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Abstract

We analyze the differential equations produced by the method of creative telescoping applied
to a hyperexponential term in two variables. We show that equations of low order have high
degree, and that higher order equations have lower degree. More precisely, we derive degree
bounding formulas which allow to estimate the degree of the output equations from creative
telescoping as a function of the order. As an application, we show how the knowledge of these
formulas can be used to improve, at least in principle, the performance of creative telescoping
implementations, and we deduce bounds on the asymptotic complexity of creative telescoping
for hyperexponential terms.
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1. Introduction

Creative telescoping is a technique for computing differential or difference equations
satisfied by a given definite sum or integral. The technique became widely known through
the work of Zeilberger (1991), who first observed that creative telescoping in combination
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Fig. 1. Sizes (r, d) of creative telescoping relations for the integral of a certain rational function

with Gosper’s algorithm (Gosper, 1978) for indefinite hypergeometric summation leads
to a complete algorithm for computing recurrence equations of definite hypergeomet-
ric sums. This algorithm is now known as Zeilberger’s algorithm (Zeilberger, 1990). In
its original version, it accepts as input a bivariate proper hypergeometric term f(n, k)
and returns as output a linear recurrence equation with polynomial coefficients satisfied
by the sum F (n) =

∑b
k=a f(n, k). An analogous algorithm for definite integration was

given by Almkvist and Zeilberger (1990). This algorithm accepts as input a bivariate
hyperexponential term f(x, y) and returns as output a linear differential equation with

polynomial coefficients satisfied by the integral F (x) =
∫ β
α
f(x, y)dy. A summary of the

method of creative telescoping for this case is given in Section 2 below. For further de-
tails, variations, and generalizations, consult for instance Petkovšek et al. (1997), Chyzak
(2000), Schneider (2005), Chyzak et al. (2009), Kauers and Paule (2011). For implemen-
tations, see Paule and Schorn (1995), Chyzak (1998), Koepf (1998), Schneider (2004),
Abramov et al. (2004), Koutschan (2009, 2010), etc.

The equations which can be found via creative telescoping have a certain order r and
polynomial coefficients of a certain degree d. But for a fixed integration problem, r and d
are not uniquely determined. Instead, there are infinitely many points (r, d) ∈ N2 such
that creative telescoping can find an equation of order r and degree d. These points form a
region which is specific to the integration problem at hand. Figure 1 shows an example for
such a region. Every point (r, d) in the gray region corresponds to a differential equation
of order r and degree d which creative telescoping can find for integrating the rational
function

f(x, y) =
(

3x2y2 + 9x2y + 9x2 + 10xy2 + 3xy + 4x+ 1
)/(

3x3y3 + 9x3y2 + x3y + 3x3

+ 7x2y3 + 8x2y2 + 5x2 + 8xy3 + 10xy2 + 10xy + x+ 5y3 + 10y2 + 5y + 5
)
.

The picture indicates that low order equations have high degree, and that the degree
decreases with increasing order. But what exactly is the shape of the gray region? And
where does it come from? And how can it be exploited? These are the questions we
address in this article.
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How can it be exploited? There are two main reasons why the shape of the gray
region is of interest. First, because it can be used to estimate the size of the output
equations, and hence to derive bounds on the computational cost of computing them.
Secondly, because it can be used to design more efficient algorithms by recognizing that
some of the equations are cheaper than others.

An analysis of this kind was first undertaken by Bostan et al. (2007). They studied
the problem of computing differential equations satisfied by a given algebraic function
and found a similar phenomenon: low order equations have high degree and vice versa.
Among other things, they found that an algebraic function with a minimal polynomial of
degree n satisfies a differential equation of order at most n with polynomial coefficients of
degree O(n3), but also a differential equation of order 6n whose coefficients have degree
only O(n2). Their message is that trading order for degree can pay off.

The same phenomenon applies to creative telescoping, as was shown by Bostan et al.
(2010) for the case of integrating rational functions. The results in the present article
extend this work in two directions: First in that we consider the larger input class of
hyperexponential terms, and second in that we give not only isolated degree estimates
for some specific choices of r, but a curve which passes along the boundary of the gray
region and thus establishes a degree estimate as a function of the order r.

Where does it come from? The standard argument for proving the existence
of creative telescoping relations rests on the fact that linear systems of equations with
more variables than equations must have a nontrivial solution. Every creative telescoping
relation can be viewed as a solution of a certain linear system of equations which can be
constructed from the data given in the input. There is some freedom in how to construct
these systems, and it turns out that this freedom can be used for making the number of
variables exceed the number of equations, and thus to enforce the existence of a nontrivial
solution.

This reasoning not only implies the existence of equations and the termination of the
algorithm which searches for them, but it also implies bounds on the output size and
on the computational cost of the algorithm. But in order to obtain good bounds, the
freedom in setting up the linear systems must be used carefully. For a good bound, we
not only want that the number of variables exceeds the number of equations, but we also
want this to happen already for a reasonably small system. The shape of the gray region
originates from the smallest systems which have solutions.

Verbaeten (1974, 1976) introduced a technique which helps in keeping the size of the
systems small. The idea is to saturate the linear systems by introducing additional vari-
ables in a way that avoids increasing the number of equations. We will make use of this
idea in Section 3 where we propose a design for a parameterized family of linear sys-
tems whose solutions give rise to creative telescoping relations. Unfortunately, it requires
some quite lengthy and technical calculations to translate this particular design into an
inequality condition which rephrases the condition “number of variables > number of
equations” in precise terms. However, as a reward we obtain a good approximation to
the gray region as the solution of this inequality.

What is the exact shape? We don’t know. All we can offer are some rational
functions which describe the boundary of the region of all (r, d) where the ansatz de-
scribed in Section 3 has a solution (Theorem 14). The graphs of these rational functions
are curves which pass approximately along the boundary of the gray region.
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By construction, for all integer points (r, d) above these graphs we can guarantee
the existence of a creative telescoping relation of order r with polynomial coefficients
of degree d. But we have no proof that our curves are best possible. Experiments have
shown that at least in some cases, our curve describes the boundary of the gray region
exactly, or within a negligible error. In other cases, there remains a significant portion of
the gray region below our curve when r is large.

In cases where the curve from Theorem 14 is tight, we can compute the points (r, d)
for which certain interesting measures (such as computing time, output size, . . . ) are
minimized, as shown in Section 5. Even when the curve is not tight, these calculations
still give rise to new asymptotic bounds (including the multiplicative constants) of the
corresponding complexities. We expect that this data will be valuable for constructing
the next generation of symbolic integration software.

2. Creative Telescoping for Hyperexponential Terms

We consider in this article only hyperexponential terms as integrands. Throughout
the article, K is a field of characteristic 0, and K(x, y) is the field of bivariate rational
functions in x and y over K. Let Dx and Dy denote the derivations on K(x, y) such
that Dxc = Dyc = 0 for all c ∈ K, and Dxx = 1, Dxy = 0, Dyx = 0, Dyy = 1.
One can see that Dx and Dy commute with each other on K(x, y). We say that a field E
containing K(x, y) is a differential field extension of K(x, y) if the derivations Dx and Dy

are extended to derivations on E and those extended derivations, still denoted by Dx

and Dy, commute with each other on E.

Definition 1. An element h of a differential field extension E of K(x, y) is called hyper-
exponential (over K(x, y)) if

Dxh

h
∈ K(x, y) and

Dyh

h
∈ K(x, y).

When h ∈ E is a hyperexponential term and r1, r2 ∈ K(x, y) are such that (Dxh)/h =
r1 and (Dyh)/h = r2, then DxDyh = DyDxh implies Dyr1 = Dxr2. Conversely,
Christopher (1999) has shown for algebraically closed ground fields K that for any
two rational functions r1, r2 ∈ K(x, y) with Dyr1 = Dxr2 there exist a/b ∈ K(x, y),
c0, . . . , cL ∈ K[x, y] and e1, . . . , eL ∈ K with

r1 =
Dxc0
c0

+Dx

(a
b

)
+

L∑
`=1

e`
Dxc`
c`

and r2 =
Dyc0
c0

+Dy

(a
b

)
+

L∑
`=1

e`
Dyc`
c`

.

Together with Theorem 2 of Bronstein et al. (2005), it follows that there exists a dif-
ferential field extension E of K(x, y) and an element h ∈ E with (Dxh)/h = r1 and
(Dyh)/h = r2 which we can write in the form

h = c0 exp
(a
b

) L∏
`=1

ce`` ,

where a ∈ K[x, y], b, c0, . . . , cL ∈ K[x, y] \ {0}, e1, . . . , e` ∈ K, and the expressions
exp(a/b) and ce`` refer to elements of E on which Dx and Dy act as suggested by the
notation. We assume from now on that hyperexponential terms are always given in this
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form, and we use the letters a, b, c0, . . . , cL, e1, . . . , eL consistently throughout with the

meaning they have here.

Example 2. h = exp(x2y)
√
x− 2y is a hyperexponential term. We have

Dxh

h
=

1 + 4x2y − 8xy2

2x− 4y
= 2xy +

1

2x− 4y
∈ K(x, y),

Dyh

h
=
x3 − 2x2y − 1

x− 2y
= x2 − 1

x− 2y
∈ K(x, y).

For this term, we can take c0 = 1, a = x2y, b = 1, c1 = x− 2y, e1 = 1
2 .

We may adopt the additional condition (without loss of generality) that the c` (` > 0)

are square free and pairwise coprime, and that e` 6∈ N for all ` > 0. The estimates derived

below do not depend on these additional conditions, but will typically not be sharp when

they are not fulfilled. For simplicity, we will exclude throughout some trivial special

cases by assuming that all e` are nonzero and that max{degx a,degx b} +
∑L
`=1 degx c`

and max{degy a,degy b}+
∑L
`=1 degy c` are nonzero. These latter two conditions encode

the requirement that h is neither independent of x nor independent of y, nor simply a

polynomial.

Applied to the hyperexponential term h, the method of creative telescoping consists

of finding, by whatever means, polynomials p0, . . . , pr ∈ K[x], not all zero, and a hyper-

exponential term Q such that

p0h+ p1Dxh+ · · ·+ prD
r
xh = DyQ.

An equation of this form is called a creative telescoping relation for h, the differential

operator P := p0 + p1Dx + · · ·+ prD
r
x appearing on the left is called the telescoper and

Q is called the certificate of the relation. The telescoper is required to be nonzero and

free of y, but the certificate may be zero or it may involve both x and y. When pr 6= 0,

the number r is called the order of P , and d := maxri=0 degx pi is called its degree.

To motivate the form of a creative telescoping relation, assume that h = h(x, y) can be

interpreted as an actual function in x and y and consider the integral f(x) =
∫ β
α
h(x, y)dy.

Then integrating both sides of a creative telescoping relation implies that f satisfies the

inhomogeneous differential equation

p0(x)f(x) + p1(x)Dxf(x) + · · ·+ pr(x)Dr
xf(x) =

[
Q(x, y)

]β
y=α

.

In the frequent situation that the inhomogeneous part happens to evaluate to zero, this

means that the telescoper of h annihilates the integral f .

Example 3. A creative telescoping relation for h = exp(x2y)
√
x− 2y is

(3x3 − 6)h− 2xDxh = Dy

(
(3x− 4y)h

)
.

It consists of the telescoper P = (3x3−6)−2xDx and the certificate Q = (3x−4y)h. For

the definite integral f(x) :=
∫ x/2
−∞ exp(x2y)

√
x− 2ydy, we obtain the differential equation

(3x3 − 6)f(x)− 2xDxf(x) = 0.

5



Creative telescoping relations for hyperexponential terms can be found with the al-
gorithm of Almkvist and Zeilberger (1990), which relies on a continuous analogue of
Gosper’s summation algorithm. A more direct approach was considered by Apagodu
(alias Mohammed) and Zeilberger (2005; 2006). After making a suitable choice for the
denominator of Q, they fix an order r and a degree s for the numerator of Q, make an
ansatz with undetermined coefficients, and obtain a linear system by comparing coef-
ficients. Appropriate choices of r and s ensure that this linear system has a nontrivial
solution, and also lead to a sharp bound on the order r of the telescoper.

Let us illustrate this reasoning for the case where the integrand is a rational function
h = u/v ∈ K(x, y) with degy u < degy v and v irreducible. Fix some r. Then we have to
find p0, . . . , pr ∈ K(x) and a rational function Q ∈ K(x, y) with

p0h+ p1Dxh+ · · ·+ prD
r
xh = DyQ.

A reasonable choice for Q is Q =
(∑s

i=0 qiy
i
)
/vr, where s = degy u+ (r − 1) degy v and

q0, . . . , qs are unknowns, because with this choice, both sides of the equation are equal
to a rational function with the same denominator vr+1 and numerators of degree at
most degy u+ r degy v in y in which the unknowns pi and qj appear linearly. Comparing
coefficients with respect to y on both sides leads to a homogeneous linear system of at
most 1 + degy u + r degy v equations with (r + 1) + (s + 1) unknowns and coefficients
in K(x). This system will have a nontrivial solution if r is chosen such that

(r + 1) + (s+ 1) > degy u+ r degy v + 1 ⇐⇒ r ≥ degy v.

All these solutions must lead to a nonzero telescoper P because any nontrivial solution
with P = 0 would have a nonzero certificate Q with DyQ = 0, and this is impossible
because s was chosen such that the numerator of Q has a strictly lower degree than its
denominator.

We have thus shown the existence of telescopers of any order r ≥ degy v. This is a
good bound, but it does not provide any estimate on their degrees d. We will next derive
inequalities involving both r and d by constructing linear systems with coefficients in K
rather than in K(x).

3. Shaping the Ansatz

Let h be a hyperexponential term and consider an ansatz of the form

P =

r∑
i=0

di∑
j=0

pi,jx
jDi

x, Q =

( s1∑
i=0

s2∑
j=0

qi,jx
iyj
)
h

v

for a telescoper P and a certificate Q. The plan is to find a good choice for the parameters
r, s1, s2, v, d0, . . . , dr. The only restriction we have is that the linear system obtained from
equating all the coefficients in the numerator of the rational function (Ph−DyQ)/h to
zero should have a solution in which not all the pi,j are zero. The remaining freedom can
be used to shape the ansatz such as to keep d := maxri=0 di small.

As a sufficient condition for the existence of a solution, we will require that the number
of terms xiyj in the numerator of the rational function (Ph−DyQ)/h (i.e., the number
of equations) should be less than

∑r
i=0(di + 1) + (s1 + 1)(s2 + 1) (i.e., the number of

variables pi,j and qi,j). As shown in the following example, this condition is really just
sufficient, but not necessary.
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Example 4. Let h = u/v be the rational function from the introduction. With r = 3,

d0 = d1 = d2 = d3 = d = 54, and Q =
(∑62

i=0

∑8
j=0 qi,jx

iyj
)/
v3, comparing the

coefficients of the numerator of (Ph − DyQ)/h to zero gives a linear system with 787
variables and 792 equations. This system has a nonzero solution although 792 > 787.

This phenomenon is not only an unlikely coincidence in this particular example, but it
happens systematically when the parameters of the ansatz are not well chosen. Estimates
which are only based on balancing the number of variables and the number of equations
will then overshoot. It is therefore preferable to shape the ansatz for P and Q in such a
way that the linear system originating from it will have a nullspace whose dimension is
exactly the difference between the number of equations and the number of variables (or
0 if there are more equations than variables).

The goal of this section is to describe our choice for the ansatz of telescoper and
certificate. The form of the ansatz for the telescoper is given in Section 3.1, the certificate
is discussed in Section 3.2. In the beginning, we collect some facts about the rational
functions (Di

xh)/h which are used later for calculating how many equations a particular
ansatz induces. The following notational conventions will be used throughout.

Notation 5. • lcz p and degz p refer to the leading coefficient and the degree of the
polynomial p with respect to the variable z, respectively. For the zero polynomial, we
define degz 0 := −∞ and lcz 0 := 0.

• p∗ refers to the square free part of the polynomial p with respect to all its variables,
e.g.,

(
(x+1)3(y+3)2

)∗
= (x+1)(y+3). Note that p∗ is only unique up to multiplication

by elements from K\{0}, but that for any choice of p∗, the degrees degx p
∗ and degy p

∗

are uniquely determined and we have that p∗(Dxp)/p is a polynomial in x and y. These
are the only properties we will use.

• zn := z(z− 1)(z− 2) · · · (z−n+ 1) and zn := z(z+ 1)(z+ 2) · · · (z+n− 1) denote the
falling and rising factorials, respectively. For n ≤ 0 we define zn := zn := 1.

• If z is a real number, then z+ := max{0, z}.
• If z is a real number, then bzc := max{x ∈ Z : x ≤ z}, dze := min{x ∈ Z : x ≥ z},

and bze := bz + 1
2c denotes the nearest integer to z.

• If Φ is a formula then [[Φ]] denotes the Iverson bracket, which evaluates to 1 if Φ is
true and to 0 if Φ is false, e.g., z+ = [[z ≥ 0]]z; δi,j = [[i = j]], etc.

Lemma 6. Let h be a hyperexponential term and i ≥ 0.
(1) If degx a > degx b, then

Di
xh

h
=

Ni

c0
(
bb∗
∏L
`=1 c`

)i
for some polynomial Ni ∈ K[x, y] with

degxNi = degx c0 + i
(

degx a+ degx b
∗ +

L∑
`=1

degx c` − 1
)
,

degy Ni ≤ degy c0 + i
(

max{degy a,degy b}+ degy b
∗ +

L∑
`=1

degy c`

)
,

lcxNi = (lcx c0)
(

lcx ab
∗
L∏
`=1

c`

)i
(degx a− degx b)

i.
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(2) If degx a ≤ degx b, then

Di
xh

h
=

Ni

c0
(
bb∗
∏L
`=1 c`

)i
for some polynomial Ni ∈ K[x, y] with

degxNi = degx c0 + i
(

degx b+ degx b
∗ +

L∑
`=1

degx c` − 1
)
− [[ω ∈ N ∧ i > ω]]δ,

degy Ni ≤ degy c0 + i
(

max{degy a,degy b}+ degy b
∗ +

L∑
`=1

degy c`

)
,

lcxNi =


(lcx c0)

(
lcx bb

∗
L∏
`=1

c`
)i
ωi if ω 6∈ N or i ≤ ω;

(lcxNω+1)
(
lcx bb

∗
L∏
`=1

c`
)i−(ω+1)

(−δ − 1)i−(ω+1) if ω ∈ N and i > ω,

where ω := degx c0 +
L∑̀
=1

e` degx c` and, if ω ∈ N,

δ := degx c0 + (ω + 1)
(

degx b+ degx b
∗ +

L∑
`=1

degx c` − 1
)
− degxNω+1 ≥ 1.

Proof. All claims are proved by induction on i. For i = 0, there is nothing to show in

any of the cases. The calculations for the induction step i→ i+ 1 are as follows.

(1) Let v := bb∗
∏L
`=1 c` and write mi for the claimed value of degxNi. Then

Di+1
x h

h
= Dx

(
Ni
c0vi

c0 exp
(a
b

) L∏
`=1

ce``

)/(
c0 exp

(a
b

) L∏
`=1

ce``

)

=
(DxNi)v − iNiDxv

c0vi+1
+

Ni
c0vi

(Dxa)b∗ − ab∗(Dxb)/b

bb∗
+

Ni
c0vi

L∑
`=1

e`
Dxc`
c`

=

(DxNi)v − iNiDxv +Ni
( L∏
`=1

c`
)(

(Dxa)b∗ − ab∗Dxb
b

)
+Niv

L∑̀
=1

e`
Dxc`
c`

c0vi+1
.

Since degx a > degx b by assumption, we have

degx

(
(DxNi)v − iNiDxv +Niv

L∑
`=1

e`
Dxc`
c`

)
≤ degxNi + degx v − 1 = mi + degx b

∗ + degx b+

L∑
`=1

degx c` − 1

< mi + degx a+ degx b
∗ +

L∑
`=1

degx c` − 1 = mi+1.

Furthermore, because of

(Dxa)b∗ − ab∗Dxb

b
= (lcx a)(lcx b

∗)(degx a− degx b)x
degx a+degx b

∗−1 + · · ·
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we have

Ni

(
(Dxa)b∗ − ab∗Dxb

b

) L∏
`=1

c` = (lcxNi)
(

lcx ab
∗
L∏
`=1

c`

)
(degx a− degx b)x

mi+1 + · · · .

This completes the proof that (Di+1
x h)/h has the denominator as claimed and that

its numerator has degree and leading coefficient with respect to x as claimed. The
remaining degree bound with respect to y follows from

degy

(
(DxNi)v − iNiDxv +Niv

L∑
`=1

e`
Dxc`
c`

)
≤ degy c0+i

(
degy b

∗+ max{degy a,degy b}+
L∑
`=1

degy c`

)
︸ ︷︷ ︸

bounds degy Ni

+ degy b
∗+ degy b+

L∑
`=1

degy c`︸ ︷︷ ︸
bounds degy v

≤ degy c0 + (i+ 1)
(

degy b
∗ + max{degy a,degy b}+

L∑
`=1

degy c`

)
and

degy

(
Ni

(
(Dxa)b∗ − ab∗Dxb

b

) L∏
`=1

c`

)
≤ degy c0+i

(
degy b

∗+ max{degy a,degy b}+
L∑
`=1

degy c`

)
︸ ︷︷ ︸

bounds degy Ni

+ degy b
∗+ degy a+

L∑
`=1

degy c`︸ ︷︷ ︸
bounds degy of the other factors

≤ degy c0 + (i+ 1)
(

degy b
∗ + max{degy a,degy b}+

L∑
`=1

degy c`

)
.

(2) Again, let v := bb∗
∏L
`=1 c` and write mi for the claimed value of degxNi. Then,

like in part 1,

Di+1
x h

h
=

(DxNi)v − iNiDxv +Ni
( L∏
`=1

c`
)(

(Dxa)b∗ − ab∗Dxb
b

)
+Niv

L∑̀
=1

e`
Dxc`
c`

c0vi+1
.

First consider the case ω 6∈ N or i ≤ ω.
Since degx a ≤ degx b by assumption, and because of

(Dxa)b∗ − ab∗Dxb

b
= (lcx a)(lcx b

∗)(degx a− degx b)x
degx a+degx b

∗−1 + · · · ,

we now have

degx

(
Ni

(
(Dxa)b∗ − ab∗Dxb

b

) L∏
`=1

c`

)
< mi + degx b+ degx b

∗ − 1 +

L∑
`=1

degx c` = mi+1.
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Note that this estimate is also strict when degx a = degx b because the coefficient
of xdegx a+degx b

∗−1 in (Dxa)b∗ − ab∗(Dxb)/b contains the factor degx a − degx b,
which vanishes in this case.

Next, using the induction hypothesis, we have

(DxNi)v − iNiDxv +Niv

L∑
`=1

e`
Dxc`
c`

= (lcxNi)(lcx v)
(

degxNi − i degx v +

L∑
`=1

e` degx c`

)
xdegxNi+degx v−1 + · · ·

= (lcx c0)
(

lcx bb
∗
L∏
`=1

c`

)i
ωi (lcx v)

(
mi − i degx v +

L∑
`=1

e` degx c`

)
xmi+degx v−1 + · · ·

= (lcx c0)
(

lcx bb
∗
L∏
`=1

c`

)i+1

ωi
(

degx c0 +

L∑
`=1

e` degx c` − i
)
xmi+1 + · · ·

= (lcx c0)
(

lcx bb
∗
L∏
`=1

c`

)i+1

ωi+1xmi+1 + · · · .

Since ωi+1 6= 0 when ω 6∈ N or i+ 1 ≤ ω, this completes the proof that (Di+1
x h)/h

has the denominator as claimed and that its numerator has degree and leading
coefficient with respect to x as claimed. The degree bounds with respect to y are
shown exactly as in part 1.

Now consider the case where ω ∈ N and i > ω. In this case, we start the induction
at i = ω+ 1. The induction base follows from the calculations carried out above for
i ≥ ω, the fact ωω+1 = 0, and the definition of δ. (Note that ωω+1 = 0 also implies
δ ≥ 1.) For the induction step i 7→ i+ 1, we have, similar as before,

degx

(
Ni

(
(Dxa)b∗ − ab∗Dxb

b

) L∏
`=1

c`

)
< mi+1

and

(DxNi)v − iNiDxv +Niv

L∑
`=1

e`
Dxc`
c`

= (lcxNi)(lcx v)
(
mi − i degx v +

L∑
`=1

e` degx c`

)
xmi+degx v−1 + · · ·

= (lcxNi)(lcx v)
(

degx c0 + i(degx v − 1)− δ − i degx v +

L∑
`=1

e` degx c`

)
xmi+1 + · · ·

= (lcxNω+1)
(

lcx bb
∗
L∏
`=1

c`

)i−(ω+1)

(−δ − 1)i−(ω+1)(lcx v)(ω − δ − i)xmi+1 + · · ·

= (lcxNω+1)
(

lcx bb
∗
L∏
`=1

c`

)i+1−(ω+1)

(−δ − 1)i+1−(ω+1)xmi+1 + · · ·

Because of δ > 0, the factor (−δ − 1)i−(ω+1) is nonzero for all i > ω. 2
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Example 7. The case when h = u/v is a rational function is covered by part 2 of the
lemma. For example, for h = (2x5−3x4+5)/(3x3−4x+8) we can take c0 = 2x5−3x4+5,
a = 0, b = 1, L = 1, c1 = 3x3 − 4x + 8, e1 = −1. Direct calculation of the derivatives
gives

i 0 1 2 3 4 5 6

degx c0c
i
1(Di

xh)/h 5 7 9 8 10 12 14

lcx c0c
i
1(Di

xh)/h 2 12 36 1512 −18144 272160 −4898880

The lemma makes no statement about the degree or leading coefficient in the case i =
ω+ 1 = 3, but knowing these, it correctly predicts all the other data in the table. In this
example, we have δ = 3 = ω + 1. This is not a coincidence, as we shall show next.

Lemma 8. Let h be a hyperexponential term with degx a ≤ degx b, and let ω and δ be
as in Lemma 6.(2), ω ∈ N. Then δ ≥ ω + 1.

Proof. Rewrite h = c0 exp(ab )
∏L
`=1 c

e`
` = c̄0 exp(ab )

∏L+2
`=1 c̄

ē`
` with c̄0 = xω, c̄` = c`

(` = 1, . . . , L), ē` = e` (` = 1, . . . , L), c̄L+1 = c0, ēL+1 = 1, c̄L+2 = x, ēL+2 = −ω.
The rational functions (Di

xh)/h are of course independent of the representation of h,
but the representations of these rational functions which are given in Lemma 6 are not.
The representation obtained for the new representation of h is obtained from the original
representation by multiplying numerator and denominator by xω+ici−1

0 . Observe that this
modification does not influence the values for ω or δ. It is therefore sufficient to prove the
claim for terms of the form h = xωh̄, where h̄ is some hyperexponential term for which
the value of ω is zero. We do so by induction on ω. For ω = 0, we have δ ≥ 1 = ω + 1
already by Lemma 6.(2). Now assume that ω ≥ 0 is such that for xωh̄ the degree drop
δ̄ is ω + 1 or more. Then for h = xω+1h̄ = x(xωh̄) we have Dxh = xωh̄ + xDx(xωh̄),
D2
xh = 2Dx(xωh̄) + xD2

x(xωh̄), and so on, all the way down to

Dω+2
x h = (ω + 2)Dω+1

x (xωh̄) + xDω+2
x (xωh̄)

= (ω + 2)
Nω+1

xωvω+1
xωh̄+ x

Nω+2

xωvω+2
xωh̄

=
(ω + 2)Nω+1v + xNω+2

vω+2
h̄, (1)

where Nω+1 and Nω+2 are as in Lemma 6 and v refers to the denominator stated there.
If δ denotes the degree drop for h, then this calculation implies δ ≥ δ̄. By induction
hypothesis, we have δ̄ ≥ ω + 1. If in fact δ̄ ≥ ω + 2, then we are done. Otherwise, if
δ̄ = ω + 1, then

lcxNω+2 = (−δ̄ − 1) lcxNω+1 lcx v = −(ω + 2) lcxNω+1 lcx v

by Lemma 6, so the leading terms of the two polynomials in the numerator of (1) cancel,
and therefore δ > ω + 1 also in this case. 2

Experiments suggest that the bound in Lemma 8 is tight in the sense that we have
δ = ω + 1 for almost all hyperexponential terms h. But there do exist situations with
δ > ω+ 1. For example, it can be shown that for h = c0 exp(a/b) with degx b− degx a >
degx c0 = ω we have δ ≥ degx b− degx a.

11



Also Lemma 6 is not necessarily sharp for degenerate choices of h. In particular, we do
not claim that the numerators and denominators stated in Lemma 6 are coprime. It may
be possible to carry out a finer analysis by considering the square free decomposition of c0,
or by taking into account possible common factors between b and the c`, or by handling
the c` which do not involve x separately. For our purpose, we believe that the statements
given above form a reasonable compromise between sharpness of the statements and
readability of the derivation.

Several aspects of the formulas in Lemma 6 are important. One of them is that the
denominators corresponding to lower derivatives divide those corresponding to higher
derivatives. This has the consequence that when the linear combination Ph is brought
on a common denominator, the degree of the numerator will not grow drastically. In a
sense, this fact is the main reason why creative telescoping works at all. Our next step
is to bring the formulas from Lemma 6 on a common denominator.

Lemma 9. Let h be a hyperexponential term and r, i ∈ Z with r ≥ i ≥ 0.
(1) If degx a > degx b, then

Di
xh

h
=

Nr,i

c0
(
bb∗
∏L
`=1 c`

)r
for some Nr,i ∈ K[x, y] with

degxNr,i = degx c0 + r
(

degx b
∗ + degx b+

L∑
`=1

degx c`

)
+ i
(

degx a− degx b− 1
)

degy Nr,i ≤ degy c0 + r
(

degy b
∗ + max{degy a,degy b}+

L∑
`=1

degy c`

)
,

lcxNr,i = (lcx c0)(lcx a)i(lcx b)
r−i(lcx b

∗)r
(

lcx

L∏
`=1

c`

)r(
degx a− degx b

)i
.

(2) If degx a ≤ degx b, then
Di
xh

h
=

Nr,i

c0
(
bb∗
∏L
`=1 c`

)r
for some Nr,i ∈ K[x, y] with

degxNr,i = degx c0 + r
(

degx b
∗ + degx b+

L∑
`=1

degx c`

)
− i− [[ω ∈ N ∧ i > ω]]δ,

degy Nr,i ≤ degy c0 + r
(

degy b
∗ + max{degy a,degy b}+

L∑
`=1

degy c`

)
,

lcxNr,i =


(lcx c0)(lcx bb

∗)r
(
lcx

L∏
`=1

c`
)r
ωi if ω 6∈ N or i ≤ ω;

(lcxNω+1)
(
lcx bb

∗
L∏
`=1

c`
)r−(ω+1)

(−δ − 1)i−(ω+1) if ω ∈ N and i > ω,

where ω, δ, and lcxNω+1 are as in Lemma 6.(2).

Proof. Both parts follow directly from the respective parts of Lemma 6 by multiplying

numerator and denominator of the representations stated there by
(
bb∗
∏L
`=1 c`

)r−i
. 2
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Since we will be frequently referring to the quantities in this lemma, it seems convenient
to adopt the following definition.

Definition 10. For a hyperexponential term h, let

α = degx b
∗ + degx b+

L∑
`=1

degx c`, β = degx a− degx b− 1,

γ = degy b
∗ + max{degy a,degy b}+

L∑
`=1

degy c`, ω = degx c0 +

L∑
`=1

e` degx c`.

If degx a ≤ degx b and ω ∈ N, we further let δ be any integer with

ω + 1 ≤ δ ≤ degx c0 + (ω + 1)(α− 1)− degx

(
c0

(
bb∗

L∏
`=1

c`

)ω+1Dω+1
x h

h

)
.

Otherwise, if degx a > degx b or ω 6∈ N, let δ = 0. Finally, we define the following flags:

φ1 = [[ lcx a
lcx b
∈ K]], φ2 = [[ lcx a

lcx b
∈ K ∧ β = 0]],

φ3 = [[ ab ∈ K(x) ∧ ∀ ` : (degy c` = 0 ∨ e` ∈ Z) ∧ degy c0 ≥
L∑̀
=1

e` degy c`]] .

Note that none of these parameters depends on r or i. The flags φk (k = 1, 2, 3) are
in {0, 1}, ω belongs to K, β belongs to N ∪ {−1}, and all other parameters are positive
integers. The best value for δ is the right bound of the specified range, but since this
value cannot be directly read of from the input, we do not insist that δ be equal to this
value, but we allow δ to be any number between the bound from Lemma 8 and the true
degree drop. The flags φ1 and φ2 will be used below in the ansatz for the telescoper, φ3

will play a role afterwards in the ansatz for the certificate.
In terms of the parameters defined in Definition 10, the degree bounds of Lemma 9

simplify to

degxNr,i ≤ degx c0 + αr + max{β,−1}i− [[ω ∈ N ∧ i > ω]]δ,

degy Nr,i ≤ degy c0 + γr.

3.1. The Ansatz for the Telescoper

Lemma 9 suggests reasonable choices for the degrees di in the ansatz for P . In partic-
ular, our choice is based on the following features of the formulas in Lemma 9.
• The degree of the numerator in (Di

xh)/h varies with i. A good choice for the degrees di
will compensate for this variation, taking higher values for di when the numerator
of (Di

xh)/h has low degree, and vice versa. This is the key idea of the Verbaeten
completion (Verbaeten, 1974, 1976; Wegschaider, 1997).

• The leading coefficients of Nr,i (i > 0) are polynomials in y, but in case 2, most of
them are K-multiples of each other. When a and b are such that (lcx a)/(lcx b) ∈ K,
then this is also true in case 1. We will use this fact for eliminating several equations
at the cost of a single variable.
Before describing the ansatz for P in full generality, we motivate the construction by

an example.
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Fig. 2. The ansatz for P discussed in Example 11

Example 11. Suppose that h is hyperexponential with lcx a = lcx b, β = 1 (case 1 of
Lemma 9), and degx c0 = 0.

Let r = 5 and d = 7. We want to choose di such that max5
i=0 di = 7 and the ansatz

P =

5∑
i=0

di∑
j=0

pi,jx
jDi

x

leads to “many” variables but only “few” equations. The choice with most variables is
clearly to set di = d = 7 for all i. But this ansatz leads to quite many equations. Each
term xjDi

x contributes to the common numerator a polynomial xjN5,i whose degree in x
is 5α + i + j and whose degree in y is at most 5γ. Because of the term x7D5

x, we must
expect up to (5α+ 13)(5γ + 1) terms in the numerator. This is the expected number of
equations in the linear system resulting from coefficient comparison.

If we remove the term x7D5
x from the ansatz, i.e., if we choose d0 = · · · = d4 = 7,

d5 = 6, then the number of equations drops to (5α+ 12)(5γ+ 1) because all terms xjDi
x

other than x7D5
x contribute only polynomials xjN5,i of lower degree. We save 5γ + 1

equations at the cost of removing a single variable. Removing also the terms x7D4
x and

x6D5
x lowers the number of equations further to (5α+11)(5γ+1), and in general, for any

0 ≤ w ≤ 5, choosing di = 7− (w + i− 5)+ (i = 0, . . . , 5) leads to (5α+ 13− w)(5γ + 1)
equations. The number of variables is (5 + 1)(7 + 1)−

∑w
k=1 k = 48− 1

2w(w + 1).
If w > 1, we can introduce w− 1 new variables by exploiting the second feature of the

formulas in Lemma 9 as follows. Consider the choice w = 3, i.e., the terms xjDi
x with

i + j ≥ 10 have been removed from the ansatz. We reintroduce the terms x7D3
x, x6D4

x,
x5D5

x by adding

p3,7

(
(degx a− degx b)

2x7D3
x − x5D5

x

)
+ p4,6

(
(degx a− degx b)x

6D4
x − x5D5

x

)
to the ansatz, getting back the two variables p3,7 and p4,6 but no new equations, because,
according to Lemma 9.(1), the assumption lcx a = lcx b implies

(degx a− degx b)
2 lcxN5,3 = lcxN5,5 and (degx a− degx b) lcxN5,4 = lcxN5,5.

The final ansatz is depicted in Figure 2. A bullet at (i, j) represents a variable pi,j in
the ansatz. White bullets correspond to the reintroduced variables p3,7 and p4,6 which
do not affect the number of equations.
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The general form of our ansatz for the telescoper is given in the following lemma. The
first case is like in the example above when β > 0. For β = 0, no degree compensation
is possible because all Nr,i have the same degree. But if (lcx a)/(lcx b) ∈ K, it is still
possible to save some equations by exploiting the linear dependence among the leading
terms. In the second case, there is always a degree compensation possible, but unlike
in the example above, terms are removed for indices i close to zero rather than close
to r. When ω ∈ N, we provide an alternative ansatz which takes the degree drop δ
into account. Common to all cases are the two basic principles of choosing di such as
to compensate for the different degrees of the Nr,i in Lemma 9, and of installing some
additional variables by exploiting the knowledge about the leading terms of the Nr,i. For
the size of the cutoff, we use a new integer parameter w, whose optimal value will be
determined later.

Lemma 12. Let h be a hyperexponential term, r ≥ 1, d ≥ 0.
(1) Suppose that degx a > degx b. Let 0 ≤ w ≤ min{r, d/β} (w := 0 if β = 0),

di := d− β(w + i− r)+ − φ2 (i = 0, . . . , r), and

P =

r∑
i=0

di∑
j=0

pi,jx
jDi

x

+ [[β 6= 0]]φ1

r−1∑
i=r−w+1

pi,di+1

((
lcx a
lcx b

(β + 1)
)i
xdi+1Di

x − xdr+1Dr
x

)
+ φ2

r−1∑
i=0

pi,di+1

((
lcx a
lcx b

)i
xdi+1Di

x − xdr+1Dr
x

)
.

Let N = c0
(
b∗b
∏L
`=1 c`

)r
(Ph)/h. Then

degxN ≤ degx c0 + d+ (α+ β)r − βw − φ2 and degy N ≤ degy c0 + γr.

(2) Suppose that degx a ≤ degx b. Let 0 ≤ w ≤ min{d+1, r+1}. Let di := d− (w− i)+

(i = 0, . . . , r), and

P =

r∑
i=0

di∑
j=0

pi,jx
jDi

x +

w−1∑
i=1

pi,di+1

(
xdi+1Di

x − ωixd0+1
)
.

Let N = c0
(
b∗b
∏L
`=1 c`

)r
(Ph)/h. Then

degxN ≤ degx c0 + d+ αr − w and degy N ≤ degy c0 + γr.

(2′) Suppose that degx a ≤ degx b and ω ∈ N. Let ω ≤ w ≤ min{d− δ + 1, r + 1}. Let
di := d− (w − i)+ − [[i ≤ ω]]δ (i = 0, . . . , r), and

P =

r∑
i=0

di∑
j=0

pi,jx
jDi

x +

ω∑
i=1

pi,di+1

(
xdi+1Di

x − ωixd0+1
)

+

w−1∑
i=ω+2

pi,di+1

(
xdi+1Di

x − (−δ − 1)i−(ω+1)xdω+1+1Dω+1
x

)
.

(See Figure 3 for an illustration of the shape of P in this case.)

15



Let N = c0
(
b∗b
∏L
`=1 c`

)r
(Ph)/h. Then

degxN ≤ degx c0 + d+ αr − w − δ and degy N ≤ degy c0 + γr.

Proof. (1) We apply Lemma 9.(1) to each term in the ansatz for P . The claim about
degy N follows directly from the bound on degy Nr,i there. For the bound on degxN ,
first observe that

degx x
jNr,i ≤ di + degx c0 + αr + βi

= degx c0 + d+ αr + βi− β(w + i− r)+ − φ2

= degx c0 + d+ αr + β(i−max{w + i− r, 0})− φ2

≤ degx c0 + d+ αr + β(r − w)− φ2

for all i, j with 0 ≤ i ≤ r and 0 ≤ j ≤ di. This settles the terms coming from the
double sum. For the terms in the first single sum, which only appears when β 6= 0,
we have

degx x
di+1Nr,i = degx x

dr+1Nr,r

= degx c0 + d+ αr + β(r − w) + 1− φ2

and (
lcx a
lcx b

(β + 1)
)i

lcxNr,i = lcxNr,r

for i = r − w + 1, . . . , r − 1. This implies

degx

((
lcx a
lcx b

(β + 1)
)i
xdi+1Nr,i − xdr+1Nr,r

)
≤ degx c0 + d+ αr + β(r − w)− φ2,

as desired. The argument for the second single sum, which only appears when β = 0,
is analogous.

(2) Now we use Lemma 9.(2). Again, the claim about degy N follows immediately. For
the bound on degxN , first observe that

degx x
jNr,i ≤ di + degx c0 + αr − i

= degx c0 + d+ αr − i− (w − i)+

≤ degx c0 + d+ αr − w.

This settles the terms in the double sum. For the terms in the single sum, we have

degx x
di+1Nr,i = degx x

d0+1Nr,0 = degx c0 + d+ αr − w + 1

and lcxNr,i = lcx ω
iNr,0 for i = 1, . . . , w − 1, and therefore

degx

(
xdi+1Nr,i − ωixd0+1Nr,0

)
≤ degx c0 + d+ αr − w.

(2′) In this case, the terms in the double sum contribute polynomials of degree

degx x
jNr,i ≤ di + degx c0 + αr − i− [[i > ω]]δ

= degx c0 + d+ αr − i− (w − i)+ − [[i ≤ ω]]δ − [[i > ω]]δ

≤ degx c0 + d+ αr − w − δ.

For the terms in the first single sum, we have

degx x
di+1Nr,i = degx x

d0+1Nr,0 = degx c0 + d+ αr − w + 1− δ
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Fig. 3. The ansatz for P in case 2′ of Lemma 12

and lcxNr,i = lcx ω
iNr,0 for i = 1, . . . , ω, and therefore

degx

(
xdi+1Nr,i − ωixd0+1Nr,0

)
≤ degx c0 + d+ αr − w − δ.

Similarly, for the terms in the second single sum, we have

degx x
di+1Nr,i = degx x

dω+1+1Nr,ω+1 ≤ degx c0 + d+ αr − w + 1− δ.

If the inequality is strict, we are done. Otherwise, δ is maximal and we have

lcxNr,i = lcx(−δ − 1)i−(ω+1)Nr,ω+1 for i = ω + 2, . . . , w − 1, and therefore

degx

(
xdi+1Nr,i − (−δ − 1)i−(ω+1)xdω+1+1Nr,ω+1

)
≤ degx c0 + d+ αr − w − δ,

and we are also done.
2

Lemma 12 makes a statement on the number of equations to be expected when the
ansatz for P is made in the form as indicated. This number of equations is equal to the
number of terms xiyj in N , and this number is bounded by (degxN + 1)(degy N + 1),
for which upper bounds are stated in the lemma. We also need to count the number of
variables pi,j . This number is easily obtained from the sum expressions given for P in the
various cases by replacing all the summand expressions by 1. After some straightforward
and elementary simplifications which we do not want to reproduce here, the statistics
are as follows.
• In case 1, the number of variables is

(r + 1)(d+ 1)− 1
2βw(w + 1) + φ1(w − 1)+ − φ2.

• In case 2, the number of variables is

(r + 1)(d+ 1)− 1
2w(w + 1) + (w − 1)+.

• In case 2′, the number of variables is

(r + 1)(d+ 1)− 1
2w(w + 1)− δ(ω + 1) + ω + (w − ω − 2)+.
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These are only the variables coming from the degrees of freedom in the telescoper P .

We will next discuss the ansatz for the certificate Q, which will bring many additional

variables, but, by a careful construction, no additional equations.

3.2. The Ansatz for the Certificate

The design of the ansatz for the certificate is much simpler. Here, the goal is to set

up Q in such a way that (DyQ)/h has the same denominator and the same numerator

degrees in x and y as (Ph)/h does (in order to not create more equations than necessary),

and that (DyQ)/h cannot become zero (in order to enforce that P 6= 0 in every solution

we find).

A direct calculation like in the proof of Lemma 6 confirms that the first requirement

is satisfied by choosing

Q =

s1∑
i=0

s2∑
j=0

qi,jx
iyj

c0
(
bb∗
∏L
`=1 c`

)r−1h

with

s1 =


degx c0 + d+ (α+ β)(r − 1)− βw − φ2 − 1 in case 1 of Lemma 12;

degx c0 + d+ α(r − 1)− w in case 2 of Lemma 12;

degx c0 + d+ α(r − 1)− w − δ in case 2′ of Lemma 12

and

s2 = degy c0 + γ(r − 1) + 1 in all cases.

This ansatz provides (s1 + 1)(s2 + 1) variables. To ensure that DyQ 6= 0 for every choice

of qi,j , observe that DyQ = 0 can only happen if h is a rational function with respect

to y, meaning a, b ∈ K[x] and c` ∈ K[x] for all ` with e` 6∈ Z. In this case, we have

DyQ = 0 if and only if the qi,j are instantiated in such a way that the resulting Q is

free of y, and this can only happen if the choice of qi,j is made in such a way that the

numerator degree in y is equal to the denominator degree in y. The denominator degree

is
L∑
`=1

(r − 1− e`) degy c` = γ(r − 1)− η, where η =

L∑
`=1

e` degy c`,

which is less than s2 = degy c0 + γ(r − 1) + 1 if and only if degy c0 + η + 1 > 0. If we

remove all the terms qi,jx
iyj with j = γ(r−1)−η from the ansatz, no instantiation of the

remaining qi,j can turn Q into a term independent of y, so we can be sure that DyQ 6= 0

in this modified setup. The number of variables in this modified ansatz is (s1 + 1)s2. The

flag φ3 defined in Definition 10 is set up in such a way that we can in all cases assume

an ansatz for Q with (s1 + 1)(s2 + 1 − φ3) variables. The following lemma summarizes

the two versions of the ansatz for Q.

Lemma 13. Let h be a hyperexponential term.
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(1) If max{degy a,degy b} > 0 or degy c` > 0 for some ` with e` 6∈ Z, then for every
s1, s2 ∈ N and every choice of qi,j ∈ K where not all qi,j are equal to zero we have

Dy


s1∑
i=0

s2∑
j=0

qi,jx
iyj

c0
(
bb∗
∏L
`=1 c`

)r−1h

 6= 0.

(2) If degy a = degy b = 0 and degy c` = 0 for all ` with e` 6∈ Z, then for every s1, s2 ∈ N
and every choice of qi,j ∈ K where not all qi,j are equal to zero we have

Dy


s1∑
i=0

(
(r−1)γ−η−1∑

j=0

qi,jx
iyj +

s2∑
j=(r−1)γ−η+1

qi,jx
iyj
)

c0
(
bb∗
∏L
`=1 c`

)r−1 h

 6= 0,

where η =
∑L
`=1 e` degy c`.

4. Solving the Inequalities

As the result of the previous section, we obtain counts for the number of variables and
the number of equations for a particular family of ansatzes which are parameterized by
the desired order r and degree d of the telescoper, various Greek parameters introduced
in Definition 10, which measure the input, and one additional parameter w by which
the shape of the ansatz can be modulated. A sufficient condition for the existence of a
solution of order (at most) r and degree (at most) d is

#vars(r, d, w)−#eqns(r, d, w) > 0.

For any particular choice of w from the ranges specified for the various cases in Lemma 12,
we obtain a valid sufficient condition connecting r and d via the Greek parameters.
Any of these conditions defines a region in N2 which is inside the gray region from the
introduction. To make this region as large as possible (and hence, as equal as possible to
the gray region), we will choose w in such a way that the left hand side, considered as a
function in w, is maximal.

It comes in handy that #vars(r, d, w)−#eqns(r, d, w) is a (piecewise) quadratic poly-
nomial with respect to w, so the optimal choice of w is easily found by equating its
derivative with respect to w to zero and rounding the solution to the nearest integer. If
this point is outside the range to which w is constrained, then the maximum is assumed
at one of the two boundary points of the range.

The following theorem, which is the main result of this article, contains the bounds
which we obtained by applying this reasoning to the explicit expressions derived for
#vars(r, d, w) and #eqns(r, d, w) in the previous section for the various cases to be con-
sidered.

Theorem 14. Let

h = c0 exp
(a
b

) L∏
`=1

ce``
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be a hyperexponential term and let α, β, γ, δ, ω, φ1, φ2, φ3 be as in Definition 10 and set
ψ = γ + φ3 − 2. Then a creative telescoping relation for h of order r and degree d exists
whenever

r ≥ ψ + 1 and d >
ϑ r + ϕ

r − ψ
,

where ϑ and ϕ are defined as follows.
(1) If degx a > degx b, let

ϑ = (α+ β)(2γ − 1 + φ3) + γ − 1,

ϕ = degx c0 + (α+ β + 1) degy c0 + (γ − 2 + φ3)(degx c0 − α− β − φ2)

− (1− φ2)(γ − 2 + φ3)+
(
φ1 + 1

2β(γ − 1 + φ3)
)
.

(2) If degx a ≤ degx b, let

ϑ = α(2γ − 1 + φ3)− 1,

ϕ = degx c0 + α degy c0 + (γ − 2 + φ3)(degx c0 + 1− α)

− 1
2 (γ − 2 + φ3)+(γ + 1 + φ3).

If furthermore ω ∈ N and γ− 1 +φ3 > ω and δ = ω+ 1, then ϕ can be replaced by

ϕ′ = ϕ− δ(γ − 2 + φ3 − ω) + 1.

Proof. (1) Suppose degx a > degx b. According to the calculations done in the previous
section, in this case there exists an ansatz with

(r + 1)(d+ 1)− 1
2βw(w + 1) + φ1(w − 1)+ − φ2

variables coming from the telescoper P ,(
degx c0 + d+ (α+ β)(r − 1)− βw − φ2

)(
degy c0 + γ(r − 1) + 2− φ3

)
variables coming from the certificate Q, and(

degx c0 + d+ (α+ β)r − βw − φ2 + 1
)(

degy c0 + γr + 1
)

equations. Therefore, a creative telescoping relation exists provided that

(r + 1)(d+ 1)− 1
2βw(w + 1) + φ1(w − 1)+ − φ2

+ (degx c0 + d+ (α+ β)(r − 1)− βw − φ2)(degy c0 + γ(r − 1) + 2− φ3)

− (degx c0 + d+ (α+ β)r − βw − φ2 + 1)(degy c0 + γr + 1) > 0.

For r ≥ γ − 1 + φ3, this inequality is equivalent to

d >
((

(α+ β)(2γ − 1 + φ3

)
+ γ − 1

)
r + degx c0 + (α+ β + 1) degy c0

+ (γ − 2 + φ3)(degx c0 − α− β − φ2) (2)

+ 1
2βw(w − 2γ + 3− 2φ3)− φ1(w − 1)+

)/(
r − γ + 2− φ3

)
.

The choice w = 0 proves the claim when φ2 = 1 or γ ≤ 1 − φ3. Now suppose
that φ2 = 0 and γ > 1 − φ3. The claimed estimate is obtained for the choice
w = γ − 1 + φ3 > 0. We have to show that this choice is admissible, i.e., that
1 ≤ γ− 1 +φ3 ≤ min{r, d/β}. Because of γ > 1−φ3, the lower bound is clear, and
r ≥ γ − 1 + φ3 holds by assumption. To see that γ − 1 + φ3 ≤ d/β, observe that
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the right hand side of (2) converges to (α + β)(2γ − 1 + φ3) + γ − 1 for r → ∞.
Since its numerator is nonnegative (as checked by a straightforward calculation),
it follows that this inequality implies

d > (α+ β)(2γ − 1 + φ3) + γ − 1 ≥ β(γ − 1 + φ3),

as desired.
(2) Now assume degx a ≤ degx b. From the counts of variables and equations in the

ansatz described in Lemma 12.(2), we find that a creative telescoping equation
exists provided that

(r + 1)(d+ 1)− 1
2w(w + 1) + (w − 1)+

+ (degx c0 + d+ α(r − 1)− w + 1)(degy c0 + γ(r − 1) + 2− φ3)

− (degx c0 + d+ αr − w + 1)(degy c0 + γr + 1) > 0.

For r ≥ γ − 1 + φ3, this inequality is equivalent to

d >
(

(α(2γ − 1 + φ3)− 1)r + degx c0 + α degy c0 + (γ − 2 + φ3)(degx c0 + 1− α)

+ ( 3
2 − γ − φ3)w + 1

2w
2 − (w − 1)+

)/(
r − γ + 2− φ3

)
.

Regardless of the choice of w, the right hand side is at least α(2γ − 1 + φ3) − 1.
Similar as before, the claimed bound follows on one hand from the choice w = 0
and on the other hand, if γ > 1−φ3, from the choice w = γ− 1 +φ3, which also in
this case is in the required range because 1 ≤ γ − 1 + φ3 ≤ α(2γ − 1 + φ3)− 1 < d
and γ − 1 + φ3 ≤ r.

The second estimate is obtained from the alternative ansatz from Lemma 12.(2′).
The inequality in this case is

(r + 1)(d+ 1)− 1
2w(w + 1)− δ(ω + 1) + ω + (w − ω − 2)+

+ (degx c0 + d+ α(r − 1)− w − δ + 1)(degy c0 + γ(r − 1) + 2− φ3)

− (degx c0 + d+ αr − w − δ + 1)(degy c0 + γr + 1) > 0,

which for r ≥ γ − 1 + φ3 and w = γ − 1 + φ3 is equivalent to

d >
(α(2γ − 1 + φ3)− 1)r + ϕ′

r − γ + 2− φ3
.

It remains to show that the choice w = γ − 1 + φ3 is compatible with the range
restrictions for w applicable in the present case. While the requirements ω ≤ γ −
1 + φ3 ≤ r+ 1 are satisfied by assumption, the requirement γ − 1 + φ3 ≤ d− δ + 1
is less obvious. A sufficient condition is

(α(2γ − 1 + φ3)− 1)r + ϕ′

r − γ + 2− φ3
≥ γ − 2 + φ3 + δ.

It can be shown easily with Collins’s cylindrical algebraic decomposition algo-
rithm (Collins, 1975; Caviness and Johnson, 1998) (e.g., with its implementation
in Mathematica (Strzeboński, 2000, 2006)) that this latter inequality follows from
degx c0 ≥ 0, degy c0 ≥ 0, α ≥ 1, r ≥ γ−1+φ3 ≥ ω+1 ≥ 1, δ = ω+1, φ3(φ3−1) = 0,
and

ϕ′ = degx c0 + α degy c0 + δω + 1 + (γ − 2 + φ3)(degx c0 − α− 1
2 (γ − 1 + φ3)− δ).
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This completes the proof.
2

As we do not claim that our bounds are sharp, no justification for the various choices of
w are required in the proof. But of course, the choices were made following the reasoning
outlined before the theorem. For example, in case 1 the main inequality is

(r + 1)(d+ 1 + φ2)− 1
2βw(w + 1) + φ1(w − 1)+ − φ2

+ (degx c0 + d+ (α+ β)(r − 1)− βw − φ2 + 1)(degy c0 + γ(r − 1) + 2− φ3)

− (degx c0 + d+ (α+ β)r − βw − φ2 + 1)(degy c0 + γr + 1) > 0.

Differentiating the left hand side with respect to w gives

−βw − 3
2β + βγ + φ1 + βφ3,

which vanishes for w = γ − 3
2 + φ3 + φ1/β. The unique nearest integer point is bγ −

3
2 + φ3 + φ1/βe = γ − 1 + φ3 when φ1/β 6= 1. When φ1/β = 1, there are two nearest
integer points γ−1+φ3 and γ+φ3, and since the maximum is exactly between them and
quadratic parabolas are symmetric about their extremal points, the values at γ − 1 + φ3

and γ + φ3 agree. In conclusion, the choice w = γ − 1 + φ3 is optimal in both cases.
The calculations for the other cases are similar. But note that having chosen w op-

timally does not imply that the bounds given in the Theorem 14 are tight, because the
whole argument relies on counting variables and equations for the particular ansatz fam-
ily introduced in Section 3, and we cannot claim that this shape is best possible. Recall
that we aim at an ansatz for which the number of solutions of the resulting linear system
is equal to (or at least not much larger than) the difference between number of variables
and number of equations. One way of measuring the quality of our ansatz, and hence the
tightness of our bounds, is to compare the region of all points (r, d) where an ansatz for
order r and degree d actually has a solution (the “gray region” from the introduction)
with the region of all points (r, d) for which Theorem 14 guarantees the existence of a
solution. The following collection of examples shows that there are cases where Theo-
rem 14 is extremely accurate as well as cases where there is a clear gap between the
predicted shape and the actual shape of the gray region. As a reference ansatz for exper-
imentally determining in the examples whether a specific point (r, d) belongs to the gray
region, we checked whether the naive ansatz where d0 = d1 = · · · = dr (i.e., w = 0) as a
solution, because every solution of some refined ansatz with w > 0 is also a solution of
the ansatz with w = 0. It is not guaranteed however that this ansatz covers all creative
telescoping relations. Additional relations at points (r, d) outside of what we indicate as
the gray region may exist. For example, when our ansatz leads to a solution (P,Q) in
which all the polynomial coefficients of P share a nontrivial common factor f ∈ K[x],
then (P/f,Q/f) is another relation with a telescoper of lower degree. This phenomenon
can often be observed for the minimal order telescoper, but as we do not know of any
efficient way of detecting it also for the nonminimal ones, we can unfortunately not take
it into account in the figures.

Example 15. (1) Consider the term h = u exp(v) where

u = 7x3y3 + 8x3y2 + 9x3y + 3x3 + 10x2y3 + 2x2y2 + 3x2y + 9x2

+ 7xy3 + 4xy2 + 5xy + 3x+ 9y3 + 6y2 + 6y + 1,
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v = 6x3y3 + 4x3y2 + x3y + 9x3 + 8x2y3 + 8x2y2 + 2x2y + 8x2

+ 3xy3 + 7xy2 + 4xy + 8x+ 5y3 + 2y2 + 7y + 6.

We are in case 1 of Theorem 14 and have α = 0, β = 2, γ = 3, φ1 = φ2 = φ3 = 0,
degx c0 = degy c0 = 3. According to the theorem, we expect creative telescoping
relations for all (r, d) with r ≥ 2 and d > (12r + 11)/(r − 1). Figure 4.(a) depicts
the curve (12r + 11)/(r − 1) together with the gray region. In this example, the
gray region consists exactly of the integer points above the curve: the bound is as
tight as can be.

(2) Now consider the term h = exp(u)/v where

u = 4x2y2 + 7x2y + 9x2 + 5xy2 + 2xy + 3x+ 5y2 + y + 6,

v = 6x2y2 + 10x2y + 6x2 + 9xy2 + 5xy + 8x+ 8y2 + 10y + 8.

We are again in case 1 of the theorem and we have α = 2, β = 1, γ = 4, φ1 =
φ2 = φ3 = 0, degx c0 = degy c0 = 2. The estimate from Theorem 14 is now
d > (24r−9)/(r−2), which is depicted together with the gray region in Figure 4.(b).
In this case, the bound is not sharp.

(3) Now let h be the rational function from the introduction. Then we are in case 2
of the theorem and we have α = 3, β = −1, γ = 3, ω = −1, δ = 0, φ1 = 1,
φ2 = 0, φ3 = 1, degx c0 = degy c0 = 2. The bound from the theorem is now
d > (17r+ 3)/(r− 2), which is shown together with the gray region in Figure 4.(c).
The curve correctly predicts all the degrees except for the minimal order recurrence,
where the true degree is one less than predicted.

(4) Next, let h = u/v with

u = 4x2y2 + 7x2y + 9x2 + 5xy2 + 2xy + 3x+ 5y2 + y + 6,

v =
(
6x2y2 + 10x2y + 6x2 + 9xy2 + 5xy + 8x+ 8y2 + 10y + 8

)
×
(
8x2y2 + 7x2y + 4x2 + 5xy2 + 3xy + 7x+ 9y2 + 7y + 7

)
.

This term is also covered by case 2 of the theorem, and we have α = 4, β = −1,
γ = 4, ω = −2, δ = −1, φ1 = 1, φ2 = 0, φ3 = 0, degx c0 = degy c0 = 2. The
estimate d > (27r+ 3)/(r− 2) from the theorem is correct but not tight, as shown
in Figure 4.(d).

(5) Finally, let h =
√
u with

u = 4x2y6 + 8x2y5 + 2x2y4 + 7x2y3 + 7x2y2 + 2x2y + 7x2 + 10xy6 + 7xy5 + 9xy4

+ 4xy3 + 5xy2 + 5xy + 7x+ 4y6 + 3y5 + 2y4 + 8y3 + 3y2 + 7y + 2.

Now the alternative bound of case 2 with ϕ′ in place of ϕ is applicable because we
have ω = 1 ∈ N. The bound using ϕ is d > (21r − 18)/(r − 4). The first correctly
predicted degree occurs at r = 14. In contrast, the bound d > (21r − 23)/(r − 4)
using ϕ′ is tight for all r > 5 and only off by one for the minimal order r = 5. The
situation is shown in Figure 5. On the right, we show a comparison of the sharp
bound based on ϕ′ (solid), the bound based on ϕ (dashed) and the bound which
would be obtained by choosing w = 0 instead of w = γ − 1 + φ3 in the proof of
Theorem 14 (dotted).

There are several ways of refining the ansatz for P and Q even further in order to
achieve better estimates where ours are not sharp. Here are some ideas.
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Fig. 4. Sizes (r, d) of creative telescoping relations together with the curve predicted by Theo-
rem 14, for the hyperexponential terms discussed in Example 15.

• The possibility of introducing extra variables without increasing the number of equa-
tions (depicted by the white bullets in Figures 1 and 2) rests on the observation made
in Lemma 9 that the leading coefficients lcxNr,i are K-multiples of each other, i.e.,
that these leading coefficients generate a linear subspace of K[y] of dimension one. Ex-
periments suggest that this observation can be generalized to the coefficients of lower
degree as follows: If Vj ⊆ K[y] denotes the vector space generated by the coefficients
of xdegxNr,i−j in Nr,i (i = 0, . . . , r), then V0 ⊆ V1 ⊆ · · · ⊆ Vj and dimVj ≤ j + 1 at
least for small j. If this is true, it would allow adding more extra variables without
increasing the number of equations.

• In general, comparing coefficients of the monomials xiyj of a polynomial S to zero
results in a linear system with (degx S + 1)(degy S + 1) equations. But if S contains
some factor which is free of the variables pi,j and qi,j , then canceling this factor before
comparing coefficients results in a system with fewer equations and the same number of
variables. While in our case, it is too much to hope for a factor which would divide S as
a whole, it seems that at least in some cases, factors can be removed from lcx S ∈ K[y]
or lcy S ∈ K[x]. For example, when degx a > degx b and degy a > degy b, it can be
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Fig. 5. Left: Sizes (r, d) of creative telescoping relations together with the curve predicted by
Theorem 14, for the term discussed in Example 15.(5). Right: a detail of the figure on the left in
a larger scale, together with the curve based on ϕ instead of ϕ′ (dashed) and the curve based on
w = 0 (dotted). The correct degrees are precisely the smallest integers strictly above the solid
curve. The two variations both overshoot for all the points in this range.

shown that
∏L
`=1 lcx c`

∣∣ lcx S and
∏L
`=1 lcy c`

∣∣ lcy S, so
∑L
`=1

(
degy lcx c`+degx lcy c`

)
equations can be discarded in this case.
We have not worked out the influence of these variations in full generality, but only

on some examples. It turned out that they indeed lead to tighter estimates, but the
difference is rather small, and decays to zero for large r. At the same time, they would
lead to much more complicated formulas. We do not know the reason for the gap in
Examples 15.(2) and 15.(4) between the curve from Theorem 14 and the boundary of
the gray region for r → ∞. Even though it appears more important for a bound to be
tight for small orders than for large ones, we would be very interested in seeing a refined
bound which closes this gap.

It is also interesting to compare the gray regions for hyperexponential terms com-
posed from dense random polynomials with the gray regions for hyperexponential terms
of the same shape that originate from some specific application. According to our experi-
ments, the shape of the gray region for a randomly chosen term h = c0 exp(a/b)

∏L
`=1 c

e`
`

only depends on the number L of factors in the product, the degrees of the polyno-
mials a, b, c0, . . . , cL, and the exponents e1, . . . , eL. However, input containing sparse
polynomials or polynomials which in some other sense have a “structure” may well have
considerably smaller degrees.

Example 16. If an,k denotes the number of HC-polynomioes with n cells and k rows
(Wilf, 1989, Section 4.9), then

∞∑
n,k=0

an,kx
nyk =

xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
.

A differential equation for the generating function
∑∞
n=0 an,nx

n of the number of HC-
polynomials with n cells and n rows can be obtained by applying creative telescoping to
the rational function obtained from the rational function above by substituting x by y,
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Fig. 6. Gray regions for the two terms h (light gray) and g (dark gray) from Example 16.
Although all Greek parameters have the same values for h and g (and hence, Theorem 14 gives
the same degree estimation curve), the actual gray regions differ significantly.

y by x/y, and dividing the result by y. Let thus

h =
1

y

y xy (1− y)3

(1− y)4 − y xy (1− y − y2 + y3 + y2 x
y )

=
x(1− y)3

y((1− y)4 − x(1− y + xy − y2 + y3))
.

Here we have c0 = x(1−y)3, a = 0, b = 1, c1 = y, c2 = ((1−y)4−x(1−y+xy−y2 +y3),
e1 = e2 = −1. The gray region for h is shown in light gray in Figure 6. For comparison,
the same figure contains the gray region (in dark gray) for a term g which was obtained
from h by replacing c0 and c2 by dense random polynomials with degx c0 = 1, degy c0 = 3,
degx c2 = 2, degy c2 = 4, so that all the Greek parameters have precisely the same values
for g and h.

Theorem 14 predicts relations whenever d ≥ 17r−2
r−3 (black curve), which is a good

estimate for the generic term g but a significant overestimation for the special term h.

5. Consequences and Applications

Our theorem contains as a special case Theorem cAZ of Apagodu and Zeilberger
(2006), which says that a (non-rational) hyperexponential term always admits a tele-
scoper of order r = γ + 1, but makes no statement about its degree d. Similarly, we can
also give an estimate for the possible degrees d without paying attention to their orders r.

Corollary 17. (1) For every hyperexponential term h, there exists a creative telescop-
ing relation of order r = ψ + 1 = γ + 1− φ3.

(2) For every hyperexponential term h, there exists a creative telescoping relation of
degree

d = ϑ+ 1 =

 (α+ β)(2γ − 1 + φ3) + γ if degx a > degx b;

α(2γ − 1 + φ3) if degx a ≤ degx b.

Proof. Both claims are immediate by the formulas given in Theorem 14. 2
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In connecting order r and degree d into a single formula, Theorem 14 makes a much
stronger statement than this corollary. Assuming for simplicity that the bounds of The-
orem 14 are tight, we can use them to compute optimal choices for order and degree of
the telescoper. There are various quantities which one may want to minimize. Besides
asking for a bound on the minimal order or the minimal degree, as carried out above,
we may ask for a choice (r, d) where the computational cost is minimal, or the total size
S(r, d) := (r + 1)(d + 1) + (s1 + 1)(degx c0 + γ(r − 1) + 2) of the output (consisting of
telescoper and certificate), or the size T (r, d) := (r + 1)(d + 1) of the output telescoper
alone. Or, if the telescoper P is to be transformed into a recurrence for the series coef-
ficients of its solutions, one may want to minimize the order of this recurrence, which is
bounded by R(r, d) := r + d (see, e.g., Thm. 7.1 in Kauers and Paule, 2011).

For minimizing the computational cost, we first have to fix a particular algorithm
for computing P and Q for given h. We are not forced to follow the algorithm which is
implicit in the analysis of Sections 3 and 4 (making an ansatz, comparing coefficients with
respect to x and y to zero, and solving a linear system of equations over K). In fact, this
algorithm has a rather poor performance. It is much better to do a coefficient comparison
with respect to y only and to solve a linear system of equations over K(x). This is also
what is proposed in the original articles (Almkvist and Zeilberger, 1990; Mohammed and
Zeilberger, 2005; Apagodu and Zeilberger, 2006) and what is used in practice (Koutschan,
2009, 2010). Output sensitive linear system solvers based on Hermite-Padé approximation
(Beckermann and Labahn, 1994; Storjohann and Villard, 2005; Bostan et al., 2007) are
able to determine the degree n solutions of a linear system over K(x) with m variables
and at most m equations using O∼(nm3) operations in K. Since an ansatz over K(x)
will have only r + 1 variables coming from the telescoper, degy c0 + γ(r − 1) − φ3 + 2
variables coming from the certificate, and a solution of degree s1 with respect to x, it
seems reasonable to assume that the computational cost is minimal for a choice (r, d)
which minimizes the function C(r, d) := s1(degy c0 + (γ + 1)r − γ − φ3 + 3)3.

Example 18. Consider a hyperexponential term h = c0 exp(a/b)
√
c1 where a, b, c0, c1 ∈

K[x, y] have the degrees degx a = degy a = degx b = degy b = 1, degx c0 = degy c0 = 2,
degx c1 = 4, degy c1 = 6. We are in case 2 of Theorem 14 and have α = 6, β = −1, γ = 8,
ω = 4, δ = 5, φ1 = 0, φ2 = 0, φ3 = 0. According to the theorem, a creative telescoping
relation exists for (r, d) with r ≥ 7 and d ≥ (89r − 40)/(r − 6) + 1 = (90r − 46)/(r − 6).

On the curve d = (90r− 46)/(r− 6), the cost function C(r, d) = (6r+d− 16)(9r− 3)3

assumes its minimal value for r = 8 rather than for the minimal order r = 7. Finding this
optimal value is easy: regard r temporarily as real variable and use calculus to determine
the minimum of C(r, 90r−46

r−6 ). This gives a minimum point near r = 7.679. It follows that
the minimum for r ∈ N is either at r = 7 or at r = 8. Comparing the actual values of C
at these two points indicates that the 8th order telescoper is about 8% cheaper than the
7th order operator, and hence the cheapest operator of all.

By similar calculations, we find that the output size (telescoper and certificate com-
bined) is minimized for r = 10, the size of the telescoper alone is minimized for r = 12,
and the order of the recurrence associated to the telescoper is minimized for r = 28. See
Figure 7 for an illustration.

For the moment, the term h considered in the above example is a bit too big to actually
compute the creative telescoping relations of orders 7 and 8 and compare the difference of
the timings to the predicted speedup of 8%. On smaller examples, the minimal (predicted)

27



a

b

c

d

e
f

0 50 100 150 200
r0

100

200

300

400

500

600
d

Fig. 7. Points (r, d) on the curve for which (a) the order, (b) the computational cost, (c) the
size of telescoper and certificate combined, (d) the size of the telescoper only, (e) the order of
the recurrence corresponding to the telescoper, and (f) the degree is minimal.

complexity is achieved for the minimal order operator. It may seem that an improvement

by just a few percent is not really worth the effort. But in fact, the improvement gained in

the example is just the tip of an iceberg. Asymptotically, as the input size increases, the

speedup becomes more and more significant. In the next result, which is a generalization

and a refinement of a result of Bostan et al. (2010), we give precise estimates.

Corollary 19. Let h be a hyperexponential term and τ = max{α, γ,degx c0,degy c0}.
Let κ be an increasing sublinear function with the property that degree n solutions of

a linear system with m variables and at most m equations over K(x) can be computed

with nm3κ(max{n,m}) operations in K. Then a creative telescoping relation of order

r = τ − 1 + φ3 can be computed using

2κ(2τ3)τ9 + O∼(τ8)

operations in K. If r is chosen such that

r = 1
4 (1 +

√
17)τ + O(1) ≤ 1.281τ + O(1)

then a creative telescoping relation of order r can be computed using

1
32 (349 + 85

√
17)κ(11τ2)τ8 + O(τ7) ≤ 21.86κ(11τ2)τ8 + O∼(τ7)

operations in K. In particular, creative telescoping relations for hyperexponential terms

can be computed in polynomial time.

Proof. First assume degx a > degx b. According to Theorem 14, there exists a creative
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r C(r, d) S(r, d) T (r, d) R(r, d) d

(a) τ 2κτ9 2
2−φ3

τ5 2τ4 2τ3 2τ3

(b) 1+
√
17

4
τ 349+85

√
17

32
κτ8 53+13

√
17

8
τ4 11+3

√
17

2
τ3 (5 +

√
17)τ2 (5 +

√
17)τ2

(c) 1+
√
5

2
τ 29+13

√
5

2
κτ8 11+5

√
5

2
τ4 (4 + 2

√
5)τ3 (3 +

√
5)τ2 (3 +

√
5)τ2

(d) 2τ 48κτ8 12τ4 8τ3 4τ2 4τ2

(e)
√

2τ3/2 4κτ10 2τ5 2
√

2τ7/2 2τ2 2τ2

(f) 2τ3 16κτ16 4τ8 4τ5 2τ3 2τ2

Table 1. Minimizing various functions on the curve of Theorem 14. The table shows the order r,
the complexity C(r, d), the output size S(r, d) of telescoper and certificate, the output size T (r, d)
of the telescoper only, the recurrence order R(r, d), and the degree d of the telescoper when r
is chosen such that (a) r is minimal, (b) C(r, d) is minimal, (c) S(r, d) is minimal, (d) T (r, d)
is minimal, (e) R(r, d) is minimal, (f) d is minimal. The parameters τ and κ have the same
meaning as in Corollary 19. The arguments of κ are suppressed. Only the dominant terms of
the asymptotic expansion for τ → ∞ are given. In rows (e) and (f), the values for d differ only
in the lower order terms.

telescoping relation of order r and degree d whenever r ≥ τ − 1 + φ3 and

d ≥ f(r) :=
(2τ2 + (2β + φ3)τ + (φ3 − 1)β)r + O(τ2)

r − τ + 2− φ3
,

where the term O(τ2) is independent of r. A creative telescoping relation of order r and
degree d can be computed using at most

C(r, d) =
(
(r + 1)τ + 3− φ3

)3(
(β + τ)r + d− β(τ + φ3)− φ2 − 1

)
κ
(
(β + τ)(r + 1) + d

)
operations in K. The claim follows from evaluating C(r, f(r)) at r = τ − 1 + φ3 and
r = 1

4 (1 +
√

17)τ + O(1), respectively, and replacing the arguments of κ by generous
upper bounds.

For the case degx a ≤ degx b, the estimates are proved analogously. Although the
formulas for f(r) and C(r, d) are slightly different in this case, the final result turns out
to be the same. We leave the details to the reader. 2

The strange constant 1
4 (1 +

√
17) in Corollary 19 is chosen such as to minimize the

multiplicative constant in the complexity bound under the simplifying assumption that
κ is constant. It was determined by first equating d

drC(r, f(r)) to zero, which yielded the

optimal choice of r as an algebraic function in τ , β, and φ3. The term 1
4 (1 +

√
17)τ is the

dominant term in the asymptotic expansion of this function for τ → ∞. It is perhaps
noteworthy that the choice of the constant is irrelevant for achieving a cost of O∼(τ8),
as long as the constant is greater than 1. Taking r = uτ for arbitrary but fixed u > 1

leads to the complexity bound u4(u+1)
u−1 κτ8 + O∼(τ7). The choice u = 1

4 (1 +
√

17) only

minimizes the leading coefficient. Since 1
4 (1+

√
17) ≈ 1.28, the result indicates that when

α and γ are large and approximately equal, it appears to be most efficient to compute a
telescoper whose order is about 30% larger than the minimum order.

In the same way as exemplified in Corollary 19, we have also determined the choices
for r for which some other quantities become minimal. The results are given in Table 1.

29



As a final application, we improve some of the results given by Bostan et al. (2007) on

differential and recurrence equations related to algebraic functions. Let m ∈ K[x, y] be

irreducible with degym ≥ 1, and let a ∈ K[[x]] be such that m(x, a(x)) = 0. According to

Proposition 2 in their paper, if P +DyQ is a creative telescoping relation for y(Dym)/m,

then Pa = 0. Thus we can use our results about creative telescoping to derive estimates

for differential equations for a.

Corollary 20. Let m ∈ K[x, y] and a =
∑∞
n=0 anx

n ∈ K[[x]] be as above and write

τx := degxm, τy := degym. Assume τx > 0 and τy > 0. Then

(1) The series a satisfies a linear differential equation of order r = τy with coefficients

of degree

d = 2τxτ
2
y − 1

2τ
2
y + τxτy − 3

2τy + τx + 3.

(2) The series a also satisfies a linear differential equation of order r = 2τy with coeffi-

cients of degree

d = 4τxτy − 1
2τy − 3τx − 1 +

⌈
4
τx + 1

τy + 1

⌉
.

(3) The coefficient sequence (an)∞n=0 satisfies a linear recurrence equation of order⌈
2τxτy + τy − 1 +

√
(8τ2

y − 4τy + 4)τx − 2τ2
y − 6τy + 12

⌉
with polynomial coefficients of degree⌈

τy − 1 + 1
2

√
(8τ2

y − 4τy + 4)τx − 2τ2
y − 6τy + 12

⌉
.

Proof. For h = y(Dym)/m we have degx c0 ≤ α = τx, degy c0 = γ = τy, ω ≤ 0, δ ≤ 1,

and φ3 = 1. According to Theorem 14.(2), a creative telescoping relation of order r and

degree d exists provided that r ≥ τy and

d ≥
4τxτyr + 2τxτy − τ2

y − 3τy + 2τx + 6

2(r − τy + 1)
.

Parts 1 and 2 follow from here by setting r = τy or r = 2τy, respectively. For part 3,

observe first that there exists a creative telescoping relation of order r and degree d where

r ≥ τy − 1 + 1
2

√
(8τ2

y − 4τy + 4)τx − 2τ2
y − 6τy + 12,

d ≥ 2τxτy + 1
2

√
(8τ2

y − 4τy + 4)τx − 2τ2
y − 6τy + 12.

From here the claim follows by the fact that when a power series a satisfies a linear

differential equation of order r and degree d, then its coefficient sequence satisfies a

linear recurrence equation of order r + d and degree r. 2

These results are to be compared with the corresponding results of Bostan et al.

(degree 4τxτ
2
y +smaller terms for part 1, order 6τy and degree 3τxτy for part 2, and order

and degree 2τxτy + τy + 1 for part 3), as well as with the conjectures about the minimal

sizes they found experimentally (2τ3 − 3τ2 + 3τ for part 1 when τx = τy =: τ and order

and degree 2τxτy − 2− (τx − τy) for part 3 if τy > 1).
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6. Conclusion

What is the shape of the gray region? Where does it come from? And how can it
be exploited?—These were the guiding questions for the work described in this article.
As a main result, we have given in Theorem 14 a simple rational function whose graph
passes approximately along the boundary of the gray region, in some examples more
accurately than in others. This curve was derived from a somewhat technical analysis
of the linear systems resulting from a specific ansatz over K. Where the curve does not
describe the gray region accurately, these linear systems have solutions despite of having
more equations than variables. Some possible reasons for this phenomenon were taken
into account in the design of the ansatz, thereby improving the accuracy of the estimate
compared to a naive approach. However, as shown in Examples 15.(2) and 15.(4), there
seem to be further effects which sometimes cause a gap between the true degrees and our
prediction. It would be interesting to know what these effects are, and to derive sharper
estimates from them. Ultimately, it would be desirable to have a version of Theorem 14
which is generically tight.

Tight curves allow for optimizing computational cost, output sizes, and other mea-
sures by trading order against degree. As the degree decreases when the order grows, it
is not always optimal to compute the minimal order operator. In Example 18, we have
illustrated how the curve of Theorem 14 can be used to calculate a priori the optimal
orders for several interesting measures. Of course, if the curve is not tight, these predic-
tions may not be correct, but even then, at least they provide some useful orientation.
Tightness of the curve is also not required for deriving asymptotic bounds on the com-
plexity. As we have shown in Corollary 19, the difference between the optimal choice
and other choices is significant for asymptotically large input size. We believe that this
result is not only of theoretical interest. Even if the minimal cost may be achieved for the
minimal order in any example which is feasible with currently available hardware, it can
be seen from Example 18 that it already starts to make a difference for inputs which are
only slightly beyond the capability of today’s computers. We therefore expect that the
technique of trading order for degree will help to optimize the performance of efficient
implementations of creative telescoping in the near future.

Acknowledgements. We wish to thank Christoph Koutschan and Carsten Schneider
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