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Abstract. In 1994 James Sellers conjectured an infinite family of Ramanu-

jan type congruences for 2-colored Frobenius partitions introduced by George
E. Andrews. These congruences arise modulo powers of 5. In 2002 Dennis
Eichhorn and Sellers were able to settle the conjecture for powers up to 4. In
this article we prove Sellers’ conjecture for all powers of 5. In addition, we

discuss why the Andrews-Sellers family is significantly different from classical
congruences modulo powers of primes.

1. Introduction

1.1. Sellers’ conjecture. In his 1984 Memoir [4], Andrews introduced two families
of partition functions, φk(m) and cφk(m), which he called generalized Frobenius
partition functions. In this paper we restrict our attention to generalized 2-colored
Frobenius partitions. Their generating function reads as follows [4, (5.17)]:

(1)

∞
∑

m=0

cφ2(m)qm =

∞
∏

n=1

1− q4n−2

(1− q2n−1)4(1− q4n)
.

Among numerous properties of generalized Frobenius partitions, Andrews also con-
sidered congruences of various kinds. For example, he noted and proved [4, p. 28,
Cor. 10.1] that

cφ2(5n+ 3) ≡ 0 (mod 5), n ≥ 0.

In 1994 Sellers [20] conjectured that for all integers n ≥ 0 and α ≥ 1 one has

(2) cφ2(5
αn+ λα) ≡ 0 (mod 5α),

where λα is defined to be the smallest positive integer such that

(3) 12λα ≡ 1 (mod 5α).

In his joint paper with Eichhorn [10] this conjecture was proved for the cases α =
1, 2, 3, 4. In this paper we settle Sellers’ conjecture for all α in the spirit of Watson
[21].

In addition, we want to highlight the following aspect: At the first glance the con-
gruences (2) seem to fit the standard pattern of Ramanujan type congruences, and
one would expect that standard methods would apply in a straight-forward manner.
But it turns out that a basic feature of such approaches is missing here; namely,
ℓ-adic convergence to zero of sequences formed by the application of U -operators
to Atkin basis functions. This, we feel, is the reason why Sellers’ conjecture has
remained open for more than fifteen years.
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More information on this, together with some history, is given in the rest of this
section and in Section 6. In short, we were able to recover ℓ-adic zero convergence
by the introduction of a new type of subspaces of modular functions which behave
well under the action of the U -operators. These subspaces, found by computer
experiments, came as a perfect surprise to us. They have a simple but interesting
description, (42) and (43), and seem to be completely new.

1.2. Ramanujan’s congruences. Infinite families of congruences like (2) were
first of observed for p(n), the number of partitions of n, by Ramanujan [18] in 1919
where he conjectured that for ℓ ∈ {5, 7, 11} and α ≥ 1:

(4) p(ℓαn+ µα,ℓ) ≡ 0 (mod ℓα), n ≥ 0,

where µα,ℓ is defined to be the smallest positive integer such that 24µα,ℓ ≡ 1
(mod ℓα). Watson [21] proved the conjecture for ℓ = 5 and a suitably modified
version for ℓ = 7; thirty years later Atkin [5] settled the ℓ = 11 case. Concerning
Ramanujan’s role consult [7].

To put Sellers’ conjecture (2) into context, some further remarks on history and
background of such identities seem to be in place. First of all, for α = 1 Ahlgren
and Boylan [2] proved that (4) holds only for ℓ = 5, 7, 11. This achievement settles
a question of Ramanujan and is one of the few results on non-existence of partition
congruences. For the Andrews-Sellers family an analogous result was proved only
recently by Dewar [8]; namely that cφ2(2n + 1) ≡ 0 (mod 2) and cφ2(5n + 3) ≡ 0
(mod 5) (proved by Andrews [4]) are the only Ramanujan congruences for two-
colored generalized Frobenius partitions. Generally, Ramanujan congruences are
congruences of the form φ(ℓn + λ) ≡ 0 (mod ℓ), n ≥ 0, where ℓ is a prime. Con-
cerning congruences not being of Ramanujan type, landmark results due to Ono [16]
and Ahlgren [1] say that there are infinitely many of them of the form p(an+b) ≡ 0
(mod ℓα). For generalized two-colored Frobenius partitions analogous results are
not yet known.

1.3. The ℓ-adic property. The problem of proving the congruence (2) is similar
to the proof of congruence (4), but certain adaptions are required together with
some new ideas. Some of these aspects are informally described in this section. For
basic modular form terminology see Section 5.1.

In order to prove (4) one defines two linear operators U (0) : S0 → S1 and U (1) :
S1 → S0 (in a similar fashion as in Definition 2.3 below). The construction is
such that by defining L0 := 1, L2α−1 := U (0)(L2α−2), and L2α := U (1)(L2α−1) the
problem is reduced to proving Lα ≡ 0 (mod ℓα), i.e., divisibility of coefficients in
the q-series expansions of the Lα. This problem transformation is common to all
proofs of such congruences. For ℓ = 5 the Si are subrings of the ring of modular
functions on Γ0(ℓ) which are isomorphic to Z[X], and a close inspection of Watson’s
computations of the U (i)-actions makes transparent that here one heavily exploits
the simple structure of Z[X]. The same applies to the (modified) ℓ = 7 case. But
when trying to generalize Watson’s construction to the case ℓ = 11, one encounters
the difficulty that S0 and S1 are isomorphic to finitely generated free Z[X]-modules
with more than one generator. The reason for this is that the Riemann surface
X0(11) has nonzero genus. Here X0(N) denotes the Riemann surface on which
modular functions for Γ0(N) live.

Because of this difficulty of Watson’s method, Atkin [5] was led to solve the problem
for the ℓ = 11 case with an entirely different method. He also reduces the problem
to proving Lα ≡ 0 (mod 11α) by using a similar construction involving operators



THE ANDREWS-SELLERS FAMILY OF PARTITION CONGRUENCES 3

U (i), i = 0, 1. But additionally he defines spaces X(i) ⊆ Si of modular functions on
Γ0(11) having integer coefficients in their q-expansions. In particular, the elements
f ∈ X(i) for ℓ = 11 satisfy the valuation conditions vℓ(U

(i)(f)) = vℓ(f) + 1, where
vℓ(f) is defined to be the minimal nonnegative integer such that all the coefficients
in the q-expansion of f are divisible by ℓvℓ(f). Consequently, f ∈ X(i) implies
f
11 ∈ X(1−i), and, by induction, it follows that Lα ≡ 0 (mod 11α) for all α ≥ 1. In

order to prove the valuation properties of the spaces X(0) and X(1), Atkin in [5]
uses a lot of computer computations and some technical lemmas.

With respect to the operators U (i) we assign to each f ∈ Si the sequence u(f) :=
(un)n≥0, called the U -sequence at f , and inductively defined by u0 := f , u1 :=

U (i)(f), u2 := U (1−i)U (i)(f), u3 := U (i)U (1−i)U (i)(f), and so on. For example, for
ℓ = 5 Watson’s (Lα)α≥0 is the U -sequence at 1. A sequence (un)n≥0 with un ∈ X(i),
i = 0 or 1, is a zero sequence with respect to the ℓ-adic norm, if for any α ≥ 1 there
exists an N such that un ≡ 0 (mod ℓα) for n ≥ N .

Translating Atkin’s setting [5] into this terminology, it is straight-forward to show
that for each f ∈ Si one has 11Nf ∈ X(i) for some nonnegative integer N . Conse-
quently, u(11Nf) → 0 and thus u(f) → 0, both in the ℓ-adic sense.

This universal property also holds in the cases ℓ = 5 and ℓ = 7. To our knowledge,
in all other problems similar to (2) or (4) one also observes that this property
(u(f) → 0 in the ℓ-adic sense for all f ∈ S0) is always crucial for the proof to work.
In all the known examples like in [21, 5, 11, 12, 13] the spaces Si are defined to
be subspaces of the space of modular functions on Γ0(ℓ) having integer coefficients
in their q-expansions. Furthermore, in these examples one always observes that all
f ∈ S0 (or S1) are holomorphic at certain given cusps. For example, in the case of
(4) all f ∈ S0 ∪ S1 are holomorphic at the cusp ∞.

As a consequence, the natural approach in the Sellers problem would be to identify
the corresponding spaces there. One finds immediately that U (0)(1) is a modular
function in Γ0(20). Furthermore, the U -sequence at 1 stays completely in X0(20).
This suggests to consider subspaces Si of the modular functions on Γ0(20). But then
one is facing a problem when trying to install the universal 5-adic zero-convergence
property. For example, in other contexts one can obtain this property by requiring
that all Si elements are holomorphic at certain cusps. In the Sellers problem this
recipe fails. Namely: For each cusp c of Γ0(20) we chose a modular function fc
on Γ0(20) having a pole only at the cusp c and being holomorphic at all the other
cusps. Additionally, defining U := U (i)◦U (1−i), we found that for each such fc there
exists an nc such that U

nc
(fc) is an eigenfunction of U modulo 5 with eigenvalue

λc 6≡ 0 (mod 5). This proves that the U -sequence at each fc does not converge to
0 in the 5-adic sense. And this is why in the Sellers problem we had to find a new
way of defining the spaces S0 and S1.

As explained above, our solution to Sellers’ conjecture will lead to subspaces Si

specified in quite different and to us unexpected fashion: namely, by modular func-
tions satisfying functional identities like (42) and (43) in Section 6. Such spaces
to the best of our knowledge have never popped up in the literature before. They
or the underlying relations, respectively, were discovered in the course of computer
experiments.

Finally, the spaces S0 and S1 we found are not isomorphic to Z[X] which, as in
the case ℓ = 11 of (4), makes the problem more complicated. We mentioned that
Atkin [5] found his way to deal with such more involved spaces (i.e., spaces where
the corresponding Riemann surface on which the modular functions live is not
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necessarily of genus 0). Later Gordon [11] found another approach that generalizes
Watson’s method. In this paper we follow Gordon’s approach rather than Atkin’s.

1.4. Contents and basic notions. Our article is structured as follows. In Sec-
tion 2 we state the Main Theorem (Theorem 2.11) of our paper. It describes the
action of a class of Hecke type operators on a quotient of eta function products
being crucial for the problem. Sellers’ conjecture then is derived as an immedi-
ate consequence (Corollary 2.12). The rest of the paper deals with proving the
Main Theorem. The basic building blocks of our proof are the twenty Fundamental
Relations listed in the Appendix (Section 7). Despite postponing their proof to
Section 5, we shall use these relations already in Section 3 and Section 4. In Sec-
tion 3 a crucial result is proved, the Fundamental Lemma (Lemma 3.3). The proof
of the Main Theorem is presented in Section 4. To this end, three further lemmas
are introduced, all being immediate consequences of the Fundamental Lemma. We
mention that in Section 5, in order to prove the twenty Fundamental Relations,
we utilize a computer-assisted method which is based on a variant of a well-known
lemma tracing back to Newman (Lemma 5.1). Finally, in Section 6 we provide hints
for getting deeper insight into what is standing behind our proof. In particular, we
introduce the functional identities described in the introduction which are crucial
in finding the functions used to express the Lα.

Throughout the paper we will use the following conventions: N = {0, 1, . . .} and
N

∗ = {1, 2, . . .} denote the nonnegative and positive integers, respectively. The
complex upper half plane is denoted by H := {τ ∈ C : Im(τ) > 0}. As usual, η(τ)
for τ ∈ H denotes the Dedekind eta function for which

(5) η(τ) = q
1
24

∞
∏

n=1

(1− qn) where q := e2πiτ .

We will also use the short hand notation:

(6) ηn(τ) := η(nτ), n ∈ Z, τ ∈ H.

For x ∈ R the symbol ⌊x⌋ (“floor” of x) as usual denotes the greatest integer less
or equal to x. Let f =

∑

n∈Z
anq

n, f 6= 0, be such that an = 0 for almost all
n < 0. Then the order of f is the smallest integer N such that aN 6= 0; we write
N = ord(f). More generally, let F = f ◦ t =

∑

n∈Z
ant

n with t =
∑

n≥1 bnq
n, then

the t-order of F is defined to be the smallest integer N such that aN 6= 0; we write
N = ordt(F ). For example, if ord(f) = −1 and t = q2, then ordt(F ) = −1 but
ord(F ) = −2.

2. The Main Theorem

Let

CΦ2(q) :=

∞
∑

m=0

cφ2(m)qm.

Lemma 2.1. For τ ∈ H,

CΦ2(q) =

∞
∏

n=1

(1− q2n)5

(1− qn)4(1− q4n)2
.
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Proof. From (1),

CΦ2(q) =

∞
∏

n=1

(1− q2(2n−1))(1− q2n)4

(1− qn)4(1− q4n)

=

∞
∏

n=1

(1− q2n)(1− q2n)4

(1− qn)4(1− q4n)2
.

�

Subsequently we will study the action of certain operators Um on CΦ2(q), respec-
tively on

(7) A :=
η52η

2
100η

4
25

η550η
2
4η

4
.

Definition 2.2. For f : H → C and m ∈ N
∗ we define Um(f) : H → C by

Um(f)(τ) :=
1

m

m−1
∑

λ=0

f

(

τ + λ

m

)

, τ ∈ H.

Obviously Um is linear (over C); in addition, it is easy to verify that

(8) Umn = Um ◦ Un = Un ◦ Um, m, n ∈ N
∗.

The operators Um, introduced by Atkin and Lehner [6], are closely related to Hecke
operators. They typically arise in the context of partition congruences (e.g. [3,
Sect. 10.2]) mostly because of the property: if

f(τ) =

∞
∑

n=−∞

fnq
n (q = e2πiτ ),

then

Um(f)(τ) =

∞
∑

n=−∞

fmnq
n.

To relate to the discussion in the introduction we make the following definition.

Definition 2.3. For f : H → C we define U (0)(f), U (1)(f) : H → C by U (0)(f) :=
U5(Af) and U (1)(f) := U5(f).

The following explicit expressions for λα in (3) are easily verified.

Lemma 2.4. For α ∈ N
∗:

λ2α−1 =
1 + 7 · 52α−1

12
and λ2α =

1 + 11 · 52α

12
.

Definition 2.5. We define the U -sequence (Lα)α≥0 at 1 by L0 := 1 and for α ≥ 1:

L2α−1 := U (0)(L2α−2) and L2α := U (1)(L2α−1).

Using Lemma 2.4 the proof of the following lemma is completely analogous to [5,
p. 23] and we omit it.

Lemma 2.6. For α ∈ N
∗:

(9) L2α−1 = q

∞
∏

n=1

(1− q5n)4(1− q20n)2

(1− q10n)5

∞
∑

n=0

cφ2(5
2α−1n+ λ2α−1)q

n

and

(10) L2α = q

∞
∏

n=1

(1− qn)4(1− q4n)2

(1− q2n)5

∞
∑

n=0

cφ2(5
2αn+ λ2α)q

n.
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Definition 2.7. Let t, ρ, σ, p0, and p1 be functions defined on H as follows:

(11) t :=
η65
η6

, ρ :=
η22η

4
20

η44η
2
10

, σ :=
η2η

3
10

η3η5
,

(12) p0 := 36σ + 25t+ ρ+ 600tσ + 136σ2 + 2000tσ2 + 40ρσ2 + 12ρσ,

(13) p1 := t+ ρ+ 12tσ + 40tσ2 + 200tρσ2 + 100tρσ + 16ρσ2 + 8ρσ + 12tρ.

We note that all functions defined in Definition 2.7 have Laurent series expansions in
powers of q with coefficients in Z. In particular, ord(σ) = ord(t) = 1 and ord(ρ) = 2,
which implies ord(p1) ≥ 1 and ord(p0) ≥ 1.

Before stating the Main Theorem of the paper, we introduce convenient shorthand
notation.

Definition 2.8. A map a : Z → Z is called a discrete function if it has finite
support. A map a : Z × Z → Z is called discrete array if for each i ∈ Z the map
a(i,−) : Z → Z, j 7→ a(i, j), has finite support.

Definition 2.9. We define

S0 :=

{

∞
∑

n=0

r(n)p0t
n +

∞
∑

n=1

s(n)tn : r and s discrete functions

}

,

S1 :=

{

∞
∑

n=0

r(n)p1t
n +

∞
∑

n=1

s(n)tn : r and s discrete functions

}

,

X(0) :=

{

∞
∑

n=0

r(n)5⌊
5n+1

2 ⌋p0t
n +

∞
∑

n=1

s(n)5⌊
5n−4

2 ⌋tn : r and s discrete functions

}

and

X(1) :=

{

∞
∑

n=0

r(n)5⌊
5n+2

2 ⌋p1t
n +

∞
∑

n=1

s(n)5⌊
5n−5

2 ⌋tn : r and s discrete functions

}

.

Remark 2.10. Note that Si = 〈t, pi〉Z[t]. Here 〈t, pi〉Z[t] denotes the free Z[t]-module
generated by t and pi.

Theorem 2.11 (“Main Theorem”). For each β ≥ 1 there exist f2β−1 ∈ X(1) and

f2β ∈ X(0) such that

L2β−1 = 52β−1f2β−1 and(14)

L2β = 52βf2β .(15)

The remaining sections are devoted to proving the Main Theorem by mathematical
induction on β. In Sections 3 and 4 we describe the algebra underlying the induction
step. In Section 5 we settle the initial cases, i.e., the correctness of the twenty
fundamental relations listed in the Appendix (Section 7).

We conclude this section by deriving the truth of Sellers’ conjecture as a corollary.

Corollary 2.12. Sellers’ conjecture is true; i.e., for α ∈ N
∗:

cφ2(5
αn+ λα) ≡ 0 (mod 5α), n ∈ N

∗.

Proof. The statement is derived immediately by applying Lemma 2.6 to (14) and
(15). �
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3. The Fundamental Lemma

In this section we prove the Fundamental Lemma, Lemma 3.3, which will play a
crucial role in the proof of the Main Theorem in Section 4.

Definition 3.1. With t = t(τ) as in Definition 2.7 we define:

a0(t) = −t, a1(t) = −53t2 − 6 · 5t, a2(t) = −56t3 − 6 · 54t2 − 63 · 5t,

a3(t) = −59t4 − 6 · 57t3 − 63 · 54t2 − 52 · 52t,

a4(t) = −512t5 − 6 · 510t4 − 63 · 57t3 − 52 · 55t2 − 63 · 52t.

We define s : {0, . . . , 4} × {1, . . . , 5} → Z to be the unique function satisfying

(16) aj(t) =

5
∑

l=1

s(j, l)5⌊
5l+j−4

2 ⌋tl.

Lemma 3.2. For 0 ≤ λ ≤ 4 let

tλ(τ) := t

(

τ + λ

5

)

, τ ∈ H.

Then in the polynomial ring C(t)[X]:

(17) X5 +

4
∑

j=0

aj(t)X
j =

4
∏

λ=0

(X − tλ).

Proof. First we prove

(18)

4
∏

λ=0

tλ = −a0(t) = t.

With ω := e48πi/5 one has for τ ∈ H:

4
∏

λ=0

tλ(τ) =

4
∏

λ=0

q1/5ωλ
∞
∏

n=1

(

1− qn

1− ωλnqn/5

)6

= q

∞
∏

n=1

4
∏

λ=0

(

1− qn

1− ωλnqn/5

)6

= q

∞
∏

n=1

(1− qn)30
∞
∏

n=1

(

1− q5n

1− qn

)6 ∞
∏

n=1

(

1

1− qn

)30

= t(τ).

Here we used the fact that
∏4

λ=0(1 − ωλnz) equals (1 − z)5 if 5|n, and 1 − z5

otherwise.

For the remaining part of the proof we use (18) to rewrite (17) into the equivalent
form

(19) X5 +
4

∑

j=0

aj(t)X
j = −t

4
∏

λ=0

(1−Xt−1
λ ).

Hence to complete the proof, in view of t =
∏4

λ=0 tλ it remains to show that

(20) aj(t) = (−1)j+1tej(t
−1
0 , . . . , t−1

4 ), 0 ≤ j ≤ 4,

where the ej are the elementary symmetric functions. To this end we utilize the
fact that

5U5(t
−j) =

4
∑

λ=0

t−j
λ , j ∈ Z.



8 PETER PAULE AND CRISTIAN-SILVIU RADU

The first non-trivial case is j = 1. Observing

e1(t
−1
0 , . . . , t−1

4 ) =

4
∑

λ=0

t−1
λ = 5U5(t

−1),

to show (20) for j = 1 we need to show that

5U5(t
−1) = t−1a1(t) = −53t− 5 · 6.

But this is just the second entry

(21) U5(t
−1) = (−52t− 6)

of Group III of the twenty fundamental relations from the Appendix. The next cases
2 ≤ j ≤ 4 work analogously with the remaining entries of Group III. For example,
if j = 2 then Newton’s formula, translating elementary symmetric functions into
power sums, implies

e2(t
−1
0 , . . . , t−1

4 ) =
1

2

(

(

5U5(t
−1)

)2
− 5U5(t

−2)
)

=
1

2

(

(−53t− 5·6)2 − (−56t2 + 54·5)
)

= −t−1a2(t).

Here we used the third entry of Group III. �

Finally we are ready for the main result of this section.

Lemma 3.3 (“Fundamental Lemma”). For u : H → C and j ∈ Z:

U5(ut
j) = −

4
∑

l=0

al(t)U5(ut
j+l−5).

Proof. For λ ∈ {0, . . . , 4} Lemma 3.2 implies

t5λ +

4
∑

l=0

al(t)t
l
λ = 0.

Multiplying both sides with uλt
j−5
λ where uλ(τ) := u((τ + λ)/5) gives

uλt
j
λ +

4
∑

l=0

al(t)uλt
j+l−5
λ = 0.

Summing both sides over all λ from {0, . . . , 4} completes the proof of the lemma. �

4. Proving the Main Theorem

We need to prepare with some lemmas. Recall that t is as in Definition 2.7.

Lemma 4.1. Let v1, v2, u : H → C and l ∈ Z. Suppose for l ≤ k ≤ l+4 there exist

Laurent polynomials p
(1)
k (t), p

(2)
k (t) ∈ Z[t, t−1] such that

(22) U5(ut
k) = v1p

(1)
k (t) + v2p

(2)
k (t)

and

(23) ordt

(

p
(i)
k (t)

)

≥

⌈

k + si
5

⌉

, i ∈ {1, 2},

for some fixed integers s1 and s2. Then there exist families of Laurent polynomials

p
(1)
k (t), p

(2)
k (t) ∈ Z[t, t−1], k ∈ Z, such that (22) and (23) hold for all k ∈ Z.
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Proof. Let N > l+4 be an integer and assume by induction that there are families

of Laurent polynomials p
(i)
k (t), i ∈ {1, 2}, such that (22) and (23) hold for l ≤ k ≤

N − 1. Suppose

p
(i)
k (t) =

∑

n≥
⌈

k+si
5

⌉

ci(k, n)t
n, 1 ≤ k ≤ N − 1,

with integers ci(k, n). Applying Lemma 3.3 we obtain:

U5(ut
N ) = −

4
∑

j=0

aj(t)U5(ut
N+j−5)

= −

4
∑

j=0

aj(t)

2
∑

i=1

vi
∑

n≥⌈N+j−5+si
5 ⌉

ci(N + j − 5, n)tn

= −

2
∑

i=1

vi

4
∑

j=0

aj(t)t
−1

∑

n≥⌈N+j+si
5 ⌉

ci(N + j − 5, n− 1)tn.

Recalling the fact that aj(t)t
−1 for 0 ≤ j ≤ 4 is a polynomial in t, this determines

Laurent polynomials p
(i)
N (t) with the desired properties. The induction proof for

N < l work analogously. �

Lemma 4.2. Let v1, v2, u : H → C and l ∈ Z. Suppose for l ≤ k ≤ l+4 there exist

Laurent polynomials p
(i)
k ∈ Z[t, t−1], i ∈ {1, 2}, such that

(24) U5(ut
k) = v1p

(1)
k (t) + v2p

(2)
k (t)

where

(25) p
(i)
k (t) =

∑

n

ci(k, n)5

⌊

5n−k+γi
2

⌋

tn

with integers γi and ci(k, n). Then there exist families of Laurent polynomials

p
(i)
k (t) ∈ Z[t, t−1], k ∈ Z, of the form (25) for which property (24) holds for all

k ∈ Z.

Proof. Suppose for an integer N > l + 4 there are families of Laurent polynomials

p
(i)
k (t), i ∈ {1, 2}, of the form (25) satisfying property (24) for l ≤ k ≤ N − 1.

We proceed by mathematical induction on N . Applying Lemma 3.3 and using the
induction base (24) and (25) we obtain:

U5(ut
N ) = −

4
∑

j=0

aj(t)

2
∑

i=1

vi
∑

n

ci(N + j − 5, n)5

⌊

5n−(N+j−5)+γi
2

⌋

tn.

Utilizing (16) from Definition 3.1 this rewrites into :

U5(ut
N ) = −

4
∑

j=0

5
∑

l=1

s(j, l)5⌊
5l+j−4

2 ⌋tl

×
2

∑

i=1

vi
∑

n

ci(N + j − 5, n)5

⌊

5n−(N+j−5)+γi
2

⌋

tn

= −

2
∑

i=1

vi

4
∑

j=0

5
∑

l=1

∑

n

s(j, l)ci(N + j − 5, n− l)

× 5

⌊

5(n−l)−(N+j−5)+γi
2

⌋

+⌊ 5l+j−4
2 ⌋tn.

(26)
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The induction step is completed by simplifying the exponent of 5 as follows:
⌊

5(n− l)− (N + j − 5) + γi
2

+

⌊

5l + j − 4

2

⌋⌋

≥

⌊

5(n− l)− (N + j − 5) + γi
2

+
5l + j − 5

2

⌋

=

⌊

5n−N + γi
2

⌋

.

The induction proof for N < l works analogously. �

Before proving the Main Theorem, Theorem 2.11, we need two more lemmas.

Lemma 4.3. Given A as in (7), p0 and p1 as in (12) and (13), respectively. Then
there exist discrete arrays ai, bi, c, and di, i ∈ {0, 1}, such that the following relations
hold for all k ∈ N:
(27)

U (0)(tk) =
∑

n≥⌈(k+1)/5⌉

a0(k, n)5
⌊ 5n−k−2

2 ⌋tn + p1
∑

n≥⌈(k−4)/5⌉

a1(k, n)5
⌊ 5n−k+5

2 ⌋tn,

(28)

U (0)(p0t
k) =

∑

n≥⌈(k+1)/5⌉

b0(k, n)5
⌊ 5n−k−2

2 ⌋tn + p1
∑

n≥⌈(k−4)/5⌉

b1(k, n)5
⌊ 5n−k+4

2 ⌋tn,

(29) U (1)(tk) =
∑

n≥⌈k/5⌉

c(k, n)5⌊
5n−k−1

2 ⌋tn,

(30) U (1)(p1t
k) =

∑

n≥⌈(k+1)/5⌉

d0(k, n)5
⌊ 5n−k−2

2 ⌋tn+p0
∑

n≥⌈k/5⌉

d1(k, n)5
⌊ 5n−k+1

2 ⌋tn.

Proof. The Appendix (Section 7) lists twenty fundamental relations, which are
proved in Section 5 (Theorem 5.7). The five fundamental relations of Group I
fit the pattern of the relation (27) for five consecutive values of k. The same ob-
servation applies to the relations of the Groups II, III and IV with regard to the
relations (28), (29), and (30), respectively. In each of these cases k is less or equal
to 0. Hence applying Lemma 4.1 and Lemma 4.2 immediately proves the statement
for all k ≥ 0. �

Lemma 4.4. We have

(31) f ∈ X(0) implies 5−1U (0)(f) ∈ X(1),

and

(32) f ∈ X(1) implies 5−1U (1)(f) ∈ X(0).

Proof. Proof of (31): Assume that f ∈ X(1). Then by Definition 2.9 there are
discrete functions r(n) and s(n) such that

f =

∞
∑

n=0

r(n)5⌊
5n+2

2 ⌋p1t
n +

∞
∑

n=1

s(n)5⌊
5n−5

2 ⌋tn.

This implies that

U (1)(f) =

∞
∑

n=0

r(n)5⌊
5n+2

2 ⌋U (1)(p1t
n) +

∞
∑

n=1

s(n)5⌊
5n−5

2 ⌋U (1)(tn).

Utilizing (29) and (30) of Lemma 4.3 with discrete arrays c and di gives
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U (1)(f) =



p0
∑

m≥0

∑

n≥0

r(n)d1(n,m)5⌊
5n+2

2 ⌋+⌊ 5m−n+1
2 ⌋tm

+
∑

m≥1

∑

n≥0

r(n)d0(n,m)5⌊
5n+2

2 ⌋+⌊ 5m−n−2
2 ⌋tm

+
∑

m≥1

∑

n≥1

s(n)c(n,m)5⌊
5n−5

2 ⌋+⌊ 5m−n−1
2 ⌋tm



 .

(33)

Observe that for m,n ≥ 0:
⌊

5n+ 2

2

⌋

+

⌊

5m− n+ 1

2

⌋

=

⌊

5m+ n+ 1

2

⌋

+

⌊

3n+ 2

2

⌋

≥

⌊

5m+ 1

2

⌋

+ 1,

⌊

5n+ 2

2

⌋

+

⌊

5m− n− 2

2

⌋

=

⌊

5m+ n− 2

2

⌋

+

⌊

3n+ 2

2

⌋

≥

⌊

5m− 4

2

⌋

+ 1,

and for m,n ≥ 1:
⌊

5n− 5

2

⌋

+

⌊

5m− n− 1

2

⌋

=

⌊

5m+ n− 5

2

⌋

+

⌊

3n− 1

2

⌋

≥

⌊

5m− 4

2

⌋

+ 1.

Hence the right hand side of (33) can be written in the form 5g for some g ∈ X(0).

Proof of (32): Assume that f ∈ X(0). Then by Definition 2.9 there are discrete
functions r(n) and s(n) such that

f =
∞
∑

n=0

r(n)5⌊
5n+1

2 ⌋p0t
n +

∞
∑

n=1

s(n)5⌊
5n−4

2 ⌋tn.

This implies that

U (0)(f) =
∞
∑

n=0

r(n)5⌊
5n+1

2 ⌋U (0)(p0t
n) +

∞
∑

n=1

s(n)5⌊
5n−4

2 ⌋U (0)(tn).

Utilizing (27) and (28) of Lemma 4.3 with discrete arrays ai and bi gives

U (0)(f) = p1
∑

m≥0

∑

n≥0

r(n)b1(n,m)5⌊
5n+1

2 ⌋+⌊ 5m−n+4
2 ⌋tm

+ p1
∑

m≥0

∑

n≥1

s(n)a1(n,m)5⌊
5n−4

2 ⌋+⌊ 5m−n+5
2 ⌋tm

+
∑

m≥1

∑

n≥0

r(n)b0(n,m)5⌊
5n+1

2 ⌋+⌊ 5m−n−2
2 ⌋tm

+
∑

m≥1

∑

n≥1

s(n)a0(n,m)5⌊
5n−4

2 ⌋+⌊ 5m−n−2
2 ⌋tm.

(34)

Similar to above observe that for m,n ≥ 0:
⌊

5n+ 1

2

⌋

+

⌊

5m− n+ 4

2

⌋

=

⌊

5m+ n+ 2

2

⌋

+

⌊

3n+ 3

2

⌋

≥

⌊

5m+ 2

2

⌋

+ 1,

for m ≥ 0 and n ≥ 1:
⌊

5n− 4

2

⌋

+

⌊

5m− n+ 5

2

⌋

=

⌊

5m+ n+ 2

2

⌋

+

⌊

3n− 1

2

⌋

≥

⌊

5m+ 2

2

⌋

+ 1,
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for m ≥ 1 and n ≥ 0:
⌊

5n+ 1

2

⌋

+

⌊

5m− n− 2

2

⌋

=

⌊

5m+ n− 4

2

⌋

+

⌊

3n+ 3

2

⌋

≥

⌊

5m− 5

2

⌋

+ 1,

and for m,n ≥ 1:
⌊

5n− 4

2

⌋

+

⌊

5m− n− 2

2

⌋

=

⌊

5m+ n− 6

2

⌋

+

⌊

3n

2

⌋

≥

⌊

5m− 5

2

⌋

+ 1.

Hence the right hand side of (34) is of the form 5g for some g ∈ X(1). �

Remark 4.5. Lemma 4.4 implies that for any f ∈ X(i) the U -sequence at f is a
5-adic zero sequence. Furthermore, by Definition 2.9 for any g ∈ Si there exists
an Ng ∈ N such that 5Ngg ∈ X(i), so it follows that also for every g ∈ Si the
U -sequence at g is an 5-adic zero sequence.

Now we are ready for the proof of the Main Theorem.

Proof of Theorem 2.11 (“Main Theorem”). We proceed by mathematical induction
on β. For β = 1 the statement is settled by the first fundamental identity L1 =
U (0)(1) = 5(−t + 5p1) of the Appendix (Section 7). The induction step will be
carried out as follows: In the first step we show that the correctness of (14) for
N = 2β−1, β ∈ N

∗, implies (15) for N +1 = 2β, which in the second step is shown
to imply the correctness of (14) for N + 2 = 2β + 1.

For the first step we recall (8), (31) in Lemma 4.4 and apply the induction hypothesis
(14) to obtain

U (1)(L2β−1) = 52β−1U (1)(f2β−1) = 52β−1 · 5f2β

for some f2β ∈ X(0). Next we assume (15) and apply (32) in Lemma 4.4 to obtain

U (0)(L2β) = 52βU (0)(f2β) = 52β · 5f2β+1

for some f2β+1 ∈ X(1). This completes the proof of the Main Theorem assuming
the validity of the twenty fundamental relation in the Appendix (Section 7). Their
correctness will be proven in the next section. �

5. Proving the Fundamental Relations

To prove the fundamental relations we use standard methodology from modular
forms. For the sake of completness we provide a brief account of what is needed.
For further details consult e.g. [9] and [17].

5.1. Basic definitions and facts. The special linear group SL2(Z) acts on ele-

ments τ of the upper half plane H as usual; i.e., γτ := aτ+b
cτ+d for γ =

(

a
c
b
d

)

∈ SL2(Z).

For any fixed k ∈ Z this action induces a group action of SL2(Z) on functions

f : H → C defined as follows. If γ =
(

a
c
b
d

)

∈ SL2(Z) then

(f |kγ)(τ) := (cτ + d)−kf(γτ)

for all τ ∈ H. If k = 0 we simply write f |γ instead of f |0γ. Considering subgroups
of SL2(Z), for our purpose it suffices to restrict to the level N ∈ N

∗ congruence
subgroups Γ0(N), i.e.,

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

.
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We denote the vector space (over C) of weakly holomorphic modular forms of integer
weight k on Γ0(N) by M !

k(Γ0(N)). These are holomorphic functions f : H → C

such that f |kγ = f for all γ ∈ Γ0(N), and, if γ ∈ SL2(Z), then f |kγ has a Fourier
expansion of the form

(f |kγ)(τ) =
∑

n≥nγ

aγ(n)e
2πinτ/N (τ ∈ H),

where aγ(nγ) 6= 0. If k = 0 we simply call f a modular function. If nγ ≥ 0 for each
γ ∈ SL2(Z), then f is called holomorphic modular form. Such functions f form a
subspace usually denoted by Mk(Γ0(N)) or, in short, Mk(N).

The next fact is very-well known and traces back to M. Newman in [14, Th. 1] and
[15, Th. 1]. For algorithmic checking the following formulation is convenient.

Lemma 5.1 (“Newman’s Lemma”). Let r = (rδ)δ|N be a finite sequence of integers
indexed by the positive divisors δ of N ∈ N

∗. Let fr : H → C be the eta-quotient
defined by fr(τ) :=

∏

δ|N ηrδ(δτ). Then

fr ∈ Mk(N) for k =
1

2

∑

δ|N

rδ,

if the following conditions are satisfied:

(i)
∑

δ|N δrδ ≡ 0 (mod 24);

(ii)
∑

δ|N Nrδ/δ ≡ 0 (mod 24);

(iii)
∏

δ|N δrδ is the square of a rational number;

(iv)
∑

δ|N rδ ≡ 0 (mod 4);

(v)
∑

δ|N gcd2(δ, d)rδ/δ ≥ 0 for all d|N .

5.2. An algorithmic proof method. Theoretically it is straightforward to prove
identities between weakly holomorphic modular forms; e.g., by bounding the cusp
order and multipying by appropriate powers of the Delta-function. Consequently,
the hard part of the work usually is considered to lie in the discovery of suitable
linear relations. Nevertheless, in computational practice one often is forced to think
more carefully about strategies with the goal to obtain bounds that are computa-
tionally feasible.

The twenty fundamental relations listed in the Appendix can be proved using the
following strategy. We illustrate this computational method by taking as an example
the celebrated identity of Jacobi [22, p. 470]:

(35)
∞
∏

n=1

(1− q2n−1)8 + 16q
∞
∏

n=1

(1 + q2n)8 =
∞
∏

n=1

(1 + q2n−1)8.

First we rewrite this identity in terms of eta products:

(36)
η8(τ)

η8(2τ)
+ 16

η8(4τ)

η8(2τ)
=

η16(2τ)

η8(τ)η8(4τ)
.

We multiply both sides of (36) with ηr1(τ)ηr2(2τ)ηr4(4τ). Then r1, r2 and r4,
together with N and k, are determined such that each summand in the resulting
new equation becomes a modular form in Mk(N). Computationally this amounts
to solving the relations in Newman’s Lemma (more precisely, the congruences (i),
(ii) and (iv) under the constraints (iii) and (v)) simultaneously for each of the three
summands. A priori it is not clear that such a solution exists, but in the particular
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case (r1, r2, r4) = (8, 8, 8) is one possible solution. This way, (36) is transformed
into

(37) η16(τ)η8(4τ) + 16η16(4τ)η8(τ)− η24(2τ) = 0,

and, again by Lemma 5.1, it is trivial to verify-independently from the steps of the
computation-that all three summands are in M12(4).

For the remaining step of the method we invoke a classical fact (e.g. [19, Th.
4.1.4 and (1.4.23)]) coming from the usual valence formula: Let f, g ∈ Mk(N) with
f(τ) =

∑

n≥0 a(n)q
n and g(τ) =

∑

n≥0 b(n)q
n for all τ ∈ H and q = e2πiτ . Then

f = g if and only if a(n) = b(n) for all n such that

(38) n ≤
k

12
µ(N) with µ(N) := N

∏

p|N

(

1 +
1

p

)

,

where the product runs over all prime divisors p ofN . Note: µ(N) = [SL2(Z) : Γ0(N)],
the index of Γ0(N) in SL2(Z).

Using the criterion (38) the proof of (37), resp. (35), is completed as follows. De-
noting the left hand side of (37) with f , we have that f ∈ Mk(N) with k = 12 and
N = 4. Hence µ(4) = [SL2(Z) : Γ0(4)] = 6, and to prove f = 0 it suffices to prove
that the first 1 + kµ(4)/12 = 7 coefficients in its Taylor expansion are equal to 0.

Before we apply the proof strategy described in the previous section, it is convenient
to introduce two lemmas dealing with the Un-operator from Definition 2.2.

Lemma 5.2. Let f ∈ Mk(N). If p is a prime with p2|N , then Up(f) ∈ Mk(N/p).

For a proof see e.g. [6, Lemma 17 (iv)]. — The next definition introduces the
standard Vn-operator for which we use a slightly different notation.

Definition 5.3. For f : H → C and µn :=
(

n
0
0
1

)

∈ GL2(Z) define f |µn : H → C

by (f |µn)(τ) := f(µnτ), τ ∈ H.

The following lemma is well-known as the “factorization property of U .”

Lemma 5.4. Let f ∈ Mk(N). Then for any n ∈ N
∗ and g : H → C,

Un((f |µn)g) = fUn(g).

5.3. A computerized proof of the fundamental relations. At the level of eta
products we need the following facts that are immediate from Newman’s Lemma.

Lemma 5.5. For the functions from Definition 2.7 the following statements are
true:

(i) η245 ·
η5
2η

4
25η

2
100

η5
50η

2
4η

4 ∈ M12(100);

(ii) tη24, tη245 ∈ M12(20);
(iii) ση24, ση245 ∈ M12(20);
(iv) ρη24, ρη245 ∈ M12(20);
(v) t−jη245 ∈ M12(20), 0 ≤ j ≤ 5;
(vi) t−6η485 ∈ M24(20);
(vii) tjη48 ∈ M24(20), −2 ≤ j ≤ 5;
(viii) p0η

72, p0η
72
5 ∈ M36(20);

(ix) p1η
96, p1η

96
5 ∈ M48(20).
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Proof. The statements (i)-(vii) are straight-forward verifications invoking Lemma
5.1. In proving (viii) and (ix) we restrict to showing that p0η

72 ∈ M36(20) in (viii),
since the other cases are analogous. According to (12) we need to show that

tσ2η72, tση72, ση72, ρη72, σ2η72, σ2ρη72, σρη72 ∈ M36(20).

By (ii) and (iii) we have that tη24 and ση24 are in M12(20). Consequently

ση24 · ση24 · tη24 ∈ M36(20).

Similarly one sees that tη24 ·ση24 ·η24 ∈ M36(20) because η
24 ∈ M12(20). The other

monomials are treated analogously. �

Next we connect all the fundamental relations to Newman’s lemma.

Lemma 5.6. For the functions from Definition 2.7 the following statements are
true for any choice of integer coefficients c(i, j) and d(i, j):

(i) η144
(

U (0)(t−j)−
∑4

i=−1(c(i, j)t
i + d(i, j)p1t

i)
)

∈ M72(20), 0 ≤ j ≤ 4;

(ii) η144
(

U (0)(p0t
−j)−

∑5
i=−2(c(i, j)t

i + d(i, j)p1t
i)
)

∈ M72(20), 2 ≤ j ≤ 6;

(iii) η144
(

U (1)(t−j)−
∑4

i=0 c(i, j)t
i
)

∈ M72(20), 0 ≤ j ≤ 4;

(iv) η144
(

U (1)(p1t
−j)−

∑5
i=−2(c(i, j)t

i + d(i, j)p1t
i)
)

∈ M72(20), 1 ≤ j ≤ 5.

Proof. We only prove (i) which corresponds to Group I of the fundamental relations;
the other cases are analogous. The statement follows from showing that each term
in the sum is in M72(20). We start with the term η144U (0)(t−j) = η144U5(At

−j) for
a fixed j ∈ {0, . . . , 4}. By Lemma 5.1, η144 ∈ M72(1) which implies together with
Lemma 5.4,

η144U5(At
−j) = U5(η

144
5 At−j).

By (7) we have that

η245 A = η245
η52η

4
25η

2
100

η550η
2
4η

4
,

which is in M12(100) by Lemma 5.5(i). By Lemma 5.5(v) we have t−jη245 ∈
M12(20) ⊆ M12(100), because in general Γ0(N1) is a subgroup of Γ0(N2) if N2|N1.
Observing that η965 ∈ M48(20) ⊆ M48(100), we can conclude that

t−jη245 ·η245 A·η965 = η1445 At−j ∈ M72(100).

Finally, Lemma 5.2 implies that U5(η
144
5 At−j) ∈ M72(20). Proving that η144ti

and η144p1t
i are in M72(20) for −1 ≤ i ≤ 4 is done analogously using Lemma 5.5

again. �

Theorem 5.7. The twenty fundamental relations listed in the Appendix hold true.

Proof. By Lemma 5.6, after multiplication with η144 the entries of Group I to
IV correspond to elements from Mk(N) with k = 72 and N = 20. This means,
we can apply the proof method described in Section 5.2 with µ(20) = [SL2(Z) :
Γ0(20)] = 36. Consequently, the proof is completed by verifying equality of the first
1 + µ(20)k/12 = 217 coefficients in the Taylor series expansions of both sides of
each of the fundamental relations. This task is left to the computer. �
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6. New Functional Relations and Further Explanations

We proved Sellers’ conjecture but we did not explain how the functions t, p0 and p1
in Definition 2.7 were found. The results in this section will not be proven but they
provide hints for getting deeper insight into what is standing behind the proof. A
more detailed account, including proofs of the results below, is planned for a separate
paper. Here we will work with modular functions rather than modular forms. Let
K(N) denote the set of all modular functions for Γ0(N), i.e. K(N) = M !

0(Γ0(N)).
Using the theory of modular functions one proves that all the Lα belong to K(20),
and also that there exists an X ∈ K(20) (not unique) such that K(20) is a free
C[X,X−1]-module of finite rank.

Namely, as mentioned in the introduction we found that not all U -sequences at the
f ∈ K(20) of interest are 5-adic zero sequences. Informally, these are f ∈ K(20)
with some restrictions on the orders at the cusps and with coefficients in the q-
expansion being integers. Once we observed this we tried to find a suitable subset
S0 ⊂ K(20) such that for every g ∈ S0 the U -sequence at g is a 5-adic zero sequence.
In the spirit of Atkin we made the assumption that there should exist another subset
S1 ⊂ K(20) such that U (0)(S0) ⊆ S1 and U (1)(S1) ⊆ S0; in particular, L2α−1 ∈ S1

and L2α ∈ S0. Let W4 :=
(

4
100

−1
−24

)

be the Atkin-Lehner involution, which is a

mapping fromK(20) toK(20), e.g. [6, Lem. 9]. After several computer experiments
we observed that for all bα : Z → C defined by

(39)
∞
∑

n=−∞

bα(n)q
n =

∞
∏

n=1

(1− q10n)5

(1− q5n)2
(L2α−1|W4)

one has bα(4n+2) = bα(4n+3) = 0 for all n ∈ Z. This discovery led to the natural
question of finding all f ∈ K(20) satisfying

(40) af (4n+ 2) = af (4n+ 3) = 0, n ∈ Z,

where af : Z → C is defined by
∞
∑

n=−∞

af (n)q
n =

∞
∏

n=1

(1− q10n)5

(1− q5n)2
(f |W4).

It is easy to see that if g =
∑∞

n=−∞ c(n)qn ∈ K(5), then g|W4 =
∑∞

n=−∞ c(n)q4n.
This implies immediately that if (40) is satisfied with f , then (40) is also satisfied
with fg for any g ∈ K(5). Consequently, the space of all f satisfying (40) is a
K(5)-module. Since K(5) = C[t, t−1] with t as in (11), we are led to describe K(20)
as a C[t, t−1]-module (that is, we choose X = t) and then to select the submodule
of all f satisfying (40). By using standard methods we found that K(20) is the free
C[t, t−1]-module generated by {1, σ, σ2, ρ, ρσ, ρσ2} with ρ and σ as in (11) (but of
course, there are other kinds of representations). Next we make the “ansatz”

f = Y1(t) + Y2(t)σ + Y3(t)σ
2 + Y4(t)ρ+ Y5(t)ρσ + Y6(t)ρσ

2

with Yj(t) ∈ C[t] and the degree of Yj(t) smaller than some fixed number M .
Then we do coefficient comparison and solve the resulting linear system under the
constraint that (40) is fulfilled. This led us to f = p1. Next we tried to see if L2α

satisfies a similar property and found that for all cα : Z → C defined by
∞
∑

n=−∞

cα(n)q
n =

∞
∏

n=1

(1− q2n)5

(1− qn)2
(L2α|W4)

one has cα(4n + 2) = cα(4n + 3) = 0 for all n ∈ Z. This led to the question of
finding all f ∈ K(20) satisfying

(41) df (4n+ 2) = df (4n+ 3) = 0, n ∈ Z,
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where df : Z → C is defined by

∞
∑

n=−∞

df (n)q
n =

∞
∏

n=1

(1− q2n)5

(1− qn)2
(f |W4).

Using the same “ansatz” technique as for p1 we found p0. One can prove that f = t
satisfies both (40) and (41). Consequently, because the elements satisfying (40) and
(41) form Z[t]-modules respectively, it follows that f ∈ S1 = 〈t, p1〉Z[t] satisfy (40)
and all f ∈ S0 = 〈t, p0〉Z[t] satisfy (41). What is even more striking is that we found
that any f ∈ S0 satisfies an even more interesting functional relation:

∞
∏

n=1

(1− q2n)5

(1− qn)2
f

(

4τ − 1

100τ − 24

)

=

∞
∏

n=1

(1− q2n)5

(1− q4n)2
f(4τ)

+ 2q

∞
∏

n=1

(1− qn)2(1− q4n)2

(1− q2n)
f

(

4τ

200τ + 1

)

;

(42)

moreover, as a counterpart, any f ∈ S1 satisfies

∞
∏

n=1

(1− q10n)5

(1− q5n)2
f

(

4τ − 1

100τ − 24

)

=
∞
∏

n=1

(1− q10n)5

(1− q20n)2
f(4τ)

+ 2q5
∞
∏

n=1

(1− q5n)2(1− q20n)2

(1− q10n)
f

(

4τ

200τ + 1

)

.

(43)

These are the functional relations mentioned in the introduction. We conclude by
posing some questions which we plan to treat in a separate paper:

• Does the set of all f ∈ M !
0(20) with the additional restriction (43) equal the

set 〈1, p1〉C[t,t−1]?

• Does the set of all f ∈ M !
0(20) with the additional restriction (42) equal the

set 〈1, p0〉C[t,t−1]?
• How do the relations (43) and (42) generalize for primes different from 5?

7. Appendix: The Fundamental Relations

Group I:

U (0)(1) = −5t+ 52p1;

U (0)(t−1) = −1 + p1t
−1;

U (0)(t−2) = 55t2 + 11·52t+ 11− p1(5
3 + 2·5t−1);

U (0)(t−3) = −58t3 − 34·55t2 − 51·53t− 119 + p1(2·5
6t+ 6·54 + 21·5t−1);

U (0)(t−4) = −511t4 + 92·56t2 + 759·53t+ 253·5− p1(8·5
7t+ 99·54 + 44·52t−1).
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Group II:

U (0)(p0t
−2) = 55t2 − 114·52t− 59 + p1(124·5

3 + 59t−1);

U (0)(p0t
−3) = −58t3 + 36·55t2 + 103·53t+ 26 + p1(5

6t− 9·54 + 7 · 5t−1);

U (0)(p0t
−4) = −511t4 − 14·59t3 − 259·56t2 − 1436·53t− 38·5

+ p1(5
9t2 + 122·56t+ 211·54 − 7·5t−1);

U (0)(p0t
−5) = 514t5 − 12·511t4 − 9·59t3 + 1494 · 56t2 + 2366·54t+ 196·5

− p1(5
12t3 + 8·510t2 + 282·57t+ 409·55 − 11·52t−1);

U (0)(p0t
−6) = 7·515t5 + 372·512t4 + 917·510t3 + 1581·57t2 − 16089·54t+ 69·52

− t−1 − p1(96·5
12t3 + 13·512t2 − 404·57t− 3152·55 + 361·52t−1 − t−2).

Group III:

U (1)(1) = 1;

U (1)(t−1) = −52t− 6;

U (1)(t−2) = −55t2 + 54;

U (1)(t−3) = −58t3 − 102·5;

U (1)(t−4) = −511t4 + 966·5.

Group IV:

U (1)(p1t
−1) = 3·510t4 + 77·57t3 + 562·54t2 + 41·53t+ 1

+ p0(5
9t3 + 14·56t2 + 44·53t+ 2·5);

U (1)(p1t
−2) = −55t2 − 14·52t+ 7 + 5p0;

U (1)(p1t
−3) = −58t3 − 14·55t2 − 54t− 12 + 54tp0;

U (1)(p1t
−4) = −511t4 − 14·58t3 − 57t2 + 12·5 + 57t2p0;

U (1)(p1t
−5) = 4·514t5 + 121·511t4 + 233·59t3 + 738·56t2 + 109·54t− 17·52

− p0(4·5
10t3 + 14·58t2 + 44·55t+ 2·53 − t−1).
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