
1

Lower Bounds and Constructions for q-ary Codes Correcting Asymmetric
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Abstract: In this paper, we generalize some lower bounds, constructions and cor-
responding decoding algorithm from binary codes to the case q-ary codes. We show
that some previously known bounds for binary asymmetric error-correcting codes can
also be obtained for the generalization.
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1 Introduction

Binary error-correcting codes are usually designed for communication systems modeled by the binary-
symmetric channel. However, in certain communication systems, such as optical communications and
some computer memory systems, the error probability from 1 to 0 is significantly higher than the error
probability from 0 to 1. These communication systems are modeled by the binary asymmetric channel(the
Z-channel). Error correcting codes for the binary asymmetric channel have been studied since the 1950s.
There are many papers dedicated to the construction of good codes and the derivation of lower and
upper bounds for the symmetric error-correcting codes, see [1-17], and references therein. Klove[9] gave
a unified account of error-correcting codes for the binary asymmetric channel.

For two binary n-tuples
x = (x1, . . . , xn) and y = (y1, . . . , yn)

the asymmetric distance between x and y is defined as

dα(x,y) = max{N(x,y), N(y,x)}

where
N(x,y) = ]{i |xi = 0 and yi = 1}

For a binary code C ⊆ {0, 1}n, the minimal asymmetric distance of C is defined as

∆(C) = min{dα(x,y) |x,y ∈ C and x 6= y}

It was shown in [5] that a binary code C ∈ {0, 1}n can correct t or fewer asymmetric errors(1-errors)
if and only if ∆(C) ≥ t + 1. A binary code of length n and minimum distance ∆ is called a binary (n, ∆)
asymmetric code. Let Γ(n, ∆) denote the maximum number of codewords in a binary code of length
n and minimum distance ∆. One of the fundamental research problems in the theory of asymmetric
error-correcting codes is to determine Γ(n, ∆) or give good lower and upper bounds.
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2 2 THE GENERALIZED CONSTRUCTION AND DECODING ALGORITHM

In 2002, Xing[17] gave a construction of binary constant-weight codes. The next year, by modifying the
construction, Fu,et al.[8] presented a general construction for binary asymmetric error-correcting codes
and first obtained a general lower bound on the sizes of these binary asymmetric error-correcting codes.
They also proved that some new lower bounds for these asymmetric error-correcting codes improves the
existing ones.

In the present paper, we generalize the construction for binary codes in [8] to the case q-ary codes and
obtain the corresponding decoding algorithm some bounds for these q-ary asymmetric error-correcting
codes.

2 The Generalized Construction and Decoding Algorithm

We first generalize the definition of the asymmetric distance from the binary asymmetric error-correcting
code to the q-ary case,where q is a prime number.

Let Fq be the q elements finite field. For two q-ary n-tuples

x = (x1, . . . , xn) and y = (y1, . . . , yn)

the asymmetric distance between x and y is defined as

dα(x,y) = max{N(x,y), N(y,x)}

where

N(x,y) =
n∑

i=1,yi>xi

(yi − xi)

For a q-ary code C ⊆ Fn
q , the minimal asymmetric distance of C is defined as

∆(C) = min{dα(x,y) |x,y ∈ C and x 6= y}

Remark 1 For the case q = 2, the above definition just is the asymmetric distance between two
binary n-tuples x,y ∈ {0, 1}n defined in [8].

Now let Ft be the t elements finite field, where t is a prime power. For a monic polynomial f(x) ∈ Ft[x],
it is well-known that in the isomorphic meaning, the residue class ring R = Ft[x]/(f(x)) and its unite
group R∗ = (Ft[x]/(f(x)))∗ can be viewed as

R = {g(x) ∈ Ft[x] | deg g(x) < deg f(x)}

and
R∗ = {g(x) ∈ Ft[x] | deg g(x) < deg f(x) and gcd(g(x), f(x)) = 1}

The addition and multiplication operations over R are polynomial addition and multiplication modulo
f(x). It is obvious that F∗t is a subgroup of R∗. This means that in the isomorphic meaning we can
consider the quotient group G = R∗/F∗t as the set of all monic polynomials of R∗, that is,

G = {g(x) ∈ Ft[x] | deg g(x) < deg f(x), g(x) is monic and gcd(g(x), f(x)) = 1}

In the following, we use the quotient group G to construct q-ary asymmetric error-correcting codes.

Construction Let n and d be positive integers satisfying n ≤ t and 2 ≤ d < n, where t is a prime
power. Let f(x) ∈ Ft[x] be a monic polynomial with degree d such that there exist n distinct elements
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α1, . . . , αn ∈ Ft with f(αi) 6= 0. Then (x − αi) is coprime to f(x) for i = 1, . . . , n. Hence (x − αi) ∈ G

for any i = 1, . . . , n. Consider the map
Ω : Fn

q −→ G

(c1, . . . , cn) 7−→
n∏

i=1

(x− αi)ci ∈ G

For every g(x) ∈ G, denote Cg = Ω−1(g(x)). Then Cg is a q-ary (n, ∆ ≥ d) asymmetric error-correcting
code for every g(x) ∈ G such that Cg 6= ∅. Since |G| = φ∗(f(x)), there exists g ∈ G such that |Cg| ≥

qn

φ∗(f(x)) , where φ∗(f(x)) is the Euler function for the polynomial f(x) ∈ Ft[x].
Furthermore, set Γ(n, ∆) to be the maximum number of codewords in a q-ary code of length n and

minimum asymmetric distance ∆. Then Γ(n, ∆) ≥ maxg∈G |Cg|.

Proof of the Construction
For every g(x) ∈ G such that Cg 6= ∅, then it is sufficient to show that

dα(u,v) ≥ d, u,v ∈ Cg and u 6= v

Let u = (u1, . . . , un) and v = (v1, . . . , vn), then

Ω(u) = Ω(v) = g(x) ∈ G

Thus the element Ω(u)/Ω(v) is the identity in G. This means that

Ω(u)
Ω(v)

=
∏n

i=1(x− αi)ui∏n
i=1(x− αi)vi

= β ∈ R∗

Denote S = {i |ui > vi}, T = {i | vi > ui}, and A(x) =
∏

i∈S(x − αi)(ui−vi) − β
∏

i∈T (x − αi)(vi−ui).
Then S ∩ T = ∅ and either S 6= ∅ or T 6= ∅ since u 6= v. Therefore

{αi | i ∈ S} ∩ {αi | i ∈ T} = ∅

and either S 6= ∅ or T 6= ∅. Thus we have

f(x)|A(x) ∈ Ft[x]

Which implies that

deg f(x) ≤ deg A(x) ≤ max{N(u,v), N(u,v)} = dα(u,v)

This completes the proof. �

For every g ∈ G, if Cg 6= ∅, Cg is a q-ary (n, ∆ ≥ d) asymmetric code. Hence, Cg can correct d− 1 or
fewer asymmetric errors. Next we give a decoding algorithm for the q-ary asymmetric error-correcting
code Cg.

Decoding Algorithm

For an arbitrary g ∈ G, suppose the codeword c = (c1, c2, · · · , cn) ∈ Cg is transmitted and the vector

y = (y1, y2, · · · , yn) ∈ G is received. Calculate Ry(x) =
n∏

i=0

(x− αi)yi ∈ G.

(1) If g(x) = Ry(x),thus y is the correct codeword.
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(2) If g(x)
Ry(x) 6= 1, assume y has s errors, i1, i2, · · · , is, respectively, and 1 ≤ s ≤ n, 1 ≤ i1 < i2 <

· · · < is ≤ n. Then by properties of the asymmetric code, we have

g(x)
Ry(x)

= (x− αi1)
bi1 (x− αi2)

bi2 · · · (x− αis)
bis (1 ≤ |bj | ≤ |q|, j = i1, i2, · · · , is)

Hence the decoding is accomplished by cj = yj + bj , j = i1, i2, · · · , is.
(3) Otherwise, the decoding is considered to be failed.
Proof According to the above construction, we know that for each word c = (c1, . . . , cn) ∈ Fn

q , there
exists unique polynomial

∏n
i=1(x− αi)ci ∈ F∗t [x].

Now suppose that we send a codeword c = (c1, . . . , cn) ∈ Fn
q , and receive the word y = (y1, . . . , yn).

This means that we have a polynomial
∏n

i=1(x − αi)yi ∈ F∗t [x]. Hence there is no errors if and only if
y = c, i.e., ci = yi for any i = 1, . . . , n. This is true if and only if g(x) = Ry(x). Thus we complete the
proof of the case (1).

Otherwise, there is errors and so g(x)
Ry(x) 6= 1. Namely we have

E(x) =
g(x)

Ry(x)
=

∏n
i=0(x− αi)ci∏n
i=0(x− αi)yi

=
n∏

i=0

(x− αi)ci−yi , 0 ≤ |ci − yi| ≤ q, 1 ≤ i ≤ n

With mi = ci − yi 6= 0 for some i = i1, . . . , is(1 ≤ s ≤ n). Hence by decoding ci = yi + mi(0 ≤ i ≤ n) we
can get the codeword c = (c1, . . . , cn).

Hence we complete the proof of the decoding algorithm. �

Remark 2 (i) By taking q = 2 in the above construction, one can get the construction for binary
asymmetric error-correcting codes obtained in [8].

(ii) Since the error probability from 1 to 0 is significantly higher than the error probability from 0
to 1, so by taking q = 2 in the above decoding algorithm, one can show that bj = 1(j = i1, i2, · · · , is)
and so obtain the corresponding algorithm in [8].

3 Lower Bounds

Several lower bounds for binary error-correcting codes were obtained by a discussion of Varshamov’s
constructions and their generalizations(see [6] and [8]). In this section, in the same proof as those for the
corresponding results in [8], we show that these previously known lower bounds for binary asymmetric
error-correcting codes can also be obtained for our general construction.

Theorem 1 (1) If n is a prime power, then for d ≥ 2,

Γ(n, d) ≥ qn

nd−1 + nd−2 + . . . + d + 1

(2) If n + 1 is a prime power, then for d ≥ 3,

Γ(n, d) ≥ qn

(n + 1)d−1 − 1

(3) If t is the least prime power satisfying t ≥ n + 2, then for d ≥ 3,

Γ(n, d) ≥ qn

td−1 − td−2

Theorem 2 If n is a prime power and 2 ≤ d ≤ n, then

Γ(n, d) ≥ (n− 1)qn

(n2 − 1)r(n3 − 1)s
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where r and s are the two unique nonnegative integers satisfying d = 2r + 3s and s ∈ {0, 1}.
(2) If n is not a prime power, denote m as the least positive integer such that t = n + m is a prime

power. If 2 ≤ d ≤ m, then

Γ(n, d) ≥ qn

(t− 1)d−1

If d > m, then

Γ(n, d) ≥ qn

(t− 1)m−1ts′(t2 − 1)r′

where r′ and s′ are the two unique nonnegative integers satisfying d−m = 2r′ + s′ and s′ ∈ {0, 1}.

Corollary 1 If n + 1 is a prime power, then for d ≥ 2,

Γ(n, d) ≥ qn

((n + 1)s[(n + 1)2 − 1]r

where r and s are the two unique nonnegative integers satisfying d− 1 = 2r + s and s ∈ {0, 1}.

Corollary 2 If n + 2 is prime power, then for d ≥ 3,

Γ(n, d) ≥ qn

((n + 1)(n + 2)s[(n + 1)2 − 1]r

where r and s are the two unique nonnegative integers satisfying d− 2 = 2r + s and s ∈ {0, 1}.

Remark 3 (1) By taking q = 2 in Theorems 1-2 and corollaries 1-2, one can get the corresponding
lower bounds given in [8].

(2) By the similar proof for the corresponding results as that in [8], the remained results for binary
asymmetric codes in [8] can be generalized to the case q-ary just replacing 2n to be qn in all equations
(12-20).
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