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A FAST ALGORITHM FOR REVERSION OF POWER SERIES

FREDRIK JOHANSSON

ABSTRACT. We give an algorithm for reversion of formal power series, based
on an efficient way to evaluate the Lagrange inversion formula. Our algorithm
requires O(n'/2(M(n) + MM (n'/?))) operations where M (n) and MM (n) are
the costs of polynomial and matrix multiplication respectively. This matches
an algorithm of Brent and Kung, but we achieve a constant factor speedup
whose magnitude depends on the polynomial and matrix multiplication algo-
rithms used. Benchmarks confirm that the algorithm performs well in practice.

1. INTRODUCTION

Classical algorithms for composition and reversion of power series truncated to
length n require O(n?) operations on elements in the coefficient ring [9]. This can
be improved to O(nM(n)) where M (n) is the cost of multiplying two length-n
polynomials. In [3], Brent and Kung gave two asymptotically faster algorithms
for composition, and observed that any algorithm for composition can be used for
reversion (and vice versa) via Newton iteration, with at most a constant factor
slowdown.

The first algorithm (BK 2.1) requires O(n'/?(M(n) + MM (n'/?))) operations
where MM (n) is the complexity of multiplying two n X n matrices. This reduces to
O(n'/2M (n) 4+ n?) with classical matrix multiplication, O(n/2M (n) + n*°!) with
the Strassen algorithm, and O(n'/2 M (n)+n'9%8) with the Coppersmith-Winograd
algorithm [I1]. The last term has subsequently been improved to O(n!':%67) by
Huang and Pan [§] using improved techniques for multiplication of nonsquare ma-
trices.

The second algorithm (BK 2.2) requires O((nlogn)'/2M(n)) operations. This
is asymptotically slower than BK 2.1 when classical (M (n) = O(n?)) or Karatsuba
multiplication (M(n) = O(n'°823) = O(n!5%%)) is used, but faster when FFT
polynomial multiplication (M (n) = O(nlog'*°® n)) is available.

As noted by Brent and Kung, many special compositions, including the evalua-
tion of reciprocals, square roots, and elementary transcendental functions of power
series, can be done in just M (n) operations. Recent research has focused on speed-
ing up such evaluations by constant factors by eliminating redundancy from New-
ton iteration [T 5, [6]. Improved composition algorithms over special rings have also
been investigated [2] [7]. However, the algorithms of Brent and Kung have remained
the best known for composition and reversion in the general case.

In this paper, we give a new algorithm for reversion analogous to BK 2.1 and
likewise requiring O(n'/2(M (n)+ MM (n'/?))) operations, but achieving a constant
factor speedup. The speedup ratio depends on the asymptotics of M (n) and MM (n)
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and is in the range between 1.2 and 2.6 with polynomial and matrix multiplication
algorithms used in practice. Our algorithm also allows incorporating the complexity
refinement of Huang and Pan, although the constant-factor improvement in this
case becomes conjectural.

Whereas BK 2.1 can be viewed as a baby-step giant-step version of Horner’s
rule, our algorithm can be viewed as a baby-step giant-step version of the Lagrange
inversion formula, avoiding Newton iteration entirely (apart from a single O(M (n))
reciprocal computation). It is somewhat surprising that such an algorithm has been
overlooked until now, with all publications following Brent and Kung apparently
having taken Newton iteration as the final word on the subject matter.

2. THE ALGORITHM

Our setting is the ring of truncated power series R[[z]]/(z™) over a commutative
coefficient ring R in which the integers 1,...,n—1 are cancellable. For example, we
may take R = Z or R = Z/pZ with prime p > n. We recall the Lagrange inversion
formula. If f(z) = 2/h(x) where h(0) is a unit in R, then the compositional inverse
or reversion f~!(z) satisfying f(f~!(x)) = f~1(f(x)) = x exists and its coefficients
are given by

1
47 @) = 7 A ()
The straightforward way to evaluate n terms of f~1(x) with the Lagrange in-
version formula is to compute h(x) (this requires O(M (n)) operations with New-
ton iteration) and then compute the powers h2, h3,... successively, for a total of

(n+ O(1))M (n) operations.

Algorithm 1 Fast Lagrange inversion

Input: f =a1z+ ax®+ ...+ ap_12" ' where n > 1 and a is a unit in R
Output: g = b1z + ...+ b,_12" ! such that f(g(z)) = g(f(x)) = x mod 2"
NG
h + x/f mod x"~1
for 1 <i<mdo
At bt x h mod 2!
b; + %[xi_l]hi
end for
t <+ h™
for : = m,2m,3m,...,Ilm < n do
b; %[l‘i_l]t
for 1 < j <m while i+ j <n do
bivi + 75 Lo ([2¥]0) - (@719

i+j
end for
t <t X hy, mod z" !
end for

return by +box + ...+ by_1x™ !

Our observation is that it is redundant to compute all the powers of h given that
we only are interested in a single coefficient from each. To do better, we choose some
1 < m < n and precompute h,h? h3, ... h™. For 0 < k < n, we can then write
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h% as h*J where 0 < j < m and i = Im for some 0 < [ < [n/m], only requiring
h™ k%™ R3™ ... to be computed subsequently. Determining a single coefficient in
h¥ = hihJ can then be done in O(n) operations using the definition of the Cauchy
product. Picking m ~ n'/?
required.

We give a detailed account of this procedure as Algorithm [l We note that most
of the polynomial arithmetic is done to length n — 1 rather than length n, as the
initial coefficient always is zero.

minimizes the number of polynomial multiplications

An improved version. Algorithm [Tl clearly requires O(nl/ 2M (n)+n?) operations
in R, as many as BK 2.1 with classical matrix multiplication. We can improve the
complexity by packing the inner loops into a single matrix product as shown in
Algorithm 2l This allows us to exploit fast matrix multiplication.

Algorithm 2 Fast Lagrange inversion, matrix version

Input: f =a1z+ ax®+ ...+ ap_12" ' where n > 1 and a; is a unit in R
Output: g = b1z + ...+ b,—12" ! such that f(g(z)) = g(f(x)) = x mod 2"
m <+ [vn—1]
h < z/f mod 2"~ !
Assemble m x m? matrices B and A from h,h?,... A™ and h™, h?™ A3, ...
for1<i<m, 1<j<m?do
Bi,j — [IiJrjimil] ht
Ai,j — [‘,L.im—j] h(i—l)m
end for
C + ABT
for 1 <i<ndo
b; < C;/i (C; is the ith entry of C read rowwise)
end for
return by +bsz + ...+ by !

In the description of Algorithm [2] the matrices are indexed from 1 and the
pseudocode has been simplified by letting the exponents run out of bounds, using
the convention that [#¥]p = 0 when k < 0 or k > n — 1. To see that the algorithm
is correct, write [zt (2= m=1]pia+(=1m a4

i1+(i271)m71 ( 1) ) ( 1)
Jjl B i1+ (i2—1)m—1—j is—1)m
= (e ([ )

and shift the summation index to obtain

i2m
Z ([IilJrjfmfl] hil) ([Izémfj] h(z‘rl)m)
j=m—i;+1
which is the inner product of the nonzero part of row ¢; in B with the nonzero
part of row i in A.
The structure of the matrices is perhaps illustrated more clearly by an example.
Taking n = 8 and m = 3, we need the coefficients of 1,z,...,2% in powers of h.
Letting h¥ denote [x°]h*, the matrices become
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9 R R 0 0 0 0 0 0
A= h B R R R R 0 0 0
() (h) h§ hE R h§ h§ h$ A

0 0 kY Al Rl Rl Rl Bl Bl
B=|0 hg hi h3 hi hi hi hi (h3)
h hi h3 h§ hi 3 h§ (h) (h§)

where entries in parentheses do not contribute to the final result and may be set

to zero. In this example the coefficient of 2% in h® is given by the fifth entry in C,
namely Co o = h3hZ + h3h? + h3h3 + h3h3 + h3h3.

3. COMPLEXITY ANALYSIS

We now study the complexity in some more detail. Let m = [v/n —1]. Then
Algorithm 2] involves at most:

(1) 2m + O(1) polynomial multiplications, each with cost M (n)
(2) One (m x m?) times (m? x m) matrix multiplication
(3) O(n) additional operations

For comparison, BK 2.1 requires at most:

(1) m polynomial multiplications, each with cost M (n)
(2) One (m x m) times (m x m?) matrix multiplication
(3) m polynomial multiplications and additions, each with cost M(n) 4+ n
Brent and Kung break the matrix multiplication into m products of m x m
matrices, requiring mMM (m) operations. We can do the same in Algorithm [2
writing the product as a length-m inner product of m x m matrices. The extra
O(n3/?) additions in this matrix operation do not affect the complexity, but it is
interesting to note that they match the O(n3/ 2) additions in the last polynomial
stage of BK 2.1. To summarize, both Algorithm 2] and BK 2.1 require at most
(2n'/2 4 O(1))M (n) + n'/2MM (n'/?) + O(n?/?) operations.
The primary drawback of our algorithm as well as BK 2.1 is the requirement to
store O(n%/?) temporary coefficients in memory, compared to O(nlogn) for BK 2.2
and O(n) for a naive implementation of Lagrange inversion.

Avoiding Newton iteration. In effect, we need the same number of operations
to perform a length-n reversion with fast Lagrange inversion as to perform a length-
n composition with BK 2.1. However, to perform a reversion with BK 2.1, we must
employ Newton iteration. Using the update

flgr(x)) —
91l = )
where the chain rule allows us to reuse the composition in the numerator for
the denominator, this entails computing a sequence of compositions of length | =
1,...,[n/4],[n/2],n, plus a fixed number of polynomial multiplications of the
same length at each stage. If ¢ and r are such that a length-n composition takes
C(n) = en” operations, Newton iteration asymptotically takes

Cn)+C(n/2)+C(n/4)+...=cn" <2T2i 1)



A FAST ALGORITHM FOR REVERSION OF POWER SERIES 5

operations, ignoring additional polynomial multiplications. For example, with
classical polynomial multiplication as the dominant cost (r = 5/2), the speedup
given by the expression in parentheses is 31‘1 (84++/2) ~ 1.214 . With FFT polynomial
multiplication, and classical matrix multiplication as the dominant cost (r = 2),
the speedup is 4/3. We note that a more efficient form of the Newton iteration
might exist, in which case the speedup would be smaller.

Improving the matrix multiplication. If the matrix multiplication dominates,
we can gain an additional speedup from the fact that the ith m x m block of the
matrix A only has m — i + 1 nonzero rows, whereas the matrices in BK 2.1 are
full. Classically this gives a twofold speedup, reflected in the loop boundaries of
Algorithm [[ We should ideally modify Algorithm 2lto include this saving.

In fact, a speedup is attainable with any square matrix multiplication algorithm
MM (m) ~ m* where w > 2. For simplicity, assume that m is sufficiently composite.
Do the first m/2 products as full products of size m, the next (m/2—m/3) in blocks
of size m/2, the next (m/3 — m/4) in blocks of size m/3, and so on. At stage k,
only k2 products of blocks of size m/k are required. The speedup achieved through
this procedure is

-1 -1
wt1 [ (T m 2 (MY o 287! _ 2w
" <;<k l<:+1)]€ (%) ) = (Z 2kw> 2ol
where the nontrivial inequality can be obtained by considering the analogous
subdivison with blocks of size m/2* only.

Alternatively, we can write ABT = (AP)(P~!BT) where P is a permutation
matrix that makes each m x m block in A lower triangular, and use any algorithm
that speeds up multiplication between a full and a triangular matrix. A simple
recursive decomposition of size-k blocks into size-k/2 blocks has a proportional
cost of C(k) = 4C(k/2) + 2(k/2)* + O(k?), providing a speedup of 2*~1 — 2.
This is greater than 1 when w > log, 6 ~ 2.585, and better than the first method
when w > 1+ log,(2 + v/2) =~ 2.771. In particular, we recover an optimal factor-
two speedup with classical multiplication, and a 3/2 speedup with the Strassen
algorithm.

Using rectangular multiplication. In the preceding analysis, we have multiplied
m xm? matrices via decomposition into square blocks. Remarkably, Huang and Pan
have shown [8] that this is not asymptotically optimal with the best presently known
algorithms. Letting MM (x,y,z) denote the complexity of multiplying an z X y
matrix by a y X z matrix, Huang and Pan show that MM (m,m, m?) = O(n!-%7),
improving on the best known bound mMM (m,m,m) = O(n'®8) obtained via
multiplication of square matrices.

As the exponents of MM (m,m? m) and MM (m,m, m?) are the same ([8], eq.
2.7), this improvement also applies to the matrix product in Algorithm [2I We are
unfortunately unable to claim a constant-factor speedup in this situation, although
it can plausibly be conjectured that any multiplication algorithm admits a dual
version with MM (m, m?,m) = (1+o0(1)) MM (m,m, m?). In any case, the improve-
ment of Huang and Pan is currently only of theoretical interest, as the advantage
probably only can be realized for infeasibly large matrices.
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TABLE 1. Theoretical speedup of Algorithm 2 over BK 2.1 due to
avoiding Newton iteration and exploiting the matrix structure.

Dominant operation Complexity Newton | Matrix | Total
Polynomial, classical O(n°/?) 1.214 1 1.214
Polynomial, Karatsuba O(n'/?+10823) 1.308 1 1.308
Matrix, classical O(n?) 1.333 | 2.000 | 2.666
Matrix, Strassen O(n(1+1og27)/2) 1.364 | 1.500 | 2.047
Matrix, Cop.-Win. O(nt-688) 1.450 1.229 | 1.782
Matrix, Huang-Pan O(nt-567) 1.458 17 1.4587
(Polynomial, FFT) | O(n3/2log**Mn) | 1.546 1 1.546

Practical performance. Table[Ilgives a summary of the speedup gained by Algo-
rithm 2l over BK 2.1 with various matrix and polynomial multiplication algorithms.
The last row gives the speedup assuming that the cost of matrix multiplication can
be ignored.

With FFT-based polynomial multiplication, BK 2.2 is asymptotically faster than
BK 2.1 and hence also than Algorithm In practice, however, the overhead of
quasilinear polynomial multiplication compared to matrix multiplication is likely
to be large. Fast Lagrange inversion can therefore be expected to be faster than
not only BK 2.1 but also BK 2.2 even for quite large n.

Of course, counting ring operations may not accurately reflect actual speed since
operations in most interesting rings take a variable amount of time to execute on a
physical computer. One consequence of this fact is that Newton iteration is likely
to impose a smaller overhead than predicted, since coeflicients generally are smaller
in earlier steps than in later ones. Newton iteration can also be expected to perform
better than generically when the output as a whole has small coefficients.

We note that fast Lagrange inversion becomes faster than generically when the
coefficients of x/f(z) grow slowly. This is often the case when f(x) is a rational
function. Although specialized algorithms can revert rational functions even faster,
it is desirable for a general-purpose algorithm to be efficient in this common case,
and Lagrange inversion of course also works for nonrational functions having this
growth property.

4. BENCHMARKS

We have implemented tuned versions of naive Lagrange inversion (“Lagrange”),
BK 2.1 with Newton iteration, and Algorithm [ (“Fast Lagrange”) over Z/pZ, Z
and Q as part of the FLINT C library [4]. For each of these rings, FLINT provides
fast coefficient arithmetic (using MPIR [10] for bignum arithmetic) and asymptoti-
cally fast polynomial multiplication using Kronecker segmentation. Strassen matrix
multiplication is exploited in the implementation of BK 2.1 over Z/pZ, although
this does not contribute appreciably for practical n.

Timings over Z/pZ obtained on a Pentium T4400 2.2 GHz CPU with 3 GiB of
RAM are given in Table 2l Algorithm [I] consistently runs about 1.6 times faster
than BK 2.1, roughly agreeing with a predicted speedup of 1.546 with quasilinear
polynomial multiplication and negligible cost of matrix multiplication. We find
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TABLE 2. Timings for reversing a random power series over
Z)pZ,p = 253 4 29.

n Lagrange | BK 2.1 | Fast Lagrange
10 12 ps 21 ps 7.0 us
100 3.8ms | 1.3ms 0.76 ms
1000 950 ms | 100 ms 62 ms
10000 150 s 5.1s 3.3s
100000 | ~6h 260 s 160 s
TABLE 3. Timings for reversing fi(z) = >, klaF, fo(z) =

2
ﬁ,fg(l’) = % over Z.

n Lagrange BK 2.1 Fast Lagrange
bil fo  f3 Jil fo fs | N f2 I3
10 10us 10 84 16 15 14 6.8 5.7 5.5
50 |3.7ms 1.0 0.46 1.2 045 040 1.1 028 0.14
100 | 65ms 10 4.4 12 2.8 2.8 13 1.4 0.87
500 23s 3.0 1.2 2.5 0.37 0.36| 2.3 0.16 0.084
1000 | 280s 30 11 22 2.8 24 18 2.0 0.54
5000 - - - 4100s 340 230 | 2400 110 46

TABLE 4. Timings for reversing fy(z) = exp(z) — 1, fs(z) =

_ 3z(1—zx?)
zexp(x), f¢(x) = s i)z Over Q.

n Lagrange BK 2.1 Fast Lagrange
Ja fs fe | Ja fs fo | fa s  fe
10 22us 20 19 |42 44 44|15 14 13
50 | 5.6ms 53 13|24 35 22|18 1.6 0.38
100 | 78 ms 73 12 |16 27 14 |17 14 2.1
500 30 s 27 31121 38 1.3(33 26 0.18
1000 | 340s 300 30| 17 32 88|30 25 1.3

that the computation time in BK 2.1 indeed is dominated by polynomial multipli-
cations rather than by matrix multiplication for feasible n. For example, matrix
multiplication only takes up 10-20% of the time at both n = 10* and n = 10°.
This suggests (along with timings of a preliminary implementation of BK 2.2) that
BK 2.2 would not be able to beat BK 2.1 in the tested range.

Over Z and particularly over Q, ring operations do not take constant time and
the actual performance becomes highly sensitive to the input. This is reflected in
Tables Bl and [@ We observe that BK 2.1 is faster on f; (whose output coefficients
are smaller than those of f5) while Lagrange inversion handles the rational functions
fs and fg substantially faster.

Great care must be taken to handle denominators efficiently. In our implementa-
tion of BK 2.1, we found that naive matrix multiplication over Q took ten times as
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long as polynomial multiplications. Clearing denominators and multiplying matri-
ces over Z resulted in a comparable time being spent on the matrix and polynomial
stages. Similar concerns apply when implementing Algorithms [l and On the
other hand, translating the entire series composition or reversion to one over Z by
rescaling the inputs typically results in too much coefficient inflation, and can even
run slower than a classical algorithm working directly over Q. We expect the situ-
ation to be similar when working with e.g. parametric power series having rational
functions as coefficients.

5. CONCLUSION

Fast Lagrange inversion is a practical algorithm for reversion of formal power se-
ries, having essentially no higher overhead than a naive implementation of Lagrange
inversion for small n and requiring fewer coefficient operations than Newton itera-
tion coupled with BK 2.1 for large n. Among currently available general-purpose
algorithms, it is likely to be the fastest choice for typical coefficient rings, input se-
ries, and values of n, and may thus be a good choice as a default reversion algorithm
in a computer algebra system.

Newton iteration with BK 2.2 remains faster asymptotically when FFT polyno-
mial multiplication is available, and uses less memory, but may require very large
n to become advantageous. Possible directions for future research could be to iden-
tify improvements over special rings or look for constant-factor improvements in
reversion via BK 2.2. Further study of the special matrix multiplications arising in
Algorithm 2] and BK 2.1 would also be warranted.
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