matrix entries.

Lemma 4.1.
For the case when the chords I form a regular convex polygon, see (9), the matrix entries admit the closed form

∫
Im

φ0 = α0,

∫
Im

φk,1 = αk cos(kθm),

∫
Im

φk,2 = αk sin(kθm),

where

αk =
2

k + 1
sin

(k + 1)π

2n+ 1
> 0 for k = 0, . . . , n.

Proof. We have already outlined above how the result of this lemma can be obtained (and proven!) by computer

algebra methods. The drawback of such methods is that often the intermediate results and the certificates which

constitute the proof are way too large to be printed in a paper. However, the interested reader can find the details

of our proof in the supplementary electronic material2 which is given as a Mathematica notebook.

5. Main result

Theorem 5.1.
Let the chords I form a regular convex polygon as in (9). Then the interpolation problem (3) has a unique solution
in Hn for any given data γ.

2 http://www.risc.jku.at/people/ckoutsch/material/RadonProjectionsElectronicMaterial.nb
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Proof. Lemma 4.1 gives a closed form for the matrix entries in the system of linear equations (4). Using linearity

of the determinant in every column, we take out the factors αk and get

detA = α0

n∏
k=1

α2
k detB

with

B =



1 cos(θ1) sin(θ1) . . . cos(nθ1) sin(nθ1)

1 cos(θ2) sin(θ2) . . . cos(nθ2) sin(nθ2)

...
...

...
. . .

...
...

1 cos(θ2n) sin(θ2n) . . . cos(nθ2n) sin(nθ2n)

1 cos(θ2n+1) sin(θ2n+1) . . . cos(nθ2n+1) sin(nθ2n+1)


.

The columns of B consist of evaluations of the functions 1, cos(x), sin(x), cos(2x), sin(2x), . . . , cos(nx), sin(nx)

at the points θ1, . . . , θ2n+1. These functions form a basis of the trigonometric polynomials of degree at most n.

It is a classical result that detB 6= 0 for distinct 0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π, which concludes the proof

together with αk > 0 ∀k.

Remark 5.1.
In the proof of Lemma 4.1, a very specific choice for the θm and tm was assumed. However, it can be shown that
the result holds for general angles, 0 ≤ θ1 < θ2 < . . . < θ2n+1 < 2π, of the chords while the distances tm = t to the
origin are constant and t is not a zero of any Chebyshev polynomial U1, . . . , Un. An analytic proof of this more
general result will be the subject of a forthcoming paper. Some regular schemes according to this generalization
are shown in Figure 2, and numerical results for schemes corresponding to the first three pictures in Figure 2 are
given in Section 6.

Figure 2. Regular schemes according to Remark 5.1.

6. Numerical examples

6.1. Example 1

We approximate the harmonic function u(x, y) = exp(x) cos(y) by a harmonic polynomial p ∈ Hn given 2n + 1

values of its Radon projections taken along the edges of a regular (2n + 1)-sided convex polygon (Figure 2,

first picture), i.e., θm and tm are chosen according to (9). In Figure 3, we display the function u as well as its

9
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Figure 3. Example 1, n = 12: function u, interpolant p, error u− p
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-4

0.1

Figure 4. Example 1: errors. x-axis: degree of interpolating polynomial. y-axis: relative L2-error

interpolating polynomial of degree 12 (using information from 25 chords) and the resulting error. For Figure 4,

we vary the degree of the interpolating polynomial and plot the resulting relative L2-errors. We see that the error

decreases exponentially with n, indicating that the smooth function u is being approximated with optimal order.

6.2. Example 2

We approximate the harmonic function u(x, y) = log
√

(x− 1)2 + (y − 1)2 by a harmonic polynomial p ∈ Hn

given the Radon projections along two families of chords: first, using a regular (2n+ 1)-sided convex polygon as

in the previous example, and second, using a star-like scheme as shown in Figure 2, second and third picture. The

latter family of chords is constructed using the same equidistant points on the unit circle, say {x1, . . . , x2n+1},

but now instead of joining the pairs of points (xm, xm+1) for any m, we join the pairs of points (xm, xm+`) for

some ` ∈ N. Here indices which exceed 2n+ 1 are implicitly assumed to wrap back into the range {1, . . . , 2n+ 1}.

Note that when ` = 1, we again get a regular convex polygon (Figure 2, first picture), which corresponds to the

10
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Figure 5. Example 2, n = 12: function u, interpolant p, error u− p
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5´10-4

0.001

0.005

0.010

0.050

0.100

Figure 6. Example 2: errors. x-axis: degree of interpolating polynomial. y-axis: relative L2-error
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Figure 7. Example 2: relative L2-error for regular stars with ` = 1, . . . , 23 (47 chords).
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shortest possible chords given the points {x1, . . . , x2n+1}, while the choice ` = n joins points which are “almost

opposite” of each other, creating the longest possible chords (Figure 2, third picture).

In terms of the angles and distances of the chords, Im = I(θm, tm), such a star is described by the formulae

θm =
π(2m+ `− 1)

2n+ 1
, tm = t = cos

`π

2n+ 1
for m = 1, . . . , 2n+ 1,

which simplify to (9) for the choice ` = 1. In order to ensure that t is not a zero of any of U1, . . . , Un (as required

by Remark 5.1), it is necessary and sufficient for 2n+ 1 and ` to be relatively prime.

In Figure 5, we display the function u as well as its interpolating polynomial of degree 12 (using information from

25 chords) for the case ` = 1, i.e., the convex polygon case, and the resulting error. For varying interpolation

degree n, we plot the relative L2-errors in Figure 6. Again, convergence is exponential in n, although the errors

are now larger as compared to Example 1 due to the singularity of u close to the unit disk.

In order to compare the results for different star schemes with the same degree of interpolating polynomial, we

choose now n = 23, such that 2n+1 is a prime number and thus all stars ` = 1, . . . , n are admissible. The relative

L2-errors for ` = 1, . . . , n are plotted in Figure 7. The largest and smallest errors appear to be of the same order,

differing at most by a factor of approximately 4.

6.3. Example 3

In order to study the behavior of the method for functions with less smoothness, we construct the harmonic

extension of the boundary function g(θ) = θ2 on the unit circle in radial coordinates, where the argument θ is

chosen in the interval [−π, π]. This function is only C0 on the unit circle, but analytic within the unit disk. By

expanding the boundary data g into its Fourier series, it can be shown that the corresponding harmonic function

Figure 8. Example 3, n = ` = 6: function u, interpolant p, error u− p
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n L∞-error for polygon L∞-error for star
6 0.725384 0.407932

12 0.386227 0.218432
24 0.199268 0.112529
48 0.101209 0.057036
96 0.0510027 0.0287025

192 0.0256015 0.0143112
384 0.0128259 0.00716828
768 0.00641923 0.00358654

1536 0.00321119 0.00180385
3072 0.00160599 0.000874311

Table 1. Example 3: comparison of the relative L∞-errors for ` = 1 and ` = n.

has the representation

u(x, y) = Re
(
π2

3
+ 2(Li2(−x− iy) + Li2(−x+ iy))

)
,

where

Li2(z) =

∞∑
k=1

zk

k2

is the dilogarithm or Spence’s function.

This function is approximated by a harmonic polynomial p ∈ Hn, again comparing the convex polygon and the

star cases. In Figure 8, we display the function u as well as its interpolating polynomial of degree 6 (using

information from 13 chords) for the case ` = 6, i.e., the star with the longest possible sides (cf. Figure 2, third

picture), and the resulting error. In Table 1, a comparison of the L∞-errors using the convex polygon (` = 1) and

a star (` = n) is presented, varying the interpolation degree n = 6 × 2k, k = 1, . . . , 10. In both cases, the error

decays linearly in n, and the errors for the two schemes are within a factor of less than 2 of each other.

7. Conclusion and outlook

We have stated an interpolation problem for harmonic functions in the unit disk given certain values of its Radon

projections and have shown that this problem is uniquely solvable in the case when the Radon projections are

taken along the sides of a regular polygon. Methods of computer algebra were used heavily in the proof. Finally

we presented numerical examples for several possible configurations of chords and demonstrated convergence rates

for functions of varying smoothness.

The formula for the matrix entries obtained by symbolic methods has served as a valuable starting point for the

analytic derivation of a more general formula, allowing general choices for both θ and t. In future work, we plan

to exploit this general result in order to show regularity of a larger family of schemes.

For many problems, allowing the interpolation of functions satisfying an inhomogeneous partial differential equa-

tion of the form ∆u = f would be highly useful and is a possible subject of further work. Furthermore, noting the

13
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relation of the present work to the inversion of the Radon transform, a well-known ill-posed problem, problems

with noisy data might prove interesting. Preliminary numerical experiments on this topic show promising results.
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