
UNIVERSITÄT LINZ
JOHANNES KEPLER JKU

Technisch-Naturwissenschaftliche
Fakultät

Computational Logic and Quantifier Elimination
Techniques for (Semi-)automatic Static Analysis and

Synthesis of Algorithms

DISSERTATION

zur Erlangung des akademischen Grades

Doktorin

im Doktoratsstudium der

Technischen Wissenschaften

Eingereicht von:

Mădălina Eraşcu

Angefertigt am:

Research Institute for Symbolic Computation

Beurteilung:

Prof. Dr. Tudor Jebelean (Betreuung)

Prof. Dr. Hoon Hong

Linz, November 2012

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Computational Logic and Quantifier Elimination
Techniques for (Semi-)automatic Static Analysis
and Synthesis of Algorithms

Mădălina Eraşcu

Doctoral Thesis, November 2012

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Computational Logic and Quantifier
Elimination Techniques for (Semi-)automatic
Static Analysis and Synthesis of Algorithms

Mădălina Eraşcu

Doctoral Thesis

advised by

Prof. Dr. Tudor Jebelean
Prof. Dr. Hoon Hong

Defended on December 12, 2012, Linz, Austria.

The work was supported by:

� Upper Austrian Government (October 2008 - July 2009, November 2009, De-
cember 2012)

� Austrian Ministry of Research (August - October 2009)

� Austrian Science Fund (FWF): W1214-N15, project DK1 (December 2009 -
December 2010)

� Marshall Plan Foundation Scholarship (January 2011 – May 2011)

� DOC-fFORTE-fellowship of the Austrian Academy of Sciences (June 2011 –
November 2012)

Abstract

This thesis presents logical and algebraic approaches for analyzing imperative recursive
algorithms and for synthesizing optimal algorithms.

First we develop, formalize, and prove automatically, in the Theorema system
(www.theorema.org), the soundness of a method for the verification of imperative
recursive programs. Our goal is to identify the minimal logical apparatus necessary
for formulating and proving (in computer-assisted manner) a correct collection of
methods for program verification. Our work shows that reasoning about programs
does not necessarily need a complex theoretical construction, because it is possible
to transfer the semantics of the program into the semantics of logical formulas, thus
avoiding any special theory related to program execution. We express the seman-
tics as an implicit definition, in the object theory, of the function implemented by
the program. Termination, defined also in the object theory, is an induction princi-
ple developed from the structure of the program with respect to iterative structures
(recursive calls and while loops). An object theory is the theory relevant to the pred-
icates, constants, and functions occurring in the program text. Currently, our method
can be applied to programs with single recursion and with arbitrarily-nested loops
with abrupt termination (break, return).

Second we investigate methods for synthesizing optimal algorithms. As a case study,
we consider the square root problem: given the real number x and the error bound
ε, find a real interval such that it contains

√
x and its width is less than ε. We use

iterative refining as algorithm schema: the algorithm starts with an initial interval and
repeatedly updates it by applying a refinement map, say f, on it until it becomes nar-
row enough. Then the synthesis amounts to finding a refinement map f that ensures
that the algorithm is correct (loop invariant), terminating (contraction), and optimal.
All these could be formulated as quantifier elimination over the real numbers. Hence,
in principle, they could be performed automatically. However, the computational re-
quirement is huge, making the automatic synthesis practically impossible with the
current general quantifier elimination software. Therefore, we performed some hand
derivations and were able to synthesize semi-automatically optimal algorithms under
natural assumptions.

Keywords: program analysis, imperative recursive programs, abrupt termination,
Theorema system, program synthesis, square root computation, quantifier elimination

i

www.theorema.org

Zusammenfassung

In dieser Arbeit werden logische und algebraische Zugänge zur Analyse von imperativen-
rekursiven Algorithmen sowie zur Synthese von optimalen Algorithmen präsentiert.

Zunächst entwickeln und formalisieren wir eine Methode zur Verifikation von imperativen-
rekursiven Programmen, die automatisch mit dem System Theorema (www.theorema.org)
bewiesen wird. Unser Ziel ist es das minimale logische Gerüst zu bestimmen, das notwendig
ist um eine korrekte Sammlung von Methoden für Programmverifikation zu formulieren und
(computerunterstützt) zu beweisen. Unsere Arbeit zeigt, dass für das Schlußfolgernüber Pro-
gramme nicht notwendigerweise eine komplexe theoretische Konstruktion benötigt wird, da
es möglich ist die Semantik des Programms in die Semantik logischer Formelnüberzuführen
und damit spezielle Theorien über die Exekution von Programmenvermieden werden kön-
nen. Die Semantik wird, in der Objekttheorie, als implizite Definition der Funktion, die
durch das Programm implementiert ist, dargestellt. Termination, ebenfalls in der Objektthe-
orie definiert, ist ein Induktionsprinzip gebildetvon der Struktur des Programms bezüglich
iterativer Strukturen (rekursive Aufrufe und while-Schleifen). Eine Objekttheorie ist die
Theorie über die Prädikate, Konstanten und Funktionen, die im Programmtext vorkommen.
Derzeit kann unsere Methode auf Programme mit einer einfachen Rekursion und mit beliebig
verschachtelten Schleifen mit abruptem Abbruch (break, return) angewandt werden.

Im zweiten Teil untersuchen wir Methoden zur Synthese von optimalen Algorithmen. Als ein
Fallbeispiel betrachten wir das Quadratwurzelproblem: gegeben eine reelle Zahl x undeine
Fehlerschranke ε, ist eine reelles Intervall zu bestimmen, das x enthält und dessen Länge
kleiner als ε ist. Als Schema für den Algorithmus verwenden wir iterative Verfeinerung: der
Algorithmus startet mit einem Anfangsintervall, das wiederholt aktualisiert wird durch die
Anwendung einer Verfeinerungsabbildung, nennen wir sie f , solange bis es klein genug ist.
In diesem Fall entspricht die Synthese dem Bestimmen einer Verfeinerungsabbildung f , die
sicher stellt, dass der Algorithmus korrekt ist (schleifeninvariant), terminiert (kontrahierend)
und optimal ist. Diese Anforderungen können als Quantoreneliminationsproblem über den
reellen Zahlen formuliert werden. Daher könnte das Problem laut Theorie automatischgelöst
werden. In der Praxis sind die Rechenanforderungen zu immens und somit ist die automatis-
che Synthese derzeit mit der aktuell verfügbaren Software für Quantorenelimination nicht
durchführbar. Deshalb wurden einige Umformungsschritte von Hand ausgeführt und wir
haben in einem semi-automatischen Prozess optimale Algorithmen (unter natürlichen Vor-
aussetzungen) synthetisiert.

Stichworte: Programmanalyse, imperative rekursive Programme, abrupte Termination,
Theorema, Programmsynthese, Quadratwurzelberechnung, Quantorenelimination

www.theorema.org

Acknowledgements

Foremost, I thank Professor Tudor Jebelean. Through his lectures and meetings, he
introduced me, already during the Master’s studies, to the fields of automated theo-
rem proving and program verification. Afterwards, he guided me attentively during
the PhD studies, and most important, encouraged me exactly at the right moment.
Thank you very much for your clear explanations, permanent encouragements, infinite
patience, help and support!

I thank Professor Hoon Hong for the interesting research problem he proposed and
his guidance in finding the answer to it. He also hosted me at North Carolina State
University (NCSU), Raleigh, USA, where I basically got infected with his contagious
enthusiasm on doing research. Once I returned to Austria, he still continued to answer
my questions and correct the errors of my writings. I thank him for his patience and
also for all the effort he put in transforming me in a young professional researcher.

Professor Buchberger made possible, through his generous financial support, my
participation at various conferences, workshops, and summer schools. This way I was
able to make myself known to the community and to develop my network. I thank
him for that. Also, many thanks, for the numerous comments and suggestions for
improvement of my research work, writings, and presentations.

Wolfgang Schreiner gave many interesting lectures on various formal methods top-
ics which I enjoyed a lot, except, sometimes, the difficult homeworks. He was also
interested in the topic of my PhD research, asked a lot of questions and gave a lot of
good ideas for improvement. He helped me with German translations and polishing
the DOC-fFORTE proposal. Thank you!

I thank Professor Ali Nesin for giving me the possibility to teach in the Math Village,
such a nice place to be, and for introducing me to the Turkish hospitality.

I thank Laura Kovacs for her suggestions and comments which helped a lot at the
finalization and acceptance of the DOC-fFORTE proposal.

At the beginning of my PhD studies, Silviu Radu made me understand better
computer algebra and algebraic combinatorics. Besides, Silviu always provided help
of any kind, even before asking. Thank you, Pusicule!

I thank Veronika Pillwein for the German translation of the abstract of this thesis
and for her struggle in explaining me German grammar and vocabulary. After all,
I still speak German at the level of a child. But it is not my fault, German is too
complex!

v

I thank the secretaries Tanja Gutenbrunner and Gabriela Hahn for depriving me
from headaches that administration stuff could have provoked.

During my PhD studies, I have spent seven months in the US, at NCSU. My stay
there would not have been so enjoyable without the help of Ms Pauline Hong (Thank
you for providing tasty and healthy food!), Holly Durham (Thank you for the outings,
rides to the grocery store, and the hot shower :)!) and the Regalados (Thank you for
the peruvian food and hospitality!). I also thank the colleagues at NCSU, especially
Clemens (a former RISC colleague who was also in exile there that time), Daniel,
Ismail, Matt, Minsung, and Tulay, for the time spend together.

I thank my friends Ionela, Isabela, Nebiye-Bacım, and Faranak-Penguin for being
so nice to me. I also thank Ionela for providing the LATEX template of this thesis.
I should not forget the three musketeers, Hamid, Max, and Zaf, for the RISC-like
atmosphere in the Math Village and for the sightseeing of the “stones”, Johannes, for
being a devoted Sushi mate, and Anja, for the home-made cake.

I thank Father Sorin Bugner from the Romanian-Orthodox Church from Linz for
the wonderful Sunday Liturgies and his spiritual guidance during all these years.

Last but not least, I thank my family (Iti, tati, buni, Iulian, Luiza) for their support
from the distance, and Daniel for making me grow as a person in so many ways. Above
all, I thank God for guiding me in this journey.

vi

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Related Work . 3

1.2. Contributions of the Thesis . 6

1.3. Structure of the Thesis . 8

2. Automated Static Analysis of Algorithms 9
2.1. Program Verification by Symbolic Execution 9

2.2. Logical Foundations of Imperative Recursive Programs 10

2.2.1. Syntax and Semantics . 12

2.2.2. Partial Correctness . 17

2.2.3. Termination . 19

2.3. Soundness of the Method . 23

2.3.1. Correctness of Single Recursive Programs 25

2.3.2. Correctness of Simple Loops . 27

2.3.3. Correctness of Abruptly Terminating Loops 29

2.4. Implementation . 33

2.4.1. The Theorema System . 33

2.4.2. Theorema Language Layers . 33

2.4.3. Predicate Logic Prover. Extension 34

2.4.4. Adding a Symbolic Execution Feature to the Theorema System 39

3. Synthesizing Optimal Algorithms. Case Study: Square Root 43
3.1. Program Synthesis meets Program Verification 43

3.2. Program Synthesis as a QE Problem 46

3.3. QE by CAD . 48

3.3.1. The QE Problem and Applications 48

3.3.2. A Brief Summary of QE Methods 48

3.3.3. The Principles of QE by CAD 49

3.3.4. What is CAD? . 50

3.3.5. Projection . 50

vii

Contents

3.3.6. Stack Construction . 51
3.3.7. Formula Construction . 51

3.4. Optimality of Secant-Newton Refinement Map 52
3.4.1. Main Result . 52
3.4.2. Proof . 53

3.5. The Complexity of Contracting Quadratic Maps 59
3.5.1. Main Result . 60
3.5.2. Proof . 60

3.6. Towards Optimal Square Root Algorithms 69
3.6.1. Main Result . 70
3.6.2. Proof . 70

4. Conclusion and Future Work 83

A. Theorema Proofs. Simple Loops 85
A.1. Existence of the Recursion Index . 85
A.2. Existence of the Function Implemented by the Loop 88
A.3. Uniqueness of the Function Implemented by the Loop 90
A.4. Total Correctness . 92

B. Theorema Proofs. Loops with return 95
B.1. Total Correctness . 95

C. Mathematica Routines and Listings Accompanying Section 3.5 97
C.1. The function E(p, q) from Lemma 3.15 97
C.2. Constrained Optimization Routine for Proof of Theorem Theorem 3.14 99
C.3. Output of the Routine FindMin . 100

Bibliography 103

viii

1. Introduction

Exactly ten years ago, a study conducted by Department of Commerce – National In-
stitute of Standards and Technology (NIST) concluded that “software bugs, or errors,
are so prevalent and so detrimental that they cost the U.S. economy an estimated 59.5
billion annually, or about 0.6 percent of the gross domestic product.” [22]. Therefore,
the desire is to write error-free programs. For the achievement of this goal, the follow-
ing techniques are combined: programming language design, debugging, and testing.
Programming language design represents the main step in writing correct software.
The features of the nowadays programming languages (type systems, abstract data
types, inheritance and encapsulation for object oriented programming, etc.) allow
writing software at high level of abstraction and implicitly reducing the number of
possible errors. By debugging, one can reduce the number of bugs in a software pro-
gram in a systematic way such that it behaves as expected. Testing is an empirical step
towards software verification. It is performed with the intention of finding software
bugs but it can not provide the certainty of software correctness.

Nighter of these techniques, nor their combination, give a software correctness proof.

Program verification and program synthesis are able to prove, respectively, to gen-
erate correct software. Program (formal) verification is the technique which ensures
or disproves the correctness of a computer program with respect to a specification. By
synthesis, new programs are discovered which are known to be correct-by-construction.

We are interested in verifying and synthesizing programs at the implementation
level, using computational logic and quantifier elimination (QE) techniques. More
precisely, in verification, we want to solve the following problem: given a program
augmented with specification (input and output condition), generate the verification
conditions which ensure the fact that the program fulfills its specification. To solve this
problem, we develop a method based on forward symbolic execution and functional
semantics and we prove automatically the soundness of it, namely if the verification
conditions hold, then the program is totaly correct with respect to its specification. In
synthesis, we approach the problem of discovering the optimal algorithms of a given
program scheme, which is terminating and fulfills certain annotations (specification
and loop invariant).

On one hand, in this thesis, we focus on the automation of proving methods for
ensuring the soundness of the verification conditions generator. The soundness and
relative completeness proofs of the classical Hoare logic are well-established for sequen-
tial imperative programming languages. The same holds for logics extending Hoare

1

1. Introduction

logic with recursive calls, abrupt termination, exceptions, object-oriented features,
etc. [45], [4], [68], [86]. These proofs are mainly done by defining the semantics in type
theory [86] and by using the proof assistants Coq [7], Isabelle/HOL [67], PVS [70] in
the (interactive) proofs. In a functional setting, the most common way of defining the
semantics of the programs is to use Scott fixed-point theory [82]. Additionally to the
definition of semantics, these proofs require to define the notion of termination. For
imperative languages:

1. if the semantics defines a memory model of the program then inference rules for
both partial correctness and termination are introduced,

2. if an axiomatic semantics is defined then inference rules for termination are
defined only for iterative structures 1; these inference rules capture the well-
foundedness property of the iterative structure.

In the functional setting, termination is defined as being the least fix-point of certain
recursive operators. Needless to say, the complexity of the proofs of the program
logics depends on the choice of the semantics and the definition of termination. The
complexity plays a crucial role especially if one aims at the automatization of such
proofs. We try to avoid complex proofs by defining the semantics and the termination
in the same logic as the one of the program.

Our work deals with automatic proof of soundness, in the Theorema system [27–29],
of a method handling imperative recursive programs. The method is based on forward
symbolic execution [51] and functional semantics [61]. Our main aim is the identifi-
cation of the minimal logical apparatus necessary for formulating and proving (in a
computer-assisted manner) a correct collection of methods for program verification.
Our work shows that reasoning about imperative recursive programs does not neces-
sarily need a complex theoretical construction, because it is possible to transfer the
semantics of the program into the semantics of the logical formulas, thus avoiding any
special theory related to program execution. Moreover, even the termination condition
can be expressed as a logical formula in the object theory of the domain manipulated
by the program. In our approach, this condition is in fact equivalent to an induction
principle, which makes it very instrumental in proving the existence and uniqueness
of the function implemented by the loop.

On the other hand, in this thesis, we focus on synthesizing optimal and reliable
numeric algorithms. We consider a case study, namely computing the square root
of a real number: given the real number x and the error bound ε, we are searching
for a real interval such that it contains

√
x and its width is less than ε. We fix the

algorithm schema, namely, iterative refining: the algorithm starts with an initial in-
terval and repeatedly updates it by applying a refinement function, say f, on it until
it becomes narrow enough. The synthesis amounts to finding a refinement function f
that ensures that the algorithm is correct (loop invariant), terminating (contraction),

1We call iterative structure a recursive call or a loop.

2

1.1. Related Work

and optimal. All these can be formulated as QE problems over the real numbers.
Hence, in principle, they can be all carried out automatically. However, the computa-
tional requirement is so huge, making the automatic synthesis practically impossible
with the state-of-the-art QE software. Hence, we did some hand derivations and were
able to synthesize semi-automatically optimal algorithms under suitable assumptions.
Initially, we considered a well-known refinement function which solves the problem,
namely Secant-Newton. It is known that the Secant-Newton refinement function has
quadratic convergence, the same as the Newton algorithm, the benefit is that it does
not require an initial estimate of the solution. We proved that the Secant-Newton
refinement function is optimal among all its natural generalizations, that is, among
functions which are contracting and are quadratic rational functions in the end points
of the input interval. Further, we proved that all natural generalizations of Secant-
Newton function, including the function itself, have the best Lipschitz constant 1

2 .
Furthermore, by dropping off the contraction condition of the refinement function
and imposing other natural assumptions on it (the Secant-Newton refining function
satisfies these constraints), we were able to synthesize semi-automatically new refining
functions for which the best Lipschitz constant is 1

4 .

1.1. Related Work

Research into program analysis [32, 39] and synthesis [24, 35] has a long tradition,
however, in the last two decades a tremendous advance of techniques is noticed due
to increasing usage of computers in human’s life.

Our approach in program analysis follows the principles of forward symbolic exe-
cution [51] and functional semantics [61], but additionally gives formal definitions in
a meta-theory for the meta-level functions which define the syntax, the semantics,
and the verification conditions. To our knowledge there is no other work on symbolic
execution approaching the verification problem in a fully formal way. However, the
ideas from the formalization of the calculus are not completely new; [55] describes the
behavior of concurrent systems as relation between the variables in the current state
and in the post-state. A similar approach is encountered in [8] where the program
equations (involving relation between current and post-state) are used to express non-
determinacy and termination. In the same manner, [76] presents the formal calculus
for imperative languages containing complex structures. Specification languages used
in the framework of verification tools also use this concept – see e.g. JML [56].

Program logics for reasoning about programs with abrupt statements are imple-
mented in many state-of-the-art program verifiers. In the KeY system [4], which
has a first-order predicate programming logic (called Java Card DL) with subtyp-
ing extended with parameterized modal operators, there are two ways of handling
abrupt termination of while loops: 1) syntactically, by enriching the logic with la-
beled modalities []R and 〈〉R, referring to the reason R of possible abrupt termination;

3

1. Introduction

2) semantically, by transforming the program into an equivalent one which catches all
top-level exceptions and thus always terminates normally. Parts of the programming
logic were proved correct using an existing Isabelle/HOL formalization [86] of Java
semantics. We prove the soundness of the method for loops with abrupt termination
by transforming the loop into a normal terminating one. The transformation method
looks similar to the one performed by KeY, however, we did not find any references on
how the translation is performed, nor how the proof of the correctness was handled.
Distinct to KeY system, our programming logic is first-order logic extended with meta-
level constructs representing the program statements. In ESC/JAVA 2 [31], abruptly
terminating loops can be modeled by throw/catch clauses. However, the system
uses an unsound calculus; one source of unsoundness is the loop-unrolling mechanism
rather than a loop invariant. Unlike this, our method is sound because we are using
loop invariants to characterize loops.

In the LOOP tool [6], program semantics is described in type theory and has a
memory model and semantics inheritance as basic ingredients. A Hoare-like calculus
including abrupt termination is developed which is proved to be sound w.r.t. their
approach to semantics. The correctness proofs of the calculus are done interactively
in PVS [70] and Isabelle/HOL [67]. On the contrary, our approach does not need any
memory model because we are working in a functional environment and the proofs
are done automatically in the Theorema system.

The authors of [72] develop a structural operational semantics and Hoare-like logic
as part of the Jive system [63]. The program logic is interactively proved sound
w.r.t. the semantics by translating both of them in higher-order logic using Is-
abelle/HOL [67]. In comparison with the LOOP system, which reasons at semantic
level, the reasoning of JIVE is at syntactic level. In contrast, our semantics is ex-
pressed in the logic on which the program operates and the correctness proof of the
calculus as well, except some second order inferences.

A formalized semantics (in higher-order logic) of the C programming language is
given in [68]. It handles the cases of abrupt termination by translating, at syn-
tactic level, the abruptly terminating program into a normal terminating one and
deriving post-conditions for each case of termination. The formalization is done in
Isabelle/HOL [67].

The idea of using induction for termination proving has been widely used explic-
itly [69] or implicitly [18]. These proving techniques can be seen in the context of
our work as methods for proving certain classes of inductive termination conditions
that we generate. Note that in our approach termination is formulated as an induc-
tion principle and not used as a proving technique for termination as in the existing
approaches.

Most of the proof assistants provide infrastructure for proving/disproving the termi-
nation of classical examples with general recursion. ACL2 [50] handles total functions
that must be proved total at the definition time; sometimes the system is able to

4

1.1. Related Work

infer this fact. Isabelle [67], HOL4 [34], and Coq [7] are basically using the recursion
package TFL [79] and thus allow definitions of total recursive functions by using the
fixed-point operators and well-founded relations supplied by the user. Proving ter-
mination reduces to show that the relation is well-founded and the arguments of the
recursive calls are decreasing. Our approach is equivalent, in the sense that the ter-
mination condition is equivalent to the well-foundedness of the partial order defined
by the transformation of the critical variables2 within the loop. The treatment of
termination in [54] also uses inductive conditions extracted from the program recur-
sions, but in the form of implicit definitions of domains (set theory is also needed).
However, the existence of such inductively defined objects is not proved directly. Since
our study is foundational, it constitutes a complement and not a competitor for prac-
tical work dealing with termination proofs, like e.g. termination of term rewriting
systemshttp://www.termination-portal.org/, the size-change termination princi-
ple [57] or the approaches for proving the termination of industrial-size code (Microsoft
Windows Operating SystemDrivers) [18].

In order to prove the correctness of the while loops in the classical Hoare logic it
suffices to prove that the invariant holds upon loop execution and that a termination
term exists. In case of abrupt terminating loops, one way is to introduce, at syn-
tactic level, the notion of abnormal state [45] in the correctness statement. In these
approaches the correctness proof was done by proving the correctness of the loop de-
pending on the current statement which can occur in the loop body, therefore logical
formulas and program statements appear in the proof. In our approach, we transform
the loop into logical formulas and prove loop correctness based on them. Therefore
the computed-supported proof in our case is simpler because it has to deal only with
formulas from the logic on which the program operates.

Applying computer algebra methods to program analysis and synthesis is a challeng-
ing and relatively new research area. Challenging, because the polynomial algebra
methods, although very powerful, suffer from high computational complexity. As a
consequent, they often fail to be applied even to moderate sized programs. Successful
applications are in the areas of:

� invariant generation, by combining methods like Gröbner bases, Cylindrical Al-
gebraic Decomposition (CAD), symbolic summation, recurrence solving and gen-
erating functions [48,53,75]

� proving the correctness of imperative programs, by using Gröbner bases, CAD [21]
or of hybrid systems [71].

However, we are not aware of related work combining QE based CAD with con-
straint optimization methods in order to synthesize numeric algorithms. Logical
approaches to program synthesis are based on, e.g. induction, program schemes,
model-checking, and have been successfully applied to the synthesis of decision pro-

2A critical variable is a program variable modified in the loop body.

5

http://www.termination-portal.org/

1. Introduction

cedures [47], Gröbner bases algorithm [12], synthesis of automata [14]. [80] presents a
synthesis technique which is very much in the spirit of our work in the sense that anno-
tations like invariant and termination term are used in the synthesis process. Contrary
to our work, their technique has been used to synthesize a wide range of programs (in-
teger square root, dynamic programming algorithms, sorting algorithms) using SMT
solvers. However, the programs they synthesize have mainly linear expressions. The
case study on integer square root they present contains only few quadratic expressions
which can easily be handled once appropriate quadratic equalities/inequalities are fed
as assumptions to the SMT solver. In this thesis, we focus on the synthesis of optimal
algorithms for computing the square root of a real number. Computing the square
root of a given real number is a fundamental operation. Naturally, various numerical
methods have been developed [5,15,33,37,62,65,90]. We consider an interval version
of the problem [1, 64, 73] and show how optimal algorithms can be synthesized under
natural assumptions.

1.2. Contributions of the Thesis

We developed, formalized, and proved automatically, in the Theorema system, the
soundness of a method for the verification of imperative recursive programs. The aim
of the method is to identify the minimal logical apparatus necessary for formulating
and proving (in a computer-assisted manner) a correct collection of methods for pro-
gram verification. The study of such a minimal logical apparatus has the potential
to increase the confidence in program verification tools and even to reveal some foun-
dational relations between logic and programming. The distinctive features of our
approach are:

� Program correctness is expressed in predicate logic, without using any additional
theoretical model for program semantics or program execution, but only using
the so-called object theories, theories relevant to the predicates, constants and
functions present in the program text.

� The semantics of a loop is the implicit definition, at object level, of the function
implemented by the loop.

� Termination is defined as an induction principle developed from the structure
of the program with respect to while loops.

For proving the soundness, the entire knowledge base is formulated only in the logic
on which the program operates except some axioms of natural number theory (in-
cluding induction over natural numbers). Moreover, the proofs are performed using
mainly first-order inferences (exception is Skolemization). We identified a reasonable-
size knowledge base and a small set of inference rules which are handled efficiently
during proof search by our predicate logic prover implemented in the Theorema sys-
tem. Our computer-aided formalization may open the possibility of reflection of the

6

1.2. Contributions of the Thesis

method on itself (treatment of the meta-functions as programs whose correctness can
be studied by the same method). Finally, the formal specification and the verifica-
tion of the method are performed in the same framework, namely Theorema system.
This facilitates reasoning at object and meta-level in the same system. Currently, our
method can be applied to programs with single recursion and with arbitrarily-nested
loops with abrupt termination (break, return).

Our results are as follows. We present the full formalization of our method in Sec-
tion 2.2. In Section 2.3.1, we present the soundness of our approach for single recursive
programs. Finally, in Sections 2.3.2 and 2.3.3, the method is proved to be sound for
programs with arbitrarily-nested, abruptly terminating, while loops. We also inves-
tigated ways to synthesize reliable/optimal numeric algorithms. As a case study, we
synthesized optimal algorithms for computing the square root of a real number. More
precisely, given the real number x and the error bound ε, we are searching for a real
interval such that it contains

√
x and its width is less than ε, by using iterative re-

fining algorithm scheme. Iterative refining means that the algorithm starts with an
initial interval and repeatedly updates it by applying a refinement function, say f,
on it until it becomes narrow enough. The synthesis amounts to finding a refinement
function f that ensures that the algorithm is correct (loop invariant), terminating
(contraction), and optimal. All these can be formulated as QE over the real num-
bers. Hence, in principle, they can be all carried out automatically. However, the
computational requirement is so huge, making the automatic synthesis practically im-
possible with the state-of-the art QE software. Hence, we did some hand derivations
and were able to synthesize semi-automatically optimal algorithms under suitable as-
sumptions. Our first result (Section 3.4) consists in the proof that the well-known
Secant-Newton function is the optimal among all its natural generalizations, that is,
among functions which that are contracting and are quadratic rational functions in
the end points of the input interval. Additionally, we proved that all natural gen-
eralizations of Secant-Newton function, including the function itself, have the best
Lipschitz constant 1

2 (Section 3.5). A Lipschitz constant strictly less than 1 ensures
that the refinement function converges to

√
x and how fast it does. By dropping off

the contraction condition of the refinement function and imposing other natural con-
straints on it (Secant-Newton refining function satisfies these constraints), we were
able to synthesize semi-automatically new refining functions for which the best Lips-
chitz constant is 1

4 (Section 3.6). Hence, we synthesized faster convergent refinement
functions than the well-known Secant-Newton.

7

1. Introduction

1.3. Structure of the Thesis

Chapter 2 presents the verification method and the automated proof of soundness
of it as follows. We start in Section 2.1 by motivating program analysis by sym-
bolic execution and functional semantics which are the basic tools for developing the
verification method. In Section 2.2 we describe a meta-theory for reasoning about
imperative recursive programs. We consider the syntax, semantics and generation of
the verification conditions and we exemplify these notions on several examples. In
Section 2.3 we present the soundness proof of our approach on different types of pro-
grams: single recursive programs and programs with (nested, abruptly terminating)
imperative loops. Section 2.4 starts with a brief presentation of the Theorema system,
the tool we used for the automation and for the proof of soundness of the verification
method. Then it continues with the description of: i) Theorema language layers and
their usage in our research (Section 2.4.2), ii) Predicate Logic Prover and the exten-
sions we performed in order to prove automatically the soundness of our verification
method (Section 2.4.3), and iii) FwdVCG, the verification conditions generator which
adds program analysis by symbolic execution and functional semantics feature to the
Theorema system (Section 2.4.4).

Chapter 3 presents the results obtained in the synthesis of optimal real square root
computation as follows. We describe in Section 3.1 how the program synthesis task can
be reduced to a program verification task. We exemplify this transformation by giv-
ing a motivating example: real square root computation by Secant-Newton refinement
function (algorithm). This example brings into attention the problem of synthesizing
algorithms with a better complexity. We formulate the synthesis problem as a QE task
over real numbers in Section 3.2 and we give an algorithm which, theoretically, could
solve this problem. The synthesis algorithm uses CAD technique for quantifier elimi-
nation (Section 3.3). The input of the synthesis algorithm is so complex that it makes
the QE infeasible with the available software CAD based software. Hence, we simplify
it by imposing assumptions which exploit the deep knowledge on the problem. In this
way we were able to prove semi-automatically that: i) Secant-Newton refinement map
is optimal among all its natural generalizations, that is, among functions which are
contracting and are quadratic rational functions in the end points of the input interval
(Section 3.4) ii) all natural generalizations of Secant-Newton function, including the
function itself, have the best Lipschitz constant 1

2 (Section 3.5), and iii) by dropping
off the contraction condition of the refinement function but imposing other natural
assumptions, Secant-Newton refining function can be outperformed (Section 3.6).

In Chapter 4 we conclude and propose possible extensions of our work. Finally,
the appendices present automatically generated Theorema proofs of the soundness of
the verification method (Appendices A and B) and automatically obtained results of
the synthesis problem (Appendix C) using the computer algebra system Mathemat-
ica [92].

8

2. Automated Static Analysis of
Algorithms

2.1. Program Verification by Symbolic Execution

Symbolic execution has its origins back in 1976, when James King presented the
method and the computer implementation of it in the EFFIGY system [51]. The
technique replaces the input values of the variables by symbolic values and uses these
new values to transform the program into first-order logical formulas (verification con-
ditions) based on predicate transformers, which work either forward, or backward on
the source code of the program. Because the input variables have symbolic values,
the program variables have symbolic values in each state.

Two notions are involved in program verification using this approach: the program
state and the path condition. The program state contains the values of the program
variables and the statement counter. The values of the program variables are gathered
in the program substitution σ, a set of replacements of the form v → e (v has the
value e). The program counter determines which statement will be analyzed next.
The path condition accumulates constraints which the inputs must satisfy such that
the program execution follows the corresponding program branch.

For the purpose of generating the path conditions it turned out that forward rea-
soning [19] (used in the the majority of symbolic execution systems) is more suitable
than backward reasoning [44], because it follows naturally the execution of a program.

Former symbolic execution systems (see [19] for a survey) were specialized in the
generation of the verification conditions for each path of the program, detection of
infeasible paths, computation of the output value of the programs in terms of the
input values, etc. The last enumerated feature is called functional semantics in our
approach.

In the last years, symbolic execution is used: i) for combating the state-space ex-
plosion problem in the model checking of programs that take input from unbounded
domains with complex structure [2], ii) in separation logic [46], iii) in combination with
other specification methodologies, e.g. dynamic logic [4], implicit dynamic frames [77].

9

2. Automated Static Analysis of Algorithms

2.2. Logical Foundations of Imperative Recursive Programs

The verification method developed by us is logic-based, meaning that the program cor-
rectness is provable in predicate logic, without using any additional theoretical model
for program semantics or program execution, but only using the theories relevant to
the predicates, constants and functions present in the program text. We call such
theories object theories. (By a theory we understand a set of formulas in the language
of predicate logic with equality.)

From the point of view of the program analysis, we distinguish the following types
of functions:

� basic – occur in the object theory, have input condition, but no output condition;
for instance, arithmetic operations in various number domains;

� additional – occur in the object theory, are usually functions implemented by
other programs and in the process of verification conditions generation only their
specification will be used.

A meta-theory (in predicate logic with equality) is further constructed for the pur-
pose of reasoning about the correctness of programs. While the object theory is ap-
plication specific, the meta-theory is universal. The meta-theory contains:

� specific functions and predicates from the set theory;

� elements from the tuple theory;

� function symbols for the construction of program statements (assignment in-
cluding recursive call, conditionals, loops, abrupt statements: break, return);

� definitions of meta-predicates checking the syntactic correctness and of meta-
functions defining the semantics and generating verification conditions.

A program P is a tuple of statements and is documented with specification: input
IP [α] and output OP [α, β] condition. It takes as input a certain number of variables,
conventionally denoted by α and it returns a single value, conventionally denoted by
β. The program itself and program statements are meta-terms. Also the terms and
the formulas from the object theory are meta-terms from the point of view of the
meta-theory.

The expressions composing the definitions of the meta-level predicates and functions
from the meta-theory are to be understood as universally quantified over the meta-
variables of various types: v ∈ V ⊂ V is an initialized variable, t ∈ T is a term, ϕ is a
boolean expression, B, PT and PF are tuples of statements representing the loop body
and the two paths corresponding to the if statement, respectively. ι and ι′ denote
conventionally loop invariants which hold at the beginning of the loop, respectively,
and are inductively preserved by each loop iteration. We assume that the loops are
annotated with invariants. We denote conventionally by δ the critical variables, that
is, the variables which are modified in the loop body.

The meta-predicates and meta-functions use forward symbolic execution in pro-

10

2.2. Logical Foundations of Imperative Recursive Programs

gram analysis. How symbolic execution is used for different tasks (syntax checking,
semantics construction, and generation of verification conditions) is presented in Sec-
tions 2.2.1, 2.2.2, and 2.2.3. Note that there is a predicate/function analyzing the
main program, which calls auxiliary predicates/functions if while loops (with abrupt
termination) are encountered. The definition of auxiliary predicates/functions could
have been avoided by introducing global variables checking whether we are/we are not
in a (nested) loop (with abrupt termination). However, we prefer specialized auxiliary
predicate for the cleanliness of the formalization.

For the purpose of exemplification of our approach, we introduce the following algo-
rithms. Algorithm 1 is a recursive algorithm computing the greatest common divisor

Algorithm 1 Greatest Common Divisor by Euclidean Algorithm

1. in a, b: integers where a ≥ 0, b ≥ 0
2. out β: integer where ∃

k
(a = k ∗ β)

3. if (a = 0) then
4. return[b];
5. if (b 6= 0) then
6. if (a > b) then
7. a := GCD[a− b, b],
8. a := GCD[a, b− a];
9. return[a]

of two positive integers by Euclidean algorithm. Because our aim is the exemplifica-
tion of our approach, we simplified the postcondition of the algorithm: it is not the
one of the greatest common divisor, but of a common divisor. Algorithm 2 presents a

Algorithm 2 Linear Search

1. in a: array of integers; n, e: integers where n ≥ 0

2. out β: boolean where

(
∀

0≤j<n
a[j] 6= e ∧ β = F

)
∨
(
∃

0≤j<n
a[j] = e ∧ β = T

)
3. i := 0; y := F;
4. while (i < n) do
5. if (e = a[i]) then y := T; break;
6. i := i+ 1
7. return[y]

searching algorithm of the element e in the array a and returns T (true), if the element
was found, or F (false), otherwise. The loop is manually annotated with the invariant

I[i, y] :⇐⇒ 0 ≤ i ≤ n ∧
((

∀
0≤j<i

a[j] 6= e ∧ y = F
)
∨ (a[i] = e ∧ y = T)

)

11

2. Automated Static Analysis of Algorithms

Algorithm 3 Search in a bidimensional array
1. in a: array of integers; m,n, e: integers m ≥ 0, n ≥ 0
2. out β: integer or β1, β2: integers where(

∃
0≤k<m

∃
0≤l<n

a[k][l] = e ∧ a[β1][β2] = e

)
∨
(
∀

0≤k<m
∀

0≤l<n
a[k][l] 6= e ∧ β = −1

)
3. i := 0; j := 0;
4. while (i < m) do
5. j := 0;
6. while (j < n) do
7. if (e := a[i][j]) then return[〈i, j〉];
8. j := j + 1;
9. i := i+ 1;
10.return[-1]

Algorithm 3 searches for the element e into the bidimensional array a and returns its
position if the element was found and −1, otherwise. We assume that the outer and
inner loop are annotated with the invariants ι1, respectively, ι2.

2.2.1. Syntax and Semantics

We first introduce meta-predicates checking the syntactic correctness of programs and
meta-functions which construct the program semantics. These are not actually needed
for the implementation of a program verification system. They are only needed in order
to reason about the effect of the verification condition generator. For instance, all
statements about the effect of the meta-functions can be formulated only on programs
which fulfill the syntax predicates. Likewise, the effect of a program P is expressed
as a logical formula, which constitutes the implicit definition of the function realized
by the program. Additionally, we construct the semantics of each loop as an implicit
definition of the function implemented by the loop on the critical variables.

Syntax

The predicate Π checks that: i) a program is syntactically correct, ii) each variable
is initialized before it is used, iii) each program branch has a return statement,
and iv) break statement occurs only in while loops. The meta-level function V ars
constructs a list containing the variables occurring in a term or formula, and the
meta-level predicate IsFOLFormula checks whether an expression is a first-order
logic formula. V is the set of initialized variables.

12

2.2. Logical Foundations of Imperative Recursive Programs

Definition 2.1.

1. Π[P] :⇔
∧

IsFOLFormula[IP [α]]
IsFOLFormula[OP [α, β]]
Π[{α→ α0}, P]{α0 → α}

2. Π[V, 〈return[t]〉^ P] :⇔ V ars[t] ⊆ V
3. Π[V, 〈v:=t〉^ P] :⇔ V ars[t] ⊆ V ∧Π[V ∪ {v}, P]

4. Π[V, 〈if ϕ then PT , PF 〉^ P] :⇔
∧

V ars[ϕ] ⊆ V
IsFOLFormula[ϕ]
Π[V, PT ^ P]
Π[V, PF ^ P]

5. Π[V, 〈while ϕ do ι, B〉^ P] :⇔
∧

V ars[ϕ] ⊆ V
IsFOLFormula[ϕ] ∧ IsFOLFormula[ι]
Π′[V,B ^ P]
Π[V, P]

6. Π[V, 〈assert[ϕ]〉^ P] :⇔ IsFOLFormula[ϕ] ∧Π[V, P]

7. Π[V, P] = F

The input variable α from Definition 2.1.1 behaves like a global variable. Some
of the principles of the syntactic check are as follows. The variables occurring in a
term t or in a formula ϕ have to be initialized (Definition 2.1.2). The formulas IP ,
OP , ϕ, and ι must be well-formed first-order formulas (Definition 2.1.5). In case
of successful assignment, the variable v is added to the set V of initialized variables.
break statement outside the loop body gives a syntax error (Definition 2.1.7), however
it is allowed inside the loop body (Definition 2.2.2). This is also the reason why the
auxiliary predicate Π′ was introduced: to make distinction among break behavior.
Absence of return on each program path gives syntax error (Definition 2.1.7).

The meta-predicate Π′, except for the break statement, behaves similarly to Π.

Definition 2.2.

1. Π′[V, 〈return[t]〉^ P] :⇔ V ars[t] ⊆ V
2. Π′[V, 〈break〉^ P] :⇔ T
3. Π′[V, 〈v:=t〉^ P] :⇔ V ars[t] ⊆ V ∧Π′[V ∪ {v}, P]

4. Π′[V, 〈if ϕ then PT , PF 〉^ P] :⇔
∧

V ars[ϕ] ⊆ V
IsFOLFormula[ϕ]
Π′[V, PT ^ P]
Π′[V, PF ^ P]

5. Π′[V, 〈〉] :⇔ T

6. Π′[V, 〈while ϕ do ι, B〉^ P] :⇔
∧

V ars[ϕ] ⊆ V
IsFOLFormula[ϕ] ∧ IsFOLFormula[ι]
Π′[V,B ^ P]
Π′[V, P]

13

2. Automated Static Analysis of Algorithms

7. Π′[V, 〈assert[ϕ]〉^ P] :⇔ IsFOLFormula[ϕ] ∧Π′[V, P]

8. Π′[V, P] :⇔ F

Semantics

We define the semantics of programs as an implicit definition at object level of the
function implemented by the program. The semantics of a program is a formula with
the shape:

∀
α:IP

n∧
i=1

(pi[α]⇒ (F [α] = ti)) , (2.1)

where F is a new (second order) symbol – a name for the function defined by the
program, n is the number of paths in the program. In case of recursive calls, F may
occur in some pi[α] and ti.

Each conjunct of (2.1) is a conditional definition for F [α] which depends on the
path condition pi and on return statement of the respective path, whose argument
(symbolically evaluated) represents the corresponding value of F [α], namely ti. For
programs with loops, the behavior of a certain loop is not reflected explicitly at upper
level (it is encoded into invariant), except for abrupt termination.

Formulas of type (2.1) are generated by the meta-level function Σ, Σ′, and Σ′′. The
arguments of these functions are: i) substitution σ, ii) path condition Φ, iii) program
counter, and iv) a name for the program/loop function. The output is a concatenation
of tuples, each tuple having the form (2.1).

The main meta-level function Σ starts the analysis by assigning symbolic values
to the input program variables and the input condition as path condition (Definition
2.3.1), and then updates the program substitution σ and the path condition according
to the statements of the program.

Definition 2.3.

1. Σ[P] = Σ[{α→ α0}, IP [α0], P,F]{α0 → α}
2. Σ[σ,Φ, 〈return[t]〉^ P,F] = 〈Φ⇒ (F [α0] = tσ)〉
3. Σ[σ,Φ, 〈break〉^ P,F] = 〈〉
4. Σ[σ,Φ, 〈v:=t〉^ P,F] = Σ[σ{v → tσ},Φ, P,F]

5. Σ[σ,Φ, 〈if ϕ then PT , PF 〉^ P,F] =^

{
Σ[σ,Φ ∧ ϕσ, PT ^ P,F]
Σ[σ,Φ ∧ ¬ϕσ, PF ^ P,F]

6. Σ[σ,Φ, 〈〉,F] = 〈〉
7. Σ[σ,Φ, 〈while ϕ do ι B〉^ P,F] =

14

2.2. Logical Foundations of Imperative Recursive Programs

^

Σ[σ,Φ ∧ ¬ϕσ, P,F] (1)〈
∀
δ:ι
∧
{

(¬ϕσ0 ⇒ (f [δ] = δσ)){δ0 → δ}
Σ′[σ0, ϕσ0, B, f]{δ0 → δ}

}〉
(2)

Σ[σ0,Φ ∧ ϕσ0 ∧ ισ0, B,F] (3)
Σ[σ0,Φ ∧ ¬ϕσ0 ∧ ισ0, P,F] (4)

8. Σ[σ,Φ, 〈assert[ϕ]〉^ P,F] = Σ[σ,Φ ∧ ϕσ, P,F]

A return statement constructs the expression of the program function on the re-
spective program path (Definition 2.3.2), if forks the program execution (Definition
2.3.5). Definitions 2.3.3 (break) and 2.3.6 (end of the loop) are applied only in the
case the currently analyzed module1 has no nested loops. Assignment of a term (in-
cluding recursive call) updates the program substitution (Definition 2.3.4). Semantics
of programs with while loops (Definition 2.3.7) is constructed as follows. Definitions
2.3.7.1, 2.3.7.3 and 2.3.7.4 construct the semantics of the main program, in particular
Definition 2.3.7.3 searches for program branches with abrupt termination. Definition
2.3.7.2 constructs the semantics of the loop. If a loop abruptly terminates via break,
then specialized semantics definition exist due to distinct outcome of break inside the
loop (Definition 2.4.2), respectively outside (Definition 2.5.2). Note that the analysis
of the loop starts with fresh values for the critical variables, fact denoted by the sub-
stitution σ0. An assert construct (Definition 2.3.8) updates the path condition and
afterwards continues the analysis of the program.

Definition 2.4.

1. Σ′[σ,Φ, 〈return[t]〉^ P, f] =
(
Φ⇒ (f [δ0] = tσ)

)
2. Σ′[σ,Φ, 〈break〉^ P, f] =

(
Φ⇒ (f [δ0] = δ0σ)

)
3. Σ′[σ,Φ, 〈v:=t〉^ P, f] = Σ′[σ{v → tσ},Φ, P, f]

4. Σ′[σ,Φ, 〈if ϕ then PT , PF 〉^ P, f] = ∧
{

Σ′[σ,Φ, PT ^ P, f]
Σ′[σ,Φ, PF ^ P, f]

5. Σ′[σ,Φ, 〈〉, f] =
(
Φ⇒ (f [δ0] = f [δσ])

)
6. Σ′[σ,Φ, 〈while ϕ do ιB〉^P, f] = Σ′′[σ,Φ, 〈while ϕ do ιB〉^P, f]{δ0→δ}
7. Σ′[σ,Φ, 〈assert[ϕ]〉^ P, f] = Σ[σ,Φ ∧ ϕσ, P, f]

Definition 2.5.

1. Σ′′[σ,Φ, 〈return[t]〉^ P, f] =
(
Φ⇒ (f [δ0] = tσ)

)
2. Σ′′[σ,Φ, 〈break〉^ P, f] = T
3. Σ′′[σ,Φ, 〈v:=t〉^ P, f] = Σ′′[σ{v → tσ},Φ, P, f]

4. Σ′′[σ,Φ, 〈if ϕ then PT , PF 〉^ P, f] = ∧
{

Σ′′[σ,Φ ∧ ϕσ, PT ^ P, f]
Σ′′[σ,Φ ∧ ¬ϕσ, PF ^ P, f]

5. Σ′′[σ,Φ, 〈〉, f] = T

1We call module a program or a loop.

15

2. Automated Static Analysis of Algorithms

6. Σ′′[σ,Φ, 〈while ϕ do ιB〉^ P, f] = ∧

Σ′[σ,Φ ∧ ¬ϕσ, P, f]
Σ′′[σ0,Φ ∧ ϕσ0 ∧ ισ0, B, f]
Σ′[σ0,Φ ∧ ¬ϕσ0 ∧ ισ0, P, f]

7. Σ′′[σ,Φ, 〈assert[ϕ]〉^ P, f] = Σ′′[σ,Φ ∧ ϕσ, P, f]

Remark 2.6. The functions ensure that all program branches are analyzed and the
path conditions are mutually disjoint.

Remark 2.7. The functions translate the program into a function. From this point
on, one could reason about the program using the Scott fixpoint theory [58, p.86],
however we prefer a logic-based approach.

For example, the semantics of Algorithm 1 is as follows. (The numbers in paren-
theses represent program lines.)

∀
a≥0∧b≥0

∧
a = 0⇒ (GCD[a, b] = b)
(a 6= 0 ∧ b 6= 0 ∧ a > b)⇒ (GCD[a, b] = GCD[a− b, b])
(a 6= 0 ∧ b 6= 0 ∧ a ≤ b)⇒ (GCD[a, b] = GCD[a, b− a])
a 6= 0 ∧ b 6= 0⇒ (GCD[a, b] = a)

(2.2)

(1, 3, 4)
(1, 3, 5, 6, 7, 9)
(1, 3, 5, 6, 8, 9)
(1, 3, 5, 9)

Formula (2.2) states the following: “For all values of the input variables a and b sat-
isfying the input condition a ≥ 0 ∧ b ≥ 0, on the path where: i) a = 0, the value of
the semantics function GCD is b, ii) a 6= 0 ∧ b 6= 0 ∧ a > b, the value of the semantics
function GCD is computed recursively, with the value a − b for the argument a and
b remains unchanged, iii) a 6= 0 ∧ b 6= 0 ∧ a ≤ b, the value of the semantics function
GCD is computed recursively, with the value b− a for the argument b and a remains
unchanged, iv) a 6= 0 ∧ b 6= 0, the value of the semantics function GCD is a.

Algorithm 3 has two nested loops with abrupt termination. Semantics functions
for the main program, inner and outer loops are generated. ι1 and ι2 are the loop
invariants of the the outer, respectively, inner loop.

Semantics of the program.

∀
m≥0∧n≥0

∧
0 ≥ m⇒ (F [m,n] = −1)
i < m ∧ ι1 ∧ j < n ∧ ι2 ∧ (e = a[i, j])⇒ (F [m,n] = 〈i, j〉)
i ≥ m ∧ ι1 ⇒ (F [m,n] = −1)

(1, 3, 4, 10)
(1, 4, 6, 7)
(1, 4, 10)

Semantics of the outer loop.

∀
i,j:ι1

∧
i ≥ m⇒ (f1[i, j] = 〈i, j〉)
i < m ∧ j ≥ n⇒ (f1[i, j] = f1[i+ 1, j])
i < m ∧ j < n ∧ ι2 ∧ (e = a[i, j])⇒ (f1[i, j] = 〈i, j〉)
i < m ∧ j ≥ n ∧ ι2 ⇒ (f1[i, j] = f1[i+ 1, j])

(4)
(4, 6, 8)
(4, 6, 7)
(4, 6, 8)

16

2.2. Logical Foundations of Imperative Recursive Programs

Semantics of the inner loop.

∀
j:ι2

∧
j ≥ n⇒ (f2[j] = j)
j < n ∧ (e = a[i, j])⇒ (f2[j] = 〈i, j〉)
j < n ∧ (e 6= a[i, j])⇒ (f2[j] = f2[j + 1])

(6)
(6, 7)
(6, 7, 8)

2.2.2. Partial Correctness

Partial correctness verification conditions ensure safety and functional correctness of
a program.

Safety conditions are formulas with the shape Φ ⇒ Ih[t], where Φ represents the
path condition, Ih is the input condition of some function h, and t is the symbolic
value of the argument of the function call. We require that all functions present in
a program satisfy their input condition. This is not necessarily needed for partial
correctness, however for practical programming is an important requirement.

An example of safety condition is:

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a > b =⇒ a− b ≥ 0 ∧ b ≥ 0, (2.3)

obtained by analyzing the lines (1, 3, 5, 6, 7) of the Algorithm 1. Next, the program
analysis proceeds by adding the condition a − b ≥ 0 ∧ b ≥ 0 (IGCD[a, b]) to the path
condition. This is not actually necessary (because of (2.3)), however it might help in
the proving process of (2.4) since there are more assumptions.

a ≥ 0∧ b ≥ 0∧ a 6= 0∧ b 6= 0∧ a > b∧ a− b ≥ 0 ∧ b ≥ 0∧∃
k
b = k · t1 =⇒ ∃

k
a = k · t1.

(2.4)
Functional, respectively, assertive conditions are formulas checking that the output
condition on the currently returned value, respectively, the assertion at a certain point
in the program, is a consequence of the accumulated conditions on the respective
program path. An example of functional verification condition is the formula:

m ≥ 0 ∧ n ≥ 0 ∧ 0 ≥ m⇒(
∃

0≤k<m
∃

0≤l<n
a[k][l] = e ∧ a[β1][β2] = e

)
∨
(
∀

0≤k<m
∀

0≤l<n
a[k][l] 6= e ∧ 1 = −1

)
,

obtained from the analysis of the program lines (1, 3, 4, 10, 2) of Algorithm 3.

The partial correctness verification conditions are generated by the meta-level func-
tions Γ and Γ′. The verification of the program is performed with respect to a given
specification, whose definition is assumed to be present in the object theory. More-
over, the basic functions from the object theory have only input condition, but no
output condition. These functions will occur in the verification conditions, thus the
proof of such conditions will use the properties of the basic functions from the object
theory. Typical examples of basic functions are the arithmetic operations in various

17

2. Automated Static Analysis of Algorithms

number domains. The additional functions also have a specification. A certain addi-
tional function, say h, has the input condition Ih[t] and the output condition Oh[t, y],
where y is a new symbol name which will be used subsequently as the output value of
h. In this way, the verification conditions use only the specification, thus leaving room
for possible changes in their implementation. For the particular case of recursive call,
this technique is mandatory because the existence of the function implemented by the
program is not automatically ensured.

The arguments of the functions Γ and Γ′ are: i) program substitution σ, ii) path
condition Φ, and iii) the program counter. The output is a list of first-order logic
formulas (verification conditions). Similarly to the main semantics function, Γ starts
with symbolic value for the input program variable and with the input condition as
path condition and then updates them according to the statements of the program.

Definition 2.8.

1. Γ[P] = Γ[{α→ α0}, IP [α0], P]{α0 → α}
2. Γ[σ,Φ, 〈return[t]〉^ P] =

〈
Φ⇒ OP [α0, tσ]

〉
3. Γ[σ,Φ, 〈v:=t〉^ P] = fΓ[σ{v → tσ},Φ, P]

4. Γ[σ,Φ, 〈v:=h[α]〉^ P] =
∧{ Φ⇒ Ih[ασ]

Γ[σ ◦ {v → h[ασ]},Φ ∧ Ih[ασ], P]

5. Γ[σ,Φ, 〈v:=g[α]〉^ P] =
∧{ Φ⇒ Ig[ασ]

Γ[σ ◦ {v → c},Φ ∧ Ig[ασ] ∧Og[ασ, c], P]

6. Γ[σ,Φ, 〈if ϕ then PT , PF 〉^ P] =^

{
Γ[σ,Φ ∧ ϕσ, PT ^ P]
Γ[σ,Φ ∧ ¬ϕσ, PF ^ P]

7. Γ[σ,Φ, 〈〉] =
〈
Φ⇒ ισ

〉
8. Γ[σ,Φ, 〈while ϕ do ι B〉^ P] =^

Γ[σ,Φ ∧ ¬ϕσ, P] (1)〈
Φ⇒ ισ

〉
(2)

Γ′[σ0, ισ0 ∧ ϕσ0, ι, B]{δ0 → δ} (3)
Γ[σ0, ισ0 ∧ ¬ϕσ0, P] (4)

9. Γ[σ,Φ, 〈assert[ϕ]〉^ P] =^

{ 〈
Φ⇒ ϕσ

〉
Γ[σ,Φ ∧ ϕσ, P]

The verification conditions for partial correctness are generated as follows. return
statement determines the generation of a functional verification condition for the re-
spective program path (Definition 2.8.2), if forks the program analysis (Definition
2.8.6) and updates path condition correspondingly. Distinction has to be made for
different types of assignments. If the assigned term is a basic function, say h, (Def-
inition 2.8.4), additional or recursive function, say g, (Definition 2.8.5) then a safety
verification condition is generated and analysis proceeds with updated program sub-
stitution and path condition, depending on the function type. If the assignment is a
simple term 2.8.5 then just the program substitution is updated. while loops split
the analysis of the program in three branches: one branch considers that the loop is

18

2.2. Logical Foundations of Imperative Recursive Programs

not executed (Definition 2.8.8.1), another analyzes the body of the loop (Definition
2.8.8.3) ensuring that invariant is inductively preserved (Definition 2.8.8.2), the third
one analyzes the rest of the program taking into account that the loop was executed
(the invariant and the negated loop condition are added to the path condition) and
terminates (Definition 2.8.8.4). An assert statement determines the generation of an
assertive condition. Note that due to the syntax check, which does not allow a break

in the main program, no corresponding inductive definition is needed.

The auxiliary function Γ′ has two additional arguments, namely the loop condition
and invariant. They were introduced for a correct formulation of Definition 2.9.8: the
loop condition ϕ and invariant ι occur on the right hand side of the definition.

Definition 2.9.

1. Γ′[σ,Φ, ι, ϕ, 〈return[t]〉^ P] =
〈
Φ⇒ OP [α0, tσ]

〉
2. Γ′[σ,Φ, ι, ϕ, 〈break〉^ B ^ 〈〉^ P] = Γ′[σ,Φ, ι, ϕ, P]

3. Γ′[σ,Φ, ι, ϕ, 〈v:=t〉^ P] = Γ′[σ{v → tσ},Φ, ι, ϕ, P]

4. Γ′[σ,Φ, 〈v:=h[α]〉^ P] =
∧{ Φ⇒ Ih[ασ]

Γ′[σ ◦ {v → h[ασ]},Φ ∧ Ih[ασ], P]

5. Γ′[σ,Φ, 〈v:=g[α]〉^ P] =
∧{ Φ⇒ Ig[ασ]

Γ′[σ ◦ {v → c},Φ ∧ Ig[ασ] ∧Og[ασ, c], P]

6. Γ′[σ,Φ, ι, ϕ, 〈if ϕ then PT , PF 〉^ P] =^

{
Γ′[σ,Φ ∧ ϕσ, ι, ϕ, PT ^ P]
Γ′[σ,Φ ∧ ¬ϕσ, ι, ϕ, PF ^ P]

7. Γ′[σ,Φ, ι, ϕ, 〈〉] =
〈
Φ⇒ ισ

〉
8. Γ′[σ,Φ, ι, ϕ, 〈while ϕ do ι′ B〉^ P] =^

Γ′[σ,Φ ∧ ¬ϕσ, ι, ϕ, P]〈
Φ⇒ ισ

〉
Γ′[σ0, ι

′σ0 ∧ ϕσ0, ι1, ϕ,B]{δ0 → δ}
Γ′[σ0, ι1σ0 ∧ ¬ϕσ0, ι1, ϕ, P]

9. Γ′[σ,Φ, ι, ϕ, 〈assert[ϑ]〉^ P] =^

{ 〈
Φ⇒ ϑσ

〉
Γ′[σ,Φ ∧ ϑσ, ι, ϕ, P]

Additional to Γ, Γ′ has an inductive definition also for break. When a break

statement is encountered (Definition 2.9.2), the analysis of the current loop is left and
continued with the analysis of the statements after the loop body, without resuming
the configuration of program substitution and path condition.

2.2.3. Termination

We approach termination by generating a termination condition for each iterative
structure of the program.

For instance, the termination condition for Algorithm 1 is:

19

2. Automated Static Analysis of Algorithms

∀
a≥0∧b≥0

∧
a=0⇒ π[a, b]
a 6=0 ∧ b 6=0 ∧ a>b ∧ π[a−b, b]⇒ π[a, b]
a 6=0 ∧ b 6=0 ∧ a≤b ∧ π[a, b−a]⇒ π[a, b]
a 6=0 ∧ b=0⇒ π[a, b]

⇒ ∀
a≥0∧b≥0

π[a, b]

(2.5)

(1, 3, 4)
(1, 3, 5, 6, 7, 9)
(1, 3, 5, 6, 8, 9)
(1, 3, 5, 9)

In formula (2.5), π is a new constant symbol, thus it behaves like a universally
quantified predicate. This is why this formula is in fact an induction principle. The
formula consists in an implication between two universally quantified parts, both over
the input variables a and b satisfying the input condition. The left-hand side is a
conjunction of implicational clauses, one for each path of the program.

The rationale behind (2.5) is as follows. Let us consider the predicate τ [a, b]: “the
loop terminates on the input a, b”, whose definition is actually not known. The left-
hand side of the implication represents a property T [π] which should be fulfilled by
the predicate τ . Intuitively, this property states that the program terminates if the
condition a = 0, respectively, a 6= 0 ∧ b = 0, holds, and furthermore, corresponding
to each recursive path, it states that the loop terminates on a, b if it terminates on
the values of the recursive call. Intuitively, we consider that the predicate expressing
termination is the strongest predicate obeying this property T . The termination
condition states that the input condition is stronger than any predicate fulfilling T –
thus it will be also stronger than τ . In this way we can express termination without
explicit use of τ . This is, however, only an intuitive explanation, and in Section 2.3
we show rigourously that the termination condition is sufficient for the existence and
uniqueness of the function implemented by the program.

Formula 2.5 was generated by the meta-function Θ. If the program contains (nested)
loops then, additionally, meta-functions Θ′ and Θ′′ are applied.

The meta-functions Θ,Θ′,Θ′′ follow also the principles of symbolic execution. The
meta-level function Θ analyzes the current module and specializes itself to Θ′ for
the analysis of loops and to Θ′′ for modules which contain nested loops, because the
break statement has different behavior for nested, respectively non-nested loops. The
arguments of these functions are: substitution σ, path condition Φ, program counter,
and a name for the termination predicate of the program or loop function. The output
is a list of formulas of type (2.6), one for each iterative structure of the program.(

∀
α:IP

n∧
i=1

(pi[α]⇒ π[α])

)
⇒ ∀

α:IP
π[α], (2.6)

In (2.6) π is a constant symbol. In the case of iterative structures, π[α] may occur in
some pi[α]. n is the number of paths of the program.

The meta functions inspect all program branches and collect if and while con-
ditions, loop invariants, etc. Moreover, they collect the characterizations by output
conditions of the values produced by calls to additional functions (Definition 2.10.5),

20

2.2. Logical Foundations of Imperative Recursive Programs

including the currently defined recursive call. However, in the last case, one also
collects the condition π[ασ] – that is the arbitrary predicate applied to the current
symbolic values of the arguments of the recursive call (Definition 2.10.6). On each
program branch, the collected conditions are used as premise of π, and then the con-
junction of all these clauses (after reverting to free variables) is universally quantified
over the input condition and is used as a premise in the final formula.

Each time a loop is encountered, a new symbol π standing for an arbitrary pred-
icate is generated and the generation of the termination condition proceeds as fol-
lows. A termination condition for the currently analyzed loop is generated (Definition
2.10.9.1). A path analyzes the loop body searching for abrupt termination (Definition
2.10.9.2). The last program branch continues with the analysis of the statements af-
ter the loop (Definition 2.10.9.3). Note that same analysis is performed to each loop,
independently of the degree of nestedness, due to Definition 2.10.9.2.

Definition 2.10.

1. Θ[P] = Θ[{α→ α0}, IP [α0], P]{α0 → α}
2. Θ[σ,Φ, 〈return[t]〉^ P] = 〈〉
3. Θ[σ,Φ, 〈break〉^ P] = 〈〉
4. Θ[σ,Φ, 〈v:=t〉^ P] = Θ[σ{v → tσ},Φ, P]

5. Θ[σ,Φ, 〈v:=h[α]〉^ P] = Θ[σ{v → y},Φ ∧Oh[ασ, y], P]

6. Θ[σ,Φ, 〈v:=g[α]〉^ P] = Θ[σ{v → y},Φ ∧Og[ασ, y] ∧ π[ασ], P]

7. Θ[σ,Φ, 〈if ϕ then PT , PF 〉^ P] =^

{
Θ[σ,Φ ∧ ϕσ, PT ^ P]
Θ[σ,Φ ∧ ¬ϕσ, PF ^ P]

8. Θ[σ,Φ, 〈〉] = 〈〉
9. Θ[σ,Φ, 〈while ϕ do ι B〉^ P] =

^

〈
∀
δ:ι
∧
{ (
¬ϕσ0 ⇒ π[δ]

)
{δ0 → δ}

Θ′[σ0, ϕσ0, B, π]{δ0→δ} ⇒ π[δ]

}
⇒ ∀

δ:ι
π[δ]

〉
(1)

Θ[σ0, ϕσ0 ∧ ισ0, B] (2)
Θ[σ0,T, P] (3)

10. Θ[σ,Φ, 〈assert[ϕ]〉^ P] = Θ[σ,Φ ∧ ϕσ, P]

The auxiliary functions Θ′ and Θ′′ behave similarly to Θ, except that:

1. They generate a disjunction of formulas (for the simplicity of the approach),
one for each path analyzed, from which the termination of the loop must follow
(Definition 2.10.9.1),

2. return has the same behavior in non- and nested loops: they return the accu-
mulated path conditions (Definitions 2.11.1 and 2.12.1);

3. break behaves similarly to return in non-nested loops (Definition 2.11.1), but
for programs with nested loops the analysis performed in inner loops is not
visible in the wrapper ones (Definitions 2.12.2).

4. At the end of the non-nested loop, a path condition involving the termination

21

2. Automated Static Analysis of Algorithms

predicate π is constructed (Definition 2.11.7), while the analysis performed in
the nested loops is not visible in the outer loops (Definition 2.12.7)

5. Nested loops are always analyzed by the meta-function Θ′′ (Definition 2.11.8).

Definition 2.11.

1. Θ′[σ,Φ, 〈return[δ]〉^ P,π] = Φ

2. Θ′[σ,Φ, 〈break〉^ P,π] = Φ

3. Θ′[σ,Φ, 〈v:=t〉^ P,π] = Θ′[σ{v → tσ},Φ, P, π]

4. Θ[σ,Φ, 〈v:=h[α]〉^ P] = Θ[σ{v → y},Φ ∧Oh[ασ, y], P]

5. Θ[σ,Φ, 〈v:=g[α]〉^ P] = Θ[σ{v → y},Φ ∧Og[ασ, y] ∧ π[ασ], P]

6. Θ′[σ,Φ, 〈if ϕ then PT , PF 〉^ P,π] = ∨
{

Θ′[σ,Φ ∧ ϕσ, PT ^ P,π]
Θ′[σ,Φ ∧ ¬ϕσ, PF ^ P,π]

7. Θ′[σ,Φ, 〈〉, π] = (Φ ∧ π[δσ])

8. Θ′[σ,Φ, 〈while ϕ do ι B 〉^P,π] = Θ′′[σ,Φ, 〈while ϕ do ι B〉^P,π]{δ0→δ}
9. Θ′[σ,Φ, 〈assert[ϕ]〉^ P,π] = Θ′[σ,Φ ∧ ϕσ, P, π]

Definition 2.12.

1. Θ′′[σ,Φ, 〈return[δ]〉^ P,π] = Φ

2. Θ′′[σ,Φ, 〈break〉^ P,π] = F
3. Θ′′[σ,Φ, 〈v:=t〉^ P,π] = Θ′′[σ{v → tσ},Φ, P, π]

4. Θ[σ,Φ, 〈v:=h[α]〉^ P] = Θ[σ{v → y},Φ ∧Oh[ασ, y], P]

5. Θ[σ,Φ, 〈v:=g[α]〉^ P] = Θ[σ{v → y},Φ ∧Og[ασ, y] ∧ π[ασ], P]

6. Θ′′[σ,Φ, 〈if ϕ then PT , PF 〉^ P,π] = ∨
{

Θ′′[σ,Φ ∧ ϕσ, PT ^ P,π]
Θ′′[σ,Φ ∧ ¬ϕσ, PF ^ P,π]

7. Θ′′[σ,Φ, 〈〉, π] = F

8. Θ′′[σ,Φ, 〈while ϕ do ι B〉^ P,π] = ∨

Θ′[σ,Φ ∧ ¬ϕσ, P, π]
Θ′′[σ0, ϕσ0 ∧ ισ0, B, π]
Θ′[σ0,¬ϕσ0 ∧ ισ0, P, π]

9. Θ′′[σ,Φ, 〈assert[ϕ]〉^ P,π] = Θ′′[σ,Φ ∧ ϕσ, P, π]

For Algorithm 3, two termination conditions are generated, one for each loop in the
program. There are actually two induction principles, developed from the structure
of the loops. The algorithm terminates if both loops terminates, i.e. the following two
formulas hold.

Termination of the outer loop.

∀
i,j:ι1

∧
i ≥ m⇒ π1[i, j]
i < m ∧ j ≥ n ∧ π1[i+ 1, j]⇒ π1[i, j]
i < m ∧ j < n ∧ ι2 ∧ (a[i, j] = e)⇒ π1[i, j]
i < m ∧ j ≥ n ∧ ι2 ∧ π1[i+ 1, j]⇒ π1[i, j]

⇒ ∀
i,j:ι1

π1[i, j]

(5, 6)
(5, 6, 8, 13)
(5, 6, 8, 9, 10)
(5, 6, 8, 9, 13)

22

2.3. Soundness of the Method

Termination of the inner loop.

∀
j:ι2

∧
j ≥ n⇒ π2[j]
j < n ∧ (a[i, j] = e)⇒ π2[j]
j < n ∧ (a[i, j] 6= e) ∧ π2[j + 1]⇒ π2[j]

⇒ ∀
j:ι2
π2[j]

(8, 9)
(8, 9, 10)
(8, 9, 10, 12)

2.3. Soundness of the Method

In order to perform automatically the soundness proof of our method for program
verification, we extended the proving capabilities of the Predicate Logic Prover [13] of
the Theorema system. Details on the implementation are given in Section 2.4.

In our approach, for proving the correctness of programs we proceed as follows.
First, we formulate the correctness statement. The correctness statement involves the
semantics of the program. However, the semantics of the program, being expressed
as an implicit definition of a function, it might be contradictory to the object the-
ory. Therefore, the existence and uniqueness of the function implemented by the
program has to be proved beforehand. The proof uses a witness which is expressed in
terms of the recursion index and of the repetition function, whose existence has to be
proved separately. Finally, we prove the correctness statement from the verification
conditions.

Summarizing, in order to prove the correctness statement, we need to prove before-
hand the soundness of the method, that is:

1. existence of the repetition function,

2. existence of the recursion index,

3. existence and uniqueness of the function implemented by the loop.

Remark 2.13. Note that the meta-functions defined bellow do not apply to programs
with nested recursion and for recursive programs containing while loops, since this
would lead to nested recursion. In this case, the semantics function would occur in
the termination condition, fact which we do not allow. In order for our approach to be
still applicable, one can eliminate the unwanted occurrences of the function by using
new (universally quantified) variables pre-conditioned by the output condition as in
Definition 2.8.5.

In the following, let n,m be natural numbers and + the successor function.

Lemma 2.14. (Existence of the repetition function) Formula

∀
h
∃
G
∀
x

(
G[0, x] = x ∧ ∀

n∈N
(G[n+, x] = h[G[n, x]])

)
is a logical consequence of the natural number theory.

23

2. Automated Static Analysis of Algorithms

Proof. Let x be arbitrary but fixed. First we prove:

∀
h
∀

m∈N
∃
H

(
H[0] = x ∧ ∀

n<m
H[n+] = h[H[n]]

)
by natural induction on m.

Base Case. We need to prove:

∃
H

(
H[0] = x ∧ ∀

m<0
H[n+] = h[H[n]]

)
.

The proof is immediate by taking H[0] = x.

Induction Step. We assume ∃
H

(
H[0] = x ∧ ∀

n<m
H[n+] = h[H[n]]

)
.

We need to prove ∃
H

(
H[0] = x ∧ ∀

n<m+
H[n+] = h[H[n]]

)
.

The proof is immediate for n < m. For m = n, we take H[m+] = h[H[m]].

By Skolemization on H one obtains

∀
h
∃
H
∀

m∈N

(
H[m][0] = x ∧ ∀

n<m
H[m][n+] = h[H[m][n]]

)
. (2.7)

By (2.7) we have the following

m\n 0 1 2 3 ...

0 x x x x ...
1 - h[x] h[x] h[x] ...
2 - - h2[x] h2[x] ...
3 - - - − ...
...

The above motivate us to prove

∀
n∈N

∀
m≥n

H[m][n] = H[n][n]

by natural induction on n.

Base Case. We need to prove:

∀
m≥0
H[m][0] = H[0][0] (by (2.7)).

Induction Step. We assume
∀

m≥n
H[m][n] = H[n][n].

We need to prove
∀

m≥n
H[m][n+] = H[n+][n+].

24

2.3. Soundness of the Method

Let m be arbitrary but fixed. We need to prove

∀
m≥n
H[m][n+] = H[n+][n+].

But

H[m][n+]
by (2.7)

====== h[H[m][n]]
by Ind. Hypoth.(2.7)

============== h[H[n][n]]

by Ind. Hypoth.
============ h[H[n+][n]]

by (2.7)
====== H[n+][n+].

By taking g[n] = H[n][n] one has (since x was arbitrary)

∀
x
∃
g

(
g[0] = x ∧ ∀

n∈N
g[n+] = h[g[n]]

)
,

which by Skolemization on g gives the desired formula (with notation G[n, x] instead
of G[x][n]).

Remark 2.15. We use hn[x], instead of G[n][x], in our formalism.

Remark 2.16. It is straightforward to show that hn[h[x]] = hn
+

[x].

2.3.1. Correctness of Single Recursive Programs

Single recursive programs are programs with at most one recursive call on each pro-
gram branch. Such programs have the simplified form (2.8), where Q is a predicate
and S, C, and R are functions defined using the constructs present in the program
text, possibly using conditionals but no recursion. We assume that f is augmented
with the specification If [α] and Of [α, β].

f [α] := if Q[α] then α:=S[α] else α:=C[α, f [R[α]]] (2.8)

The recursive program (2.8) has the semantics (2.9), the functional verification con-
dition (2.10), and the termination condition (2.11).

∀
α:If [α]

f [δ] =

{
S[α] if Q[α]

C[α, f [R[α]]] if ¬Q[α]
(2.9)

∀
α:If [α],y

∧{
Q[α]⇒ Of [α, S[α]]
¬Q[α] ∧Of [R[α], y]⇒ Of [α,C[α, y]]

(2.10)

∀
α:If [α]

∧{
Q[α]⇒ π[α]
¬Q[α] ∧ π[R[α]]⇒ π[α]

}
⇒ ∀

α:If [α]
π[α] (2.11)

The total correctness formula for the program (2.8) is expressed as follows. “Formula
∀

α:If [α]
Of [α, f [α]] is a logical consequence of the semantics and verification conditions.”

25

2. Automated Static Analysis of Algorithms

However, this always holds in the case the semantics is contradictory to the theory,
which may happen when the program is recursive. Therefore, one proves first that
the existence and uniqueness of an f satisfying the semantics formula is a logical
consequence of the verification conditions.

The subsequent properties need the theory of natural numbers, although we do not
specify this explicitly.

Lemma 2.17. (Existence of the recursion index) Formula ∀
α:If [α]

∃
n∈N

Q[Rn[α]] is

a logical consequence of the termination condition (2.11) and the safety verification
conditions.

Proof. The proof uses the induction principle given in (2.11), where π[α] is ∃
n∈N

Q[Rn[α]].

One needs to use the safety conditions and the property of hn given above.

Remark 2.18. One can define now a function (the recursion index of α) M [α] =
{n | Q[Rn[α] ∧ ∀

m∈N
(Q[Rm[α]]⇒ m ≥ n)} because the set is nonempty.

Remark 2.19. It is straightforward to show that M [R[α]]+ = M [α].

Theorem 2.20. (Existence of the function implemented by the program) Formula
(2.9) is a logical consequence of the termination condition (2.11) and the safety veri-
fication conditions.

Proof. The proof is similar to the one from Lemma 2.14, only that instead of the
running argument n we use α with a certain recursion index.

One proves first:

∀
m∈N
∃
F
∀

α:If [α]
(M [α] ≤ m)⇒

((
Q[α]⇒ F [α] = S[α]

)
∧
(
¬Q[α]⇒ F [α] = C[α, F [R[α]]]

))
(2.12)

by natural induction on m. By Skolemizing F from (2.12) one obtains:

∃
F
∀

m∈N
∀

α:If [α]
(M [α] ≤ m)⇒(

(Q[α]⇒ F [m][α] = S[α]) ∧ (¬Q[α]⇒ F [m][α] = C[α,F [m][R[α]]])
)

Furthermore one can prove ∀
α:If [α]

∀
m∈N

(m ≥M [α]) ⇒ (F [m][α] = F [M [α]][α]) by the

induction given in the formula (2.11) (taking as π[α] the formula above without the
quantifier for α).

Finally one takes f [α] = F [M [α]][α].

Remark 2.21. Uniqueness of f is straightforward: take f1, f2 satisfying (2.9) and use
(2.11) with π[α] as f1[α] = f2[α].

26

2.3. Soundness of the Method

Theorem 2.22. (Total correctness) Formula ∀
α:If [α]

Of [α, f [α]] is a logical conse-

quence of the program semantics and the verification conditions.

Proof. The proof is straightforward by taking in (2.11) π[α] as Of [α, f [α]]. This is
because the left-hand side of the (2.11) becomes identical to the functional verification
condition 2.10.

2.3.2. Correctness of Simple Loops

In this section, we prove the correctness of loops which can be brought into the
following form:

while φ[δ] do δ:=R[δ], (2.13)

annotated with the loop invariant ι[δ], where φ[δ], and R[δ] are the loop condition
and the function representing the update of the critical variable δ performed in the
loop body, respectively. They are defined using the constructs present in the program
text, possibly using conditionals but no recursion. For example, in Algorithm 2, φ[i]
is i < n and R[i] is i+ 1.

While loop (2.13) has the semantics (2.14), partial correctness (safety) condition
(2.15) and termination condition (2.16).

∀
δ:ι[δ]

f [δ] =

{
δ if ¬φ[δ]

f [R[δ]] if φ[δ]
(2.14)

∀
δ:ι[δ]

ι[R[δ]] (2.15)

∀
δ:ι[δ]

∧
{
¬φ[δ]⇒ π[δ]
φ[δ] ∧ π[R[δ]]⇒ π[δ]

}
⇒ ∀

δ:ι[δ]
π[δ] (2.16)

The total correctness statement of simple while loops “The loop invariant is always
preserved.” is expressed formally as:

∀
δ:ι[δ]

ι[f [δ]]. (2.17)

We express the soundness of the verification method for loops of type (2.13) as follows:
“Formula (2.17) is a logical consequence of the semantics (2.14) and of the termination
condition (2.16).”

Note that a function like in (2.14) always exists but does not necessary terminate.
However, we still prove explicitly its existence (and uniqueness) based on a witness
term. The fact that the witness has a closed-form solution is important for the sim-
plicity of the proofs.

The subsequent properties need the theory of natural numbers, although we do not
specify it explicitly.

27

2. Automated Static Analysis of Algorithms

Lemma 2.23. (Existence of the recursion index) Formula

∀
δ:ι[δ]

∃
n

(
¬φ[Rn[δ]] ∧ ∀

m

(
¬φ[Rm[δ]]⇒ m ≥ n

))
is a logical consequence of the termination condition (2.16).

Proof sketch. The automated proof uses a built-in natural induction principle. Addi-
tionally, the following assumptions are used:

∀
x
R0[x] := x (2.18a)

∀
x,n

Rn[R[x]] := Rn
+

[x] (2.18b)

∀
n
n ≥ 0 (2.18c)

∀
n6=0

(n−)
+

:= n (2.18d)

∀
m,n

m ≥ n⇒ m+ ≥ n+ (2.18e)

Note that there are two types of premises used in the proof:

1. properties of the repetition function R: (2.18a), (2.18b),

2. properties of the natural number theory: (2.18c), (2.18d). (2.18e), (2.16).

We are asking the question: can we trust them? It is obvious that (2.18a) and (2.18b)
satisfy the properties of the function h from Lemma 2.14. Using a model of N involving
the constant 0, the functions S (successor function) and + (plus function) and the
axioms (2.19a) - (2.19e), the definitions (2.18c), (2.18d), (2.18e) and (2.16) can be
derived.

S(x) 6= 0 (2.19a)

(S(x) = S(y))⇒ (x = y) (2.19b)

∀
P

(
P (0) ∧

(
∀
k

(P (k)⇒ P (S(k)))
)
⇒ ∀

n
P (n)

)
(2.19c)

x+ 0 = x (2.19d)

x+ S(y) = S(x+ y) (2.19e)

However, these definitions do not characterize N completely, in particular one can not
define the ≤ relation in the usual sense, i.e. 3 ≤ 4. But using these axioms the proof of
Lemma 2.23 succeeds. Hence, it succeeds for any relation satisfying (2.18c), (2.18d),
(2.18e), and (2.16), in particular, for the minimal relation needed, which is the order
relation on N.

In Appendix A.1, we present the Theorema generated proof of Lemma 2.23.

28

2.3. Soundness of the Method

Remark 2.24. From Lemma 2.23, one can see immediately that n is unique, thus, by
Skolemization, one obtains the function M [δ] called the recursion index of δ, that is:

M [δ] := {n | (¬φ[Rn[δ]] ∧ ∀
m∈N

(¬φ[Rm[δ]]⇒ m ≥ n)}.

Lemma 2.25. (Existence and uniqueness of the function implemented by the loop)
The existence and uniqueness of an f satisfying formula (2.14) is a logical consequence
of the termination condition (2.16) and of the safety verification condition (2.15).

Proof sketch. For proving the existence, one takes ∀
δ:ι[δ]

f [δ] := RM [δ][δ] as witness for

the loop semantics and derives the expression of f on each execution program branch
as required by (2.14) The proof requires also the use of (2.18a), (2.18b) and:

∀
δ:ι[δ]

(¬φ[δ]⇒M [δ] := 0) (2.20a)

∀
δ:ι[δ]

(M [R[δ]]+ := M [δ]) (2.20b)

For proving the uniqueness, one takes two different semantics functions, e.g. f and
g, of the form (2.14) and shows that they are the same. The key in this proof is the
instantiation in the termination condition of π[δ] with f [δ] = g[δ].

We present the Theorema generated proof of Lemma 2.25: the existence in Appendix
A.2 and the uniqueness in Appendix A.3.

Remark 2.26. Note that a total function f as in (2.14) always exists, but it is not
necessarily unique. Its uniqueness comes from the termination condition.

Theorem 2.27. (Correctness of simple loops) Formula (2.17) is a logical consequence
of the semantics formula (2.14) and of the termination condition (2.16).

Proof sketch. The proof is straightforward by taking in (2.16) π[δ] as ι[f [δ]]. This is
because the left-hand side of the (2.16) becomes identical to the functional conditions
generated for partial correctness.

The Theorema proof of Theorem 2.27 is listed in Appendix A.4.

Remark 2.28. Theorem (2.27) can be proved also by using the semantics witness from
Theorem 2.25. In the respective proof, one needs information about the loop semantics
on different execution program branches as given by (2.14).

2.3.3. Correctness of Abruptly Terminating Loops

There are basically two methods of proving the correctness of an abruptly terminating
loop:

1. prove its correctness directly;

2. transform it into an equivalent simple one and prove the total correctness of the
transformed version.

29

2. Automated Static Analysis of Algorithms

The drawback in the first case is that the invariant might become difficult to express
and too lengthy for loops with many ramifications and abrupt statements. In the
second case, the difficulty might arise at program transformation, but the gain is
that the invariants are simpler and the correctness of the initial loop resumes to the
correctness of a loop-free construct due to the fact that the correctness of simple loops
was already proved (Section 2.3.2).

We chose to prove correctness by the second method.

Non-nested Abruptly Terminating Loops. Case break

Any while loop abruptly terminating via break can be expressed as in Example 2.29
even if it contains other loops with break; break from a inner loop can be eliminated
and the inner loop can be expressed as a function call.

Example 2.29.
while φ[δ] do
if ψ[δ] then
δ := S[δ];
break

else

δ := R[δ]

Example 2.30.
while φ[δ] ∧ ¬ψ[δ] do

δ := R[δ];
if φ[δ] ∧ ψ[δ] then

δ := S[δ]

For instance, Example 2.29 is transformed into Example 2.30.

Each loop is annotated with an invariant. Note that, in general, the invariants of
Examples 2.29 and 2.30 are not the same, namely the invariant of Example 2.29 is
stronger. However, we use this invariant for both loops (and we refer to it as ι[δ])
because it implies also the invariant of the loop in Example 2.30. The same holds for
Examples 2.29 and 2.30.

Like for simple loops, the correctness of abruptly terminating while loops via break

resumes to proving the soundness of the method. In this case, proving soundness
reduces to show the equivalence of semantics functions of Examples 2.29 and 2.30
(Lemma 2.31). Let (2.21) be the semantics of Example 2.29 and (2.22) a witness
satisfying it.

∀
δ:ι[δ]

f [δ] =

δ if ¬φ[δ]

S[δ] if φ[δ] ∧ ψ[δ]

f [R[δ]] if φ[δ] ∧ ¬ψ[δ]

(2.21)

∀
δ:ι[δ]

f [δ] :=

{
RM [δ][δ] if ¬(φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])

S[RM [δ][δ]] if φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]]
(2.22)

where

M [δ] :=
{
n|¬ (φ[Rn[δ]] ∧ ¬ψ[Rn[δ]]) ∧

(
∀

m∈N
¬ (φ[Rm[δ]] ∧ ¬ψ[Rm[δ]])⇒ m ≥ n

)}

30

2.3. Soundness of the Method

is the recursion index of the loop. Further, let (2.23) and (2.24) be the semantics of
the simple loop and, respectively, of the conditional obtained of Example 2.30.

∀
δ:ι[δ]

f ′[δ] =

{
δ if ¬(φ[δ] ∧ ¬ψ[δ])

f ′[R[δ]] if φ[δ] ∧ ¬ψ[δ]
(2.23)

∀
δ:ι[δ]

g′[δ] =

{
δ if ¬φ[δ]

S[δ] if φ[δ] ∧ ψ[δ]
(2.24)

Let (2.25) and (2.26) be witnesses satisfying (2.23), respectively, (2.24).

∀
δ:ι[δ]

f ′[δ] := RM [δ][δ] (2.25)

∀
δ:ι[δ]

g′[δ] :=

{
δ if ¬(φ[δ] ∧ ψ[δ])

S[δ] if φ[δ] ∧ ψ[δ]
(2.26)

The semantics witness of Example 2.30 is F ′[δ] = g′[f ′[δ]] and is obtained by compos-
ing the semantics witnesses (2.25) and (2.26). We have

∀
δ:ι[δ]

F ′[δ] :=

{
RM [δ][δ] if ¬(φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])

S[RM [δ][δ]] if φ[RM [δ][δ]] ∧ ψ[RM [δ][δ]])
(2.27)

Lemma 2.31. Examples 2.29 and 2.30 implement the same semantics function.

Proof sketch. The proof is immediate by observing that (2.22) and (2.27) are the
same.

Non-nested Abruptly Terminating Loops. Case return

Any while loop abruptly terminating via return can be expressed as in Example 2.32
even if it contains other loops with break and return; both break and return from
a inner loop can be eliminated and the inner loop can be expressed as function call.

Example 2.32.
while φ[δ] do
if ψ[δ] then
δ := S[δ];
return[δ]

else

δ := R[δ]

Example 2.33.
while φ[δ] ∧ ¬ψ[δ] do

δ := R[δ];
if φ[δ] ∧ ψ[δ] then

δ := S[δ]
return[δ]

For instance, Example 2.32 is transformed into Example 2.33.

The correctness of loops abruptly terminating via return can be proved following
the principles of loop abruptly terminating via break, with the remark that the return

31

2. Automated Static Analysis of Algorithms

statement causes execution to exit the program. Hence, additionally to proving the
equivalence of the semantics functions of Examples 2.32 and 2.33, one has to prove
that the output condition of the program holds upon the execution of the return (see
Appendix B.1)

Nested Abruptly Terminating Loops

Our approach can be extended to arbitrarily nested, abruptly terminating while loops.
The proofs are similar to those with non-nestedness, the effort is to transform the
initial loops into simple loops. A naive algorithm for such a translation is:

1. analyze the program top-down detecting the innermost loop with abrupt termi-
nation,

2. transform it into a normal terminating one; the abrupt statements are eliminated
in the order they appear: break is eliminated from the currently analyzed loop,
from the all wrapper loops and from the program itself, return is eliminated
only from the currently analyzed loop,

3. repeat 1. and 2. until there are no loops with abrupt termination,

4. the program text which does not need transformations is copied correspondingly.

We apply our algorithm to Algorithm 3. The translated version is as follows.

i := 0; j := 0;

while
(
i < m ∧ ¬

(
j < n ∧ (e = a[i][j])

))
do

j := 0;
while

(
j < n ∧ (e 6= a[i][j])

)
do

j := j + 1;
i := i+ 1;

if ((i < m ∧ j < n ∧ (e = a[i][j])) then return[〈i, j〉];
return [−1];

The abrupt termination via return was transferred to the main program. The cor-
rectness of the simple loops is proved as follows:

1. prove the correctness of the inner loop,

2. prove the correctness of the wrapper loop by considering the inner loop as a
black-box characterized by the loop invariant; the loop invariant is used in the
proof of correctness of the wrapper loop.

32

2.4. Implementation

2.4. Implementation

The formalization, implementation, and automated proof of soundness of our verifi-
cation method are performed in the Theorema system. The system was built with
the goal of providing one logical and software system frame for the entire process of
mathematical exploration process.

Theorema is a computer aided mathematical software which is being developed at
Research Institute for Symbolic Computation (RISC) in Hagenberg, Austria. The
system offers support for computing, proving and solving mathematical expressions
using specified knowledge bases by applying several simplifiers, solvers and provers
in natural style, which imitate the heuristics used by human provers. Composing,
structuring and manipulating mathematical texts is also possible in the system using
labeling (Definition, Theorem, Proposition). For our research (program verification),
it is very important that the Theorema system provides a very expressive way to
define algorithms: they are written in the language of predicate logic with equality
as rewrite rule. Theorema provides elegant proofs (because of natural style inferences
used) in the verification process of programs. Moreover, being built on top of the
computer algebra system Mathematica, it has access to many computing and solving
algorithms.

2.4.1. The Theorema System

Theorema system aims at providing a uniform framework for computing, solving, and
proving. It is built on top of the Mathematica computer algebra system [92], thus
it uses many features of the language. The features important for our research are
enumerated as follows.

1. The core part of Mathematica language is higher-order equational logic. Hence,
Mathematica can be considered as the “logic-internal” programming language of
Theorema.

2. The rule-based programming style of Mathematica is used for the implementa-
tion of provers (in particular Predicate Logic Prover) and the program analyzers
(in particular FwdVCG), which are basically a list of rewrite rules.

3. Mathematica provides the “notebook facility”. Notebooks are utilized in the
phases of problem specification, programming, and proving.

Theorema provides support in all cycles of development of mathematical activity
through language layers.

2.4.2. Theorema Language Layers

The following language layers are available in Theorema: writing mathematical state-
ments, formalization of mathematics, and mathematical activities.

33

2. Automated Static Analysis of Algorithms

Writing Mathematical Statements in Theorema. Theorema expression lan-
guage is a version of higher-order predicate logic without extensionality. The ingredi-
ents of the language are: constants, variables, terms, predicates, quantifiers.

Formalization of Mathematics. Besides writing mathematical statements, Theo-
rema allows the built-up of theories by formulating new concepts through definitions,
by stating new properties through theorems, lemmas, propositions.

Supported Mathematical Activities. After building-up the knowledge base, The-
orema allows: i) proving the theorems that have been stated; ii) computing examples
using specified knowledge; iii) solving problems.

For the exemplification of Theorema language layers, we prove Theorem 2.27 in the
system. The necessary notions are introduced in the system as follows.

Definition["Termination", ∀
δ
ι[δ]

((¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))

⇒
 ∀

δ
ι[δ]

π[δ]

 ""

Definition["Semantics",
∀
δ
ι[δ]

((¬φ[δ]⇒ (f [δ]:=δ)) ∧ (φ[δ]⇒ (f [δ]:=f [R[δ]]))) ""
]

Assumption["Instantiation of π",

∀
δ
(π[δ] :⇔ ι[f [δ]]) ""

]

2.4.3. Predicate Logic Prover. Extension

We are interested in proving, activity which is realized internally in the system by a
prover. We present the mechanism of the Predicate Logic Prover, the prover that we
extended for program verification purposes.

The Predicate Logic Prover [13] deals with proof situations consisting of (higher-
order) predicate logic formulas. A proof situation consists of a goal and a knowledge
base. For reference purpose, the initial knowledge base, the goal, as well as all the
newly generated formulas are labeled. New formulas are generated using inference
rules. The decision which inference rule is applied is taken by inspecting the outermost
symbols of the goal and of the knowledge base. Therefore, the prover is basically a
sequent calculus. However, since the goal of the prover is not its completeness, rather
natural style proofs, the sequent calculus implemented by the prover contains more
inference rules than the ones presented in the logic books, the later ones focusing on
a minimal set.

Proving with the Predicate Logic Prover is invoked using the command:

34

2.4. Implementation

Prove
[
Theorem[T], [by → PredicateProver,] using → KB,[

ProverOptions → {BackChaining → True},
]

TransformerOptions → {steps →
Useful}, SearchDepth → n

]
,

meaning that the Theorem T is tried to be proved using the knowledge base KB
(specified by using the built-in constructs like Definition, Assumption, etc.), using
PredicateProver. If PredicateProver was set as the default prover then the option “by
→ PredicateProver” can be omitted. If the goal to be proved is exactly the right
hand side of an implication in the KB, the strategy is to try to prove first the left
hand side of the respective implication. This is possible in the Theorema system by
enabling the option BackChaining. The main reason for trying this strategy at the
very beginning of the proof is that the proof is delivered in natural style. Further, the
option TransformerOptions→{steps→Useful} is used for esthetic reasons: only the
facts and inferences necessary for the final proof are displayed. SearchDepth option
specifies the maximal search depth n in in the proof tree.

For example, we want to prove the total correctness of simple loops, that is:

Theorem["Total Correctness",
∀
δ
ι[δ]

ι[f [δ]] ""
]

using the knowledge base Definition[”Termination”], Definition[”Semantics”], and As-
sumption[”Instantiation of π”]. This can be done in the system by issuing the com-
mand:

Prove[Theorem["Total Correctness"],
using→ {

Definition["Termination"],
Definition["Semantics"],
Assumption["Instantiation of π"]},

ProverOptions→ {BackChaining→ True},
TransformerOptions→ {steps→ Useful},
SearchDepth→ 70];

The prover is implemented as a set of inference rules, typically expressed as rewrite
rules transforming the proof situation into one or more new proof situations. Proofs
are internally represented by proof objects, containing the complete history of inference
rule applications. As the prover continues, the proof object is expanded from the initial
proof situation to a tree representing the full proof (in case of success). At certain
points, a proof situation is split into two, and the prover continues, either by trying
to prove both newly created proof situations (e.g. when proving a conjunction), or
one of them (e.g. when proving a disjunction).

We describe briefly how the proof is stored internally. From the initial proof sit-
uation, a proof object is constructed containing the proof situation. In each proof
step this proof object is extended until it contains the proof, that is all information

35

2. Automated Static Analysis of Algorithms

on intermediary proof situations and inference rules applied at each step. The proof
object is not accessible to the user, however it contains all the information necessary
to produce a proof in natural language. Natural language facility is available in The-
orema, however the proof object can be used also by other systems once a suitable
translation is available. A proof object has one of the forms presented below.

1. PND[formula, knowledge-base], where PND is the internal name of the Predi-
cate Logic Prover (PND = “Proof by Natural Deduction”), is an evaluated proof
object containing only the proof situation: formula is the labeled formula to
be proved, knowledge-base is the knowledge base consisting of axioms, defini-
tions, etc. Because the prover is a set of rewrite rules of the form PND[proof-

situation] := proof-object, Mathematica will try apply one of the inference
rules to the unevaluated proof object. This is also the working mechanism of
the prover.

2. 〈proof-rule-info, list-of-proof-objects, proof-result〉 is a (partially)
evaluated proof object, where

� proof-rule-info is the information which prover is applied in the current
proof situation, namely name of the prover, the (labels of the) formulas
involved in this proof situation, and new formulas formed in this proof
situation;

� list-of-proof-objects describes the subproofs generated by applying
the prover in the current proof situation. In case the list is empty, then we
deal with a terminal proof object meaning that the proof was completed
on a branch

� proof-result contains information whether the proof was successful or
not. If it is missing then the proof object still contains unevaluated subob-
jects. However, it is always present in a terminal proof.

Once the proof object is constructed, the Theorema system transforms it into a
natural language proof which is displayed in a separate notebook file. The Theorema
proof of Theorem 2.27 using PredicateProver, the knowledge base and options specified
previously is listed in Appendix A.4.

For the Theorema proof of Theorem 2.27, as well as for all the other automated
proofs of the soundness of the verification method, the Predicate Logic Prover (imple-
mented in Mathematica 5.2) had to be enhanced with new inference rules. Moreover,
a significant effort was required to develop a minimal set of inference rules for the
success of the proof. Since the pattern matching mechanism of Mathematica applies
the inference rules in the order they appear, we had take into account this fact when
implementing the proving strategy.

In the following, we briefly describe the proving strategy. First we check if the goal
is already between the assumptions (terminal proof situation). If not, we derive new
assumptions using the existing knowledge base and inference rules, both for proposi-

36

2.4. Implementation

tional and first-order formulas. Afterwards, we try to simplify the goal using, first,
propositional inferences, and, second, first-order inferences. After that, the goal is
decomposed, if that is the case. The inference rules are repeatedly applied until the
goal has been proved.

The prover uses well-known inference rules like e.g. deduction rule, decomposition
of conjunction in the goal and in the assumptions, modus ponens.

In the following, we list and exemplify the most important inference rules. When a
new rule was added to the prover or the existing ones were modified, we specify that
fact.

1. Back chaining on the goal. If the prover has switched on the option BackChain-
ing, then we try to prove the left hand side of the implication. This might not
succeed, but if it does, the proofs look nicer. Example:

Prove:

(Theorem (Total Correctness))

∀
δ
(ι[δ]⇒ ι[f [δ]]),

under the assumptions:

(Definition (Termination))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))⇒ ∀

δ
(ι[δ]⇒ π[δ]),

...

(Assumption (Instantiation of π))

∀
δ
(π[δ] :⇐⇒ ι[f [δ]]).

From (Definition (Termination)), by (Assumption (Instantiation of π)), we ob-
tain:

(1) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]])∧ (φ[δ]∧ ι[f [R[δ]]]⇒ ι[f [δ]]))⇒ ∀

δ
(ι[δ]⇒ ι[f [δ]]).

For proving (Theorem (Total Correctness)), by (1), it suffices to prove

(3) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]]) ∧ (φ[δ] ∧ ι[f [R[δ]]]⇒ ι[f [δ]])).

...

2. Elimination of universal quantification in the goal. Universally quantified vari-
ables in the goal become Skolem constants (arbitrary, but fixed). Example:

...

(3) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]]) ∧ (φ[δ] ∧ ι[f [R[δ]]]⇒ ι[f [δ]])).

For proving (3) we take all variables arbitrary but fixed and prove:

(4) ι [δ0]⇒ (¬φ [δ0]⇒ ι [f [δ0]]) ∧ (φ [δ0] ∧ ι [f [R [δ0]]]⇒ ι [f [δ0]]).

...

37

2. Automated Static Analysis of Algorithms

3. Built-in natural induction principle. This inference rule was especially added
for proving the existence of the recursion index. Example:

...

(7)
(
¬φ [δ0]⇒ ∃

n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
∧(

φ [δ0] ∧ ∃
n

(
¬φ
[
Rn

+
[δ0]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ0]
]
⇒ m ≥ n

))
⇒

∃
n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
.

To prove (7) one has to prove

(8) ¬φ [δ0]⇒ ¬φ
[
R0 [δ0]

]
∧ ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ 0) and assumes

(9) φ [δ0] ∧
(
¬φ
[
Rn0

+
[δ0]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ0]
]
⇒ m ≥ n0

))
and proves

(10) ¬φ
[
Rn0

+
[δ0]
]
∧ ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ n0+).

Hence, when the goal has the form:
(
¬f =⇒ ∃

n
F [n]

)
∧
(
f ∧ ∃

n
F [n+] =⇒ ∃

n
F [n]

)
,

one proves ¬f =⇒ F [0] (base case) and, assumes f ∧ ∃
n
F [n+] and proves ∃

n
F [n].

4. Equal by definition in the assumption/goal (among predicates). An universally
quantified formula of the form u[x] : ⇐⇒ v[x] can be used to rewrite an as-
sumption/a goal of the form u[t]. Example: ...

under the assumptions:

(Definition (Termination))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))⇒ ∀

δ
(ι[δ]⇒ π[δ]),

...

(Assumption (Instantiation of π))

∀
δ
(π[δ] :⇐⇒ ι[f [δ]]).

From (Definition (Termination)), by (Assumption (Instantiation of π)), we ob-
tain:

(1) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]])∧ (φ[δ]∧ ι[f [R[δ]]]⇒ ι[f [δ]]))⇒ ∀

δ
(ι[δ]⇒ ι[f [δ]]).

...

5. Equal by definition in the assumption/goal (among functions). An universally
quantified formula of the form u[x] := v[x] can be used to rewrite an assump-
tion/a goal of the form u[t]. Example:

(11) M [δ0] :=0.

Using (7), the goal (5) is transformed into:

(12) RM [δ0] [δ0] = δ0.

Using (11), the goal (12) is transformed into:

(13) R0 [δ0] = δ0.

38

2.4. Implementation

2.4.4. Adding a Symbolic Execution Feature to the Theorema System

Static program analysis using symbolic execution tries to answer the question: Given
a program together with a specification, does the program fulfills the specification? To
answer this question, one usually performs the following tasks:

� annotates the loops with suitable invariants (if that is the case)

� the program, the specification, and the invariants are fed into a verification
system

� which generates a conjecture

� which is handled by a prover

� and one obtains an answer (Yes/No) whether the program fulfills/does not fulfill
its specification, and/or a proof (attempt) of the conjecture.

The program is expressed in a programming language, the specification, invariants,
conjecture in a logic language, the answer and/or proof (attempt) in the above logic
language and some proof language.

Theorema has its own language, hence the specification, invariants, conjectures
can be expressed in the logic language of Theorema: higher-order predicate logic,
including two-dimensional notation. The logic language of Theorema together with
the constructs which allow creating and structuring the mathematical knowledge form
a very accessible formal language.

We implemented in Theorema an imperative recursive language consisting in the im-
perative structures introduced in Section 2.2, namely assignments (including recursive
call), conditionals, while loops with abrupt termination (break, return), sequential
composition of commands. Similar to [52], we consider in our approach that a program
has a specification part and an implementation part (body). Specification, invariants
and conjectures are expressed in the logic language of Theorema. The syntax checker
and the verification conditions generator working by symbolic execution are integrated
in the Theorema system.

We mention that Theorema already has implemented a simple imperative program-
ming environment with an interpreter and a verifier based on Hoare logic and the
weakest precondition strategy [52,53].

Interface Constructs of the Programming Language

The interface constructs of the programming language allow writing programs together
with a specification and analyzing them, namely checking the syntactic correctness
and generating verification conditions for partial correctness and termination.

1. Program specification is introduced by the following command:

Specification[label, interface, precondition, postcondition],

where label is a name for the specification, interface consists of the program

39

2. Automated Static Analysis of Algorithms

name and input parameters, precondition and postcondition are introduced
by, respectively, Pre and Post. This feature was already implemented in the
system, we just used it.

For example, the specification of Algorithm 1 is as follows.

Specification[”GCD”, GCD[↓ a, ↓ b],
Pre → IsInteger[a] ∧ IsInteger[b] ∧ a ≥ 0 ∧ b ≥ 0,
Post → ∃

k
IsInteger[k]

a = k · out]

In the above, ↓ a means that a is an input variable. out is the value returned
by the program.

2. The program consists of program code and the interface definition, and is intro-
duced by the following command:

Program[label, interface, code, specification],

consisting in a a name of the program, an interface, the actual code and a
specification. Program construct was already implemented in the system, we
just used it. The program code can be built up using the commands introduced
in Section 2.2. The specification must be defined beforehand.

For example, Algorithm 1 is written in our programming language as follows

Program[”GCD”, GCD[↓ a, ↓ b],
Module[,
If[a = 0, Return[b],
If[b 6= 0,
If[a > b, a := GCD[a - b, b],

a := GCD[a, b - a]];
Return[a]]]],
Specification → Specification[GCD]]

Note that we are using := for variable assignment and = for logical equality. The
Program construct transforms the program into a list of statements. Omitting
the IsInteger predicate for simplicity, for Algorithm 1 we have

•prog [...,Module[{}, �CompoundExpression[�If[a = 0, �Return[b], �If[b 6= 0,
�If[a > b, a := GCD[a− b, b], a := GCD[a, b− a]]]]], �Return[a]]].

It is important to notice the quoting mechanism (marked by the symbol �)
introduced by Program, as well as Specification and FwdVCG, which avoids
the evaluation of the expressions in Mathematica and allows further reasoning
about and manipulation of syntactic structures. • denotes an internal Theorema
data structure.

3. The program analyzer (FwdVCG – implemented in Mathematica 5.2) takes a Spec-

ification and a Program, checks the syntactical correctness of the program,
and generates verification conditions according to the inductive definitions in-
troduced in Sections 2.2.1, 2.2.2, and 2.2.3. Internally, FwdVCG operates on •spec

40

2.4. Implementation

and •prog Theorema data structures and is implemented in Theorema.

The analyzer is called by issuing the following command:

FwdVCG[Program[label], Specification[label]]

For example, Algorithm 1 is analyzed as follows.

FwdVCG[Program["GCD"], Specification["GCD"]]

The outcome of this command are a list of verification conditions ensuring the
partial correctness and termination of the program.

The partial correctness conditions generated are as follows (For simplicity we
omitted the integer type of the variables).

a ≥ 0 ∧ b ≥ 0 ∧ a = 0 =⇒ ∃
k
a = k · b

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a > b =⇒ a− b ≥ 0 ∧ b ≥ 0

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a > b ∧ b ≥ 0 ∧ a− b ≥ 0 ∧ ∃
k
b = k · t1

=⇒ ∃
k
a = k · t1

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a ≤ b =⇒ a ≥ 0 ∧ b− a ≥ 0

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b 6= 0 ∧ a ≤ b ∧ a ≥ 0 ∧ b− a ≥ 0 ∧ ∃
k
a = k · t2

=⇒ ∃
k
a = k · t2

a ≥ 0 ∧ b ≥ 0 ∧ a 6= 0 ∧ b = 0 =⇒ ∃
k
a = k · a

The formulas above are universally quantified over the variables a, b, t1, and t2.
The variables t1 and t2 were introduced for replacing the recursive call GCD on
a− b, b, respectively a, b− a, because we do dot allow occurrences of the GCD
in the verification conditions.

The termination condition is 2.5.

41

3. Synthesizing Optimal Algorithms. Case
Study: Square Root

3.1. Program Synthesis meets Program Verification

Automated program synthesis is a difficult task and has been considered for a long
time intractable [23]. Thus, has received little attention. With the advance of au-
tomated tools for software verification, it came into the attention of researchers, es-
pecially because of the benefits which it brings to program development. One of
the most important benefits is that the automatically synthesized program is correct-
by-construction. Correct-by-construction paradigm [24] was proposed by Edsger W.
Dijkstra in 1970s. Given a mathematical specification of what a program is supposed
to do, one applies mathematical transformations to the specification until it is turned
into a program that can be executed.

It is well-known that in static program analysis the following are crucial: i) partial
correctness, ii) termination, iii) complexity. We encode the synthesis problem into a
program verification problem, namely, given a program specification and a program
schema, we synthesize programs with the properties i) and ii), having complexity at
most iii).

We applied this encoding to the problem of synthesizing reliable/optimal numeric
algorithms. As a case study, we studied the problem of synthesizing optimal algo-
rithms for computing the square root of a real number. More precisely, given the
real number x and the error bound ε, we are searching for a real interval such that
it contains

√
x and its width is less than ε. We fix the algorithm schema, namely,

iterative refining: the algorithm starts with an initial interval and repeatedly updates
it by applying a refinement map, say R, on it until it becomes narrow enough. The

Algorithm 4 Algorithm Schema: Square Root Computation by Iterative Refining

in x, ε reals where x > 1, ε > 0
out I = [L,U], interval where

√
x ∈ I and width(I) ≤ ε

I ← [1, x]
while width(I) > ε do

I ← R(I, x)
return[I]

43

3. Synthesizing Optimal Algorithms. Case Study: Square Root

synthesis amounts to finding a refinement map R that ensures that the algorithm is
partially correct, terminates, and optimal. All these can be formulated as quantifier
elimination (QE) problems over real numbers. Hence, in principle, they can be carried
out automatically. However the computational requirement is so huge, making the au-
tomatic synthesis practically impossible with the current general QE software. Hence,
we performed some hand derivations and were able to synthesize semi-automatically
optimal algorithms under suitable assumptions.

Motivating Example. As a motivating example, we considered the well-known re-
fining map Secant-Newton, which is obtained by combining the secant map and the
Newton map where the secant/Newton map is used for determining the lower/upper
bound of the refined interval, that is,

R : [L,U], x 7→
[
LU + x

L+ U
,
U2 + x

2U

]
which can be easily derived from Figure 3.1. In the following, we formulate the notions

Figure 3.1.: Derivation of Secant-Newton Refinement Map

L L ' UU 'x

y
2

- x

y

of partial correctness, termination, and complexity of Algorithm 4 and exemplify it
on Secant-Newton refinement map.

Let LoopInv(L,U, x) :⇐⇒ 0 < L ≤
√
x ≤ U be the loop invariant of Algorithm 4.

Partial correctness reduces basically to the proof that the loop invariant is inductively
preserved by the execution of loop body, that is

∀
L,U,x

LoopInv(L,U, x) =⇒ LoopInv(R(L,U)). (3.1)

Specializing R to Secant-Newton refinement map and applying QE software (Reduce
command of Mathematica [92]), we obtained that (3.1) is True. Hence, the Secant-
Newton algorithm is partially correct.

44

3.1. Program Synthesis meets Program Verification

Proving termination of Algorithm 4 reduces to the proof of termination of the
loop. One of the most well-known techniques for proving that a loop terminates is to
synthesize functions with the range into a well-founded set, called ranking functions
or termination terms. Let d(L,U) := U−L be the termination term. Then ≥ε defined
as x ≥ε y := x ≥ y+ ε ∧ ε > 0 is obviously a well-founded relation over R. However,
this approach is not suitable for our problem since is dependent on ε. An alternative
is to show that d(L,U) is a contraction map, that is, the following holds:

∃
c∈(0,1)

such that c = min
p,q

sup
L,U,x

0<L<
√
x<U

d(R(L,U))

d(L,U)
, (3.2)

where c is the so-called Lipschitz constant.

Specializing R to Secant-Newton refinement map, and using constraint optimization
techniques available in Mathematica (MaxValue command), we have found c = 1

2 .
Hence the Secant-Newton algorithm terminates.

Computing the complexity of Algorithm 4 amounts to find the number of loop
iterations, since operations like addition, multiplication, assignment and comparison
over with real numbers require constant running time.

Lemma 3.1. The number of loop iterations n of Algorithm 4 is given by

n =

⌈
log2

x−1
ε

log2
1
c

⌉

where

∃
c∈(0,1)

such that c = min
p,q

sup
L,U,x

0<L<
√
x<U

d(R(L,U))

d(L,U)
.

Proof. Consider the estimate of d(L,U) at each loop iteration as follows.

iter d(L,U)

0 ≤ U − L
1 ≤ c · (U − L)
2 ≤ c2 · (U − L)
... ...
n ≤ cn · (U − L)

Moreover, at iteration n we know that cn · (U − L) ≤ ε, hence n ≤ logc
ε

x−1 . This
estimate of n is not convenient since one can not figure out how c influences the value of

n. By basis transformation we obtain n =
⌈
log2

ε
x−1

log2 c

⌉
and further n =

⌈
log2

x−1
ε

log2
1
c

⌉
.

Remark 3.2. Note that, by Lemma 3.1, a small c gives a low number of loop iterations.

45

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.2. Program Synthesis as a QE Problem

Knowing the complexity of Secant-Newton algorithm, we are asking ourselves: Is
there any refinement map which is better than Secant-Newton? In order to answer the
question rigorously, one first needs to fix a search space, that is, a family of maps in
which we search for a better map. We observe that the Secant-Newton refinement map
is made of two rational functions of degree 2, where the numerator/the denominator
is degree 2/degree 1 in the end of points, L and U, of the interval. These suggest the
following choice of a search space: the family of all the maps with the form

R : [L,U], x 7→ [L′, U ′]

L′ =
p0L

2 + p1LU + p2U
2 + x

p3L+ p4U

U ′ =
q0L

2 + q1LU + q2U
2 + x

q3L+ q4U
(3.3)

Then synthesizing optimal algorithms can be formulated as a constrained optimization
problem as follows

min
p,q

C(p,q)

E(p, q), (3.4)

where

p := (p0, p1, p2, p3, p4)

q := (q0, q1, q2, q3, q4)

C(p, q) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 < L′ ≤

√
x ≤ U ′

E(p, q) := sup
L,U,x

0<L<
√
x<U

U ′ − L′

U − L
.

The quantifier-free formula equivalent to C(p, q) gives the values of p and q for which
the algorithm is partially correct. The quantifier-free formula equivalent to E(p, q) is
a piecewise defined function which characterizes the values of p and q for which the
algorithm terminates.

In principle, problem (3.4) could be solved by Algorithm 5. However, this is impos-
sible due to the high computational complexity of general methods for QE: at steps
1 and 2 of Algorithm 5 we have to find the quantifier-free equivalent of a formula
with three bound and ten free variables. In order to make the problem amenable
to be solved semi-automatically, we consider that the refinement map fulfills addi-
tional natural assumptions. These assumptions are used for formulas simplification
and variables reduction, hence they ease the task of software for QE in finding the
quantifier-free equivalent. Synthesis of optimal algorithms under natural assumptions
is investigated in Sections 3.4, 3.5, and, respectively, 3.6.

46

3.2. Program Synthesis as a QE Problem

Algorithm 5 Synthesis Algorithm

in: R, C(p, q), E(p, q), where

R : [L,U], x 7→ [L′, U ′]

L′ = p0L2+p1LU+p2U2+x
p3L+p4U

U ′ = q0L2+q1LU+q2U2+x
q3L+q4U

C(p, q) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 < L′ ≤

√
x ≤ U ′

E(p, q) := sup
L,U,x

0<L<
√
x<U

U ′ − L′

U − L

out:

� c = min
p,q

C(p,q)

E(p, q)

� C ′(p, q) ⇐⇒ (C(p, q) =⇒ (E(p, q) = c))

such that

1. E(p, q) ≥ c

2. E(p, q) = c ⇐⇒ C ′(p, q)

Step 1. Eliminate ∀ from C(p, q) and bring the result into the following form:

C(p, q)⇐⇒
∨
i

Ci

Ci(p, q)− a conjunction of equations/inequalities in p, q

Step 2. Eliminate sup from E(p, q) and bring the result into the following form:

E(p, q) =

· · · · · · · · ·

Ej(p, q) if Gj(p, q)
· · · · · · · · ·

Ej(p, q)− an expression in p, q

Gj(p, q)− a conjunction of equations/inequalities in p, q

Step 3. Let Vij = min
i

min
j

min
Ci(p,q)∧Gj(p,q)

Ej(p, q). Using standard optimization tech-

nique, we determine Vij and C ′ij(p, q) ⇐⇒ (Ci(p, q) =⇒ (E(p, q) = Vij)) for each
i, j. We find the minimum among Vij for each i, j. For those i, j which give the
minimum Vij , we compute C ′(p, q) =

∨
i,j
C ′ij(p, q).

47

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.3. QE by CAD

In this section, we present QE by cylindrical algebraic decomposition (CAD) in the
theory of reals, decidability results and complexity. We mainly follow the text-
book [91].

3.3.1. The QE Problem and Applications

The theory of reals TR has signature

ΣR : {0, 1,+,−, ·,=,≥} ,

where

� 0 and 1 are constants,

� + (addition) and · (multiplication) are binary functions,

� − (negation) is a unary function, and

� = (equality) and ≥ (weak inequality) are binary predicates.

TR has a complex axiomatization. It contains axioms of i) abelian groups, ii) rings,
iii) fields, iv) total orders, and v) real closed fields. (See [9] for a complete list.)

The problem of QE for the theory of reals can be stated as follows. Given a formula
in prenex normal form, find a quantifier-free formula equivalent to it.

As an example, the problem of finding when a quadratic equation has a real root
can be stated as a QE problem over reals as follows.

F :⇐⇒ ∃
x
ax2 + bc+ c = 0

Then a quantifier-free formula equivalent to F is F ′, where

F ′ :⇐⇒ (a = 0 ∧ b 6= 0) ∨ (a = 0 ∧ c = 0) ∨
(
a 6= 0 ∧ b2 − 4ac ≥ 0

)
.

QE has many applications: control [85], theorem proving in real geometry [26], pro-
gram verification [49], numerical analysis [81], just to name a few.

3.3.2. A Brief Summary of QE Methods

Tarski [84] gave an algorithm for solving the QE problem for the theory of reals,
hence he proved that it is decidable. Subsequently, Seidenberg [78] and Cohen [16]
proposed other methods for the decidability result. However, their approaches have
non-elementary complexity. This was until G. E. Collins [17] discovered the CAD
algorithm, a completely new approach for QE, which has elementary complexity. More
exactly, given a formula F , the time complexity of the method is (mn)k

r
dk, where

r is the number of free and bound variables in F , m is the number of polynomials

48

3.3. QE by CAD

occurring in F , n is the maximum degree of any polynomial in F , d is the maximum
length of any integer coefficient of any polynomial in F , and k is some constant [17].

Since the discovery of the CAD algorithm, other methods for solving the QE have
been proposed by Renegar [74] and Heintz et. al. [38] which are doubly exponential in
the number of quantifier alternations. Weispfenning [89] discovered a QE algorithms
based on comprehensive Gröbner bases without giving any complexity details.

Other research has focused on interesting fragments of the full theory. For ex-
ample, Weispfenning considered formulas in which the bound variables appear only
linearly [87] and at most cubically [88]. Hong [42] considered input of the form

∃
x
ax2 + bx+ c = 0 ∧ F,

where F is a quantifier-free formula. To be noted that Weispfenning method (so-
called “virtual substitution”) is not based on CAD and solved many problems which
CAD could not. That is because the complexity of the method is independent on the
number of free variables in a formula.

It has been proved that the QE problem is inherently doubly exponential in the
number of variables [20, 30]. Despite this, the QE based on CAD solved many non-
trivial problems, either by formulating the problems in certain fragments and applying
dedicated methods or by improving the CAD method. Speed-up of CAD method was
accomplished by using improved projection operators [40, 59, 60] and/or developing
advanced root isolation methods [43,83]

The most well-known implementations of the CAD method are QEPCAD-B [11] and
Reduce command of Mathematica [92]. Virtual substitution method is implemented
in Redlog [25].

Nowadays, the CAD method is adapted to satisfiability modulo theories technolo-
gies [21] and has been successfully used to industrial software verification.

3.3.3. The Principles of QE by CAD

The idea of QE by CAD is to divide the n - dimensional space Rn, where n is the
number of variables in the given formula F , into areas for which the validity of F can
be established by evaluating it at certain points. Checking the validity of F by simply
inspecting it at certain points is possible due to the special type of decomposition of
Rn (cylindrical algebraic) which is performed in the projection phase. Hence, in the
projection phase the CAD of the free-variables space has the property that the formula
F is sign-invariant in every cell of the decomposition. In the stack construction (lifting)
phase an explicit representation of this decomposition is built. This decomposition
can be used to determine the truth value of F in each cell of the decomposition. In the
formula construction phase the decomposition is used to construct the free-variables
formula F ′ equivalent to F .

49

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.3.4. What is CAD?

Let

F :⇐⇒ (Q1xk+1)(Q2xk+2)...(Qr−kxr) F
′(x1, ..., xr),

where Qi ∈ {∀, ∃} and F ′ is a quantifier-free formula. F must be in prenex normal
form.

An algebraic decomposition is one in each each cell is a semi-algebraic set. A CAD is
an algebraic decomposition which has “cylinder” structure which will be explained in
the following. For R, any algebraic decomposition into open intervals and single points
is a CAD: c1 = (−∞, α1), c2 = [α1, α1], c3 = (α1, α2), ..., c2m = [αm, αm], c2m+1 =
(αm,∞), where αi are algebraic numbers and fulfill < ordering on R.

For Rn, n ≥ 2, the CAD is defined inductively as follows. A stack over the connected
region A of Ri (i = 2..n) is a decomposition of A×R into cells c1, ..., c2m+1 such that
for any α ∈ A the intersection of ci with α × R is a CAD of R with the property
that the cells in stack have the same nice ordering as for R, that is ci ∩ (α × R) is
less than cj ∩ (α × R) iff i < j. The even-indexed cells are called sections and are
always single points, while the odd-indexed cells are called sectors. Hence, an algebraic
decomposition D of Ri+1 with the properties:

1. there exists a CAD of Ri, say D′ such that for any cell c ∈ D there exists a cell
c′ ∈ D′ such that the projection onto Ri of c is c′ (D′ is called induced CAD of
Ri)

2. for the cell c′ in the induced CAD of Ri, the cells is D whose projections onto
Ri are c′ form a stack over c′.

is called a CAD.

The cell c′ is called parent, the cells in the stack over c′ are called children of c′.

3.3.5. Projection

Let A be the set of polynomials which appear in the formula F . Projection phase
produces a set P (called projection factor set), A ⊆ P ⊂ R[x1, ..., xn] such that
the decomposition defined by P is a CAD. In one step, projection produces a set
An−1 = proj(A) (projection of A), n ≥ 2, of polynomials in n − 1 variables with the
property that for every proj(A) - invariant CAD D′ of Rn−1 there is an A - invariant
CAD D of Rn that induces D′, that is D′ can be extended to a CAD of Rn. A
decomposition D of Rn is A - invariant iff every polynomial p ∈ A is sign-invariant
on every cell of D. Projection is applied recursively until univariate polynomials are
obtained, that is it constructs the sets An = A, An−1 = proj(A), ..., A1 of polynomials
in n, n− 1, ..., respectively, 1 variables. In the base case, the A1 - invariant CAD of
R is obtained. Because of the inductive nature of CAD’s, an Ai - invariant CAD Di

is extended to an Ai+1 - invariant CAD Di+1, 1 ≤ i < n.

50

3.3. QE by CAD

The set P computed in the projection phase is not unique. There have been pro-
posed several projection operators [17, 40, 59]. Evidently, the size of the set P plays
an important role for the speed of QE process.

3.3.6. Stack Construction

Let p ∈ R[x1, ..., xn]. Then the level of p is the largest j such that degxj (p) > 0. For
P ⊆ R[x1, ..., xn], Pi is the set of polynomials in P with level i.

The stack construction phase as described in Arnon at. al. [3] constructs a sequence
of CADs:

C1 – a CAD of R defined by P1

C2 – a CAD of R2 defined by P1 ∪ P2

...
Cn−1 – a CAD of Rn−1 defined by P1 ∪ P2 ∪ ... ∪ Pn−1
Cn – a CAD of Rn defined by P1 ∪ P2 ∪ ... ∪ Pn

The CAD C1 is used at the construction of C2, C2 is used at the construction of C3,
etc. C1 is obtained by isolating the real roots of univariate polynomials. For each
cell of the CAD of R, one evaluates the polynomials in A2 at a sample point and
isolates their real roots, from which one produces a stack over the cell. Continuing
in this manner, one finally obtains a CAD of Rn. Assuming that ci−1 is a cell in
the CAD of Ri−1 and s = (s1, ..., si−1) is its sample point. The children of ci−1 will
inherit its sample point, that is the sample point of the children of ci−1 have the first
i − 1 coordinates s. The sample point at level i can be found by root isolation and
refinement.

3.3.7. Formula Construction

In this phase, the CAD of free-variables space and the truth value of F in each of
these cells of the CAD is used to construct the quantifier-free formula equivalent to
F . This method requires an augmented projection [17] which unfortunately increases
the time required by projection and stack construction phases. Formula construction
which does not require augmented projection was proposed by Hong [41]. However,
his method does not work in all the cases. On the contrary, Brown [10] proposes
formula construction method which general and quite effective in producing simple
formula quickly.

51

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.4. Optimality of Secant-Newton Refinement Map

In this section, based on the observations from the Figure 3.1, we assume that the
refinement map R defined in (3.3) is also contracting, that is

L ≤ L′ ≤
√
x ≤ U ′ ≤ U,

which we will call contracting quadratic maps. By choosing the values for the pa-
rameters p = (p0, . . . , p4) and q = (q0, . . . , q4), we get each member of the family.
For instance, Secant-Newton map can be obtained by setting p = (0, 1, 0, 1, 1) and
q = (0, 0, 1, 0, 2).

Using this assumption, we prove that Secant-Newton map is the optimal among
all the contracting quadratic maps. By optimal, we mean that the output interval
of Secant-Newton map is always proper subset of that of all the other contracting
quadratic map, as long as

√
x resides in the interior of the input interval.

It is important to note that the interval Newton map [36,66,73], without intersecting
with the input interval, is not contracting. Hence, it does not belong to the family
of maps that we consider in this section. Of course, one could turn any refinement
map into a contracting one, simply by intersecting the output with the input interval.
Using this approach, one could enlarge the family of maps so as to include the interval
Newton map. Finding the optimal one among the enlarged family would be a natural
extension to the work reported here and will be investigated in Section 3.6.

3.4.1. Main Result

In the following, we state precisely the main result. For this, we recall a few notations
and notions.

Definition 3.3 (Quadratic refinement map). We say that a refinement map

R : [L,U], x 7→ [L′, U ′]

is quadratic if it has the following form

L′ =
p0L

2 + p1LU + p2U
2 + x

p3L+ p4U

U ′ =
q0L

2 + q1LU + q2U
2 + x

q3L+ q4U
.

We will denote it by Rp,q.

Definition 3.4 (Secant-Newton map). The Secant-Newton map is the quadratic re-
finement map Rp∗,q∗ where p∗ = (0, 1, 0, 1, 1) and q∗ = (0, 0, 1, 0, 2), namely

Rp∗,q∗ : [L,U], x 7→ [L∗, U∗]

52

3.4. Optimality of Secant-Newton Refinement Map

where

L∗ =
LU + x

L+ U
= L+

x− L2

L+ U

U∗ =
U2 + x

2U
= U +

x− U2

2U

Definition 3.5 (Contracting map). We say that a map

R : [L,U], x 7→ [L′, U ′]

is contracting if

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L′ ≤

√
x ≤ U ′ ≤ U. (3.5)

Now we are ready to state the main result of the section.

Theorem 3.6 (Main Result). Let Rp,q be a contracting quadratic map which is not
Rp∗,q∗ (Secant-Newton). Then we have

(a) ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ Rp∗,q∗([L,U], x) ⊆ Rp,q([L,U], x)

(b) ∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L,U], x) (Rp,q([L,U], x)

Remark 3.7. It is important to pay a careful attention to a subtle difference between
the two claims (a) and (b). In the first claim,

√
x is allowed to lie on the boundary of

the input interval, namely
√
x = L or

√
x = U . In the second claim,

√
x is required

to lie in the interior of the input interval.

Remark 3.8. The first claim states that Secant-Newton map is never worse than any
other contracting quadratic map as along as

√
x resides in the input interval. The

second claim states that Secant-Newton map is always better than all the other con-
tracting quadratic maps as long as

√
x resides in the interior of the input interval.

3.4.2. Proof

In this section, we prove the main result (Theorem 3.6). For the sake of easy read-
ability, the proof will be divided into several lemmas, which are interesting on their
own. The main theorem follows immediately from the Lemmas 3.12 and 3.13.

Lemma 3.9. Let Rp,q be a contracting quadratic map. Then we have

0 = p0 − p3 + 1 = p1 − p4 = p2

0 = q2 − q4 + 1 = q1 − q3 = q0.

53

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Proof. Let Rp,q be a contracting quadratic map. Then p, q satisfy the condition (3.5).
The proof essentially consist of instantiating the condition (3.5) on x = L2 and x = U2.

By instantiating the condition (3.5) with x = L2 and recalling the definition of L′,
we have

∀
L,U

0 < L ≤ U =⇒ p0L
2 + p1LU + p2U

2 + L2

p3L+ p4U
= L.

By removing the denominator and collecting, we have

∀
L,U

(L,U) ∈ D =⇒ g (L,U) = 0,

where

D = {(L,U) : 0 < L ≤ U} ,
g (L,U) = (p0 − p3 + 1)L2 + (p1 − p4)LU + p2U

2.

Since the bivariate polynomial g is zero over the 2-dim real domain D, it must be
identically zero. Thus its coefficients p0 − p3 + 1, p1 − p4, p2 must be all zero.

By instantiating the condition (3.5) with x = U2 and recalling the definition of U ′,
we have

∀
L,U

0 < L ≤ U =⇒ q0L
2 + q1LU + q2U

2 + U2

q3L+ q4U
= U.

By removing the denominator and collecting, we have

∀
L,U

(L,U) ∈ D =⇒ g (L,U) = 0,

where

D = {(L,U) : 0 < L ≤ U} ,
g (L,U) = q0L

2 + (q1 − q3)LU + (q2 − q4 + 1)U2.

Since the bivariate polynomial g is zero over the 2-dim real domain D, it must be
identically zero. Thus its coefficients q0, q1 − q3, q2 − q4 + 1 must be all zero.

Lemma 3.10. Let Rp,q be a contracting quadratic map. Then we have

L′ = L+
x− L2

p3L+ p4U

U ′ = U +
x− U2

q3L+ q4U
.

54

3.4. Optimality of Secant-Newton Refinement Map

Proof. Let Rp,q be a contracting quadratic map. From Lemma 3.9, we have

0 = p0 − p3 + 1 = p1 − p4 = p2

0 = q2 − q4 + 1 = q1 − q3 = q0.

Recalling the definition of L′ and U ′, we have

L′ :=
(p3 − 1)L2 + p4LU + x

p3L+ p4U

U ′ :=
q3LU + (q4 − 1)U2 + x

q3L+ q4U
.

By simplifying we have

L′ = L+
x− L2

p3L+ p4U

U ′ = U +
x− U2

q3L+ q4U
.

Lemma 3.11. Let Rp,q be a contracting quadratic map. Then we have

p3 + p4 − 2 ≥ 0 p4 − 1 ≥ 0

q3 + q4 − 2 ≥ 0 q4 − 2 ≥ 0.

Proof. Let Rp,q be a contracting quadratic map. Using Lemma 3.10, we can rewrite
the condition (3.5) as

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L ≤ L+

x− L2

p3L+ p4U
≤
√
x ≤ U +

x− U2

q3L+ q4U
≤ U.

Simplifying, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒

0 ≤ (
√
x−L)(

√
x+L)

p3L+p4U
≤
√
x− L

∧
0 ≤ (U−

√
x)(U+

√
x)

q3L+q4U
≤ U −

√
x.

By restricting the universal quantification to
√
x 6= L and

√
x 6= U, we have

∀
L,U,x

0 < L <
√
x < U =⇒

0 ≤
√
x+L

p3L+p4U
≤ 1

∧
0 ≤

√
x+U

q3L+q4U
≤ 1.

55

3. Synthesizing Optimal Algorithms. Case Study: Square Root

By canceling the denominators, we have

∀
L,U,x

0 < L <
√
x < U =⇒

0 ≤
√
x+ L ≤ p3L+ p4U

∧
0 ≤
√
x+ U ≤ q3L+ q4U.

By rewriting it, we have

∀
L,U,x

0 < L <
√
x < U =⇒

0 ≤ (p3 + p4 − 2)L+ (p4 − 1) (U − L) + (U −
√
x)

∧
0 ≤ (q3 + q4 − 2)L+ (q4 − 2) (U − L) + (U −

√
x) .
(3.6)

Claim: p3 + p4− 2 ≥ 0. Assume otherwise, that is, p3 + p4− 2 < 0. We will show that
it contradicts (3.6). Let

L = 1 +
|2p4 − 1|

− (p3 + p4 − 2)
, U = L+ 2, x = (U − 1)2

Then obviously 0 < L <
√
x < U. However

(p3 + p4 − 2)L+ (p4 − 1) (U − L) +
(
U −

√
x
)

= (p3 + p − 2)

(
1 +

|2p4 − 1|
− (p3 + p4 − 2)

)
+ (p4 − 1) 2 + 1

= (p3 + p4 − 2)− |2p4 − 1|+ 2p4 − 1

≤ p3 + p4 − 2

< 0

contradicting (3.6).

Claim: q3 + q4 − 2 ≥ 0. Assume otherwise, that is, q3 + q4 − 2 < 0. We will show that
it contradicts (3.6). Let

L = 1 +
|2q4 − 3|

− (q3 + q4 − 2)
, U = L+ 2, x = (U − 1)2 .

Then obviously 0 < L <
√
x < U. However

(q3 + q4 − 2)L+ (q4 − 2) (U − L) +
(
U −

√
x
)

= (q3 + q4 − 2)

(
1 +

|2q4 − 3|
− (q3 + q4 − 2)

)
+ (q4 − 2) 2 + 1

= (q3 + q4 − 2)− |2q4 − 3|+ 2q4 − 3

≤ q3 + q4 − 2

< 0

56

3.4. Optimality of Secant-Newton Refinement Map

contradicting (3.6).

Claim: p4 − 1 ≥ 0. Assume otherwise, that is, p4 − 1 < 0. We will show that it
contradicts (3.6). Let

L = 1, U = 3 +
|p3 + p4 − 1|
− (p4 − 1)

, x = (U − 1)2 .

Then obviously 0 < L <
√
x < U. However

(p3 + p4 − 2)L+ (p4 − 1) (U − L) +
(
U −

√
x
)

= p3 + p4 − 2 + (p4 − 1)

(
2 +
|p3 + p4 − 1|
− (p4 − 1)

)
+ 1

= p3 + p4 − 1 + 2(p4 − 1)− |p3 + p4 − 1|
≤ 2(p4 − 1)

< 0

contradicting (3.6).

Claim: q4 − 2 ≥ 0. Assume otherwise, that is, q4 − 2 < 0. We will show that it
contradicts (3.6). Let

L = 1, U = 3 +
|q3 + q4 − 1|
− (q4 − 2)

, x = (U − 1)2 .

Then obviously 0 < L <
√
x < U. However

(q3 + q4 − 2)L+ (q4 − 2) (U − L) +
(
U −

√
x
)

= q3 + q4 − 2 + (q4 − 2)

(
2 +
|q3 + q4 − 1|
− (q4 − 2)

)
+ 1

= q3 + q4 − 1 + 2 (q4 − 2)− |q3 + q4 − 1|
≤ 2 (q4 − 2)

< 0

contradicting (3.6).

Now we are ready to prove the two claims in Main Theorem. The following lemma
(Lemma 3.12) will prove the claim (a) and the subsequent lemma (Lemma 3.13) will
prove the claim (b).

Lemma 3.12 (Main Theorem (a)). Let Rp,q be a contracting quadratic map which is
not Rp∗,q∗ (Secant-Newton). Then we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ Rp∗,q∗([L,U], x) ⊆ Rp,q([L,U], x)

57

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Proof. Let Rp,q be a contracting quadratic map which is not Rp∗,q∗ (Secant-Newton),
that is, p 6= p∗ or q 6= q∗. Let L,U, x be arbitrary such that 0 < L ≤

√
x ≤ U. We

need to show

Rp∗,q∗([L,U], x) ⊆ Rp,q([L,U], x)

Note

Rp∗,q∗([L,U], x) ⊆ Rp,q([L,U], x)

⇐⇒ L′ ≤ L∗ ∧ U∗ ≤ U ′

⇐⇒ L+ x−L2

p3L+p4U
≤ L+ x−L2

L+U

∧
U + x−U2

2U ≤ U + x−U2

q3L+q4U

(Due to Lemma 3.10)

⇐⇒
(
x− L2

) (
1

L+U −
1

p3L+p4U

)
≥ 0

∧(
U2 − x

) (
1
2U −

1
q3L+q4U

)
≥ 0

⇐⇒
(
x− L2

) (
1

2L+(U−L) −
1

(p3+p4)L+p4(U−L)

)
≥ 0

∧(
U2 − x

) (
1

2L+2(U−L) −
1

(q3+q4)L+q4(U−L)

)
≥ 0

⇐⇒
(
x− L2

) (p3+p4−2)L+(p4−1)(U−L)
(2L+(U−L))((p3+p4)L+p4(U−L)) ≥ 0

∧(
U2 − x

) (q3+q4−2)L+(q4−2)(U−L)
(2L+2(U−L))((q3+q4)L+q4(U−L)) ≥ 0

⇐⇒
(
x− L2

)
((p3 + p4 − 2)L+ (p4 − 1) (U − L)) ≥ 0

∧(
U2 − x

)
((q3 + q4 − 2)L+ (q4 − 2) (U − L)) ≥ 0

(Due to Lemma 3.11)

⇐⇒ true. (Due to Lemma 3.11)

Main Theorem (a) has been proved.

Lemma 3.13 (Main Theorem (b)). Let Rp,q be a contracting quadratic map which is
not Rp∗,q∗ (Secant-Newton). Then we have

∀
L,U,x

0 < L <
√
x < U =⇒ Rp∗,q∗([L,U], x) (Rp,q([L,U], x)

Proof. Let Rp,q be a contracting quadratic map which is not Rp∗,q∗ (Secant-Newton),
that is, p 6= p∗ or q 6= q∗. Let L,U, x be arbitrary such that 0 < L <

√
x < U. We

need to show

Rp∗,q∗([L,U], x) (Rp,q([L,U], x)

58

3.5. The Complexity of Contracting Quadratic Maps

Following a similar process as in the proof of Lemma 3.12, we have

Rp∗,q∗([L,U], x) (Rp,q([L,U], x)

⇐⇒ L′ < L∗ ∨ U∗ < U ′ (Due to Lemma 3.12)

⇐⇒ L+ x−L2

p3L+p4U
< L+ x−L2

L+U

∨
U + x−U2

2U < U + x−U2

q3L+q4U

(Due to Lemma 3.10)

⇐⇒ 1
L+U −

1
p3L+p4U

> 0

∨
1
2U −

1
q3L+q4U

> 0

(since L <
√
x < U)

⇐⇒ 1
2L+(U−L) −

1
(p3+p4)L+p4(U−L) > 0

∨
1

2L+2(U−L) −
1

(q3+q4)L+q4(U−L) > 0

⇐⇒ (p3+p4−2)L+(p4−1)(U−L)
(2L+(U−L))((p3+p4)L+p4(U−L)) > 0

∨
(q3+q4−2)L+(q4−2)(U−L)

(2L+2(U−L))((q3+q4)L+q4(U−L)) > 0

⇐⇒ (p3 + p4 − 2)L+ (p4 − 1) (U − L) > 0
∨
(q3 + q4 − 2)L+ (q4 − 2) (U − L) > 0

(Due to Lemma 3.11)

⇐⇒ p3 + p4 − 2 6= 0 ∨ p4 − 1 6= 0
∨
q3 + q4 − 2 6= 0 ∨ q4 − 2 6= 0

(Due to Lemma 3.11)

⇐⇒ ¬ (p3 + p4 − 2 = 0 ∧ p4 − 1 = 0 ∧ q3 + q4 − 2 = 0 ∧ q4 − 2 = 0)

⇐⇒ ¬ (p3 = 1 ∧ p4 = 1 ∧ q3 = 0 ∧ q4 = 2)

⇐⇒ ¬ (p = p∗ ∧ q = q∗) (Due to Lemma 3.9)

⇐⇒ p 6= p∗ ∨ q 6= q∗

⇐⇒ true.

Main Theorem (b) has been proved.

3.5. The Complexity of Contracting Quadratic Maps

We proved in Lemma 3.1 that the number of loop iterations of Algorithm 4 depends
on the value of the Lipschitz constant of the associated quadratic map.

In this section, we prove that the contracting quadratic maps have the best Lipschitz
constant 1

2 , and give the values of the parameters p and q for which the best Lipschitz
constant is attained.

59

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.5.1. Main Result

Before stating the main result of this section, let us recall the following definitions.

C(p, q) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 < L ≤ L′ ≤

√
x ≤ U ′ ≤ U

E(p, q) := sup
L,U,x

0<L<
√
x<U

[
U ′ − L′

U − L

]

Theorem 3.14. Let Rp,q be a contracting quadratic map. Then

(a) E(p, q) ≥ 1
2

(b) E(p, q) = 1
2 ⇐⇒ p0 = p3 − 1 ∧ p1 = p4 ∧ p2 = 0

∧
q0 = 0 ∧ q1 = q3 ∧ q2 = 1 ∧ q4 = 2
∧
2− p4 ≤ p3 ≤ 4− p4 ∧ 1 ≤ p4 ≤ 2 ∧ 0 ≤ q3 ≤ 2.

3.5.2. Proof

Let p, q be arbitrary but fixed. Assume that Rp,q is a contracting quadratic map. We
need to show (a) and (b). The proof of (a) is immediate by Section 3.4 (Lemma 3.18).
The proof of (b) is divided into lemmas, ending with Lemma 3.19 proving (b).

Before we plunge into the details of the proofs of (b), we note, from Lemmas 3.11
and 3.9, respectively, that the following hold

p3 + p4 ≥ 2 ∧ p4 ≥ 1 ∧ q3 + q4 ≥ 2 ∧ q4 ≥ 2.

and

p0 = p3 − 1 p1 = p4 p2 = 0

q0 = 0 q1 = q3 q2 = q4 − 1

Hence from now on, we will replace all the p0, p1, p2, q0, q1, q2 by the corresponding
left hand side expressions.

Recalling the definition of L′ and U ′, we have

L′ :=
(p3 − 1)L2 + p4LU + x

p3L+ p4U

U ′ :=
q3LU + (q4 − 1)U2 + x

q3L+ q4U
.

We make the remark that many intermediary results leading to the final proof were
obtained automatically using Mathematica computer algebra system. We do not list

60

3.5. The Complexity of Contracting Quadratic Maps

here all the intermediary results. The file containing all the necessary computations
leading to the main result of this section can be found at http://www.risc.jku.at/
people/merascu/PhDThesis/SquareRoot/C-C.nb.

In the following lemma we eliminate the quantifier from E(p, q).

Lemma 3.15. E(p, q) is the same as the function in Appendix C.1.

Proof. Note that

E(p, q) := sup
L,U,x

0<L<
√
x<U

 q3LU+(q4−1)U2+x
q3L+q4U

− (p3−1)L2+p4LU+x
p3L+p4U

U − L

= sup
L,U,x

0<L<
√
x<U

 q3LU+(q4−1)U2

q3L+q4U
− (p3−1)L2+p4LU

p3L+p4U
+
(

1
p3L+p4U

− 1
p3L+p4U

)
x

U − L

= sup

L,U,x
0<L<

√
x<U

 q3LU+(q4−1)U2

q3L+q4U
− (p3−1)L2+p4LU

p3L+p4U

U − L
+

1
q3L+q4U

− 1
p3L+p4U

U − L
x

= sup {E1(p, q), E2(p, q)} ,

where

E1(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≥ 1
p3L+p4U

 q3LU+(q4−1)U2

q3L+q4U
− (p3−1)L2+p4LU

p3L+p4U

U − L
+

1
q3L+q4U

− 1
p3L+p4U

U − L
U2

E2(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≤ 1
p3L+p4U

 q3LU+(q4−1)U2

q3L+q4U
− (p3−1)L2+p4LU

p3L+p4U

U − L
+

1
q3L+q4U

− 1
p3L+p4U

U − L
L2

By simplifying the above expressions, we have

E1(p, q) = sup
L,U

0<L<U
1

q3L+q4U
≥ 1
p3L+p4U

[
1− L+ U

p3L+ p4U

]

E2(p, q) = sup
L,U

0<L<U
1

q3L+q4U
≤ 1
p3L+p4U

[
1− L+ U

q3L+ q4U

]

61

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/C-C.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/C-C.nb

3. Synthesizing Optimal Algorithms. Case Study: Square Root

By Lemmas 3.16, respectively 3.17, we have

E1(p, q) =

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

1− 1
p4

if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0

1− 2
p3+p4

if σ2 ≤ 0 ∧ σ3 > 0

1− 1
p4

if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

E2(p, q) =

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 < 0 ∧ σ2 < 0 ∧ σ4 > 0

1− 1
q4

if σ1 < 0 ∧ σ2 < 0 ∧ σ4 ≤ 0

1− 2
q3+q4

if σ2 ≥ 0 ∧ σ4 > 0

1− 1
q4

if σ1 ≤ 0 ∧ σ2 ≥ 0 ∧ σ4 ≤ 0

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 > 0 ∧ σ2 ≥ 0 ∧ σ4 ≤ 0

−∞ if σ1 ≥ 0 ∧ σ2 < 0

where

σ1 := p4 − q4
σ2 := q3 + q4 − (p3 + p4)

σ3 := p3 − p4
σ4 := q3 − q4

In order to compute E(p, q) we proceed as follows. Note that E1(p, q) and E2(p, q)
have, respectively, the form

E1(p, q) = v1i(p, q) if c1i(p, q), i = 1..n

E2(p, q) = v2j(p, q) if c2j(p, q), j = 1..m

Hence, E(p, q) has the form

E(p, q) =

{
v1i(p, q) if c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) ≥ v2j(p, q)

v2j(p, q) if c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) < v2j(p, q)
,

where i = 1..n, j = 1..m.

Finally, we combined

c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) ≥ v2j(p, q)

and, respectively,

c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) < v2j(p, q),

62

3.5. The Complexity of Contracting Quadratic Maps

where i = 1..n, j = 1..m with

p3 + p4 ≥ 2 ∧ p4 ≥ 1 ∧ q3 + q4 ≥ 2 ∧ q4 ≥ 2.

The value of E(p, q) is too lengthy to be added here and is listed in Appendix C.1.

Lemma 3.16. Let

E1(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≥ 1
p3L+p4U

[
1− L+ U

p3L+ p4U

]
.

Then

E1(p, q) =

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

1− 1
p4

if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0

1− 2
p3+p4

if σ2 ≤ 0 ∧ σ3 > 0

1− 1
p4

if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

,

where

σ1 := p4 − q4
σ2 := q3 + q4 − (p3 + p4)

σ3 := p3 − p4

Proof. Let

E1(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≥ 1
p3L+p4U

[
1− L+ U

p3L+ p4U

]

By Lemma 3.11, the following holds

p3 + p4 ≥ 2 ∧ p4 ≥ 1 ∧ q3 + q4 ≥ 2 ∧ q4 ≥ 2.

Dividing by L > 0, we have

E1(p, q) = sup
L,U

0<1<U
L

1

q3+q4
U
L

≥ 1

p3+p4
U
L

[
1−

1 + U
L

p3 + p4
U
L

]

63

3. Synthesizing Optimal Algorithms. Case Study: Square Root

By renaming U
L with K, and using the fact that p3 + p4K > 0 and q3 + q4K > 0, we

have

E1(p, q) = sup
K
K>1

1
q3+q4K

≥ 1
p3+p4K

[
1− 1 +K

p3 + p4K

]

= sup
K

K−1>0
(p4−q4)(K−1)≥q3+q4−(p3+p4)

[
1− K − 1 + 2

p3 + p4 + p4(K − 1)

]

By renaming K − 1 with K, we have

E1(p, q) = sup
K
K>0

(p4−q4)K≥q3+q4−(p3+p4)

[
1− K + 2

p3 + p4 + p4K

]

= sup
K
K>0

(p4−q4)K≥q3+q4−(p3+p4)

[
1−

1
p4

(p3 + p4 + p4K)− 1
p4

(p3 + p4 + p4K) + 2 +K

p3 + p4 + p4c

]

= sup
K
K>0

(p4−q4)K≥q3+q4−(p3+p4)

[
1− 1

p4
+

1

p24

p3 − p4
K + p3+p4

p4

]

= 1− 1

p4
+

1

p24
sup
K
K>0

(p4−q4)K≥q3+q4−(p3+p4)

[
p3 − p4

K + p3+p4
p4

]

Let σ1 := p4 − q4. Considering the signs of σ1, we have

E1(p, q) = 1− 1

p4
+

1

p24

sup
K
K>0

K≥ q3+q4−(p3+p4)
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 > 0

sup
K
K>0

K≤ q3+q4−(p3+p4)
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 < 0

sup
K
K>0

0≥q3+q4−(p3+p4)

[
p3−p4

K+
p3+p4
p4

]
if σ1 = 0

64

3.5. The Complexity of Contracting Quadratic Maps

Let σ2 := q3 + q4 − (p3 + p4). Considering the signs of σ2, we have

E1(p, q) = 1− 1

p4
+

1

p24

sup
K

K≥ σ2
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 > 0 ∧ σ2 > 0

sup
K
K>0

[
p3−p4

K+
p3+p4
p4

]
if σ1 > 0 ∧ σ2 ≤ 0

−∞ if σ1 < 0 ∧ σ2 > 0

sup
K

0<K≤σ2
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 < 0 ∧ σ2 ≤ 0

−∞ if σ1 = 0 ∧ σ2 > 0

sup
K
K>0

[
p3−p4

K+
p3+p4
p4

]
if σ1 = 0 ∧ σ2 ≤ 0

Combining the cases, we have

E1(p, q) = 1− 1

p4
+

1

p24

sup
K

K≥ σ2
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 > 0 ∧ σ2 > 0

sup
K
K>0

[
p3−p4

K+
p3+p4
p4

]
if σ1 ≥ 0 ∧ σ2 ≤ 0

sup
K

0<K≤σ2
σ1

[
p3−p4

K+
p3+p4
p4

]
if σ1 < 0 ∧ σ2 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

65

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Let σ3 := p3 − p4. Considering the signs of σ3, we have

E1(p, q) = 1− 1

p4
+

1

p24

σ3 sup
K

K≥σ2
σ1

[
1

K+
p3+p4
p4

]
if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

σ3 inf
K

K≥σ2
σ1

[
1

K+
p3+p4
p4

]
if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0

σ3 sup
K
K>0

[
1

K+
p3+p4
p4

]
if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 > 0

σ3 inf
K
K>0

[
1

K+
p3+p4
p4

]
if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

σ3 sup
K

0<K≤σ2
σ1

[
1

K+
p3+p4
p4

]
if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 > 0

σ3 inf
K

0<K≤σ2
σ1

[
1

K+
p3+p4
p4

]
if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

Since p3+p4
p4

> 0 and σ2
σ1
≥ 0 (from the side conditions when it appears), we have

E1(p, q) = 1− 1

p4
+

1

p24

σ3
1

σ2
σ1

+
p3+p4
p4

if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

0 if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0
σ3

1
p3+p4
p4

if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 > 0

0 if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0
σ3

1
p3+p4
p4

if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 > 0

σ3
1

σ2
σ1

+
p3+p4
p4

if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

By combining, we have

E1(p, q) = 1− 1

p4
+

1

p24

σ3
1

σ2
σ1

+
p3+p4
p4

if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

0 if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0
σ3

1
p3+p4
p4

if σ2 ≤ 0 ∧ σ3 > 0

0 if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0
σ3

1
σ2
σ1

+
p3+p4
p4

if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

66

3.5. The Complexity of Contracting Quadratic Maps

By simplifying the values, we have

E1(p, q) =

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 > 0 ∧ σ2 > 0 ∧ σ3 > 0

1− 1
p4

if σ1 > 0 ∧ σ2 > 0 ∧ σ3 ≤ 0

1− 2
p3+p4

if σ2 ≤ 0 ∧ σ3 > 0

1− 1
p4

if σ1 ≥ 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

1 + (p3−p4)−(q3−q4)
p4q3−p3q4 if σ1 < 0 ∧ σ2 ≤ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≤ 0 ∧ σ2 > 0

where

σ1 = p4 − q4
σ2 = q3 + q4 − (p3 + p4)

σ3 = p3 − p4

Lemma 3.17. Let

E2(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≤ 1
p3L+p4U

[
1− L+ U

q3L+ q4U
.

]

Then we have

E2(p, q) =

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 < 0 ∧ σ2 < 0 ∧ σ4 > 0

1− 1
q4

if σ1 < 0 ∧ σ2 < 0 ∧ σ4 ≤ 0

1− 2
q3+q4

if σ2 ≥ 0 ∧ σ4 > 0

1− 1
q4

if σ1 ≤ 0 ∧ σ2 ≥ 0 ∧ σ4 ≤ 0

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 > 0 ∧ σ2 ≥ 0 ∧ σ4 ≤ 0

−∞ if σ1 ≥ 0 ∧ σ2 < 0

,

where

σ1 := p4 − q4
σ2 := q3 + q4 − (p3 + p4)

σ3 := q3 − q4

Proof. Let

E2(p, q) := sup
L,U

0<L<U
1

q3L+q4U
≤ 1
p3L+p4U

[
1− L+ U

q3L+ q4U

]
.

67

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Note that E2(p, q) can be obtained from E1(p, q) defined in Lemma 3.17 by swapping
p3, p4 with q3, q4, respectively. Hence,

E2(p, q) =

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 < 0 ∧ σ2 < 0 ∧ σ3 > 0

1− 1
q4

if σ1 < 0 ∧ σ2 < 0 ∧ σ3 ≤ 0

1− 2
q3+q4

if σ2 ≥ 0 ∧ σ3 > 0

1− 1
q4

if σ1 ≤ 0 ∧ σ2 ≥ 0 ∧ σ3 ≤ 0

1 + (q3−q4)−(p3−p4)
q4p3−q3p4 if σ1 > 0 ∧ σ2 ≥ 0 ∧ σ3 ≤ 0

−∞ if σ1 ≥ 0 ∧ σ2 < 0

where

σ1 := p4 − q4
σ2 := q3 + q4 − (p3 + p4)

σ3 := q3 − q4

Lemma 3.18 (Main Theorem (a)). We have E(p, q) ≥ 1
2 .

Proof. The proof is immediate, since C(p∗, q∗) is true and E(p∗, q∗) = 1
2 , where

p∗ = (0, 1, 0, 1, 1), q∗ = (0, 0, 1, 0, 2).

Lemma 3.19 (Main Theorem (b)). We have

E(p, q) =
1

2
⇐⇒ p0 = p3 − 1 ∧ p1 = p4 ∧ p2 = 0

∧
q0 = 0 ∧ q1 = q3 ∧ q2 = 1 ∧ q4 = 2
∧
2− p4 ≤ p3 ≤ 4− p4 ∧ 1 ≤ p4 ≤ 2 ∧ 0 ≤ q3 ≤ 2.

Proof. In order prove the claim, we have to solve the following constrained optimiza-
tion problem:

min
p,q

C(p,q)

E(p, q).

By Lemma 3.15, the standard optimization problem can be brought into the following
form:

min
i

min
C(p,q)∧Gi(p,q)

Ei(p, q),

where

C(p, q) ⇐⇒ p3 + p4 ≥ 2 ∧ p4 ≥ 1 ∧ q3 + q4 ≥ 2 ∧ q4 ≥ 2

Gi(p, q)− a conjunction of equations/inequalities in p, q

Ei(p, q)− an expression in p, q

68

3.6. Towards Optimal Square Root Algorithms

The values of Gi(p, q) and Ei(p, q), i = 1..n, are listed in Appendix C.

Further, we need to solve the following standard optimization problems:

Minimize Ei(p, q) subject to C(p, q) ∧Gi(p, q), for each i. (3.7)

These were carried out by symbolic constrained optimization (Minimize) available in
Mathematica. The routine is listed in Appendix C.2 and has the following specification

� Input: list of the form {{e1, c1}, ..., {en, cn}}, where ei is an expression in p, q,
ci is a conjunction of equalities/inequalities in p, q, i = 1..n;

� Output: list of the form {{{v1, s1}, C1}, ..., {{vn, sn}, Cn}}, where vi is the min-
imum value in the region determined by ci, si is a substitution for p, q for which
ei = vi, Ci is a disjunction of conjunctions of equalities/inequalities in p, q for
which ei = vi, i = 1..n.

The output is listed in Appendix C.3. Finally, from the list in Appendix C.3, we take
the minimum v, that is 1

2 , and the disjunction of all Ci which give v, that is

1 ≤ p4 ≤ 2 ∧ 2− p4 ≤ p3 ≤ 4− p4 ∧ 0 ≤ q3 ≤ 2 ∧ q4 = 2.

3.6. Towards Optimal Square Root Algorithms

We proved in Theorem 3.14 that the contracting quadratic maps have the best Lips-
chitz constant 1

2 . A natural question arises: Are there any quadratic maps which have
a smaller Lipschitz constant? To answer this question, we dropped off the contraction
condition on quadratic maps, but we imposed the following natural assumption on
them

C (p, q) :⇐⇒ C1 (p, q) ∧ C2 (p) ∧ C3 (q) ,

where

C1 (p, q) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 < L′ ≤

√
x ≤ U ′

C2 (p) :⇐⇒ 0 ≤ p4 ≤ 2 ∧ p3 + p4 = 2 ∧ p0 + p1 + p2 = 1

C3 (q) :⇐⇒ 0 ≤ q4 ≤ 2 ∧ q3 + q4 = 2 ∧ q0 + q1 + q2 = 1

69

3. Synthesizing Optimal Algorithms. Case Study: Square Root

3.6.1. Main Result

Before stating the main result, let us recall the following definitions.

C (p, q) :⇐⇒ C1 (p, q) ∧ C2 (p) ∧ C3 (q)

C1 (p, q) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ 0 < L′ ≤

√
x ≤ U ′

C2 (p) :⇐⇒ 0 ≤ p4 ≤ 2 ∧ p3 + p4 = 2 ∧ p0 + p1 + p2 = 1

C3 (q) :⇐⇒ 0 ≤ q4 ≤ 2 ∧ q3 + q4 = 2 ∧ q0 + q1 + q2 = 1

C (p, q) :⇐⇒ C1 (p, q) ∧ C2 (p) ∧ C3 (q)

E(p, q) := sup
L,U,x

0<L<
√
x<U

U ′ − L′

U − L

Theorem 3.20 (Main Theorem). Let Rp,q be a quadratic map satisfying C(p, q). Then

(a) E(p, q) ≥ 1
4

(b) E(p, q) = 1
4 ⇐⇒ p0 = 1− p1 − p2 ∧ p3 = 2− p4

∧
q0 = 1− q1 − q2 ∧ q3 = 2− q4
∧
q1 ≤ p1 ≤ 1 ∧ p2 = 0 ∧ p4 = 1
∧
1
2 ≤ q1 ≤ 1 ∧ q2 = 1

4 ∧ q4 = 1

3.6.2. Proof

Let p,q be arbitrary but fixed. Assume that Rp,q is a quadratic map satisfying C(p, q).
We need to show (a) and (b). The proofs for (a) and (b) will be divided into lemmas,
ending with Lemma 3.29 proving (b) and Lemma 3.30 proving (a).

Before we plunge into the details of the proofs of (a) and (b), we note, from C2 and
C3, that:

p0 = 1− p1 − p2 p3 = 2− p4
q0 = 1− q1 − q2 q3 = 2− q4.

Hence from now on, we will replace all the p0,q0,p3,q3 by the corresponding left hand
side expressions.

70

3.6. Towards Optimal Square Root Algorithms

Recalling the definitions of p, q, C2(p), C3(q), L
′, respectively U ′, we have

p = (p1, p2, p4)

q = (q1, q2, q4)

C2 (p) ⇐⇒ 0 ≤ p4 ≤ 2

C3 (q) ⇐⇒ 0 ≤ q4 ≤ 2

L′ =
(1− p1 − p2)L2 + p1LU + p2U

2 + x

(2− p4)L+ p4U

U ′ =
(1− q1 − q2)L2 + q1LU + q2U

2 + x

(2− q4)L+ q4U

Many results used in the following were obtained automatically either by using
QEPCAD-B (elimination of universal quantification) or by using Mathematica com-
puter algebra system (constrained optimization). Due to their length, they are not
listed here. The file containing all the necessary computations leading to the main
result of this section can be found at http://www.risc.jku.at/people/merascu/

PhDThesis/SquareRoot/PI-PI.nb.

In the following we eliminate the universal quantification from C(p, q).

Lemma 3.21. We have

1 ≤ p4 ≤ 2 ∧ p1 ≥ 0 ∧ p2 = 0 ∧ p1 − p4 ≤ 0
∧
0 ≤ q4 ≤ 2 ∧ q24 − 4q2 ≤ 0 ∧ q1 + 2q2 − q4 ≥ 0.

Proof. The proof follows immediately by combining Lemmas 3.22 and 3.24, and Lem-
mas 3.23 and 3.25.

By combining Lemmas 3.22 and 3.24, we have

0 ≤ p4 ≤ 2
∧
p2 ≥ 0 ∧

(
2p2 + p1 − 2 > 0 ∨ p1 ≥ 0 ∨ (p1 + 2p2)

2 − 8p2 < 0
)

∧
p2 ≤ 0 ∧ p4 − p2 − 1 ≥ 0 ∧ p4 − 2p2 − p1 ≥ 0

⇐⇒ 1 ≤ p4 ≤ 2 ∧ p1 ≥ 0 ∧ p2 = 0 ∧ p1 − p4 ≤ 0.

By combining Lemmas 3.23 and 3.25, we have

0 ≤ q4 ≤ 2
∧
q2 ≥ 0 ∧ (2q2 + q1 − 2 > 0 ∨ q1 ≥ 0 ∨ (q1 + 2q2)

2 − 8q2 < 0)
∧
4q2 − q24 ≥ 0 ∧ q4 − 2q2 − q1 ≤ 0

⇐⇒ 0 ≤ q4 ≤ 2 ∧ q24 − 4q2 ≤ 0 ∧ q1 + 2q2 − q4 ≥ 0.

71

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

3. Synthesizing Optimal Algorithms. Case Study: Square Root

The simplification of the formulas above was done by QEPCAD-B [11].

Note that the following lemmas solve quantifier elimination problems. Due to their
complexity, none of the state-of-the-art solvers [11,25,92] was able to deliver a quantifier-
free equivalent directly. Hence, we performed variable elimination by exploiting equal-
ity constraints and properties of monotonic functions on an interval.

Lemma 3.22. We have
(A) ⇐⇒ (B) ,

where

(A) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L′ > 0

(B) :⇐⇒ p2 ≥ 0 ∧ (p1 ≥ 0 ∨ p1 + 2p2 − 2 > 0 ∨ (p1 + 2p2)
2 − 8p2 < 0).

Proof. We have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L′ > 0

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ (1− p1 − p2)L2 + p1LU + p2U

2 + x

(2− p4)L+ p4U
> 0

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ (1− p1 − p2)L2 + p1LU + p2U

2 + x > 0.

In the above we used the fact that

C2(p) ∧ 0 < L ≤ U =⇒ 2L+ p4(U − L) > 0. (3.8)

Note that the function

f1(
√
x) := (

√
x)2 + (1− p1 − p2)L2 + p1LU + p2U

2

is convex on [L,U]. Hence, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ f1(

√
x) > 0

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ f1(L) > 0

⇐⇒ ∀
L,U

0 < L ≤ U =⇒ (1− p1 − p2)L2 + p1LU + p2U
2 + L2 > 0

⇐⇒ ∀
L,U

0 < L ≤ U =⇒ (2− p1 − p2)L2 + p1LU + p2U
2 > 0.

By using QEPCAD-B, we obtained

∀
L,U

0 < L ≤ U =⇒ (2− p1 − p2)L2 + p1LU + p2U
2 > 0

⇐⇒ p2 ≥ 0 ∧ (p1 ≥ 0 ∨ p1 + 2p2 − 2 > 0 ∨ (p1 + 2p2)
2 − 8p2 < 0).

72

3.6. Towards Optimal Square Root Algorithms

Lemma 3.23. We have

(A) ⇐⇒ (B) ,

where

(A) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ U ′ > 0

(B) :⇐⇒ q2 ≥ 0 ∧ (q1 ≥ 0 ∨ q1 + 2q2 − 2 > 0 ∨ (q1 + 2q2)
2 − 8q2 < 0).

Proof. Immediate by replacing p with q in Lemma 3.22.

Lemma 3.24. We have

(A) ⇐⇒ (B) ,

where

(A) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L′ ≤

√
x

(B) :⇐⇒ p2 ≤ 0 ∧ p2 − p4 + 1 ≤ 0 ∧ p1 + 2p2 − p4 ≤ 0.

Proof. We have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ L′ ≤

√
x

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ (1− p1 − p2)L2 + p1LU + p2U

2 + x

(2− p4)L+ p4U
≤
√
x

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U

=⇒ x− ((2− p4)L+ p4U)
√
x+ (1− p1 − p2)L2 + p1LU + p2U

2 ≤ 0.

In the above we used (3.8).

Note that the function

f2(
√
x) :=

(√
x
)2 − ((2− p4)L+ p4U)

√
x+ (1− p1 − p2)L2 + p1LU + p2U

2,

73

3. Synthesizing Optimal Algorithms. Case Study: Square Root

is convex on [L,U]. Hence, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ f2

(√
x
)
≤ 0

⇐⇒ ∀
L,U

0 < L ≤ U =⇒ f2 (L) ≤ 0

∧
∀
L,U

0 < L ≤ U =⇒ f2 (U) ≤ 0

⇐⇒ ∀
L,U

0 < L ≤ U

=⇒ L2 − L((2− p4)L+ p4U) + (1− p1 − p2)L2 + p1LU + p2U
2 ≤ 0

∧
∀
L,U

0 < L ≤ U

=⇒ U2 − U((2− p4)L+ p4U) + (1− p1 − p2)L2 + p1LU + p2U
2 ≤ 0

⇐⇒ ∀
L,U

0 < L ≤ U =⇒ (U − L) (L (p1 + 2p2 − p4) + (U − L) p2) ≤ 0

∧
∀
L,U

0 < L ≤ U =⇒ (U − L) (L (p1 + 2p2 − p4) + (U − L) (p2 − p4 + 1)) ≤ 0.

By using QEPCAD-B, we obtained

∀
L,U

0 < L ≤ U =⇒ (U − L) (L (p1 + 2p2 − p4) + (U − L) p2) ≤ 0

∧
∀
L,U

0 < L ≤ U =⇒ (U − L) (L (p1 + 2p2 − p4) + (U − L) (p2 − p4 + 1)) ≤ 0

⇐⇒ p1 + 2p2 − p4 ≤ 0 ∧ p2 ≤ 0
∧
p1 + 2p2 − p4 ≤ 0 ∧ p2 − p4 + 1 ≤ 0

⇐⇒ p2 ≤ 0 ∧ p2 − p4 + 1 ≤ 0 ∧ p1 + 2p2 − p4 ≤ 0.

Lemma 3.25. We have

(A) ⇐⇒ (B) ,

where

(A) :⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒

√
x ≤ U ′

(B) :⇐⇒ q24 − 4q2 ≤ 0 ∧ q1 + 2q2 − q4 ≥ 0.

74

3.6. Towards Optimal Square Root Algorithms

Proof. We have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒

√
x ≤ U ′

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U =⇒

√
x ≤ (1− q1 − q2)L2 + q1LU + q2U

2 + x

(2− q4)L+ q4U

⇐⇒ ∀
L,U,x

0 < L ≤
√
x ≤ U

=⇒ x− ((2− q4)L+ q4U)
√
x+ (1− q1 − q2)L2 + q1LU + q2U

2 ≥ 0.

In the above we used the fact that

C3 (q) ∧ 0 < L ≤ U =⇒ 2L+ q4(U − L) > 0.

Note that the function

f3(
√
x) :=

(√
x
)2 − ((2− q4)L+ q4U)

√
x+ (1− q1 − q2)L2 + q1LU + q2U

2,

is convex and its critical point

xC =
(2− q4)L+ q4U

2

lies in the interval [L,U]. Hence, we have

∀
L,U,x

0 < L ≤
√
x ≤ U =⇒ f3

(√
x
)
≥ 0

⇐⇒ ∀
L,U

0 < L ≤ xc ≤ U =⇒ f (xC) ≥ 0

⇐⇒ ∀
L,U

0 < L ≤ (2− q4)L+ q4U

2
≤ U

=⇒ −
(

(2− q4)L+ q4U

2

)2

+ (1− q1 − q2)L2 + q1LU + q2U
2 ≥ 0.

By using QEPCAD-B, we obtained

∀
L,U

0 < L ≤ (2− q4)L+ q4U

2
≤ U

=⇒ −
(

(2− q4)L+ q4U

2

)2

+ (1− q1 − q2)L2 + q1LU + q2U
2 ≥ 0

⇐⇒ q24 − 4q2 ≤ 0 ∧ q1 + 2q2 − q4 ≥ 0.

By Lemma 3.21, we have p2 = 0. Hence from now on, we will replace p2 with 0.

75

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Lemma 3.26. E(p, q) is the same as the function in the file at http: // www. risc.
jku. at/ people/ merascu/ PhDThesis/ SquareRoot/ PI-PI. nb .

Proof. We have

E (p, q) = sup
L,U,x

0<L<
√
x<U

 (1−q1−q2)L2+q1LU+q2U2+x
(2−q4)L+q4U − (1−p1−p2)L2+p1LU+p2U2+x

(2−p4)L+p4U

U − L

= sup

L,U,x
0<L<

√
x<U

 (1−q1−q2)L2+q1LU+q2U2+x
(2−q4)L+q4U − (1−p1)L2+p1LU+x

(2−p4)L+p4U

U − L

 .
By removing the denominators and collecting, we have

E (p, q) = sup
L,U,x

0<L<
√
x<U

((1− q1 − q2)L2 + q1LU + q2U

2)((2− p4)L+ p4U)
−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
x

]
Note that the function

g(x) :=

((1− q1 − q2)L2 + q1LU + q2U
2)((2− p4)L+ p4U)

−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
x

attains its maximum at
g(U2) if p4 − q4 ≥ 0
∧
g(L2) if p4 − q4 ≤ 0.

In the above we used the fact that

C (p, q) ∧ 0 < L ≤ U ∧ ((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
≥ 0

⇐⇒ C (p, q) ∧ 0 < L ≤ U ∧ (p4 − q4)(U − L)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
≥ 0

⇐⇒ C (p, q) ∧ 0 < L ≤ U ∧ p4 − q4
((2− p4)L+ p4U)((2− q4)L+ q4U)

≥ 0

⇐⇒ C (p, q) ∧ 0 < L ≤ U ∧ p4 − q4 ≥ 0.

76

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

3.6. Towards Optimal Square Root Algorithms

Similarly

C (p, q) ∧ 0 < L ≤ U ∧ ((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
≤ 0

⇐⇒ p4 − q4 ≤ 0.

Hence

E (p, q) = sup
L,U,x

0<L<
√
x<U

g(x)

= sup{E1 (p, q) , E2 (p, q)},

where
E1 (p, q) := sup

L,U
0<L<U

g(U2) if p4 − q4 ≥ 0

E2 (p, q) := sup
L,U

0<L<U

g(L2) if p4 − q4 ≤ 0.

Similar to Lemma 3.15, in order to compute E(p, q) we proceed as follows. Note that
E1(p, q) and E2(p, q) have, respectively, the form

E1(p, q) = v1i(p, q) if c1i(p, q), i = 1..n

E2(p, q) = v2j(p, q) if c2j(p, q), j = 1..m

Hence, E(p, q) has the form

E(p, q) =

{
v1i(p, q) if c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) ≥ v2j(p, q)

v2j(p, q) if c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) < v2j(p, q)
,

where i = 1..n, j = 1..m.

Finally, we combined

c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) ≥ v2j(p, q)

and, respectively,

c1i(p, q) ∧ c2j(p, q) ∧ v1i(p, q) < v2j(p, q),

where i = 1..n, j = 1..m with

1 ≤ p4 ≤ 2 ∧ p1 ≥ 0 ∧ p2 = 0 ∧ p1 − p4 ≤ 0
∧
0 ≤ q4 ≤ 2 ∧ q24 − 4q2 ≤ 0 ∧ q1 + 2q2 − q4 ≥ 0.

The quantifier-free equivalent of E(p, q) is too lengthy and is not listed here, but at
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb.

77

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

3. Synthesizing Optimal Algorithms. Case Study: Square Root

Lemma 3.27. Let p4 − q4 ≥ 0 and

E1 (p, q) := sup
L,U

0<L<U

g(U2),

where

g(x) :=

((1− q1 − q2)L2 + q1LU + q2U
2)((2− p4)L+ p4U)

−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
U2

The quantifier-free equivalent of E1(p, q) is too lengthy and is not listed here, but at
http: // www. risc. jku. at/ people/ merascu/ PhDThesis/ SquareRoot/ PI-PI. nb .

Proof. Let p4 − q4 ≥ 0. We have

E1 (p, q) := sup
L,U

0<L<U

g(U2)

= sup
L,U

0<L<U

((1− q1 − q2)L2 + q1LU + q2U

2)((2− p4)L+ p4U)
−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
U2

]

= sup
L,U

0<L<U

((1− q1 − q2)L2 + q1LU + (q2 + 1)U2)((2− p4)L+ p4U)
−((1− p1)L2 + p1LU + U2)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L(U − L) + q2(U − L)(U + L) + L2 + U2)((2− p4)L+ p4U)
−(p1L(U − L) + L2 + U2)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L(U − L) + q2(U − L)(U + L))((2− p4)L+ p4U)
−(p1L(U − L))((2− q4)L+ q4U)
+(L2 + U2)((2− p4)L+ p4U − ((2− q4)L+ q4U))

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

78

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

3.6. Towards Optimal Square Root Algorithms

= sup
L,U

0<L<U

(q1L(U − L) + q2(U − L)(U + L))((2− p4)L+ p4U)
−(p1L(U − L))((2− q4)L+ q4U)
+(p4 − q4)(L2 + U2)(U − L)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L+ q2(U + L))((2− p4)L+ p4U)− p1L((2− q4)L+ q4U)
+(p4 − q4)(L2 + U2)

((2− p4)L+ p4U)((2− q4)L+ q4U)

 .
By dividing by L > 0, we have

E1(p, q) = sup
L,U

0<L<U

(q1L+ q2(U + L))((2− p4)L+ p4U)− p1L((2− q4)L+ q4U)
+(p4 − q4)(L2 + U2)

((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

1<U
L

(
q1 + q2

(
U
L + 1

)) (
(2− p4) + p4

U
L

)
− p1

(
(2− q4) + q4

U
L

)
+(p4 − q4)

(
1 +

(
U
L

)2)(
(2− p4) + p4

U
L

) (
(2− q4) + q4

U
L

)
 .

By renaming U
L with K we have

E1(p, q) = sup
K
K>1

[
(q1 + q2(K + 1))((2− p4) + p4K)− p1((2− q4) + q4K) + (p4 − q4)(1 +K2)

((2− p4) + p4K)((2− q4) + q4K)

]

= sup
K

K−1>0

(q1 + 2q2 + q2(K − 1))(2 + p4(K − 1))− p1(2 + q4(K − 1))
+(p4 − q4)((K − 1)2 + 2(K − 1) + 2)

(2 + p4(K − 1))(2 + q4(K − 1))

 .
By renaming K − 1 with K we have

E1(p, q) = sup
K
K>0

[
(q1 + 2q2 + q2K)(2 + p4K)− p1(2 + q4K) + (p4 − q4)(K2 + 2K + 2)

(2 + p4K)(2 + q4K)

]
.

By performing polynomial division in the variable K, E1(p, q) can be rewritten as

E1(p, q) =
q2
q4
− 1

p4
+

1

q4
+

1

p4q4
sup
K
K>0

[
aR+ b

(2 + p4K)(2 + q4K)

]
.

79

3. Synthesizing Optimal Algorithms. Case Study: Square Root

where

a = p24(−2− 2q2 + 2q4 + q1q4 + 2q2q4) + q24(2− 2p4 − p1p4)
b = −2p4(2 + 2q2 + p1q4 − q1q4 − 2q2q4 + q24) + 2q4(p

2
4 + 2).

We computed

sup
K
K>0

[
aR+ b

(2 + p4K)(2 + q4K)

]
using symbolic constrained optimization available in Mathematica. The quantifier-free
equivalent of E1(p, q) is too lengthy and is not listed here, but at http://www.risc.
jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb.

Lemma 3.28. Let p4 − q4 ≤ 0 and

E2 (p, q) := sup
L,U

0<L<U

g(L2),

where

g(x) :=

((1− q1 − q2)L2 + q1LU + q2U
2)((2− p4)L+ p4U)

−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
x

The quantifier-free equivalent of E2(p, q) is too lengthy and is not listed here, but at
http: // www. risc. jku. at/ people/ merascu/ PhDThesis/ SquareRoot/ PI-PI. nb .

Proof. Let p4 − q4 ≤ 0. We have

E2 (p, q) := sup
L,U

0<L<U

g(L2)

= sup
L,U

0<L<U

((1− q1 − q2)L2 + q1LU + q2U

2)((2− p4)L+ p4U)
−((1− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

+
((2− p4)L+ p4U)− ((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)
L2

]

= sup
L,U

0<L<U

((2− q1 − q2)L2 + q1LU + q2U

2)((2− p4)L+ p4U)
−((2− p1)L2 + p1LU)((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

80

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

3.6. Towards Optimal Square Root Algorithms

= sup
L,U

0<L<U

(2L2 + q1L(U − L) + q2(U − L)(U + L))((2− p4)L+ p4U)
−(2L2 + p1L(U − L))((2− q4)L+ q4U)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L(U − L) + q2(U − L)(U + L))((2− p4)L+ p4U)
−(p1L(U − L))((2− q4)L+ q4U)
+2L2(((2− p4)L+ p4U)− (((2− q4)L+ q4U)))

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L(U − L) + q2(U − L)(U + L))((2− p4)L+ p4U)
−(p1L(U − L))((2− q4)L+ q4U)
+2L2(p4 − q4)(U − L)

(U − L)((2− p4)L+ p4U)((2− q4)L+ q4U)

= sup
L,U

0<L<U

(q1L+ q2(U + L))((2− p4)L+ p4U)− p1L((2− q4)L+ q4U)
+2L2(p4 − q4)

((2− p4)L+ p4U)((2− q4)L+ q4U)

 .
By dividing by L > 0, we have

E2(p, q) = sup
L,U

1<U
L

[(
q1 + q2

(
U
L + 1

)) (
(2− p4) + p4

U
L

)
− p1

(
(2− q4) + q4

U
L

)
+ 2(p4 − q4)(

(2− p4) + p4
U
L

) (
(2− q4) + q4

U
L

)]
.

By renaming U
L with K we have

E2(p, q) = sup
K
K>1

[
(q1 + q2(K + 1))((2− p4) + p4K)− p1((2− q4) + q4K) + 2(p4 − q4)

((2− p4) + p4K)((2− q4) + q4K)

]

= sup
K

K−1>0

[
(q1 + 2q2 + q2(K − 1))(2 + p4(K − 1))− p1(2 + q4(K − 1)) + 2(p4 − q4)

(2 + p4(K − 1))(2 + q4(K − 1))

]
.

By renaming K − 1 with K we have

E2(p, q) = sup
K
K>0

[
(q1 + 2q2 + q2K)(2 + p4K)− p1(2 + q4K) + 2(p4 − q4)

(2 + p4K)(2 + q4K)

]
.

By performing polynomial division in the variable K, E2(p, q) can be rewritten as

E2(p, q) =
q2
q4

+
1

q4
sup
K
K>0

[
cR+ d

(2 + p4K)(2 + q4K)

]
,

81

3. Synthesizing Optimal Algorithms. Case Study: Square Root

where

c = p4(−2q2 + q1q4 + 2q2q4)− p1q24
d = q4(−2p1 + 2p4 + 2q1 + 4q2 − q4)− 4q2.

We computed

sup
K
K>0

[
cR+ d

(2 + p4K)(2 + q4K)

]
using symbolic constrained optimization available in Mathematica. The quantifier-free
equivalent of E2(p, q) is too lengthy and is not listed here, but at http://www.risc.
jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb.

Lemma 3.29 (Main Theorem (b)). We have

E(p, q) =
1

4
⇐⇒ p0 = 1− p1 − p2 ∧ p3 = 2− p4

∧
q0 = 1− q1 − q2 ∧ q3 = 2− q4
∧
q1 ≤ p1 ≤ 1 ∧ p2 = 0 ∧ p4 = 1
∧
1
2 ≤ q1 ≤ 1 ∧ q2 = 1

4 ∧ q4 = 1

Proof. We follow the reasoning for obtaining the proof of Theorem 3.14. The com-
putations were carried out with Mathematica computer algebra system. Finally, we
obtained the claim.

The complete computational process for finding the constraints on p, q can be found
at http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb.

Lemma 3.30 (Main Theorem (a)). We have E(p, q) ≥ 1
4 .

Proof. The proof is immediate, since C(p∗, q∗) is true and E(p∗, q∗) = 1
4 , where

p∗ = (0, 1, 0, 1, 1), q∗ = (14 ,
1
2 ,

1
4 , 1, 1).

It would be desirable to find the optimal refinement map satisfying C(p, q), simi-
larly to what was proved in Section 3.4. We were able to prove that Rp∗,q∗ , where
p∗ = (0, 1, 0, 1, 1), q∗ = (14 ,

1
2 ,

1
4 , 1, 1), is optimal among the quadratic maps satisfying

C ′(p, q), but not over C(p, q) (Secant-Newton map is a counterexample). Currently,
we are investigating if the set of values of L,U, x for which Rp∗,q∗ is not optimal has
measure-zero.

82

http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb
http://www.risc.jku.at/people/merascu/PhDThesis/SquareRoot/PI-PI.nb

4. Conclusion and Future Work

This thesis presents algorithmic methods for building and maintaining reliable software
through program analysis and synthesis. To achieve this goal, we combine theoretical
research motivated by practical applications in formal methods, automated theorem
proving, and computer algebra.

Our static analysis approach shows that reasoning about imperative programs, in
particular those with iterative structures, does not necessarily need a complex theo-
retical construction, because: i) it is possible to transfer the semantics of the program
into the semantics of the logical formulas, thus avoiding any special theory related
to program execution; ii) the termination condition can be expressed as an induction
principle in the object theory of the domain manipulated by the program.

Currently, our method can be applied to programs with single recursion and with
arbitrarily-nested loops with abrupt termination.

We also synthesized optimal algorithms for computing the square root of a real
number by iterative refining. This was achieved by: i) transforming the synthesis
problem into a program verification problem, ii) imposing natural assumptions in order
to simplify the solution process, and iii) applying quantifier elimination techniques in
order to solve the program verification problem.

The research performed in this thesis spans research areas ranging from program
specification and verification, automated theorem proving to error analysis and inter-
val analysis and computer algebra. Moreover, it revealed new research agenda in the
direction of the development of efficient automated theorem provers, quantifier elim-
ination and constraint optimization algorithms which we plan to investigate further
as follows.

It is interesting to study how our verification method can be extended to handle
other types of abrupt termination and recursion and to programs with data structures.

We also plan to research the optimality of other classes of refining functions. The
final goal is to consider the full class. At this aim, we have to develop and/or adapt
powerful algebraic algorithms to our specific problem. Since SMT technology owns
and continuously develops efficient algorithms, and recently algebraic algorithms for
quantifier elimination (cylindrical algebraic decomposition) have been adapted to this
technology, we plan to explore their application and extension to our problem.

Furthermore, the ideas from the square root algorithm analysis and synthesis can,
apparently, be applied for nth root computation algorithm. We also plan to consider
this extension of our work.

83

A. Theorema Proofs. Simple Loops

A.1. Existence of the Recursion Index

Prove:

(Theorem (Existence of the recursion index))

∀
δ

(
ι[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
,

under the assumptions:

(Definition (Termination))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))⇒ ∀

δ
(ι[δ]⇒ π[δ]),

(Assumption (Instantiation of π))

∀
δ

(
π[δ] :⇐⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
,

(Assumption (Rn+)) ∀
n,x

(
Rn[R[x]]:=Rn

+
[x]
)

,

(Assumption (R0)) ∀
δ

(
R0[δ]:=δ

)
,

(Assumption (Prop. Nat. 1)) ∀
n
(n ≥ 0),

(Assumption (n-+)) ∀
n

(
n 6= 0⇒

(
(n−)

+
:=n

))
,

(Assumption (xy++)) ∀
x,y

(x ≥ y ⇒ x+ ≥ y+).

From (Definition (Termination)), by (Assumption (Instantiation of π)), we obtain:

(1) ∀
δ

(
ι[δ]⇒

(
¬φ[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
∧(

φ[δ] ∧ ∃
n

(
¬φ [Rn[R[δ]]] ∧ ∀

m
(¬φ [Rm[R[δ]]]⇒ m ≥ n)

)
⇒

∃
n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

)))
⇒
∀
δ

(
ι[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
.

85

A. Theorema Proofs. Simple Loops

From (1), by (Assumption (Rn+)), we obtain:

(2) ∀
δ

(
ι[δ]⇒

(
¬φ[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
∧(

φ[δ] ∧ ∃
n

(
¬φ
[
Rn

+
[δ]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ]
]
⇒ m ≥ n

))
⇒

∃
n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

)))
⇒
∀
δ

(
ι[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
.

For proving (Theorem (Existence of the recursion index)), by (2), it suffices to prove

(4) ∀
δ

(
ι[δ]⇒

(
¬φ[δ]⇒ ∃

n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

))
∧(

φ[δ] ∧ ∃
n

(
¬φ
[
Rn

+
[δ]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ]
]
⇒ m ≥ n

))
⇒

∃
n

(
¬φ [Rn[δ]] ∧ ∀

m
(¬φ [Rm[δ]]⇒ m ≥ n)

)))
.

For proving (4) we take all variables arbitrary but fixed and prove:

(5) ι [δ0]⇒
(
¬φ [δ0]⇒ ∃

n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
(

φ [δ0] ∧ ∃
n

(
¬φ
[
Rn

+
[δ0]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ0]
]
⇒ m ≥ n

))
⇒

∃
n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
.

We prove (5) by the deduction rule.

We assume

(6) ι [δ0]

and show

(7)
(
¬φ [δ0]⇒ ∃

n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
∧(

φ [δ0] ∧ ∃
n

(
¬φ
[
Rn

+
[δ0]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ0]
]
⇒ m ≥ n

))
⇒

∃
n

(
¬φ [Rn [δ0]] ∧ ∀

m
(¬φ [Rm [δ0]]⇒ m ≥ n)

))
.

To prove (7) one has to prove

(8) ¬φ [δ0]⇒ ¬φ
[
R0 [δ0]

]
∧ ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ 0) and assumes

(9) φ [δ0] ∧
(
¬φ
[
Rn0

+
[δ0]
]
∧ ∀
m

(
¬φ
[
Rm

+
[δ0]
]
⇒ m ≥ n0

))
and proves

(10) ¬φ
[
Rn0

+
[δ0]
]
∧ ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ n0+).

We prove (8) by the deduction rule.

We assume

(11) ¬φ [δ0]

and show

(12) ¬φ
[
R0 [δ0]

]
∧ ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ 0).

We prove the individual conjunctive parts of (12):

86

A.1. Existence of the Recursion Index

Proof of (12.1) ¬φ
[
R0 [δ0]

]
:

Using (Assumption (R0)), the goal (12.1) is transformed into:

(13) ¬φ [δ0].

Formula (13) is true because it is identical to (11).

Proof of (12.2) ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ 0):

For proving (12.2) we take all variables arbitrary but fixed and prove:

(15) ¬φ [Rm0 [δ0]]⇒ m0 ≥ 0.

We prove (15) by the deduction rule.

We assume

(16) ¬φ [Rm0 [δ0]]

and show

(17) m0 ≥ 0.

From (17), by (Assumption (Prop. Nat. 1)), we obtain:

(18) m0 ≥ 0.

Formula (17) is true because it is identical to (18).

We prove the individual conjunctive parts of (10):

Proof of (10.1) ¬φ
[
Rn0

+
[δ0]
]
:

Formula (10.1) is true because it is identical to (9.2.1).

Proof of (10.2) ∀
m

(¬φ [Rm [δ0]]⇒ m ≥ n0+):

For proving (10.2) we take all variables arbitrary but fixed and prove:

(19) ¬φ [Rm1 [δ0]]⇒ m1 ≥ n0+.

We prove (19) by the deduction rule.

We assume

(20) ¬φ [Rm1 [δ0]]

and show

(21) m1 ≥ n0+.

From (20), and (9.1), we obtain:

(22) m1 6= 0.

From (22), by (Assumption (n-+)), we obtain:

(24) (m1
−) +:=m1.

From (22) and an appropriate instance of (9.2.2) we obtain by modus ponens:

(25) ¬φ
[
R(m1

−)+ [δ0]
]
⇒ m1

− ≥ n0.
From (25), by (24), we obtain:

(26) ¬φ [Rm1 [δ0]]⇒ m1
− ≥ n0.

From (20) and (26) we obtain by modus ponens

(27) m1
− ≥ n0.

87

A. Theorema Proofs. Simple Loops

From (27), by (Assumption (xy++)), we obtain:

(28) (m1
−) + ≥ n0+.

From (28), by (24), we obtain:

(29) m1 ≥ n0+.

Formula (21) is true because it is identical to (29). �

A.2. Existence of the Function Implemented by the Loop

Prove:

(Theorem (Semantics)) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ] = δ))∧ (φ[δ]⇒ (f [δ] = f [R[δ]]))),

under the assumptions:

(Definition (Witness)) ∀
δ

(
ι[δ]⇒

(
f [δ]:=RM [δ][δ]

))
,

(Assumption (M[δ])) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (M [δ]:=0))),

(Assumption (R0)) ∀
x

(
R0[x]:=x

)
,

(Assumption (Rn+)) ∀
n,x

(
Rn[R[x]]:=Rn

+
[x]
)

,

(Assumption (R+)) ∀
δ

(ι[δ]⇒ (M [R[δ]]+:=M [δ])),

(Definition (Loop Safety)) ∀
δ
(ι[δ]⇒ (φ[δ]⇒ ι[R[δ]])).

For proving (Theorem (Semantics)) we take all variables arbitrary but fixed and prove:

(1) ι [δ0]⇒ (¬φ [δ0]⇒ (f [δ0] = δ0)) ∧ (φ [δ0]⇒ (f [δ0] = f [R [δ0]])).

We prove (1) by the deduction rule.

We assume

(2) ι [δ0]

and show

(3) (¬φ [δ0]⇒ (f [δ0] = δ0)) ∧ (φ [δ0]⇒ (f [δ0] = f [R [δ0]])).

We prove the individual conjunctive parts of (3):

Proof of (3.1) ¬φ [δ0]⇒ (f [δ0] = δ0):

We prove (3.1) by the deduction rule.

We assume

(4) ¬φ [δ0]

and show

(5) f [δ0] = δ0.

From (2), by (Assumption (M[δ])), we obtain:

(8) ¬φ [δ0]⇒ (M [δ0] :=0).

From (2), by (Definition (Witness)), we obtain:

(7) f [δ0] :=RM [δ0] [δ0].

88

A.2. Existence of the Function Implemented by the Loop

From (4) and (8) we obtain by modus ponens

(11) M [δ0] :=0.

Using (7), the goal (5) is transformed into:

(12) RM [δ0] [δ0] = δ0.

Using (11), the goal (12) is transformed into:

(13) R0 [δ0] = δ0.

Using (Assumption (R0)), the goal (13) is transformed into:

(14) δ0 = δ0.

Formula (14) is proved because is True.

Proof of (3.2) φ [δ0]⇒ (f [δ0] = f [R [δ0]]):

We prove (3.2) by the deduction rule.

We assume

(15) φ [δ0]

and show

(16) f [δ0] = f [R [δ0]].

From (2), by (Definition (Loop Safety)), we obtain:

(21) φ [δ0]⇒ ι [R [δ0]].

From (2), by (Assumption (R+)), we obtain:

(20) M [R [δ0]]
+:=M [δ0].

From (2), by (Definition (Witness)), we obtain:

(18) f [δ0] :=RM [δ0] [δ0].

From (15) and (21) we obtain by modus ponens

(22) ι [R [δ0]].

Using (18), the goal (16) is transformed into:

(23) RM [δ0] [δ0] = f [R [δ0]].

From (22), by (Definition (Witness)), we obtain:

(24) f [R [δ0]] :=RM [R[δ0]] [R [δ0]].

Using (24), the goal (23) is transformed into:

(28) RM [δ0] [δ0] = RM [R[δ0]] [R [δ0]].

Using (Assumption (Rn+)), the goal (28) is transformed into:

(29) RM [δ0] [δ0] = RM [R[δ0]]+ [δ0].

Using (20), the goal (29) is transformed into:

(30) RM [δ0] [δ0] = RM [δ0] [δ0].

Formula (30) is proved because is True. �

89

A. Theorema Proofs. Simple Loops

A.3. Uniqueness of the Function Implemented by the Loop

Prove:

(Theorem (Uniqueness of f)) ∀
δ
(ι[δ]⇒ (f [δ] = g[δ])),

under the assumptions:

(Definition (Termination))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))⇒ ∀

δ
(ι[δ]⇒ π[δ]),

(Definition (Semantics of f))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ]:=δ)) ∧ (φ[δ]⇒ (f [δ]:=f [R[δ]]))),

(Definition (Semantics of g))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (g[δ]:=δ)) ∧ (φ[δ]⇒ (g[δ]:=g[R[δ]]))),

(Assumption (Instantiation of π)) ∀
δ
(π[δ] :⇔ f [δ] = g[δ]).

From (Definition (Termination)), by (Assumption (Instantiation of π)), we obtain:

(1) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ] = g[δ])) ∧ (φ[δ] ∧ (f [R[δ]] = g[R[δ]])⇒ (f [δ] = g[δ])))
⇒
∀
δ
(ι[δ]⇒ (f [δ] = g[δ])).

For proving (Theorem (Uniqueness of f)), by (1), it suffices to prove

(3) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ] = g[δ])) ∧ (φ[δ] ∧ (f [R[δ]] = g[R[δ]])⇒ (f [δ] = g[δ]))).

For proving (3) we take all variables arbitrary but fixed and prove:

(4) ι [δ0]⇒
(¬φ [δ0]⇒ (f [δ0] = g [δ0]))∧(φ [δ0] ∧ (f [R [δ0]] = g [R [δ0]])⇒ (f [δ0] = g [δ0])).

We prove (4) by the deduction rule.

We assume

(5) ι [δ0]

and show

(6) (¬φ [δ0]⇒ (f [δ0] = g [δ0]))∧(φ [δ0] ∧ (f [R [δ0]] = g [R [δ0]])⇒ (f [δ0] = g [δ0])).

We prove the individual conjunctive parts of (6):

Proof of (6.1) ¬φ [δ0]⇒ (f [δ0] = g [δ0]):

We prove (6.1) by the deduction rule.

We assume

(7) ¬φ [δ0]

and show

90

A.3. Uniqueness of the Function Implemented by the Loop

(8) f [δ0] = g [δ0].

From (7), by (Definition (Semantics of g)), we obtain:

(10) ι [δ0]⇒ (g [δ0] :=δ0) ∧ (φ [δ0]⇒ (g [δ0] :=g [R [δ0]])).

From (7), by (Definition (Semantics of f)), we obtain:

(9) ι [δ0]⇒ (f [δ0] :=δ0) ∧ (φ [δ0]⇒ (f [δ0] :=f [R [δ0]])).

From (5) and (9) we obtain by modus ponens

(13) (f [δ0] :=δ0) ∧ (φ [δ0]⇒ (f [δ0] :=f [R [δ0]])).

From (5) and (10) we obtain by modus ponens

(14) (g [δ0] :=δ0) ∧ (φ [δ0]⇒ (g [δ0] :=g [R [δ0]])).

Using (13.1), the goal (8) is transformed into:

(15) δ0 = g [δ0].

(14.1), the goal (15) is transformed into:

(16) δ0 = δ0.

Formula (16) is proved because is True.

Proof of (6.2) φ [δ0] ∧ (f [R [δ0]] = g [R [δ0]])⇒ (f [δ0] = g [δ0]):

We prove (6.2) by the deduction rule.

We assume

(17) φ [δ0] ∧ (f [R [δ0]] = g [R [δ0]])

and show

(18) f [δ0] = g [δ0].

From (17.1), by (Definition (Semantics of g)), we obtain:

(20) ι [δ0]⇒ (φ [δ0]⇒ (g [δ0] :=g [R [δ0]])).

From (17.1), by (Definition (Semantics of f)), we obtain:

(19) ι [δ0]⇒ (φ [δ0]⇒ (f [δ0] :=f [R [δ0]])).

From (5) and (19) we obtain by modus ponens

(23) φ [δ0]⇒ (f [δ0] :=f [R [δ0]]).

From (17.1) and (23) we obtain by modus ponens

(24) f [δ0] :=f [R [δ0]].

From (5) and (20) we obtain by modus ponens

(25) φ [δ0]⇒ (g [δ0] :=g [R [δ0]]).

From (17.1) and (25) we obtain by modus ponens

(26) g [δ0] :=g [R [δ0]].

Using (24), the goal (18) is transformed into:

(27) f [R [δ0]] = g [δ0].

Using (26), the goal (27) is transformed into:

(28) f [R [δ0]] = g [R [δ0]].

Formula (28) is true because it is identical to (17.2). �

91

A. Theorema Proofs. Simple Loops

A.4. Total Correctness

Prove:

(Theorem (Total Correctness))

∀
δ
(ι[δ]⇒ ι[f [δ]]),

under the assumptions:

(Definition (Termination))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ π[δ]) ∧ (φ[δ] ∧ π[R[δ]]⇒ π[δ]))⇒ ∀

δ
(ι[δ]⇒ π[δ]),

(Definition (Semantics))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ]:=δ)) ∧ (φ[δ]⇒ (f [δ]:=f [R[δ]]))),

(Assumption (Instantiation of π))

∀
δ
(π[δ] :⇐⇒ ι[f [δ]]).

From (Definition (Termination)), by (Assumption (Instantiation of π)), we obtain:

(1) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]]) ∧ (φ[δ] ∧ ι[f [R[δ]]]⇒ ι[f [δ]]))⇒ ∀

δ
(ι[δ]⇒ ι[f [δ]]).

For proving (Theorem (Total Correctness)), by (1), it suffices to prove

(3) ∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]]) ∧ (φ[δ] ∧ ι[f [R[δ]]]⇒ ι[f [δ]])).

For proving (3) we take all variables arbitrary but fixed and prove:

(4) ι [δ0]⇒ (¬φ [δ0]⇒ ι [f [δ0]]) ∧ (φ [δ0] ∧ ι [f [R [δ0]]]⇒ ι [f [δ0]]).

We prove (4) by the deduction rule.

We assume

(5) ι [δ0]

and show

(6) (¬φ [δ0]⇒ ι [f [δ0]]) ∧ (φ [δ0] ∧ ι [f [R [δ0]]]⇒ ι [f [δ0]]).

From (5), by (Definition (Semantics)), we obtain:

(7) (¬φ [δ0]⇒ (f [δ0] :=δ0)) ∧ (φ [δ0]⇒ (f [δ0] :=f [R [δ0]])).

We prove the individual conjunctive parts of (6):

Proof of (6.1) ¬φ [δ0]⇒ ι [f [δ0]]:

We prove (6.1) by the deduction rule.

We assume

(8) ¬φ [δ0]

and show

92

A.4. Total Correctness

(9) ι [f [δ0]].

From (8) and (7.1) we obtain by modus ponens

(10) f [δ0] :=δ0.

Using (10), the goal (9) is transformed into:

(11) ι [δ0].

Formula (11) is true because it is identical to (5).

Proof of (6.2) φ [δ0] ∧ ι [f [R [δ0]]]⇒ ι [f [δ0]]:

We prove (6.2) by the deduction rule.

We assume

(12) φ [δ0] ∧ ι [f [R [δ0]]]

and show

(13) ι [f [δ0]].

From (12.1) and (7.2) we obtain by modus ponens

(14) f [δ0] :=f [R [δ0]].

Using (14), the goal (13) is transformed into:

(15) ι [f [R [δ0]]].

Formula (15) is true because it is identical to (12.2). �

93

B. Theorema Proofs. Loops with return

B.1. Total Correctness

Prove:

(Theorem (Total Correctness))

∀
α,δ

(IP [α] ∧ ι[δ]⇒ (¬φ[δ]⇒ ι[f [δ]]) ∧ (φ[δ] ∧ ψ[δ]⇒ OP [α, S[δ]])) ,

under the assumptions:

(Definition (Semantics))

∀
δ
(ι[δ]⇒ (¬φ[δ]⇒ (f [δ]:=δ)) ∧ (φ[δ] ∧ ψ[δ]⇒ (f [δ]:=S[δ]))),

(Definition (Functional Correctness)) ∀
α,δ

(IP [α] ∧ ι[δ]⇒ (φ[δ] ∧ ψ[δ]⇒ OP [α, S[δ]])).

For proving (Theorem (Total Correctness)) we take all variables arbitrary but fixed
and prove:

(1) IP [α0] ∧ ι [δ0]⇒ (¬φ [δ0]⇒ ι [f [δ0]]) ∧ (φ [δ0] ∧ ψ [δ0]⇒ OP [α0, S [δ0]]).

We prove (1) by the deduction rule.

We assume

(2) IP [α0] ∧ ι [δ0]

and show

(3) (¬φ [δ0]⇒ ι [f [δ0]]) ∧ (φ [δ0] ∧ ψ [δ0]⇒ OP [α0, S [δ0]]).

From (2), by (Definition (Functional Correctness)), we obtain:

(4) φ [δ0] ∧ ψ [δ0]⇒ OP [α0, S [δ0]].

From (2.2), by (Definition (Semantics)), we obtain:

(5) (¬φ [δ0]⇒ (f [δ0] :=δ0)) ∧ (φ [δ0] ∧ ψ [δ0]⇒ (f [δ0] :=S [δ0])).

We prove the individual conjunctive parts of (3):

Proof of (3.1) ¬φ [δ0]⇒ ι [f [δ0]]:

We prove (3.1) by the deduction rule.

We assume

(6) ¬φ [δ0]

and show

(7) ι [f [δ0]].

95

B. Theorema Proofs. Loops with return

From (6) and (5.1) we obtain by modus ponens

(8) f [δ0] :=δ0.

Using (8), the goal (7) is transformed into:

(9) ι [δ0].

Formula (9) is true because it is identical to (2.2).

Proof of (3.2) φ [δ0] ∧ ψ [δ0]⇒ OP [α0, S [δ0]]:

Formula (3.2) is true because it is identical to (4). �

96

C. Mathematica Routines and Listings
Accompanying Section 3.5

C.1. The function E(p, q) from Lemma 3.15

E(p, q) =

E1 if G1

E2 if G2

E3 if G3

E4 if G4

where

E1 = 1− 1

p4

E2 = 1− 1

q4

E3 = 1− 2

p3 + p4

E4 = 1− 2

q3 + q4

G1 = g11 ∨ ... ∨ g16

G2 = g21 ∨ ... ∨ g25

G3 = g31 ∨ ... ∨ g35

G4 = g41 ∨ ... ∨ g43

where again

g11 =1− 1

p4
≥ 1− 2

q3 + q4
∧ p4 − q4 > 0 ∧ −p3 − p4 + q3 + q4 > 0

∧ p3 − p4 ≤ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2

∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g12 =1− 1

p4
≥ 1 +

−p3 + p4 + q3 − q4
−p4q3 + p3q4

∧ p4 − q4 > 0 ∧ −p3 − p4 + q3 + q4 > 0

∧ p3 − p4 ≤ 0 ∧ −p4 + q4 < 0 ∧ p3 + p4 − q3 − q4 ≤ 0

∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2 ∧ q3≥ 2− q4 ∧ p4≥ 1 ∧ p3 ≥ 2− p4

97

C. Mathematica Routines and Listings Accompanying Section 3.5

g13 =1− 1

p4
≥ 1− 2

q3 + q4
∧ p4 − q4 ≥ 0 ∧ −p3 − p4 + q3 + q4 ≤ 0

∧ p3 − p4 ≤ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2

∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g14 =1− 1

p4
≥ 1− 1

q4
∧ p4 − q4 ≥ 0 ∧ −p3 − p4 + q3 + q4 ≤ 0

∧ p3 − p4 ≤ 0 ∧ −p4 + q4 ≥ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 ≤ 0

∧ q4 ≥ 2 ∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4
g15 =p4 − q4 ≥ 0 ∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 ≤ 0 ∧ −p4 + q4 ≤ 0

∧ p3 + p4 − q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g16 =1− 1

p4
≥ 1 +

−p3 + p4 + q3 − q4
−p4q3 + p3q4

∧ p4 − q4 ≥ 0 ∧ −p3 − p4 + q3 + q4 ≤ 0

∧ p3 − p4 ≤ 0 ∧ −p4 + q4 < 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 ≤ 0

∧ q4 ≥ 2 ∧ q3≥ 2− q4 ∧ p4≥ 1 ∧ p3≥ 2− p4

g21 =1− 2

p3 + p4
< 1− 1

q4
∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0

∧ −p4 + q4 > 0 ∧ p3 + p4 − q3 − q4 > 0 ∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2

∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g22 =1− 2

p3 + p4
< 1− 1

q4
∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0

∧ −p4 + q4 ≥ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2

∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4
g23 =p4 − q4 ≤ 0 ∧ −p3 − p4 + q3 + q4 > 0 ∧ −p4 + q4 ≥ 0 ∧ p3 + p4 − q3 − q4 ≤ 0

∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g24 =1 +
p3 − p4 − q3 + q4
p4q3 − p3q4

< 1− 1

q4
∧ p4 − q4 < 0 ∧ −p3 − p4 + q3 + q4 ≤ 0

∧ p3 − p4 ≤ 0 ∧ −p4 + q4 > 0 ∧ p3 + p4 − q3 − q4 > 0 ∧ q3 − q4 ≤ 0

∧ q4 ≥ 2 ∧ q3≥ 2− q4 ∧ p4≥ 1 ∧ p3≥ 2− p4

g25 =1 +
p3 − p4 − q3 + q4
p4q3 − p3q4

< 1− 1

q4
∧ p4 − q4 < 0 ∧ −p3 − p4 + q3 + q4 ≤ 0

∧ p3 − p4 ≤ 0 ∧ −p4 + q4 ≥ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 ≤ 0

∧ q4 ≥ 2 ∧ q3≥ 2− q4 ∧ p4≥ 1 ∧ p3≥ 2− p4

98

C.2. Constrained Optimization Routine for Proof of Theorem Theorem 3.14

g31 =1− 2

p3 + p4
≥ 1 +

−p3 + p4 + q3 − q4
−p4q3 + p3q4

∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0

∧ −p4 + q4 > 0 ∧ p3 + p4 − q3 − q4 > 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g32 =1− 2

p3 + p4
≥ 1− 1

q4
∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0 ∧ −p4 + q4 > 0

∧ p3 + p4 − q3 − q4 > 0 ∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g33 =1− 2

p3 + p4
≥ 1− 2

q3 + q4
∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0

∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g34 =1− 2

p3 + p4
≥ 1− 1

q4
∧ −p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0 ∧ −p4 + q4 ≥ 0

∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 ≤ 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g35 =− p3 − p4 + q3 + q4 ≤ 0 ∧ p3 − p4 > 0 ∧ −p4 + q4 ≤ 0 ∧ p3 + p4 − q3 − q4 > 0

∧ q4 ≥ 2 ∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g41 =1 +
p3 − p4 − q3 + q4
p4q3 − p3q4

< 1− 2

q3 + q4
∧ p4 − q4 > 0 ∧ −p3 − p4 + q3 + q4 > 0

∧ p3 − p4 > 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g42 =1− 1

p4
< 1− 2

q3 + q4
∧ p4 − q4 > 0 ∧ −p3 − p4 + q3 + q4 > 0

∧ p3 − p4 ≤ 0 ∧ p3 + p4 − q3 − q4 ≤ 0 ∧ q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4
∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

g43 =p4 − q4 ≤ 0 ∧ −p3 − p4 + q3 + q4 > 0 ∧ p3 + p4 − q3 − q4 ≤ 0

∧ q3 − q4 > 0 ∧ q4 ≥ 2 ∧ q3 ≥ 2− q4 ∧ p4 ≥ 1 ∧ p3 ≥ 2− p4

C.2. Constrained Optimization Routine for Proof of Theorem
Theorem 3.14

The routine FindMin has the following specification.

� Input: list of the form {{e1, c1}, ..., {en, cn}}, where ei is an expression in p, q,
ci is a conjunction of equalities/inequalities in p, q, i = 1..n;

99

C. Mathematica Routines and Listings Accompanying Section 3.5

� Output: list of the form {{{v1, s1}, C1}, ..., {{vn, sn}, Cn}}, where vi is the min-
imum value in the region determined by ci, si is a substitution for p, q for which
ei = vi, Ci is a disjunction of conjunctions of equalities/inequalities in p, q for
which ei = vi, i = 1..n.

Clear[FindMin];

FindMin[l_] := Module[{min, minLst={}},

For[i=1, i<=Length[l], i++,

min = Minimize[l[[i]], {p3, p4, q3, q4}];

R = LogicalExpand[Reduce[

Join[{min[[1]]>=l[[i]][[1]]}, l[[i]][[2;;-1]]],

Reals]];

minLst = Append[minLst, {min,R}];]; minLst];

C.3. Output of the Routine FindMin

{{{1/2, {p3 -> 2, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 0, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 0, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 0, p4 -> 2, q3 -> 0, q4 -> 2}}, False},

{{1/2, {p3 -> 3, p4 -> 1, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 5/2, p4 -> 3/2, q3 -> 1, q4 -> 2}},

p4==4-p3 && q4==2 && 2<p3 && q3<-2+p3+p4 && 0<=q3 && p3<=3},

{{1/2, {p3 -> 2, p4 -> 3/2, q3 -> 3/4, q4 -> 2}},

(q4==2 && 1<p3 && p4<p3 && q3<-2+p3+p4 && 0<=q3 && 1<=p4 && p3<=2) ||

(q4==2 && 2<p3 && p3<3 && p4<4-p3 && q3<-2+p3+p4 && 0<=q3 && 1<=p4)},

{{1/2, {p3 -> 3, p4 -> 1, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 5/2, p4 -> 3/2, q3 -> 2, q4 -> 2}},

4-p4==p3 && q3==2 && q4==2 && p4<2 && 1<=p4},

{{1/2, {p3 -> 7/4, p4 -> 5/4, q3 -> 1, q4 -> 2}},

2-p4+q3==p3 && q4==2 && p4<2 && -2+2p4<q3 && q3<2 && 1<=p4},

{{1/2, {p3 -> 2, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 2, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 2, p4 -> 0, q3 -> 0, q4 -> 2}},

p4==2 && q3==p3 && q4==2 && 0<=q3 && q3<=2},

{{1/2, {p3 -> 2, p4 -> 2, q3 -> 0, q4 -> 2}},

p4==2 && q4==2 && 0<p3 && q3<p3 && 0<=q3 && p3<=2},

{{1/2, {p3 -> 0, p4 -> 2, q3 -> 0, q4 -> 2}}, False},

{{1/2, {p3 -> 2, p4 -> 2, q3 -> 2, q4 -> 2}}, False},

{{1/2, {p3 -> 3, p4 -> 1, q3 -> 2, q4 -> 2}},

(p4==2-p3 && q4==2 && 0<q3 && 0<=p3 && p3<=1 && q3<=2) ||

100

C.3. Output of the Routine FindMin

(q4==2 && 1<p3 && p3<2 && -2+p3+p4<q3 && 1<=p4 && p4<=2 && q3<=2) ||

(q4==2 && 2-p3<p4 && -2+p3+p4<q3 && 0<=p3 && p3<=1 && p4<=2 && q3<=2)||

(q4==2 && p3<3 && p4<4-p3 && -2+p3+p4<q3 && 1<=p4 && 2<=p3 && q3<=2)},

{{1/2, {p3 -> 1, p4 -> 3/2, q3 -> 1/4, q4 -> 2}},

(q4==2 && 0<p3 && 2-p3<p4 && p4<2 && q3<-2+p3+p4 && 0<=q3 && p3<=1) ||

(q4==2 && 1<p3 && p3<2 && p4<2 && q3<-2+p3+p4 && 0<=q3 && p3<=p4)},

{{1/2, {p3 -> 5/4, p4 -> 7/4, q3 -> 1, q4 -> 2}},

(p3==1 && p4==1 && q3==0 && q4==2) ||

(2-p4+q3==p3 && q4==2 && 1<p4 && p4<2 && 0<=q3 && q3<=-2+2p4)}}

101

Bibliography

[1] G. Alefeld and J. Herzberger. Introduction to Interval Computations. Academic
Press, Inc., New York, NY, 1983.

[2] S. Anand, C. Păsăreanu, and W. Visser. JPF-SE: A Symbolic Execution Exten-
sion to Java PathFinder. In Proceedings of the International Conference on Tools
and Algorithms for the Construction and Analysis of Systems, 2007.

[3] D. Arnon, G. E. Collins, and S. McCallum. Cylindrical Algebraic Decomposition
I: The Basic Algorithm. SIAM Journal on Computing, 1984.

[4] B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach. Springer, 2007.

[5] N. Beebe. Accurate Square Root Computation. Technical report, Center for
Scientific Computing, Department of Mathematics,University of Utah, 1991.

[6] J. Berg and B. Jacobs. The LOOP Compiler for Java and JML. In Proceedings of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2001.

[7] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Develop-
ment. Coq’Art: The Calculus of Inductive Constructions. Springer, 2004.

[8] R. Boute. Calculational Semantics: Deriving Programming Theories from Equa-
tions by Functional Predicate Calculus. ACM Transactions on Programming
Languages and Systems, 2006.

[9] A. Bradley and Z. Manna. The Calculus of Computation: Decision Procedures
with Applications to Verification. Springer-Verlag New York, Inc., 2007.

[10] C. Brown. Simple CAD Construction and its Applications. Journal of Symbolic
Computation, 2001.

[11] C. Brown. QEPCAD-B: A Program for Computing with Semi-Algebraic Sets
using CADs. SIGSAM Bulletin, 2003.

[12] B. Buchberger and A. Craciun. Algorithm Synthesis by Lazy Thinking: Examples
and Implementation in Theorema. In Electronic Notes in Theoretical Computer
Science, 2004.

[13] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A
Survey of the Theorema Project. In Proceedings of the International Symposium
on Symbolic and Algebraic Computation, 1997.

[14] E. Clarke and E. A. Emerson. Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In Workshop on Logic of Programs, 1982.

103

Bibliography

[15] W. Cody and W. Waite. Software Manual for the Elementary Functions. Prentice-
Hall, Englewood Cliffs, NJ, 1980.

[16] P. J. Cohen. Decision Procedures for Real and p-adic Fields. Communications
on Pure and Applied Mathematics, 1969.

[17] G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Alge-
braic Decomposition. In Automata Theory and Formal Languages, 1975.

[18] B. Cook, A. Podelski, and A. Rybalchenko. Termination Proofs for Systems
Code. ACM SIGPLAN Notices, 2006.

[19] D. Coward. Symbolic Execution Systems - a Review. Journal of Software Enge-
neering, 1988.

[20] J. Davenport and J. Heintz. Real Quantifier Elimination is Doubly Exponential.
Journal of Symbolic Computation, 1988.

[21] L. de Moura and N. Björner. Z3: An Efficient SMT Solver. In Proceedings of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2008.

[22] Department of Commerce, National Institute of Standards and Technology. Soft-
ware Errors Cost U.S. Economy 59.5 Billion Annually. http://www.nist.gov/

public_affairs/releases/n02-10.htm, 2002.

[23] E. W. Dijkstra. A Constructive Approach to the Problem of Program Correctness.
BIT, 1968.

[24] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[25] A. Dolzmann and T. Sturm. REDLOG: Computer Algebra Meets Computer
Logic. SIGSAM Bulletin, 1997.

[26] A. Dolzmann, T. Sturm, and V. Weispfenning. A New Approach for Automatic
Theorem Proving in Real Geometry. Journal of Automated Reasoning, 1998.

[27] B. Buchberger et al. A Survey of the Theorema project. In Proceedings of the
International Symposium on Symbolic and Algebraic Computation, 1997.

[28] B. Buchberger et al. The Theorema Project: A Progress Report. In Proceedings
of the Symposium on the Integration of Symbolic Computation and Mechanized
Reasoning, 2000.

[29] B. Buchberger et al. Theorema: Towards Computer-Aided Mathematical Theory
Exploration. Journal of Applied Logic, 2006.

[30] M. J. Fischer and M. O. Rabin. Super-Exponential Complexity of Presburger
Arithmetic. In Proceedings of Complexity of Computation, 1974.

[31] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata. Extended
Static Checking for Java. ACM SIGPLAN Notices, 2002.

[32] R. Floyd. Assigning Meaning to Programs. In Proceedings of Symposia in Sym-
posia in Applied Mathematics American Mathematical Society, 1967.

[33] D. Fowler and E. Robson. Square Root Approximations in Old Babylonian Math-

104

http://www.nist.gov/public_affairs/releases/n02-10.htm
http://www.nist.gov/public_affairs/releases/n02-10.htm

Bibliography

ematics: YBC 7289 in Context. Historia Mathematica, 1998.

[34] M. Gordon and T. Melham, editors. Introduction to HOL: A Theorem Proving
Environment for Higher Order Logic. Cambridge University Press, 1993.

[35] D. Gries. The Science of Programming. Springer, 1981.

[36] E. R. Hansen and R. I. Greenberg. An Interval Newton Method. Applied Math-
ematics and Computation, 1983.

[37] J.F. Hart, E.W. Cheney, C.L. Lawson, H.J. Maehly, C.K. Mesztenyi, J.R. Rice,
H.C. Thacher Jr., and C. Witzgall. Computer Approximations. John Wiley, 1968.
Reprinted, E. Krieger Publishing Company (1978).

[38] J. Heintz, M. Roy, and P. Solernó. Sur la Complexité du Principe de Tarski-
Seidenberg. Bulletin de la Société Mathématique de France, 1990.

[39] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 1969.

[40] H. Hong. An Improvement of the Projection Operator in Cylindrical Algebraic
Decomposition. In Proceedings of the International Symposium on Symbolic and
Algebraic Computation, 1990.

[41] H. Hong. Simple Solution Formula Construction in Cylindrical Algebraic De-
composition based Quantifier Elimination. In Proceedings of the International
Symposium on Symbolic and Algebraic Computation, 1992.

[42] H. Hong. Quantifier Elimination for Formulas Constrained by Quadratic Equa-
tions. In Proceedings of the International Symposium on Symbolic and Algebraic
Computation, 1993.

[43] H. Hong. An Efficient Method for Analyzing the Topology of Plane Real Algebraic
Curves. Mathematics and Computers in Simulation, 1996.

[44] W. Howden. Methodology for the Authomatic Generation of Program Test Data.
Technical report, Standford Artificial Inteligence Laboratory, Standford, CA,
1973.

[45] M. Huisman. Reasoning about Java Programs in Higher Order Logic with PVS
and Isabelle. PhD thesis, University of Nijmegen, 2001.

[46] B. Jacobs, J. Smans, and F. Piessens. VeriFast: Imperative Programs as Proofs.
In Verified Software: Theories, Tools and Experiments; Workshop on Tools &
Experiments, 2010.

[47] P. Janičić and A. Bundy. Automatic Synthesis of Decision Procedures: A Case
Study of Ground and Linear Arithmetic. In Towards Mechanized Mathematical
Assistants, 2007.

[48] D. Kapur. Automatically Generating Loop Invariants using Quantifier Elimina-
tion. In Proceedings of ACA, 2004.

[49] D. Kapur. A Quantifier Elimination based Heuristic for Automatically Generating
Inductive Assertions for Programs. Journal of Systems Science and Complexity,

105

Bibliography

2006.

[50] M. Kaufmann, J. Strother Moore, and P. Manolios. Computer-Aided Reasoning:
An Approach. Kluwer Academic Publishers, 2000.

[51] J. King. Symbolic Execution and Program Testing. Communications of the ACM,
1976.

[52] M. Kirchner. Program Verification with the Mathematical Software System The-
orema. Technical report, Research Institute for Symbolic Computation, Johannes
Kepler University, Linz, Austria, 1999.

[53] L. Kovacs. Automated Invariant Generation by Algebraic Techniques for Imper-
ative Program Verification in Theorema. PhD thesis, RISC, Johannes Kepler
University Linz, Austria, 2007.

[54] A. Krauss. Automating Recursive Definitions and Termination Proofs in Higher-
Order Logic. PhD thesis, Technische Universität München, 2009.

[55] L. Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Professional, 2002.

[56] G. Leavens and Y. Cheon. Design by Contract with JML. 2003.

[57] C. S. Lee, N. Jones, and A. Ben-Amram. The Size-Change Principle for Program
Termination. ACM SIGPLAN Notices, 2001.

[58] J. Loeckx, K. Sieber, and R. Stansifer. The Foundations of Program Verification.
John Wiley & Sons, Inc., 1984.

[59] S. McCallum. An Improved Projection Operation for Cylindrical Algebraic De-
composition. In Research Contributions from the European Conference on Com-
puter Algebra-Volume 2, 1985.

[60] S. McCallum. On Projection in CAD-based Quantifier Elimination with Equa-
tional Constraint. In Proceedings of the International Symposium on Symbolic
and Algebraic Computation, 1999.

[61] J. McCarthy. A Basis for a Mathematical Theory of Computation. In Computer
Programming and Formal Systems, 1963.

[62] J. R. Meggitt. Pseudo Division and Pseudo Multiplication Processes. IBM Jour-
nal of Research and Development, 1962.

[63] J. Meyer and A. Poetzsch-Heffter. An Architecture for Interactive Program
Provers. In Proceedings of the International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, 2000.

[64] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1966.

[65] D. R. Morrison. A Method for Computing the Inverse of Certain Functions.
MTAC, 1956.

[66] A. Neumaier. Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge, UK, 1990.

[67] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL – A Proof Assistant for

106

Bibliography

Higher-Order Logic. Springer, 2002.

[68] M. Norrish. C Formalized in HOL. PhD thesis, Cambridge University, 1998.

[69] O. Olsson and A. Wallenburg. Customised Induction Rules for Proving Correct-
ness of Imperative Programs. In Proceedings of the International Conference on
Software Engineering and Formal Methods, 2005.

[70] S. Owre, J. Rushby, and N. Shankar. PVS: A Prototype Verification System. In
Proceedings of the International Conference on Automated Deduction, 1992.

[71] A. Platzer and J. Quesel. KeYmaera: A Hybrid Theorem Prover for Hybrid Sys-
tems. In Proceedings of International Joint Conference on Automated Reasoning,
2008.

[72] A. Poetzsch-Heffter and P. Müller. A Programming Logic for Sequential Java. In
Proceedings of European Symposium on Programming, 1999.

[73] M. J. Cloud R. E. Moore, R. B. Kearfott. Introduction to Interval Analysis.
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2009.

[74] J. Renegar. On the Computational Complexity and Geometry of the First-Order
Theory of the Reals, Part I - III. Journal of Symbolic Computation, 1992.

[75] S. Sankaranaryanan, B. S. Henry, and Z. Manna. Non-linear Loop Invariant
Generation using Gröbner Bases. In Proceedings of the Symposium on Principles
of Programming Languages, 2004.

[76] W. Schreiner. Understanding Programs. Technical report, Research Institute for
Symbolic Computation, Johannes Kepler University, Linz, Austria, 2008.

[77] M. Schwerhoff. Symbolic Execution for Chalice. Master’s thesis, ETH Zurich,
2011.

[78] A. Seidenberg. A New Decision Method for Elementary Algebra. The Annals of
Mathematics, 1954.

[79] K. Slind. Function Definition in Higher-Order Logic. In Proceedings of Theorem
Proving in Higher Order Logics, 1996.

[80] S. Srivastava, S. Gulwani, and J. Foster. From Program Verification to Pro-
gram Synthesis. In Proceedings of the Symposium on Principles of Programming
Languages, 2010.

[81] S. Steinberg and R. Liska. Stability Analysis by Quantifier Elimination. Mathe-
matics and Computers in Simulation, 2002.

[82] J. Stoy. Denotational Semantics: The Scott-Strachey Approach to Programming
Language Theory. MIT Press, 1981.

[83] A. Strzebonski. Cylindrical Algebraic Decomposition using Validated Numerics.
Journal of Symbolic Computation, 2006.

[84] A. Tarski. A decision method for elementary algebra and geometry. Bulletin of
the American Mathematical Society, 1951.

[85] A. Tiwari, N. Shankar, and J. Rushby. Invisible Formal Methods for Embed-

107

Bibliography

ded Control Systems. Proceedings of the Institute of Electrical and Electronics
Engineers, 2003.

[86] D. von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safety
and Hoare Logic. PhD thesis, Technische Universität München, 2001.

[87] V. Weispfenning. The Complexity of Linear Problems in Fields. Journal of
Symbolic Computation, 1988.

[88] V. Weispfenning. Quantifier Elimination for Real Algebra - the Cubic Case. In
Proceedings of the International Symposium on Symbolic and Algebraic Compu-
tation, 1994.

[89] V. Weispfenning. A New Approach to Quantifier Elimination for Real Algebra.
In Quantifier Elimination and Cylindrical Algebraic Decomposition, Texts and
Monographs in Symbolic Computation. Springer-Verlag, Vienna, 1998.

[90] J. H. Wensley. A Class of Non-Analytical Iterative Processes. The Computer
Journal, 1959.

[91] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer, 1996.

[92] S. Wolfram. The Mathematica Book. Version 5.0. Wolfram Media, 2003.

108

Eidesstattliche Erklärung

Ich erkläre an Eides statt, daß ich die vorliegende Dissertation selbstständig und ohne
fremde Hilfe verfaßt, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht
habe.

Die vorliegende Dissertation ist mit dem elektronisch übermittelten Textdokument
identisch.

Linz, 7. November 2012 Mădălina Eraşcu

109

Mădălina Eraşcu
Research Institute for Symbolic Computation
Johannes Kepler University
Altenberger Strasse 69
A-4040 Linz, Austria

Phone: +43 680 4470895
Email: merascu@risc.jku.at
Homepage: http://www.risc.jku.at/home/merascu

Personal Data
Date of birth: October 10, 1983 (Oravita, Romania)

Citizenship: Romanian

Languages: Romanian (native speaker), English (fluently), Spanish (intermediate), German (intermediate),
French (beginner)

Education
M.Sc. in Computer Science, Johannes Kepler University, Linz, Austria, 2008

Master’s thesis: “Automated Formal Static Analysis and Retrieval of Source Code”

B.Sc. in Computer Science, West University, Timisoara, Romania, 2006
Bachelor’s thesis: “XML Web Services using ADO.NET”

Current Position
Ph.D. Student in Computer Science at Research Institute for Symbolic Computation, Johannes Kepler Uni-
versity, Linz, Austria

Ph.D. thesis: “Computational Logic and Quantifier Elimination Techniques for (Semi-)automatic Static
Analysis and Synthesis of Algorithms”

Fields of Research Interest
Automated theorem proving, computer algebra, formal methods in software development, programming

Research

Journal Papers
M. Erascu and H. Hong, Secant-Newton map is the optimal among contracting quadratic maps for square
root computation, accepted for publication in the Journal of Reliable Computing.

Refereed Conference Papers
M. Erascu and T. Jebelean, Automated Certification of a Logic-Based Verification Method for Imperative
Loops, In Proceedings of the 14th International Symposium on Symbolic and Numeric Algorithms for
Scientific Computing, V. Negru, A. Voronkov (ed.), to appear

M. Erascu and T. Jebelean, A Purely Logical Approach to the Termination of Imperative Loops, In Proceedings
of the 12th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing, S.
Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, D. Zaharie (ed.), pp. 142 – 149, 2010, IEEE Computer Society,
978-0-7695-4324-6

mailto:merascu@risc.jku.at
http://www.risc.jku.at/home/merascu

Mădălina Eraşcu 2

M. Erascu and T. Jebelean, A Calculus for Imperative Programs: Formalization and Implementation, In
Proceedings of the 11th International Symposium on Symbolic and Numeric Algorithms for Scientific Com-
puting, S. Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, D. Zaharie (ed.), pp. 77 – 84, 2009, IEEE Computer
Society, 978-0-7695-2964-5

Other Publications
M. Erascu and T. Jebelean, A Purely Logical Approach to Program Termination, In Proceedings of the
11th International Workshop on Termination, Peter Schneider-Kamp (ed.), Proceedings of Federated Logic
Conference, Edinburgh, July 9–21, 2010

M. Erascu and T. Jebelean, Practical Program Verification by Forward Symbolic Execution: Correctness and
Examples, In Austrian-Japan Workshop on Symbolic Computation in Software Science, Bruno Buchberger,
Tetsuo Ida, Temur Kutsia (ed.) 08-08, pp. 47–56. 2008. RISC Report Series, University of Linz, Austria

M. Erascu, Automated Formal Static Analysis and Retrieval of Source Code, International School for Infor-
matics – Johannes Kepler University. Diploma Thesis. August 2008. In RISC Raport Series 08-21

Full list: https://www.risc.jku.at/home/merascu?view=2

Scientific Talks
M. Erascu and H. Hong, Semi-automatic Algorithm Analysis and Synthesis (Case Study: Square Root),
Contributed talk at International Seminar on Program Verification, Automated Debugging and Symbolic
Computation, October 10–12, 2012, Beijing, China

M. Erascu and T. Jebelean, Automated Certification of a Logic-Based Verification Method for Imperative
Loops, Contributed talk at International Seminar on Program Verification, Automated Debugging and
Symbolic Computation, October 10–12, 2012, Beijing, China

M. Erascu and H. Hong, Semi-automatic Algorithm Analysis and Synthesis (Case Study: Square Root),
Computer Laboratory, University of Cambridge, June 21, 2012

M. Erascu and T. Jebelean, Automated Certification of a Logic-Based Verification Method for Imperative
Loops, Contributed talk at CiE 2012 – How the World Computes, June 18 – 23, 2012

M. Erascu, Symbolic Computation in Static Program Analysis. Applications to Numerical Algorithms, Con-
tributed talk at Doctoral Program “Computational Mathematics” Statusseminar, October 5 – 7, 2011

Full list: http://www.risc.jku.at/publications/index.php?author=merascu&division=talks

Research Visits and Seminar Participation
Research visit at Computer Laboratory, University of Cambridge, Cambridge, UK, June 21, 2012. Host: Dr.
Grant Olney Passmore

Research stay at Department of Mathematics, North Carolina State University, Raleigh, USA, March – April
2012, January – May 2011. Host: Prof. Dr. Hoon Hong

Summer School on Verification Technology, Systems & Applications, Nancy, France, 2009

Summer School on Logics and Languages for Reliability and Security, Marktoberdorf, Germany, 2009

Professional Experience

Teaching
Automated Theorem Proving

Nesin Summer School, Sirince, Turkey, July 30 – August 5, 2012

https://www.risc.jku.at/home/merascu?view=2
http://www.risc.jku.at/publications/index.php?author=merascu&division=talks

Mădălina Eraşcu 3

Tutorial on Cylindrical Algebraic Decomposition
Nesin Summer School, Sirince, Turkey, August 29 – September 4, 2011

Programming
Mindbreeze Software GmbH, Linz, Austria

Master’s thesis, October 2007 – August 2008

S.C. memIQ S.R.L., Timisoara, Romania
Bachelor’s thesis, October 2005 – May 2006

Summer internship, May 2005 – September 2005

Computer Skills
Programming languages: C, C++, Java, C#

Computer Algebra Systems: Mathematica

Honors, Awards, & Fellowships
DOC-fFORTE-fellowship of the Austrian Academy of Sciences for carrying out research at Research Insti-
tute for Symbolic Computation, June 2011 – November 2012. Competitive fellowship: 25 selections out of
approx. 90 applications. (45.000 EUR)

Marshall Plan Foundation scholarship for research visit at North Carolina State University, USA, January
2011 – June 2011. (8.000 EUR)

Microsoft Research grant for the participation fee and living expenses at the Marktoberdorf Summer School,
August 2009

Upper Austrian Government Scholarship for 1st year of PhD studies, 2008 – 2009

Excellency diploma awarded by the Romanian Board of Education and Research, Minister Ecaterina An-
dronescu, June 2002

Service
Reviewer for SCSS 2012, J. of Symbolic Computation (Special Issue Workshop on Invariant Generation
2010)

Assistant Editor for http://www.scholarpedia.org/, 2010 – 2011;

In charge with logistics at FLOC 2010, FPSAC 2009, SCCS 2008, RTA 2008, Calculemus 2007, WING 2007

http://www.scholarpedia.org/

Mădălina Eraşcu 4

References
Prof. Dr. Tudor Jebelean
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe
email: tjebelea@risc.jku.at

Prof. Dr. Hoon Hong
Department of Mathematics
North Carolina State University
Box 8205, Raleigh NC 27695, USA
email: hong@ncsu.edu

Prof. Dr. Wolfgang Schreiner
Research Institute for Symbolic Computation
Johannes Kepler University
A-4040 Linz, Austria, Europe
email: Wolfgang.Schreiner@risc.jku.at

Prof. Dr. Ali Nesin
Istanbul Bilgi Üniversitesi
Matematik Bölümü
Kurtulus, Deresi Cad. 47, Dolapdere 34435 Beyoğlu Istanbul
email: anesin@bilgi.edu.tr

Last updated: November 21, 2012

tjebelea@risc.jku.at
hong@ncsu.edu
Wolfgang.Schreiner@risc.jku.at
anesin@bilgi.edu.tr

	Abstract
	Zusammenfassung
	Introduction
	Related Work
	Contributions of the Thesis
	Structure of the Thesis

	Automated Static Analysis of Algorithms
	Program Verification by Symbolic Execution
	Logical Foundations of Imperative Recursive Programs
	Syntax and Semantics
	Partial Correctness
	Termination

	Soundness of the Method
	Correctness of Single Recursive Programs
	Correctness of Simple Loops
	Correctness of Abruptly Terminating Loops

	Implementation
	The Theorema System
	Theorema Language Layers
	Predicate Logic Prover. Extension
	Adding a Symbolic Execution Feature to the Theorema System

	Synthesizing Optimal Algorithms. Case Study: Square Root
	Program Synthesis meets Program Verification
	Program Synthesis as a QE Problem
	QE by CAD
	The QE Problem and Applications
	A Brief Summary of QE Methods
	The Principles of QE by CAD
	What is CAD?
	Projection
	Stack Construction
	Formula Construction

	Optimality of Secant-Newton Refinement Map
	Main Result
	Proof

	The Complexity of Contracting Quadratic Maps
	Main Result
	Proof

	Towards Optimal Square Root Algorithms
	Main Result
	Proof

	Conclusion and Future Work
	Theorema Proofs. Simple Loops
	Existence of the Recursion Index
	Existence of the Function Implemented by the Loop
	Uniqueness of the Function Implemented by the Loop
	Total Correctness

	Theorema Proofs. Loops with return
	Total Correctness

	Mathematica Routines and Listings Accompanying Section 3.5
	The function E(p,q) from Lemma 3.15
	Constrained Optimization Routine for Proof of Theorem Theorem 3.14
	Output of the Routine FindMin

	Bibliography

