PROOF OF A CONJECTURE BY AHLGREN AND ONO

SILVIU RADU

$$
\begin{aligned}
& \text { Abstract. Let } p(n) \text { denote the number of partitions of } n \text {. In this paper we } \\
& \text { prove that if }\{A n+B\} \text { is an arithmetic progression and } \ell \geq 5 \text { a prime, such } \\
& \text { that } \\
& \qquad p(A n+B) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N} .
\end{aligned}
$$

Then $\ell \mid A$ and $\left(\frac{24 B-1}{\ell}\right) \neq\left(\frac{-1}{\ell}\right)$. This settles an open problem by Scott Ahlgren and Ken Ono. Our proof is based on results by Deligne and Rapoport.

1. Introduction

For $\ell \geq 5$ a prime we define

$$
\delta_{\ell}:=\frac{\ell^{2}-1}{24}, \quad \epsilon_{\ell}:=\left(\frac{-6}{\ell}\right)
$$

and

$$
S_{\ell}:=\left\{\beta \in\{0, \ldots, \ell-1\}:\left(\frac{\beta+\delta_{\ell}}{\ell}\right)=0 \text { or }-\epsilon_{\ell}\right\} .
$$

Let $p(n)$ denote the number of partitions of $n \in \mathbb{N}$. The pourpose of this paper is to prove the following theorem conjectured by Scott Ahlgren and Ken Ono [2]:

Theorem 1.1. Suppose that $\ell \geq 5$ is prime, $A, B \in \mathbb{N}$ such that $A>B$ and

$$
p(A n+B) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N}
$$

Then $\ell \mid A$ and there exists $\beta \in S_{\ell}$ such that $B \equiv \beta(\bmod \ell)$.

The importance of this theorem is motivated by a previous paper [1] by the authors where they prove the following theorem:

Theorem 1.2 (Ahlgren and Ono). If $\ell \geq 5$ is prime, m is a positive integer, and $\beta \in S_{\ell}$, then there are infinitely many non-nested arithmetic progressions $\{A n+$ $B\} \subseteq\{\ell n+\beta\}$, such that for every integer n we have

$$
p(A n+B) \equiv 0 \quad\left(\bmod \ell^{m}\right)
$$

In [1, Sect. 1] the authors write: "In Section 4, we consider those progressions $\ell n+\beta$ for $\beta \notin S_{\ell}$. We give heuristics that cast doubt on the existence of congruences within these progressions." The proof of the Theorem 1.1 is based on deep results by Deligne and Rapoport [3] and some results in [5] or [7]. We are also using theorems 4.2, 4 and 4.4 which were used in a previous paper and are also based on

[^0]results in [3]. Our contribution is the Lemma 5.5 which takes the main part of the last section.

The organization of this paper is as follows. In Section 2 we prove Theorem 1.1 by citing several theorems in Section 4. In Section 3 we give some preliminaries to modular forms. In Section 4 we make a classification of congruences in the sense that we show that some congruences are implied by others in a progression with smaller modulus. In Section 5 we prove our main result Lemma 5.5 which is needed for proving Lemma 4.6 in Section 4. Also in Section we prove Lemma 5.6 which is a technical result needed to prove Lemma 4.5 in Section 4.

We continue the introduction with the following reformulation of the set S_{ℓ} in Theorem 1.1.

Lemma 1.3. For $\ell \geq 5$ a prime we have

$$
S_{\ell}=\left\{\beta \in\{0, \ldots, \ell-1\}:\left(\frac{24 \beta-1}{\ell}\right) \neq\left(\frac{-1}{\ell}\right)\right\} .
$$

Proof. First note that

$$
\begin{equation*}
\left(\frac{\beta+\delta_{\ell}}{\ell}\right)=0 \Leftrightarrow\left(\frac{24}{\ell}\right)\left(\frac{\beta+\delta_{\ell}}{\ell}\right)=0 \Leftrightarrow\left(\frac{24 \beta-1}{\ell}\right)=0 . \tag{1}
\end{equation*}
$$

Similarly
(2)

$$
\left(\frac{\beta+\delta_{\ell}}{\ell}\right)=-\epsilon_{\ell} \Leftrightarrow\left(\frac{24}{\ell}\right)\left(\frac{\beta+\delta_{\ell}}{\ell}\right)=-\left(\frac{24}{\ell}\right) \epsilon_{\ell} \Leftrightarrow\left(\frac{24 \beta-1}{\ell}\right)=-\left(\frac{-1}{\ell}\right) .
$$

Note that $\left(\frac{-1}{\ell}\right)=(-1)^{\frac{\ell-1}{2}} \neq 0$ implies that for any $\beta \in\{0, \ldots, \ell-1\}$

$$
\left(\frac{24 \beta-1}{\ell}\right)=0 \quad \text { or } \quad\left(\frac{24 \beta-1}{\ell}\right)=-\left(\frac{-1}{\ell}\right)
$$

is equivalent to

$$
\left(\frac{24 \beta-1}{\ell}\right) \neq\left(\frac{-1}{\ell}\right)
$$

which together with (1) and (2) implies the desired result.

2. The proof

Let $A, B \in \mathbb{N}$ with $A>B$ such that

$$
p(A n+B) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N}
$$

Then by Theorem 4.3 there exists a positive integer Q coprime to 6 dividing A and a $\bar{t} \in\{0, \ldots, Q-1\}$ with $\bar{t} \equiv B(\bmod Q)$ such that

$$
p(Q n+\bar{t}) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N}
$$

Then $\ell \mid Q$ because if not, then by Theorem 4.4 there exists a positive integer n_{0} such that $\ell \nmid p\left(Q n_{0}+\bar{t}\right)$. Hence we may write $Q=Q_{0} \ell^{r}$ for some positive integers
Q_{0}, r with $\operatorname{gcd}\left(Q_{0}, \ell\right)=1$. Now if $24 \bar{t}-1 \equiv 0(\bmod \ell)$, then we are finished. So assume that $24 \bar{t}-1 \not \equiv 0(\bmod \ell)$. Then by Lemma 4.5

$$
\begin{equation*}
p\left(\ell Q_{0} n+\bar{t}^{*}\right) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N} \tag{3}
\end{equation*}
$$

where \bar{t}^{*} is the minimal nonnegative integer such that $\bar{t}^{*} \equiv \bar{t}(\bmod \ell Q)$. Next we apply Lemma 4.6 to the congruence (3) and we obtain $\left(\frac{24 \bar{t}^{*}-1}{\ell}\right) \neq\left(\frac{-1}{\ell}\right)$ which together with Lemma 1.3 implies the desired result.

3. Preliminaries

For f a holomorphic function on the upper half plane \mathbb{H} and $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ (the set of all 2×2 matrices with integer entries and determinant 1), we define

$$
\left(\left.f\right|_{k} \gamma\right)(\tau):=(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right), \quad \tau \in \mathbb{H}
$$

For every positive integer M we denote by $\Gamma(M)$ the set of all matrices in $\mathrm{SL}_{2}(\mathbb{Z})$ congruent to $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ modulo M. For k an integer and Γ a subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$ containing $\Gamma(N)$ for some N we denote by $M_{k}(\Gamma)$ the set of all holomorphic functions on the upper half plane \mathbb{H} satisfying

- for all $\gamma \in \Gamma$ we have $\left.f\right|_{k} \gamma=f$;
- for all $\xi \in \mathrm{SL}_{2}(\mathbb{Z})$ the function $\left(\left.f\right|_{k} \xi\right)(\tau)$ admits a Laurent series expansion in the variable $q_{N}:=e^{2 \pi i \tau / N}$. We call this expansion the q-expansion of $\left.f\right|_{k} \gamma$.

For N a positive integer let

$$
\Gamma_{0}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): c \equiv 0 \quad(\bmod N)\right\}
$$

and

$$
\Gamma_{1}(N):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}): a, d \equiv 1 \quad(\bmod N), c \equiv 0 \quad(\bmod N)\right\} .
$$

In particular $\Gamma(N) \subseteq \Gamma_{1}(N) \subseteq \Gamma_{0}(N)$.

4. A Classification of Congruences

Definition 4.1. For m a positive integer and $t \in\{0, \ldots, m-1\}$ we define $P_{m}(t)$ to be the set of all $t^{\prime} \in\{0, \ldots, m-1\}$ such that

$$
t^{\prime} \equiv t a^{2}+\frac{1-a^{2}}{24} \quad(\bmod m)
$$

for some $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, 6 m)=1$.

We have the following important theorems:

Theorem 4.2. Let m, l be positive integers and $t \in\{0, \ldots, m-1\}$ such that

$$
p(m n+t) \equiv 0 \quad(\bmod l), \quad n \in \mathbb{N} .
$$

Then for all $t^{\prime} \in P_{m}(t)$ we have

$$
p\left(m n+t^{\prime}\right) \equiv 0 \quad(\bmod l), \quad n \in \mathbb{N}
$$

Theorem 4.3. Let $a, b, Q, \nu \in \mathbb{N}$ and $t \in\left\{0, \ldots, 2^{a} 3^{b} Q-1\right\}$ with $\nu, Q>0$ and $\operatorname{gcd}(Q, 6)$. Assume that

$$
\begin{equation*}
p\left(2^{a} 3^{b} Q n+t\right) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N} \tag{4}
\end{equation*}
$$

Then

$$
p(Q n+\bar{t}) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N}
$$

where \bar{t} is the minimal nonnegative integer such that $t \equiv \bar{t}(\bmod Q)$.
Theorem 4.4. Let Q, ν be positive integers such that $\operatorname{gcd}(Q, 6 \nu)=1, \nu \neq 1$ and $t \in\{0, \ldots, Q-1\}$. Then there exists an integer n such that $\nu \nmid p(Q n+t)$.

We prove
Lemma 4.5. Let r, Q, ν be positive integers, $\ell \geq 5$ a prime and $t \in\left\{0, \ldots, \ell^{r} Q-1\right\}$. Let b be the maximal integer such that $\ell^{b} \mid(24 t-1)$. If $r \geq b+1$ and

$$
\begin{equation*}
p\left(\ell^{r} Q n+t\right) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N} \tag{5}
\end{equation*}
$$

then

$$
p\left(\ell^{b+1} Q n+\bar{t}\right) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N}
$$

where \bar{t} is the minimal nonnegative integer such that $t \equiv \bar{t}\left(\bmod \ell^{b+1} Q\right)$.

Proof. By (6) and Theorem 4.2 we have

$$
\begin{equation*}
p\left(\ell^{r} Q n+t^{\prime}\right) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N}, \quad t^{\prime} \in P_{\ell^{r} Q}(t) \tag{6}
\end{equation*}
$$

By (4.1) $t^{\prime} \in P_{\ell^{r} Q}(t)$ iff there exists $a \in \mathbb{Z}$ with $\operatorname{gcd}(a, 6 \ell Q)=1$ such that

$$
\begin{equation*}
a^{2}(24 t-1) \equiv 24 t^{\prime}-1 \quad\left(\bmod \ell^{r} Q\right) \tag{7}
\end{equation*}
$$

and $t^{\prime} \in\left\{0, \ldots, \ell^{r} Q-1\right\}$. By Lemma 5.6 we obatain that for each $l \in \mathbb{Z}$ there exist $a_{r, l}$ with $\operatorname{gcd}\left(a_{r, l}, 6 \ell Q\right)=1$ such that

$$
a_{r, l}^{2}(24 t-1) \equiv 24\left(t+l \ell^{b+1} Q\right)-1 \quad\left(\bmod \ell^{r} Q\right)
$$

which implies by (7) that

$$
\bar{t}+l \ell^{b+1} Q \in P_{\ell^{r} Q}(t)
$$

for every $l \in\left\{0, \ldots, \ell^{r-b-1}-1\right\}$, implying together with Theorem 4.2 that

$$
p\left(\ell^{r} Q n+\bar{t}+l \ell^{b+1} Q\right) \equiv 0 \quad(\bmod \nu), \quad n \in \mathbb{N}
$$

for every $l \in\left\{0, \ldots, \ell^{r-b-1}-1\right\}$. Since

$$
\ell^{r} Q n+\bar{t}+l \ell^{b+1} Q=\ell^{b+1} Q\left(\ell^{r-b-1} n+l\right)+\bar{t}
$$

and every nonnegative integer m can be written as $m=\ell^{r-b-1} n+l$ for some nonnegative integers n, l with $l \in\left\{0, \ldots, \ell^{r-b-1}-1\right\}$ we conclude

$$
p\left(\ell^{b+1} Q m+\bar{t}\right) \equiv 0 \quad(\bmod \nu), \quad m \in \mathbb{N}
$$

Lemma 4.6. Let $\ell \geq 5$ be a prime, Q a positive integer such that $\operatorname{gcd}(Q, 6 \ell)=1$ and $\beta \in\{0, \ldots, \ell Q-1\}$. Assume that

$$
\begin{equation*}
p(\ell Q n+\beta) \equiv 0 \quad(\bmod \ell), \quad n \in \mathbb{N} \tag{8}
\end{equation*}
$$

Then $\left(\frac{24 \beta-1}{\ell}\right) \neq\left(\frac{-1}{\ell}\right)$.

The proof is based on the following lemma by Deligne and Rapoport:
Theorem 4.7. [3, VII, Cor. 3.12] Let k, N be positive integers, p a prime number and p^{m} the highest power of p dividing $N, \gamma=\left(\begin{array}{cc}a & b \\ p^{m} & c\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $f \in$ $M_{k}(\Gamma(N))$. Let π be a prime ideal in $\mathbb{Z}\left[e^{2 \pi i / N}\right]$ lying above p. Assume that the coefficients in the q-expansion of f are in $\mathbb{Z}\left[e^{2 \pi i / N}\right]$. Let ν be a nonnegative integer such that $f \equiv 0\left(\bmod \pi^{\nu}\right)^{1}$. Then $\left.f\right|_{k} \gamma \equiv 0\left(\bmod \pi^{\nu}\right)$.

Proof of Lemma 4.6: Assume that

$$
\left(\frac{24 \beta-1}{\ell}\right)=\left(\frac{-1}{\ell}\right) .
$$

Then there exists $a \in \mathbb{Z}$ such that

$$
\begin{equation*}
(24 \beta-1) a^{2} \equiv-1 \quad(\bmod \ell) \tag{9}
\end{equation*}
$$

which implies together with $\operatorname{gcd}(Q, 6 \ell)=1$ that there exists $\bar{a} \in \mathbb{N}$ with $\operatorname{gcd}(\bar{a}, 6 \ell Q)=$ 1 such that

$$
\begin{equation*}
\bar{a} \equiv a Q \quad(\bmod \ell) \tag{10}
\end{equation*}
$$

Let $\bar{\beta} \in\{0, \ldots, \ell Q-1\}$ be uniquely defined by the relation

$$
\begin{equation*}
\bar{a}^{2}(24 \beta-1) \equiv(24 \bar{\beta}-1) \quad(\bmod \ell Q) . \tag{11}
\end{equation*}
$$

By [7, Th. 2.14], we have for a suitable positive integer k

$$
\begin{equation*}
G_{\ell Q, \bar{\beta}}^{(k)}:=\eta^{24 k}\left(q^{\frac{24 \bar{\beta}-1}{\ell Q}} \sum_{n=0}^{\infty} p(\ell Q n+\bar{\beta}) q^{n}\right)^{24 \ell Q} \in M_{12(k-\ell Q)}\left(\Gamma_{1}(\ell Q)\right) \tag{12}
\end{equation*}
$$

where $\eta(\tau):=e^{\pi i \tau / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)^{24}, \tau \in \mathbb{H}$ is the Dedekind eta function and satisfies $\left.\eta^{24}\right|_{12} \gamma=\eta^{24}$ for all $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$.

Let $X>0$ and Y be integers such that

$$
\begin{equation*}
24^{2} \ell^{2} X+Y Q=1 \tag{13}
\end{equation*}
$$

Then $\left(\begin{array}{cc}1 & -24^{2} X \ell \\ \ell & Y Q\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. We apply Lemma 5.5 with $\gamma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)=\left(\begin{array}{cc}1 & -24^{2} X \ell \\ \ell & Y Q\end{array}\right)$, $x=24 \ell X, y=Y, m=\ell Q, t=\bar{\beta}$ and $r=-1$. We then obtain

[^1]\[

$$
\begin{align*}
& e^{\frac{\pi i(3-Q)}{12}} e^{-\frac{48 \pi i X(24 \bar{\beta}-1)}{Q}} g(\ell Q, \bar{\beta},-1, \gamma \tau)(-i(\ell \tau+Y Q))^{1 / 2} \\
= & \frac{1}{Q} \sum_{d \mid Q} d^{-1 / 2} e^{-\frac{\pi i(d-1)}{4}} \xi^{-1}(d) e^{\frac{2 \pi i\left(24 t_{d}-1\right) d^{2} \tau}{24 \ell Q}} \times \sum_{n=0}^{\infty} e^{\frac{2 \pi i n d^{2} \tau}{Q}} p\left(\ell n+t_{d}\right) T(n, d) \tag{14}
\end{align*}
$$
\]

where t_{d} is the unique integer satisfying

$$
\begin{gather*}
(24 \bar{\beta}-1) \equiv d^{2}\left(24 t_{d}-1\right) \quad(\bmod \ell), \quad 0 \leq t_{d}<\ell-1, \tag{15}\\
\xi(d)=\left(\frac{24 \ell}{Q / d}\right)(-1)^{\frac{Q d-1}{2} \frac{d-1}{2}}, \\
T(n, d)=\sum_{\substack{0 \leq s<Q / d \\
\operatorname{gcd}(s, Q / d)=1}}\left(\frac{24 \ell s}{Q / d}\right) e^{-\frac{48 \pi i X}{Q / d}\left\{\iota_{s, d}\left(24\left(\ell n+t_{d}\right)-1\right)+s(24 \bar{\beta}-1)\right\}}
\end{gather*}
$$

and for $s, d \in \mathbb{Z}$ such that $d \mid Q$ and $\operatorname{gcd}(s, Q / d)=1$, the symbol $\iota_{s, d}$ is any integer satisfying $s \cdot \iota_{s, d} \equiv 1(\bmod Q / d)$. Next we observe that $T(n, Q)=1$ for all $n \in \mathbb{N}$ because of $\left(\frac{a}{1}\right)=1$ for $a \in \mathbb{Z}$. Because of (9),(10) and (15) we have $t_{Q}=0$ and consequently (14) transforms into

$$
\begin{align*}
& e^{\frac{\pi i(3-Q)}{12}} e^{-\frac{48 \pi i X(24 \bar{\beta}-1)}{Q}} g(\ell Q, \bar{\beta},-1, \gamma \tau)(-i(\ell \tau+Y Q))^{1 / 2} \\
= & \frac{1}{Q} Q^{-1 / 2} e^{-\frac{\pi i(Q-1)}{4}} \xi^{-1}(Q) q_{m}^{-\frac{Q^{2}}{24}} \sum_{n=0}^{\infty} q_{m}^{\ell Q^{2} n} p(\ell n) \\
& +\frac{1}{Q} \sum_{d \mid Q, d \neq Q} d^{-1 / 2} e^{-\frac{\pi i(d-1)}{4}} \xi^{-1}(d) q_{m}^{\frac{\left(24 t_{d}-1\right) d^{2}}{24}} \sum_{n=0}^{\infty} q_{m}^{n \ell d^{2}} p\left(\ell n+t_{d}\right) T(n, d) \tag{16}\\
= & q_{m}^{-Q^{2} / 24} F\left(q_{m}\right),
\end{align*}
$$

where $m:=\ell Q, q_{m}:=e^{\frac{2 \pi i \tau}{m}}$ and $F\left(q_{m}\right)$ is a Laurent series in q_{m} because of $d^{2}\left(24 t_{d}-1\right)+Q^{2} \equiv 0(\bmod 24)$ because of $Q^{2}, d^{2} \equiv 1(\bmod 24)^{2}$. Next note that $F\left(q^{m}\right)$ has coefficients in $\mathbb{Z}\left[1 / m, e^{2 \pi i / m}\right]$ because for $d \mid Q$ we have $d^{1 / 2} e^{\frac{\pi i(d-1)}{4}}=$ $\pm \epsilon(d) d^{1 / 2}$ where

$$
\epsilon(d):=\left\{\begin{array}{lll}
1, & \text { if } d \equiv 1 & (\bmod 4) \\
i, & \text { if } d \equiv 3 & (\bmod 4)
\end{array}\right.
$$

and by [4, p. 87] we have

$$
\epsilon(d) d^{1 / 2}=\sum_{\lambda=0}^{d-1} e^{2 \pi i \lambda^{2} / d}
$$

which is obviously in $\mathbb{Z}\left[1 / m, e^{2 \pi i / m}\right]$. Furthermore, if π is a prime ideal in $\mathbb{Z}\left[e^{\frac{2 \pi i}{\ell G}}\right]$ lying above ℓ, then it makes sense to reduce the coefficients of $F\left(q_{m}\right)$ modulo π because all denominators in the coefficients of $F\left(q_{m}\right)$ are invertible modulo π. We observe that

$$
\begin{equation*}
F\left(q_{m}\right) \not \equiv 0 \quad(\bmod \pi) \tag{17}
\end{equation*}
$$

because by (16) the order of $F\left(q_{m}\right)$ is 0 and the coefficient of the term constant term is equal to $\frac{1}{Q^{3 / 2}} e^{-\frac{\pi i(Q-1)}{4}} \xi^{-1}(Q) \not \equiv 0(\bmod \pi)$.

[^2]By (16), Definition 5.3 and Lemma 5.4 we have

$$
\left.G_{\ell Q, \bar{\beta}}^{(k)}\right|_{\kappa}\left(\begin{array}{cc}
1 & -24^{2} \ell X \\
\ell & Q Y
\end{array}\right)=\eta^{12 k} q^{-1} F^{24 \ell Q}\left(q_{m}\right)
$$

where $\kappa:=12(k-\ell Q)$. Then (17) implies

$$
\left.G_{\ell Q, \bar{\beta}}^{(k)}\right|_{\kappa}\left(\begin{array}{cc}
1 & -24^{2} \ell X \\
\ell & Q Y
\end{array}\right) \not \equiv 0 \quad(\bmod \pi),
$$

and by Theorem 4.7

$$
G_{\ell Q, \bar{\beta}}^{(k)} \not \equiv 0 \quad(\bmod \pi),
$$

and consequently $p(\ell Q n+\bar{\beta}) \not \equiv 0(\bmod \ell)$ for some $n \in \mathbb{N}$ and since $\beta \in P_{\ell Q}(\bar{\beta})$ because of (11) and Definition 4.1 we obtain by Theorem 4.2 that $p(\ell Q n+\beta) \not \equiv 0$ $(\bmod \ell)$ for some $n \in \mathbb{N}$ which is a contradiction to our assumption (8).

5. A Modular Substitution Formula

Definition 5.1. Let m be a positive integer and $c \in \mathbb{Z}$. Then we define $\pi(m, c):=$ $\left(m_{0}, m_{c}\right)$ where

- m_{0}, m_{c} are positive integers such that $m_{0} m_{c}=m$;
- $\operatorname{gcd}\left(m_{0}, c\right)=1$;
- for every prime p we have $p \mid m_{c}$ implies $p \mid c$.

We also define the set
$\Delta\left(m_{0}, m_{c}\right):=\left\{(d, l, s) \in \mathbb{Z}^{3}|d| m_{0}, d>0,0 \leq s<m_{0} / d, \operatorname{gcd}\left(s, m_{0} / d\right)=1,0 \leq l<m_{c}\right\}$.
Lemma 5.2. Let m be a positive integer coprime to 6 and $a, c, m_{0}, m_{c}, x, y \in \mathbb{Z}$ such that
(i) $\operatorname{gcd}(a, c)=1$;
(ii) $\left(m_{0}, m_{c}\right):=\pi(m, c)$;
(iii) $24 x c+m_{0} y=1$.

Then
(a) for any $\lambda \in \mathbb{Z}$ such that

$$
\begin{equation*}
\lambda \equiv-a x+s d+l m_{0} \quad(\bmod m) \tag{18}
\end{equation*}
$$

for some $(d, l, s) \in \Delta\left(m_{0}, m_{c}\right)$ we have

$$
\begin{equation*}
\operatorname{gcd}(a+24 \lambda c, m)=d \tag{19}
\end{equation*}
$$

(b) for any $\lambda \in \mathbb{Z}$ there exists unique $(d, l, s) \in \Delta\left(m_{0}, m_{c}\right)$ such that (18). Consequently, we have a mapping $\lambda \mapsto(d, l, s)$ and the restriction of this mapping to a complete set of representatives of the residue classes modulo m is a bijection.

Proof. (a): First we note that $\operatorname{gcd}(a+24 \lambda c, m)=\operatorname{gcd}\left(a+24 \lambda c, m_{0}\right)$ because of (i)-(ii). Next we have
$a+24 \lambda c \equiv a+24(-a x+s d) c \equiv a(1-24 c x)+24 s d c \equiv a m_{0} y+24 s d c \quad\left(\bmod m_{0}\right)$, which implies

$$
\operatorname{gcd}\left(a+24 \lambda c, m_{0}\right)=\operatorname{gcd}\left(24 s d c, m_{0}\right)=d \operatorname{gcd}\left(24 s c, m_{0} / d\right)=d
$$

This proves (a).
(b): We need to show that for any $\lambda \in \mathbb{Z}$ there exist $d \mid m_{0}$ with $d>0$ and $s \in \mathbb{Z}$ with $\operatorname{gcd}\left(s, m_{0} / d\right)=1$ and $0 \leq s<m_{0} / d$ such that

$$
\lambda \equiv-a x+s d \quad\left(\bmod m_{0}\right)
$$

We set $d:=\operatorname{gcd}\left(a+24 \lambda c, m_{0}\right)$ and $s:=\frac{(a+24 \lambda c) x}{d}$. Obviously we have $\operatorname{gcd}\left(s, m_{0} / d\right)=$ 1 and

$$
-a x+s d=-a x+(a+24 \lambda c) x=24 \lambda c x \equiv \lambda \quad\left(\bmod m_{0}\right)
$$

It remains to show uniqueness. Let $\left(d_{1}, l_{1}, s_{1}\right),\left(d_{2}, l_{2}, s_{2}\right) \in \Delta\left(m_{0}, m_{c}\right)$ be such that

$$
\lambda \equiv-a x+s_{1} d_{1}+l_{1} m_{0} \equiv-a x+s_{2} d_{2}+l_{2} m_{0} \quad(\bmod m)
$$

Then because of (19) we have $d:=d_{1}=d_{2}$ which implies that

$$
\begin{equation*}
\left(s_{1}-s_{2}\right) d+\left(l_{1}-l_{2}\right) m_{0} \equiv 0 \quad(\bmod m) \tag{20}
\end{equation*}
$$

and consequently $s_{1} \equiv s_{2}\left(\bmod m_{0} / d\right)$. Because of $s_{1}, s_{2} \in\left\{0, \ldots, m_{0} / d-1\right\}$ we have $s_{1}=s_{2}$ which together with (20) gives $l_{1} \equiv l_{2}\left(\bmod m_{c}\right)$.

The final fact that the association $\lambda \mapsto(d, l, s)$ indeed is a bijection modulo m is just straight forward verification.
Definition 5.3. For m a positive integer coprime to $6, t \in\{0, \ldots, m-1\}$ and $r \in \mathbb{Z}$. Then we define

$$
g(m, t, r, \tau):=\frac{1}{m} \sum_{\lambda=0}^{m-1} e^{\frac{2 \pi i \lambda(-24 t-r)}{m}} \eta^{r}\left(\frac{\tau+24 \lambda}{m}\right), \quad \tau \in \mathbb{H} .
$$

A proof of the following lemma can be found in [7, Lem. 1.12].
Lemma 5.4. Let m be a positive integer coprime to $6, t \in\{0, \ldots, m-1\}$ and $r \in \mathbb{Z}$. Then

$$
g(m, t, r, \tau)=q^{\frac{24 t+r}{24 m}} \sum_{n=0}^{\infty} p_{r}(m n+t) q^{n}, \quad \tau \in \mathbb{H}, \quad\left(q=e^{2 \pi i \tau}\right) .
$$

Lemma 5.5. Let m be a positive integer coprime to $6, t \in\{0, \ldots, m-1\}, r \in \mathbb{Z}$, $\gamma=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ with $\operatorname{gcd}(A, 6)=1, A>0, C>0$ and $\left(m_{0}, m_{C}\right):=\pi(m, C)$ and assume that $m_{C} \mid C$. For any integers s and $d \mid m_{0}$ such that $\operatorname{gcd}\left(s, m_{0} / d\right)=1$ let $\iota_{s, d}$ be any integer satisfying $s \cdot \iota_{s, d} \equiv 1\left(\bmod m_{0} / d\right)$. Let x, y, A^{\prime} be any integers such that
(i) $24 x C+y m_{0}=1$ and $x \equiv 0(\bmod 24 C), x<0$;
(ii) $A A^{\prime} \equiv 1(\bmod 24 C)$.

Define

$$
\tau^{\prime}(s, d):=\frac{d \tau+24 x\left(-x \iota_{s, d}+d D\right)}{m_{0} / d}+d^{2} y\left(B A^{\prime}+24 s d D^{2}\right)
$$

and

$$
\xi(d):=\left(\frac{24 C}{m_{0} / d}\right)\left(\frac{A d}{C m_{C}}\right)(-1)^{\frac{C m d-1}{2} \frac{A d-1}{2}} .
$$

Then

$$
\begin{align*}
& e^{\frac{\pi i A r(m C-3)}{12}} e^{-\frac{2 \pi i A x(24 t+r)}{m}} g(m, t, r, \gamma \tau)(-i(C \tau+D))^{-r / 2} \\
= & \frac{1}{m} \sum_{d \mid m_{0}} d^{r / 2} e^{\frac{\pi i A r(d-1)}{4}} \xi^{r}(d) \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} \tag{21}\\
& \times \sum_{l=0}^{m_{C}-1} e^{\frac{2 \pi i l\left(A m_{0} y / d\right)^{2}(-24 t-r)}{m_{C}}} \eta^{r}\left(\frac{\tau^{\prime}(s, d)+24 l}{m_{C}}\right)
\end{align*}
$$

and

$$
\begin{align*}
& e^{\frac{\pi i A r(m C-3)}{12}} e^{-\frac{2 \pi i A x(24 t+r)}{m}} g(m, t, r, \gamma \tau)(-i(C \tau+D))^{-r / 2} \\
= & \frac{1}{m_{0}} \sum_{d \mid m_{0}} e^{\frac{\pi i A r(d-1)}{4}} d^{r / 2} \xi^{r}(d) e^{\frac{2 \pi i\left(24 t_{d}+r\right) d^{2}\left(\tau+24 x D+m_{0} y B A^{\prime}\right)}{24 m}} \tag{22}\\
& \times \sum_{n=0}^{\infty} e^{\frac{2 \pi i n d^{2}(\tau+24 x D)}{m_{0}}} p_{r}\left(m_{C} n+t_{d}\right) T(n, d)
\end{align*}
$$

where t_{d} is the unique integer satisfying

$$
\begin{equation*}
A^{2}(24 t+r) \equiv d^{2}\left(24 t_{d}+r\right) \quad\left(\bmod m_{C}\right) \tag{23}
\end{equation*}
$$

and $0 \leq t_{d}<m_{C}-1$ and

$$
T(n, d):=\sum_{\substack{0 \leq s<m_{0} / d \\ \operatorname{gcd}\left(s, m_{0} / d\right)=1}}\left(\frac{24 C s}{m_{0} / d}\right)^{r} e^{-\frac{2 \pi i x / m_{C} C}{m_{0} / d}\left\{\iota_{s, d}\left(24\left(n m_{C}+t_{d}\right)+r\right)+s(24 t+r)\right\}} .
$$

Proof. Proof of (21): By Lemma 5.2 and Definition we have

$$
\begin{align*}
& g(m, t, r, \gamma \tau) \tag{24}\\
= & \frac{1}{m} \sum_{\substack{ \\
d \mid m_{0}}} \sum_{\substack{0 \leq s<\frac{m_{0}}{d}-1 \\
\operatorname{gcd}\left(s, m_{0} / d\right)=1}} \sum_{l=0}^{m_{C}-1} e^{\frac{2 \pi i\left(-A x+s d+l m_{0}\right)(-24 t-r)}{m}} \eta^{r}\left(\frac{\gamma \tau+24\left(-A x+s d+l m_{0}\right)}{m}\right) .
\end{align*}
$$

Next we note that for $(d, l, s) \in \Delta\left(m_{0}, m_{c}\right)$ we have

$$
\begin{equation*}
\frac{\gamma \tau+24 \lambda}{m}=M_{\lambda} \frac{d \tau+(B+24 \lambda D) x_{\lambda}+24 m D y_{\lambda}}{m / d}, \tag{25}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda:=-A x+s d+l m_{0}, \tag{26}
\end{equation*}
$$

$M_{\lambda}:=\left(\frac{A+24 \lambda C}{d \lambda}-24 y_{\lambda}\right)$ and x_{λ}, y_{λ} are integers such that

$$
\begin{equation*}
(A+24 \lambda C) x_{\lambda}+24 m C y_{\lambda}=d \tag{27}
\end{equation*}
$$

Newman [6] proved that for each $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ with $a, c>0$ and $\operatorname{gcd}(a, 6)=$ 1 we have

$$
\begin{equation*}
\eta(\gamma \tau)=(-i(c \tau+d))^{1 / 2} \epsilon(a, b, c, d) \eta(\tau), \quad \tau \in \mathbb{H}, \tag{28}
\end{equation*}
$$

where

$$
\begin{equation*}
\epsilon(a, b, c, d):=\left(\frac{c}{a}\right) e^{-\frac{\pi i a}{12}(c-b-3)} \tag{29}
\end{equation*}
$$

By (25) and (28) we obtain
(30)

$$
\begin{aligned}
& \eta\left(\frac{\gamma \tau+24 \lambda}{m}\right)=(-i d(C \tau+D))^{1 / 2} \\
& \times \epsilon\left(\frac{A+24 \lambda C}{d},-24 y_{\lambda}, C m / d, x_{\lambda}\right) \eta\left(\frac{d \tau+(B+24 \lambda D) x_{\lambda}+24 m D y_{\lambda}}{m / d}\right)
\end{aligned}
$$

By (26) and (i) we have
(31)

$$
\begin{aligned}
\frac{A+24 \lambda C}{d} & =\frac{A+24\left(-A x+s d+l m_{0}\right) C}{d}=\frac{A(1-24 C x)+24 C s d+24 l m_{0} C}{d} \\
& =\frac{A y m_{0}+24 C s d+24 l m_{0} C}{d}=\frac{A y m_{0}}{d}+24\left(C s+l m_{0} C / d\right)
\end{aligned}
$$

which together with (29) implies that

$$
\begin{aligned}
& \epsilon\left(\frac{A+24 \lambda C}{d},-24 y_{\lambda}, C m / d, x_{\lambda}\right) \\
= & \epsilon\left(A y m_{0} / d+24\left(C s+l m_{0} C / d\right),-24 y_{\lambda}, C m / d, x_{\lambda}\right) \\
= & \left(\frac{C m / d}{A y m_{0} / d+24\left(C s+l m_{0} C / d\right)}\right) e^{-\frac{\pi i A y m_{0} / d}{12}(C m / d-3)}
\end{aligned}
$$

and by standard properties of the jacobi symbol

$$
\begin{aligned}
& \left(\frac{C m / d}{A y m_{0} / d+24\left(C s+l m_{0} C / d\right)}\right) \\
= & (-1)^{\frac{C m / d-1}{2}} \frac{A y m_{0} d-1}{2} \\
= & (-1)^{\frac{C m / d-1}{2}} \frac{A y m_{0} / d+24\left(C s+l m_{0} C / d\right)}{2} \\
C m / d & \left.\frac{24 C s}{m_{0} / d}\right)\left(\frac{A y m_{0} / d}{C m_{c}}\right) \\
= & (-1)^{\frac{C m / d-1}{2} \frac{A y m_{0} d-1}{2}}\left(\frac{24 C s}{m_{0} / d}\right)\left(\frac{A y m_{0} d}{C m_{c}}\right) \\
= & (-1)^{\frac{C m / d-1}{2} \frac{A d-1}{2}}\left(\frac{24 C s}{m_{0} / d}\right)\left(\frac{A d}{C m_{c}}\right),
\end{aligned}
$$

because by (i) we have $y m_{0} \equiv 1(\bmod 24 C)$. By the above calculation we have

$$
\begin{align*}
& \epsilon\left(\frac{A+24 \lambda C}{d},-24 y_{\lambda}, C m / d, x_{\lambda}\right) \\
= & (-1)^{\frac{C m / d-1}{2} \frac{A d-1}{2}}\left(\frac{24 C s}{m_{0} / d}\right)\left(\frac{A d}{C m_{C}}\right) e^{-\frac{\pi i A y m_{0} / d}{12}(C m / d-3)} \tag{32}\\
= & (-1)^{\frac{C m d-1}{2} \frac{A d-1}{2}}\left(\frac{24 C s}{m_{0} / d}\right)\left(\frac{A d}{C m_{C}}\right) e^{-\frac{\pi i A d}{12}(C m d-3)} \\
= & e^{\frac{\pi i A(3-m C)}{12}} e^{\frac{\pi i A(d-1)}{4}} \xi(d)\left(\frac{s}{m_{0} / d}\right),
\end{align*}
$$

by using $y m_{0} \equiv 1(\bmod 24)$ and $d^{2} \equiv 1(\bmod 24)$. By (30) and (32) and because of $\eta(\tau+24)=\eta(\tau)$ we obtain

$$
\begin{align*}
& e^{\frac{\pi i A(m C-3)}{12}}(-i(C \tau+D))^{-1 / 2} \eta\left(\frac{\gamma \tau+24 \lambda}{m}\right)= \tag{33}\\
& d^{1 / 2} e^{\frac{\pi i A(d-1)}{4}} \xi(d)\left(\frac{s}{m_{0} / d}\right) \eta\left(\frac{d \tau+(B+24 \lambda D) x_{\lambda}}{m / d}\right) .
\end{align*}
$$

Next we obtain a better expression for x_{λ}. By (27):

$$
\frac{A+24 \lambda C}{d} x_{\lambda} \equiv 1 \quad\left(\bmod m_{0} / d\right)
$$

and by (31):

$$
\frac{A+24 \lambda C}{d} \equiv 24 C s \quad\left(\bmod m_{0} / d\right)
$$

which implies

$$
24 C s x_{\lambda} \equiv 1 \quad\left(\bmod m_{0} / d\right)
$$

which together with (i) implies

$$
\begin{equation*}
x_{\lambda} \equiv x \iota_{s, d} \quad\left(\bmod m_{0} / d\right) . \tag{34}
\end{equation*}
$$

By (34) we conclude that

$$
\begin{equation*}
x_{\lambda}=x \iota_{s, d}+v m_{0} / d \tag{35}
\end{equation*}
$$

By (27), (35) and (i) we find

$$
\begin{equation*}
A\left(x \iota_{s, d}+v m_{0} / d\right) \equiv A v m_{0} / d \equiv d \quad(\bmod 24 C) \tag{36}
\end{equation*}
$$

because by assumption (i) we have $x \equiv 0(\bmod 24 C)$. By (36), i and (ii) we obtain

$$
v \equiv A^{\prime} d^{2} y \quad(\bmod 24 C)
$$

which togeter with (35) implies

$$
\begin{equation*}
x_{\lambda} \equiv x \iota_{s, d}+A^{\prime} y d m_{0} \quad\left(\bmod 24 m_{0} C / d\right) \tag{37}
\end{equation*}
$$

Using the above formulas we compute $(B+24 \lambda D) x_{\lambda}$ modulo $24 C m_{0} / d$. By using (37) and (26) we find

$$
\begin{aligned}
& (B+24 \lambda D) x_{\lambda} \\
= & \left(24 D l m_{0} A^{\prime} y d+B A^{\prime} y d-24 A A^{\prime} D d x y+24 D s d^{2} A^{\prime} y+24 D l x \iota_{s, d}\right) m_{0} \\
& +B x \iota_{s, d}-24 A D x^{2} \iota_{s, d}+24 D d x s \iota_{s, d} \\
\equiv & \left(24 D l m_{0} A^{\prime} y d+B A^{\prime} y d+24 D s d^{2} A^{\prime} y\right) m_{0}+B x \iota_{s, d}-24 A D x^{2} \iota_{s, d}+24 D d x s \iota_{s, d}
\end{aligned}
$$

because of $x \equiv 0 \quad(\bmod 24 C)$ by (i)
$\equiv\left(24 D^{2} l d+B A^{\prime} y d+24 D^{2} s d^{2} y\right) m_{0}+B x \iota_{s, d}-24 A D x^{2} \iota_{s, d}+24 D d x s \iota_{s, d}$
because of $y m_{0} \equiv 1 \quad(\bmod 24 C)$ by (i) and $24 A^{\prime} \equiv 24 D \quad(\bmod 24 C)$ because of $A D-B C=1$
$\equiv\left(24 D^{2} l d+B A^{\prime} y d+24 D^{2} s d^{2} y\right) m_{0}+x\left(B \iota_{s, d}-24 A D x \iota_{s, d}+24 D d\right) \quad\left(\bmod \frac{24 m_{0} C}{d}\right)$
because of (ii) and $x \equiv 0 \quad(\bmod 24 C)$ by (i)
$\equiv\left(24 D^{2} l d+B A^{\prime} y d+24 D^{2} s d^{2} y\right) m_{0}+x\left(-24 x \iota_{s, d}+24 D d\right) \quad\left(\bmod \frac{24 m_{0} C}{d}\right)$
because of $B-24 A D x=B(1-24 C x)-24 x=B y m_{0}-24 x$ by (i) and because of $A D-B C=1$.

Next note that if v_{1} and v_{2} are integers such that $v_{2}=v_{1}+i\left(24 m_{0} C / d\right)$ for some integer i, then

$$
\eta\left(\frac{d \tau+v_{2}}{m / d}\right)=\eta\left(\frac{d \tau+v_{1}}{m / d}+i 24 m_{0} C / m\right)=\eta\left(\frac{d \tau+v_{1}}{m / d}\right)
$$

because of $\eta(\tau+24)=\eta(\tau)$ and $m_{C} \mid C$ by assumption. Using this fact with $v_{1}=$ $(B+24 \lambda D) x_{\lambda}$ and $\left.v_{2}=24 D^{2} l d+B A^{\prime} y d+24 D^{2} s d^{2} y\right) m_{0}+x\left(-24 x \iota_{s, d}+24 D d\right)$ on (33) we obtain

$$
\begin{align*}
& (-i(C \tau+D))^{-1 / 2} e^{\frac{\pi i A(m C-3)}{12}} \eta\left(\frac{\gamma \tau+24 \lambda}{m}\right) \\
= & d^{1 / 2} e^{\frac{\pi i A(d-1)}{4}} \xi(d)\left(\frac{s}{m_{0} / d}\right) \eta\left(\frac{d \tau+(B+24 \lambda D) x_{\lambda}}{m / d}\right) \\
= & d^{1 / 2} e^{\frac{\pi i A(d-1)}{4}} \xi(d)\left(\frac{s}{m_{0} / d}\right) \tag{38}\\
\times & \eta\left(\frac{\frac{d \tau+x\left(-24 x x_{s, d}+24 D d\right)}{m_{0} / d}+\left(24 D^{2} l+B A^{\prime} y+24 D^{2} s d y\right) d^{2}}{m_{C}}\right) \\
= & d^{1 / 2} e^{\frac{\pi i A(d-1)}{4}} \xi(d)\left(\frac{s}{m_{0} / d}\right) \eta\left(\frac{\tau^{\prime}(s, d)+24 D^{2} d^{2} l}{m_{C}}\right)
\end{align*}
$$

By (38) and (24)

$$
\begin{align*}
& e^{\frac{\pi i A r(m C-3)}{12}}(-i(C \tau+D))^{-r / 2} g(m, t, r, \gamma \tau) \\
= & \frac{1}{m} \sum_{d \mid m_{0}} \sum_{\substack{0 \leq s<\frac{m_{0}}{d}-1 \\
\operatorname{gcd}\left(s, m_{0} / d\right)=1}} \sum_{l=0}^{m_{C}-1} e^{\frac{2 \pi i\left(-A x+s d+l m_{0}\right)(-24 t-r)}{m}} \\
& \times d^{r / 2} e^{\frac{\pi i A r(d-1)}{4}} \xi^{r}(d)\left(\frac{s}{m_{0} / d}\right)^{r} \eta^{r}\left(\frac{\tau^{\prime}(s, d)+24 D^{2} d^{2} l}{m_{0}}\right) \tag{39}\\
= & e^{\frac{2 \pi i A x(24 t+r)}{m}} \frac{1}{m} \sum_{d \mid m_{0}}^{m_{C}} d^{r / 2} e^{\frac{\pi i A r(d-1)}{4}} \sum_{\substack{0 \leq s<\frac{m_{0}}{d}-1 \\
\operatorname{gcd}\left(s, m_{0} / d\right)=1}}^{e^{\frac{2 \pi i s(-24 t-r)}{m / d}}} \\
& \times \sum_{l=0} e^{\frac{2 \pi i l(-24 t-r)}{m / m_{0}}} e^{\frac{\pi i A r(d-1)}{4}} \xi^{r}(d)\left(\frac{s}{m_{0} / d}\right)^{r} \eta^{r}\left(\frac{\tau^{\prime}(s, d)+24 D^{2} d^{2} l}{m}\right)
\end{align*}
$$

Summing in the last sum over any set of modulo m_{C} representatives does not change the value of the sum. In particular, we make the substitution $l=A^{2}\left(y m_{0} / d\right)^{2} l^{\prime}$ and observe that $D^{2} d^{2} A^{2}\left(y m_{0} / d\right)^{2} \equiv 1\left(\bmod m_{C}\right)$ because of (i) and $A D-B C=1$. Thus we obtain (21).

Proof of (22): By (21) and Definition 5.3
(40)

$$
\begin{aligned}
& e^{\frac{\pi i A r(m C-3)}{12}} e^{-\frac{2 \pi i A x(24 t+r)}{m}} g(m, t, r, \gamma \tau)(-i(C \tau+D))^{-r / 2} \\
= & \frac{m_{C}}{m} \sum_{d \mid m_{0}} d^{r / 2} e^{\frac{\pi i A r(d-1)}{4}} \xi^{r}(d) \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} g\left(m_{C}, t_{d}, r, \tau^{\prime}(s, d)\right)
\end{aligned}
$$

By Lemma 5.4

$$
\begin{equation*}
g\left(m_{C}, t_{d}, r, \tau\right)=e^{\frac{2 \pi i \tau(24 t+r)}{24 m_{C}}} \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{2 \pi i \tau n}, \quad \tau \in \mathbb{H} . \tag{41}
\end{equation*}
$$

By (41)

$$
\begin{aligned}
& \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} g\left(m_{C}, t_{d}, r, \tau^{\prime}(s, d)\right) \\
= & \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} e^{\frac{2 \pi i \tau^{\prime}(s, d)\left(24 t_{d}+r\right)}{24 m_{C}}} \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{2 \pi i \tau^{\prime}(s, d) n} \\
= & \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} e^{\frac{2 \pi i\left\{\frac{d \tau+24 x\left(-x t_{s, d}+d D\right)}{m_{0} / d}+d^{2} y\left(B A^{\prime}+24 s d D^{2}\right)\right\}\left(24 t_{d}+r\right)}{24 m_{C}}} \\
& \times \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{2 \pi i\left\{\frac{d \tau+24 x\left(-x \iota_{s, d}+d D\right)}{m_{0} / d}+d^{2} y\left(B A^{\prime}+24 s d D^{2}\right)\right\} n}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} e^{\frac{2 \pi i\left\{\frac{d \tau+24 x\left(-x \iota_{s, d}+d D\right)}{m_{0} / d}+d^{2} y\left(B A^{\prime}+24 s d D^{2}\right)\right\}\left(24 t_{d}+r\right)}{24 m_{C}}} \\
& \times \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{2 \pi i \frac{d \tau+24 x\left(-x \iota_{s, d}+d D\right)}{m_{0} / d} n} \\
& =\sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{\frac{2 \pi i n(\tau+24 x D) d^{2}}{m_{0}}} e^{\frac{2 \pi i \tau d^{2}\left(\tau+24 x D+m_{0} y B A^{\prime}\right)\left(24 t_{d}+r\right)}{24 m}} \\
& \times \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{\frac{2 \pi i(-24 t-r) s}{m / d}} e^{\frac{2 \pi i\left\{\frac{-24 x^{2} \iota_{s, d}}{m_{0} / d}+24 d^{3} y D^{2} s\right\}\left(24 t_{d}+r\right)}{24 m_{C}}} e^{-2 \pi i \frac{24 x^{2} \iota_{s, d}}{m_{0} / d} n} \\
& =e^{\frac{2 \pi i d^{2}\left(\tau+24 x D+m_{0} y B A^{\prime}\right)\left(24 t_{d}+r\right)}{24 m}} \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{\frac{2 \pi i n(\tau+24 x D) d^{2}}{m_{0}}} \\
& \times \sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{-\frac{2 \pi i}{m / d}\left\{x^{2} \iota_{s}, d\left(\left(24 t_{d}+r\right)+24 n m_{C}\right)+s\left(24 t+r-\left(24 t_{d}+r\right) d^{2} D^{2} y m_{0}\right)\right\}} \\
& =e^{\frac{2 \pi i d^{2}\left(\tau+24 x D+m_{0} y B A^{\prime}\right)\left(24 t_{d}+r\right)}{24 m}} \sum_{n=0}^{\infty} p\left(m_{C} n+t_{d}\right) e^{\frac{2 \pi i n(\tau+24 x D) d^{2}}{m_{0}}} \\
& \times \underbrace{\sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{-\frac{2 \pi i x}{m / d}\left\{x \iota_{s, d}\left(\left(24 t_{d}+r\right)+24 n m_{C}\right)+24 C s(24 t+r)\right\}},}_{=T(n, d)}
\end{aligned}
$$

by first substituting $d^{2} D^{2} y m_{0}\left(24 t_{d}+r\right) \equiv y m_{0}(24 t+r)(\bmod m)$ which follows from (23) and $A D-B C=1$ and next substituting $1-y m_{0}=24 x C$ because of (i). Next we exploit the identity,

$$
\begin{aligned}
T(n, d) & =\sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)=1}}\left(\frac{s}{m_{0} / d}\right)^{r} e^{-\frac{2 \pi i x}{m / d}\left\{x \iota_{s, d}\left(\left(24 t_{d}+r\right)+24 n m_{C}\right)+24 C s(24 t+r)\right\}} \\
& =\sum_{\substack{0 \leq s<m_{0} / d \\
\operatorname{gcd}\left(s, m_{0} / d\right)=1}}\left(\frac{24 C s}{m_{0} / d}\right)^{r} e^{-\frac{2 \pi i x / m_{C}}{m_{0} / d}\left\{\iota_{s, d}\left(\left(24 t_{d}+r\right)+24 n m_{C}\right)+s(24 t+r)\right\}}
\end{aligned}
$$

because $s \mapsto x s$ is a bijection modulo m_{0} / d together with $24 x C \equiv 1\left(\bmod m_{0} / d\right)$.
Finally substituting in (40) we obtain (22).
Lemma 5.6. Let Q be a positive integer, $v \in \mathbb{Z}$ with $v \neq 0$ and $p \geq 5$ a prime. Let b be maximal such that $p^{b} \mid v$. Then for any integer $r \geq b+1$ and $l \in \mathbb{Z}$ there exists $a_{r, l} \in \mathbb{Z}$ with $\operatorname{gcd}\left(a_{r, l}, 6 p Q\right)=1$ such that

$$
a_{r, l}^{2} v \equiv v+24 l p^{b+1} Q \quad\left(\bmod p^{r} Q\right) .
$$

Proof. Fix $l \in \mathbb{Z}$. Then the statement holds for $r=b+1$ with $a_{r, l}=1$. Next assume that the statement is true for $r=R \geq b+1$ and prove it for $r=R+1$.

That is there exists $a_{R, l}$ such that

$$
\begin{equation*}
a_{R, l}^{2} v \equiv v+24 l p^{b+1} Q \quad\left(\bmod p^{R} Q\right) \tag{42}
\end{equation*}
$$

We make the "ansatz" $a_{R+1, l}:=a_{R, l}+24 p^{R-b} Q x$. Because of (42) it makes sense to define s to be the integer satisfying

$$
\begin{equation*}
a_{R, l}^{2} v-v-24 l p^{b+1} Q=s p^{R} Q \tag{43}
\end{equation*}
$$

Then we need to show that there exists x such that

$$
\left(a_{R, l}+24 p^{R-b} Q x\right)^{2} v \equiv v+24 l p^{b+1} Q .
$$

We have

$$
\begin{aligned}
& \left(a_{R, l}^{2}+48 a_{R, l} x Q p^{R-b}+24^{2} p^{2 R-2 b} Q^{2} x^{2}\right) v-v-24 l p^{b+1} Q \\
\equiv & \left(a_{R, l}^{2}+48 a_{R, l} x Q p^{R-b}\right) v-v-24 l p^{b+1} Q
\end{aligned}
$$

because of $24^{2} x^{2} Q^{2} p^{2 R-2 b} v \equiv 0\left(\bmod p^{R+1} Q\right)$ becuase of $v \equiv 0\left(\bmod p^{b}\right)$ and $R \geq b+1$

$$
\equiv 48 a_{R, l} p^{R-b} Q x v+s p^{R} Q \equiv 0 \quad\left(\bmod p^{R+1} Q\right)
$$

because of (43).

This implies

$$
48 a_{R, l} x v p^{-b}+s \equiv 0 \quad(\bmod p)
$$

which is solvable for x because of $\operatorname{gcd}\left(48 a_{R, l} Q v p^{-b}, p\right)=1$. Hence the proof is finished by the induction principle.

References

[1] S. Ahlgren and K. Ono. Congruence Properties for the Partition Function. Proceedings of the National Academy of Science, 98(23):12882-12884, 2001.
[2] S. Ahlgren and K. Ono. Congruences and Conjectures for the Partition Function. In B. C. Berndt and K. Ono, editors, Proceedings of the Conference on q-series with Applications to Combinatorics, Number Theory and Physics, AMS Contemporary Mathematics 291, pages 1-10. AMS, 2001.
[3] P. Deligne and M. Rapoport. Les schémas de modules de courbes elliptiques. In P. Deligne and Willem Kuyk, editors, Modular functions of one variable. II, Lecture Notes in Mathematics 349, pages 143-316. Springer-Verlag Berlin, 1973.
[4] S. Lang. Algebraic Number Theory. Addison-Wesley Publishing Company, Inc., 1970.
[5] R. Lewis. The Components of Modular Forms. J. London Math. Soc., 52:245-254, 1995.
[6] M. Newman. Construction and Application of a Class of Modular Functions 2. Proceedings London Mathematical Society, 3(9):373-387, 1959.
[7] S. Radu. An Algorithmic Approach to Ramanujan's Congruences. Ramanujan Journal, 20:215251, 2009.

Research Institute for Symbolic Computation (RISC), Johannes Kepler University, A4040 Linz, Austria

[^0]: S. Radu was supported by DK grant W1214-DK6 of the Austrian Science Funds FWF.

[^1]: ${ }^{1}$ For given positive integers k, N and $f \in M_{k}(\Gamma(N))$ with the coefficients of the q-expansion of f in $\mathbb{Z}\left[1 / N, e^{2 \pi i / N}\right]$ we obtain by Theorem [3, VII, Cor. 3.13] that for $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$ the coefficients in the q-expansion of $\left.f\right|_{k} \gamma$ have the same property. In this case there exists also a power N^{j} of N such that for $\gamma \in \operatorname{SL}_{2}(\mathbb{Z})$ the coefficients in the q-expansion of $\left.N^{j} f\right|_{k} \gamma$ are in $\mathbb{Z}\left[e^{2 \pi i / N}\right]$ (see for example [3, VII, Cor 3.11]). Consequently for a given prime p and a prime ideal π in $\mathbb{Z}\left[e^{2 \pi i / N}\right]$ lying above p it makes sense to write $\left.f\right|_{k} \gamma \equiv 0\left(\bmod \pi^{\nu}\right)$ if all the coefficients in the q-expansion of $\left.f\right|_{k} \gamma$ lie in the ideal π^{ν}.

[^2]: ${ }^{2}$ In fact $F\left(q_{m}\right)$ is a Laurent series in q_{m}^{ℓ} because of $d^{2}\left(24 t_{d}-1\right)+Q^{2} \equiv 0(\bmod \ell)$ because of (9)-(11) and (15).

