
Theorema 2.0 : A Graphical User Interface for a

Mathematical Assistant System
Wolfgang Windsteiger

RISC, JKU Linz
4232 Hagenberg, Austria

Abstract

Theorema 2.0 stands for a re-design including a complete re-implementation of the
Theorema system, which was originally designed, developed, and implemented by Bruno
Buchberger and his Theorema group at RISC. In this paper, we present the first prototype
of a graphical user interface (GUI) for the new system. It heavily relies on powerful
interactive capabilities introduced in recent releases of the underlying Mathematica system,
most importantly the possibility of having dynamic objects connected to interface elements
like sliders, menus, check-boxes, radio-buttons and the like. All these features are fully
integrated into the Mathematica programming environment and allow the implementation
of a modern interface comparable to standard Java-based GUIs.

1 Introduction

Although Theorema 1.0 , see e.g. [1, 2, 3, 5], has been widely acknowledged as a system with one
of the nicer user interfaces, we could observe that outsiders or beginners still had a very hard
time to successfully use the Theorema system. This was true for entering formulae correctly as
well as for proving theorems or performing computations. Theorema 1.0 as well as Theorema
2.0 are implemented on top of Mathematica, one of the leading computer algebra systems
developed by Wolfram Research. Thus, the principal user interface to Theorema is given by the
Mathematica notebook front-end. While the 2D-syntax for mathematical formulae available
since Mathematica 3, see [6], is nice to read, a wrongly entered 2D-structure has always been
a common source of errors. More than that, the user-interaction pattern in Theorema 1.0
was the standard ‘command-evaluate’ known from Mathematica, meaning that every action in
Theorema 1.0 was triggered by the evaluation of a certain Theorema command implemented as a
Mathematica program. As an example, giving a definition meant evaluation of a Definition[. . . ]-
command, stating a theorem meant evaluation of a Theorem[. . . ]-command, proving a theorem
meant evaluation of a Prove[. . . ]-command, and performing a computation meant evaluation of
a Compute[. . . ]-command. For the new Theorema 2.0 system, we envisage a more ‘point-and-
click’-like interface as one is used to from modern software tools like an emailing-environment
or office software.

The main target user-group for Theorema are mathematicians, who want to engage in for-
malization of mathematics or who just want to have some computer-support in their proofs.
Also for students of mathematics or computer science and for teachers at universities or high
schools the system should be a tool helping to grasp the nature of proving. Therefore, nice
two-dimensional input and output of formulae in an appearance like typeset or handwrit-
ten mathematics is an important feature. On the other hand, the unambiguous parsing of
mathematical notation is non-trivial already in 1D, supporting 2D-notations introduces some
additional difficulties.

Theorema is a multi-method system, i.e. it offers many different proving methods specialized
for the proof task to be carried out. The main focus is mainly on a resulting proof that comes as
close as possible to a proof done by a well-educated mathematician. This results in a multitude
of methods, each of them having a multitude of options to fine-tune the behaviour of the provers.

1



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

This is on the one hand powerful and gives many possibilities for system insiders, who know all
the tricks and all the options including the effect they will have in a particular example. For
newcomers, on the other hand, the right pick of an appropriate method and a clever choice of
option settings is often an insurmountable hurdle. The user interface in Theorema 2.0 should
make these selections easier for the user. Furthermore, there should be the possibility to extend
the system by user-defined reasoning rules and strategies.

Finally, the integration of proving, computing, and solving in one system will stay a major
focus also in Theorema 2.0 . Compared to Theorema 1.0 , the separation between Theorema
and the underlying Mathematica system is even stricter, but the integration of Mathematica’s
computational facilities into the Theorema language has improved.

Some of the features described in this paper rely or depend on their implementation in
Mathematica. This requires a certain knowledge of the principles of Mathematica’s program-
ming language and user front-end in order to understand all details given below. The rest of the
paper is structured as follows: the first section describes the new features in recent releases of
Mathematica that form the basis for new developments in Theorema 2.0 , in the second section
we introduce the new Theorema user interface, and in the conclusion we give a perspective for
future developments.

2 New in Recent Versions of Mathematica

We describe some of the new developments in recent Mathematica releases that were crucial in
the development of Theorema 2.0 .

2.1 Mathematica Dynamic Objects

Typical graphical user interfaces nowadays are implemented in the Java programming language
and its derivations or extensions. Earlier versions of Mathematica offered the so-called GUIKit
extension, which was based on Java and used MathLink for communication between Mathe-
matica and the generated GUI. We used GUIKit earlier for the development of an educational
front-end for Theorema, see [4], but the resulting GUI was cumbersome to program, unstable,
and slow in responding to user interaction. As of Mathematica version 6, and then reliably
in version 7, see [7], the concept of dynamic expressions was introduced into the Mathematica
programming language and fully integrated into the notebook front-end. Dynamic expressions
form the basis for interactive system components, thus, they are the elementary ingredient for
the new Theorema 2.0 GUI.

In short, every Mathematica expression can be turned into a dynamic object by wrapping
it into Dynamic. As the most basic example, Dynamic[expr] produces an object in the Mathe-
matica front-end that displays as expr and automatically updates as soon as the value of one of
the parameters, on which expr depends, changes. In addition, typical interface elements such
as sliders, menus, check-boxes, radio-buttons, and the like are available. On the one hand, the
appearance of these elements depends on values of variables connected to them. On the other
hand, every action performed on them, e.g. clicking a check-box or radio-button, changes the
value of the respective variable. The set of available GUI objects is very rich and there is a wide
variety of options and auxiliary functions in order to influence their behaviour and interactions.
These features allow the construction of arbitrarily complicated dynamic interfaces and seem to
constitute a perfect platform for the implementation of an interface to the Theorema system. A
big advantage of this approach is that the entire interface programming can be done inside the

2



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

Mathematica environment, which in particular brings us a uniform interface on all platforms
from Linux over Mac until Windows for free.

2.2 Cascading Stylesheets

Stylesheets are a means for defining the appearance of Mathematica notebook documents very
similar to how stylesheets work in HTML or word processing programs. The mere existence of
a stylesheet mechanism for Mathematica notebooks is not new, but what is new since version 6
is that stylesheets are cascading, i.e. stylesheets may depend on each other and may inherit
properties from their underlying styles just like CSS in HTML. This of course facilitates the
design of different styles for different purposes without useless duplication of code. The more
important news is that stylesheets can now, in addition to influencing the appearance of a cell
in a notebook, also influence the behaviour of a cell. This is a feature that we always desired
since the beginning of Theorema: an action in Mathematica is always connected in some way
to the evaluation of a cell in a notebook, and we wanted to have different evaluation behaviour
depending on whether we want to e.g. prove something, do a computation, enter a formula, or
execute an algorithm. Using a stylesheet, we can now define computation-cells or formula-cells,
and the stylesheet defines commands for their pre-processing, evaluation, and post-processing.

Cascading is a nice feature for maintenance of stylesheets also, because is allows to separate
settings responsible for behaviour from those for appearance. This is convenient for a system
user, who typically would never wish to influence behaviour, because the functioning of the
system relies on proper settings in this area. Still, adding new styles for different tastes and
occasions such as presentations or lecture notes can be added with ease.

3 The Theorema Interface

As said, the Mathematica notebook front-end is the primary user interface for Theorema.
“Working in Theorema” consists of activities that themselves require certain actions. As an
example, a typical activity would be “to prove a formula”, which requires actions such as
“selecting a proof goal”, “composing the knowledge base”, “choosing the inference rules and a
proof strategy”, etc. The central new component in Theorema 2.0 is the Theorema commander ;
it is the GUI component that guides and supports all activities. Of course, most activities work
on mathematical formulae in one or the other way. Formulae appear as definitions, theorems
or similar containers and are just written into Mathematica/Theorema notebook documents
that use one of the Theorema stylesheets. We call the collection of all available formulae the
Theorema environment. Composing and manipulating the environment is just another activity
and therefore supported from the Theorema commander. The second new interface component
in Theorema 2.0 is the virtual keyboard ; its task is to facilitate the input of math expressions,
in particular 2D-input. Figure 1 shows a screen shot of Theorema 2.0 with a Theorema-styled
notebook top-left, the Theorema commander to its right, and the virtual keyboard underneath.

3.1 The Theorema Environment

The Theorema environment is composed in Theorema-styled Mathematica notebooks, which
have all the capabilities of normal Mathematica notebooks plus the possibility to process expres-
sions in Theorema language inside environment cells. This means that Theorema expressions
are embedded in a full-fledged document format for mathematical writing. Mathematica note-
books consists of hierarchically arranged cells, whose nesting is visualized with cell brackets on

3



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

Figure 1: The Theorema 2.0 GUI

the right margin of the notebook. Figure 1 shows a notebook using a stylesheet that renders
the cell brackets with thin blue lines and displays section headings with a small open/close icon
to their left for quick opening and closing entire section blocks. Note in particular that each
environment forms a group for its own.

Environment cells contain mathematical expressions in Theorema syntax with an additional
label. If no label is given by the user, an incremental numerical label is automatically assigned.
If a chosen label is not unique within a notebook, the user is warned but uniqueness is not
enforced. Invisible for the user, the formula is stored in the Theorema environment using a
datastructure that carries a unique key for each formula consisting of the absolute pathname
of the file, in which it was given, and the unique cell-ID in that notebook, which is provided
by the Mathematica front-end. The formula key allows to uniquely reference each formula in
the current environment. As we will explain later, the user never sees nor needs the concrete
formula key explicitly.

In mathematical practice, universal quantification of formulae and conditioning is often
done on a global level. As an example take definitions, which often start with a phrase like
“Let n ∈ N. We then define . . . ”, which in effect expresses a universal quantifier for n plus
the condition n ∈ N for all notions introduced in the current definition. For this purpose,
we provide declaration cells, which may either contain one ore several “orphaned” universal
quantifiers (each containing a variable and an optional condition, but missing the formula, to
which they refer) or an “orphaned” implication (missing its right hand side). The idea is that
the scope of these quantifiers or implications ranges from their location in the notebook to the

4



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

end of the nearest enclosing cell group. In the example in Figure 1, this is used in Definition
(Undom, Core) with a universal quantifier for Y and Z valid for both formulae inside this
definition. The cell grouping defined in the stylesheet ensures that a definition gets its own cell
group that limits the scope of the quantifier.

We generalized the idea of declarations inside an environment towards declarations inside
an arbitrary cell group. This has the effect that a declaration cell can be put anywhere in a
notebook, and its scope ranges as described above from its position to the end of the nearest
enclosing cell group. In Figure 1, this is used twice:

1. There is a ‘ ∀
n∈N

∀
π

’ at the beginning of Section ‘The Core’. This means, that, without

further mentioning, n and π are universally quantified with an additional condition n ∈ N
in the entire section including all its subsections.

2. There is a ‘n = 3 ⇒’ in Subsection ‘The Case n = 3’, so that this condition on n affects
only in this subsection.

At the moment of giving a formula to the system, i.e. evaluating the environment cell in
Mathematica, all declarations valid at this position are silently applied and the actual formula in
the Theorema environment has all respective quantifiers and implications attached to it just as
if they were written explicitly with each formula. This comes very close to how mathematicians
are used to write down things and this is very convenient. For bigger documents, one might
loose the overview on which declarations are valid at some point. The Theorema commander
gives some assistance in this situation: by just pressing a button one can obtain a list of
all declarations valid at the current cursor position in the selected notebook. Also, you can
always view the entire Theorema environment (with all formulae currently available including
all quantifiers and conditions) from the Theorema commander.

3.2 The Theorema Commander

The Theorema commander, see Figure 1 top-right, is the main GUI component in current
Theorema 2.0 . It is a two-level tabview with activities on the first level and the corresponding
actions for each activity on the second level. The first-level activity-tabs can be accessed
through the vertical tabs on the left margin. Currently, the supported activities are ‘Session’,
i.e. working on the Theorema environment, ‘Prove’, ‘Compute’, ‘Solve’, and ‘Preferences’.
As the system develops, this list may increase. For each of these activities, the respective
actions can be accessed via the horizontal tabs on top. Moving through them from left to right
corresponds to a wizard guiding the user through the respective activity. Proving is presumably
the most involved activity and we will describe some ideas for its support in the next paragraph
in more detail. The remaining parts of the Theorema commander are of similar fashion, we will
only mention some highlights in the concluding paragraph of this section.

The ‘Prove’-activity The example in Figure 1 displays the ‘Prove’-tab. It shows actions
such as ‘goal’, ‘knowledge’, etc. that just correspond to the actions required for proving a
formula in Theorema, namely defining the proof goal, specifying the knowledge available in
the proof, setting up built-in knowledge, and selecting the desired prover to be used. Defining
the proof goal is as simple as just selecting a formula in an open notebook with the mouse.
The selected formula is shown in the ‘goal’-tab, and it changes with every mouse selection.
Finally, the choice is confirmed by just pressing a button in the ‘goal’-tab. From this moment
on, whatever the mouse selects, the proof goal is fixed until the next confirmation.

5



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

Goal confirmation automatically proceeds to the tab for composing the knowledge base,
see Figure 2 (left). The knowledge browser displays a tab for each open notebook or loaded
knowledge archive1. In each tab, a hierarchical overview of the file/archive content showing only
the section structure, environments, and formula labels is displayed. Simply moving the mouse
cursor over the label opens a tooltip displaying the whole formula, clicking the label jumps
to the respective position in the corresponding notebook/archive. Each entry in the browser
has a check-box attached to its left responsible for toggling the selection of the respective
unit. In this way, individual formulae, environments, sections, up to entire notebooks can be
selected or deselected with just one mouse-click, and the formulae selected in this way constitute
the knowledge base for the next prove call. The formula label displayed in the browser is only
syntactic sugar, the check-box is connected to the unique key of each formula in the environment,
see Section 3.1.

The next action within the ‘Prove’-activity is the selection of built-in knowledge2, see Fig-
ure 2 (right). The built-in browser works like the knowledge browser described above. Instead
of section grouping we have (not necessarily disjoint) thematic groups of built-ins like sets,
arithmetic, or logic.

Figure 2: Graphical support for the ‘Prove’-activity: the knowledge browser (left) and the
built-in browser (right).

After having composed the relevant built-in knowledge, the user needs to select the prover.
A prover in Theorema 2.0 consists of a structured list of inference rules accompanied with a
prove strategy. Accordingly, the ‘prover’-tab, see Figure 3 (left), shows menus for choosing the
inference rules and the strategy, respectively, together with short info panels explaining the
current choice. A list of inference rules is a list, whose entries are individual inference rules or

1Archives are another new development in Theorema 2.0 . An archive gives the possibility to store the
formulae from a notebook efficiently in an external file, such that they can be loaded quickly into a Theorema
session. We do not go into further details in this paper.

2With built-in knowledge we refer to knowledge built into the Theorema language semantics. As an example,
‘+’ is by default an uninterpreted operator. Using some built-in knowledge one can link ‘+’ to the addition of
numbers available in the Theorema language. This is a feature inherited from Theorema 1.0 .

6



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

themselves lists of inference rules. In addition, every list of inference rules has a name. There is
no limit to the nesting of inference rule lists. The ‘prove’-tab displays an inference rule browser
corresponding to the selected rule list, which works like the knowledge browser described above
using the rule list structure for the hierarchy and the list names instead of section titles. With
the inference rule browser the user can efficiently deactivate individual inference rules, e.g. for
influencing whether an implication will be proved directly or via contraposition. In addition,
some options for the prover can be set or adjusted from this tab.

The next step is submitting the proof task. The respective tab collects all settings from
the previous actions, in particular the chosen goal and knowledge base, and displays them
for a final check. Hitting the ‘Prove’-button submits all data to the Theorema kernel and
proceeds to the ‘navigate’-tab, see Figure 3 (right), which displays the corresponding proof
tree as it develops during proof generation. The nodes in the proof tree differ in shape, color,
and content depending on node type and status. As soon as the proof is finished, some proof
information is written back into the notebook, in which the proof goal is defined. In addition
to an indicator of proof success or failure and a summary of settings used at the time of proof
generation, this information contains two important buttons:

1. A button to display the proof in natural language in a separate window. This feature is
in essence the same as we had it in Theorema 1.0 , see e.g. [5]. The ‘navigate’-tab in the
Theorema commander is connected to the proof display in that all labels in the proof tree
representation are hyperlinks to the respective text blocks in the proof display describing
the corresponding proof step, which is a nice possibility to navigate through a proof.

2. A button to restore all settings in the Theorema commander to the values they had at
the time of proof generation, which is a quick way to rerun a proof.

Figure 3: Graphical support for the ‘Prove’-activity: the ‘prover’-tab (left) and the ‘navigation’-
tab (right).

7



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

Other activities The ‘Session’-activity consists of structuring formulae into definitions, the-
orems, etc., arranging global declarations, inspecting the environment, inputting formulae, and
the development and maintenance of knowledge archives. The ‘Compute’-activity contains set-
ting up the expression to be computed, defining the knowledge base, and defining the built-in
knowledge using knowledge- and built-in browsers as described for proving above. Knowledge
selections for proving are independent from those used for computations. In the ‘Preferences’-
activity we collect everything regarding system setup, such as e.g. the preferred language. The
entire GUI is language independent in the sense that no single english string (for GUI labels,
button labels, explanations, tooltips, etc.) is hardcoded in its implementation, but all strings
are constants, whose definitions are collected in several language-setup files. For a translation
to a new language, only these files have to be copied and the english texts in them translated.
The language selection menu in the ‘Preferences’ will immediately offer the new choice for the
language, the user selects it, and voilà the GUI runs in the new language. Language support is
important in particular for educational purposes that we envisage for Theorema 2.0 .

An important detail that makes this approach possible is the decision to make the source
code available under GPL license. This gives all users access to the source code and in particular
the language-setup files. An attractive perspective for user contribution to the system could
also be the development of new proof strategies. They are just Mathematica programs applying
inference rules, and there is a rich library of Theorema programs that is ready for use in the
implementation of strategies.

3.3 The Virtual Keyboard

The last component to be described briefly is the virtual keyboard, see the screenshot in Figure 1.
Although much input can be given through buttons and palettes, such as buttons for frequently
used expressions in the ‘Session’-tab or the built-in Mathematica palettes, symbols or digits in
an expression are most conveniently typed directly on the keyboard. When working with
Theorema 2.0 on a tablet computer or on an interactive white-board, however, e.g. in an
educational context, we have no physical keyboard available. For situations like this we provide
the virtual keyboard, which is an arrangement of buttons imitating a physical keyboard. It
consists of a character block for the usual letters and a numeric keypad (numpad) for digits and
common arithmetic operators like on common keyboards. As a generalization of the numpad,
we provide a sympad (to the far right) and an expad (to the left) for common mathematical
symbols and expressions, respectively. Using modifier keys like Shift, Mod, Ctrl and more, every
key on the board can be equipped with many different meanings depending on the setting of
the modifiers. We believe that the virtual keyboard is a very powerful input component for
mathematical expressions, which will prove useful even in the presence of a physical keyboard.

4 Conclusion

Theorema 2.0 is currently under development. The components described in this paper are
all implemented and the screenshots provided show a running and working system, it is not
the sketch of a design. However, the interface presented here is incomplete and it will grow
with new demands. From the experience with Mathematica’s GUI components gathered up to
now we are confident that all requirements for a modern interface to a mathematical assistant
system can easily be fulfilled based on that platform.

Some of the features are implemented currently as ‘proof of concept’ and need to be com-
pleted in the near future to get a system that can be used for case studies. As an example,

8



Theorema 2.0 : A Graphical User Interface for a Mathematical Assistant System W. Windsteiger

the Theorema language syntax, from parsing via formatted output to computational semantics,
is only implemented for a fraction of what we already had in Theorema 1.0 . Due to the fact
that the already implemented parts are the most complicated ones and that we paid a lot of
attention to a generic programming style, there is hope that progress can be made quickly in
that direction.

The bigger part of the work to be done is the re-implementation of all provers that we already
had in Theorema 1.0 . What we already have now is the generic proof search procedure and the
mechanism of inference rule lists and strategies with their interplay. Two sample strategies, one
that models more or less the strategy used in Theorema 1.0 and another one that does a more
fine-grained branching on alternative inference rules being applicable, are already available, but
no report on their performance can be given at this stage. The big effort is now to provide all
the inference rules for standard predicate logic including all the extensions that the Theorema
language supports. As soon as this is completed we can engage in case studies trying out the
system in some real-world theory formalization and in education, for which we plan a hybrid
interactive-automatic proof strategy to be available.

References

[1] B. Buchberger, A. Craciun, T. Jebelean, L. Kovacs, T. Kutsia, K. Nakagawa, F. Piroi, N. Popov,
J. Robu, M. Rosenkranz, and W. Windsteiger. Theorema: Towards Computer-Aided Mathematical
Theory Exploration. Journal of Applied Logic, 4(4):470–504, 2006.

[2] B. Buchberger, C. Dupre, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and W. Windsteiger.
The Theorema Project: A Progress Report. In M. Kerber and M. Kohlhase, editors, Symbolic
Computation and Automated Reasoning (Proceedings of CALCULEMUS 2000, Symposium on the
Integration of Symbolic Computation and Mechanized Reasoning), pages 98–113. St. Andrews, Scot-
land, Copyright: A.K. Peters, Natick, Massachusetts, 6-7 August 2000.

[3] B. Buchberger, T. Jebelean, F. Kriftner, M. Marin, E. Tomuta, and D. Vasaru. A Survey of the
Theorema project. In W. Kuechlin, editor, Proceedings of ISSAC’97 (International Symposium on
Symbolic and Algebraic Computation, Maui, Hawaii, July 21-23, 1997), pages 384–391. ACM Press,
1997.

[4] G. Mayrhofer, S. Saminger, and W. Windsteiger. CreaComp: Experimental Formal Mathematics
for the Classroom. In Shangzhi Li, Dongming Wang, , and Jing-Zhong Zhang, editors, Symbolic
Computation and Education, pages 94–114, Singapore, New Jersey, 2007. World Scientific Publish-
ing Co.

[5] W. Windsteiger, B. Buchberger, and M. Rosenkranz. Theorema. In Freek Wiedijk, editor, The
Seventeen Provers of the World, volume 3600 of LNAI, pages 96–107. Springer Berlin Heidelberg
New York, 2006.

[6] S. Wolfram. The Mathematica Book. Wolfram Media/Cambridge University Press, third edition,
1996.

[7] Wolfram Research, Inc. Mathematica edition: Version 7.0, 2008. Champaign, Illinois.

9


	Introduction
	New in Recent Versions of Mathematica
	Mathematica Dynamic Objects
	Cascading Stylesheets

	The Theorema Interface
	The Theorema Environment
	The Theorema Commander
	The Virtual Keyboard

	Conclusion

