Equational Prover of THEOREMA*

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University
A-4040, Linz, Austria
kutsia@risc.uni-linz.ac.at

Abstract. The equational prover of the THEOREMA system is described.
It is implemented on Mathematica and is designed for unit equalities in
the first order or in the applicative higher order form. A (restricted) usage
of sequence variables and Mathematica built-in functions is allowed.

1 Introduction

The THEOREMA! system [7] is an integrated environment for proving, solving
and computing built on the top of Mathematica [32]. It is based on early papers
by Buchberger (e.g. [5,6]) and provides a front end for composing formal mathe-
matical text consisting of a hierarchy of axioms, propositions, algorithms etc. in a
common logic frame with user-extensible syntax, and a library of provers, solvers
and simplifiers for proving, solving and simplifying mathematical formulae.
The equational prover of THEOREMA is one of such provers, designed for unit
equality problems in the first order or in the applicative higher order form. The
input may contain sequence variables. A (restricted) usage of Mathematica built-
in functions is allowed. The prover has two proving modes: unfailing completion
[3] and simplification (rewriting/narrowing). It consists of the preprocessor, the
kernel and the proof presenter parts. The preprocessor checks the input syntax,
sets option values, Skolemizes, chooses a proving mode, an ordering and passes
the preprocessed input to the kernel. The kernel runs a proof procedure with the
chosen settings and passes the output to the proof presenter, which structures
it, deletes redundant steps, introduces lemmata and constructs the proof object.

2 Proof Procedure: Algorithm and Implementation

The unfailing completion procedure is implemented as a given-clause algorithm
[23], where proof search is organized as a DISCOUNT [1] loop. The input of the
procedure is a set of (implicitly) universally closed equalities £, a ground goal G
and a (ground total) reduction ordering >, which can be either the lexicographic
path ordering (LPO), Knuth-Bendix ordering (KBO) or the lexicographic exten-
sion of the multiset path ordering with sequence variables (MPOSV [18]). Before

* Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.
1 http://www.theorema.org/.

calling the completion procedure, we Skolemize all equations in the given prov-
ing problem. If the equation in the hypothesis contains existentially quantified
variables, we proceed in a standard way introducing a new function symbol
eq and two new constants, true and false. Then we add two new equations
eq(z,x) = true and eq(s,t) = false to £, where z is a variable and s and ¢ are
sides of the hypothesis, and true = false becomes a goal.

The proving procedure saturates £ and works on a set of active facts A,
participating in the inference, and on a set of passive facts P, waiting to become
members of A. The completion loop is shown on Fig. 1. It is essentially the same
as the loop WALDMEISTER implements (see [20]).

Algorithm 1. Completion Loop
Function ProveByCompletion(€, G, >)
1: (A, P):=(0,€)
2: while —trivial(G)AP # 0 do

3: e :=Select(P); P := P\{e}
4: if —orphan(e) then
5: e :=Normalize? (e)
6: if —redundant(e) then
7 (A, P,):=Interred” (A4,)
8: A := AU {Orient” (e)}
9: Py :=CP” (e, A)
10: P := PUNormalize; (P1 U P-)
11: G :=Normalize; (G)
12: end
13: end
14: end

15: return trivial(G)

Fig. 1. Main loop for proving by unfailing completion mode.

The predicate trivial on line 2 is true on an equality s = t iff s and ¢
are identical. The function Select on line 3 decides which equality should be
selected from passive facts for activation. It has to guarantee that every passive
fact eventually becomes active, thus ensuring the fairness of the procedure. This
function selects a fact with the minimal weight. If there are several such facts,
then it chooses the oldest one. Moreover, once in each five iterations Select takes
the smallest fact where false occurs, if there is such a fact in P2. The predicate
orphan on line 4 is true on e iff a parent equation of e has been reduced. The
predicate redundant on line 6 is true on e iff either e is trivial, is subsumed by
an equation in A4 or is ground joinable. The interreduction function Interred
on line 7 takes active facts that are reducible by e out of A and puts them into
P1. The Orient function on line 8 orients e with respect to >, if possible. The

2 BARCELONA and FIESTA implement such a selection criterion [26].

function C'P on line 9 generates all possible critical pairs between e and 4. The
function Normalize does normalization with the active facts only. Passive facts
are normalized only on their generation and after selection.

We store P as a heap of heaps, following the WALDMEISTER approach. It
allows efficient “orphan murder” and fast selection of the minimal equation. We
use Mathematica arrays to implement the heap. Terms are kept as stringterms.

Normalization of the selected equation, new critical pairs or the goal, using
active facts, is an example of forward simplification. Since the set of active facts
grows larger and larger, fast identification of the appropriate fact for rewriting
(generalization retrieval) becomes crucial. There are various indexing techniques
suitable for this operation, like code trees [30], substitution trees [14], context
trees [12] or various versions of discrimination trees [9,22,15]. However, in our
case, instead of implementing an indexing technique, we decided to rely on Math-
ematica rewriting tools, as its programming language is a rewrite language [4].
This approach is similar to what Stickel proposed in [27], using the Prolog imple-
mentation technology for model elimination. We call it Mathematica Technology
Term Rewriting (MTTR) and show on the example below how it works.

Let R and E be respectively the set of rules and the set of equations in 4. As-
sume we have a rule for the associativity law in R: f(f(z,y),2) — f(=, f(y, 2)).
Every active and passive fact has its unique label, an integer associated with
it. Let the label for the rule above be 5. Then we transform the rule into a
Mathematica assignment as follows: First, we normalize the variable names and
transform each variable in the left hand side of the rule into Mathematica pat-
terns getting £[f[x1_,x2.],x3_]. Next, we make the Mathematica assignment:

f[f[x1.,x2.],%3_,_: {6}] :=(AppendTo[$LABELS, {5}]; f[x1, £[x2,x3]]) /;

($PHASE === “Rewriting”)
where $LABELS is a global variable, initialized with the empty list every time
before normalizing a term. After a term is normalized, $LABELS stores the list
of labels of those active facts which participated in the normalization. In the
condition, $PHASE is a global variable specifying the deduction phase. It pre-
vents unexpected evaluations. In the example above, the assignment becomes
applicable only at the “Rewriting” phase and not, for instance, at the “Subcon-
nectedness checking” phase, where we only need reducibility. The entire main
loop runs in the “Neutral” phase, switching to the specific phases when needed.

Transformation of equalities from E into delayed assignments is done in the
similar manner, but we add the ordering check additionally. For instance, an
equality f(z, f(y,z) = f(y, f(2,x)) is transformed into two assignments:

f[x1_, £f[x2.,x3],_: {“L",6}] :=

(AppendTo[$LABELS, { “LR", 6}]; £[x2, £[x3, x1]]) /;
($PHASE ===" Rewriting"”ASGREATER[f[x1, f[x2, x3]], £[x2, £[x3, x1]]])

3 We tried to implement discrimination trees, but since the low-level programming
capabilities are very restricted in the high-level Mathematica programming language,
which itself is not very fast, we did not get a reasonable performance.

f[x1_, f[x2.,x3],_: {“RL",6}] :=

(AppendTo[$LABELS, { “RL", 6}]; £[x3, £[x1,x2]])/;

($PHASE === “Rewriting” A $GREATER[f[x1, f[x2, x3]], £[x3, £[x1, x2]]])
where $GREATER is a global variable whose value is the function specifying the
given reduction ordering. We make sure that for equalities like the commutativity
law, only one delayed assignment is made, instead of two. Note that MTTR
approach treats constants as nullary function symbols.

When we need to rewrite a term ¢ in a phase p, we simply call the function
rewrite on t and p. rewrite is implemented as follows:

Clear[rewritel;

rewrite[term_ phase] := Module[{ans},

With[{y = $SIGNATURE}, $PHASE = phase; Map[Update, y]];

ans = term; $PHASE = "Neutral”; ans];
where $SIGNATURE is a global variable whose value is a list of all constants and
function symbols occurring in the problem.

MTTR is probably one of the fastest ways of doing rewriting in Mathematica,
but it has disadvantages as well, namely, we have minimal control on rewriting
strategies, can not keep track of results of single rewrite steps, and should put
additional control to prevent unexpected evaluation.

We found useful to use Mathematica matching mechanism in forward sub-
sumption as well, which is one of the redundancy criteria for the selected equa-
tion. Another redundancy criterion is the ground joinability test [2], implemented
for associative-commutative symbols only: we add to the active facts a ground
complete subset for an AC symbol f consisting of AC axioms and the additional
equation f(z, f(y,z2)) = f(y, f(z,2)). Any other equation joinable modulo AC
can be deleted. Such an equation is called ground joinable. To test ground join-
ability we use the following trick: for each AC symbol f we create a new func-
tion symbol nf, make a list of transformation rules $AC-SYMBOLS={f — nf,...}
and set attributes of nf to {Flat, Orderless, Oneldentity}. Then testing
whether s=t is ground joinable reduces to testing whether s/ .$AC-SYMBOLS and
t/.$AC-SYMBOLS are identical?.

Mathematica delayed assignment rules are employed also in caching for term
orderings. The orderings like LPO or MPOSV compare the same term pairs many
times. To avoid a repeated work we store the result of comparison between two
terms s and ¢ as cachedComparison[s,t] :=result, where result is either True
or False and look it up whenever s and ¢ have to be compared again®.

With interreduction and critical pair generation the situation becomes more
complicated. Here we need to perform instance and unifiable retrieval on the set
of active facts. Mathematica does not provide mechanisms which would make
possible to implement these operations in the same spirit as we did for general-
ization retrieval. In order to perform instance retrieval in more or less reasonable
way, we had to implement some kind of indexing for the terms in active facts.
We chose path indexing [28], because it does not involve backtracking, insertion

* in Mathematica /. is a short notation for the function ReplaceAll.
5 The idea of caching was implemented earlier in Dedam by RPO caching [26].

and deletion can be done more efficiently than for other indexing techniques, is
economical in terms of memory usage, and is useful for retrieving instances (see
[25]). One of the main disadvantages of path indexing is that it requires costly
union and intersection operations to combine intermediate results. We use Math-
ematica built-in functions Union and Intersection for these operations.

The main loop for proving by simplification, unlike Algorithm 1, does not
perform interreduction and orphan testing, and does not generate critical pairs
unless at least one of the parent equations contains a term with the head eq. The
simplification mode has one more specific feature: optionally, all equations can
be oriented from left to right. In this case, of course, termination of rewriting is
not guaranteed and the prover issues the corresponding warning.

3 Extensions

3.1 Sequence Variables

A sequence variable is a variable that can be instantiated with an arbitrary finite,
possibly empty, sequence of terms. To distinguish, we call ordinary variables
individual variables. Sequence variables are allowed to appear only as arguments
of flexible arity symbols. The main difficulty in deduction with sequence variables
is infinitary unification, even in the syntactic case ([19]). However, it was shown
to be decidable in [17] and a theorem proving procedure with constraints a la
Nieuwenhuis/Rubio [24] was proposed in [18].

The equational prover of THEOREMA implements unfailing completion with
sequence variables, occurring only in the last argument positions in terms (as,
e.g. in f(a, f(z,%),9(Z),y), where T and y are sequence variables). It makes
unification unitary. A rule-based unification algorithm is shown on Fig. 2.

Algorithm 2. Unification with sequence variables in the last argument positions
Function unify(s,t), s and t are not sequence variables

1: unify(¢,t) := {}

2: unify(z,t) := {z + t} if x #t and = ¢ vars(t)

3: unify (¢, z) := {z + t} if x #t and = ¢ vars(t)

4: unify(f(s, 8), f(t, 1)) := if o = unify(s,t) and o # fail
compose(o, unify (f(8)o, f'(t)o))

5: unify (f(z), f(f)) := {T + t} if T # ¢t and = ¢ vars(f)

6: unify(f(f), f(@)) := {x + &} if 7 # % and T ¢ vars(f)

7: unify(s,t) := fail otherwise

Fig. 2. Unification for terms with sequence variables in the last argument position

The input of the algorithm are two terms, which are not sequence variables
themselves and all occurrences of sequence variables happen only in the last
argument positions of subterms. The compose function on Line 3 returns fail,

if at least one of its arguments is fail, otherwise it composes substitutions in
its first and second arguments. § and # denote arbitrary finite, possibly empty,
sequences of terms. vars(t) (resp. vars(t)) is a set of all individual and sequence
variables of a term t (resp. sequence of terms #). x is an individual variable, T
is a sequence variable. The function symbol f’ on line 4 is a new flexible arity
symbol, if the symbol f on the same line has a fixed arity, otherwise f' and f
are the same. The function symbol f on 5 and 6 has a flexible arity.

In the simplification mode we use sequence variables without any restrictions
on their occurrence. It means that in this case unification is infinitary and match-
ing is finitary. For the moment we do not allow existential goals in this setting,
and therefore unification problems do not appear. As for matching/rewriting,
MTTR follows the Mathematica strategy, choosing from the finite alternatives
the matcher that assigns the shortest sequences of terms to the first sequence
variables that appear in the pattern®.

Unrestricted quantification over sequence variables takes the language be-
yond first-order expressiveness. In [17] we considered an extension of the lan-
guage with constructs called pattern-terms, which abbreviate term sequences of
unknown length matching certain “pattern”, like, for instance, all the terms in
the sequence having the same arguments, but different top function symbols.
Such pattern-terms are naturally introduced via Skolemization. In the unfailing
completion mode of the prover we allow pattern-terms to occur only in the last
argument positions in terms whose top function symbol has a flexible arity. A
pattern-term can be unified only with a sequence variable which does not occur
in it, or with an identical pattern-term.

The MTTR technique has to be extended to terms with sequence vari-
ables and pattern-terms. First, each sequence variable should be transformed
into the corresponding pattern (an identifier with three underscores). Second,
since individual variables match neither sequence variables nor pattern-terms,
we have to restrict Mathematica patterns that correspond to individual vari-
ables. Thus, a term f(x, f(g(T)),Z), where T is a sequence variable, g(T) is a
pattern-term and z is an individual variable, will be transformed into the pattern
f[x1_?-MatchQ[#, .var[.seq[]]] A ~MatchQ[#,.seq[]]&, .seq[g[x2—]],x2-_]".

We also extended the path indexing technique to index terms with sequence
variables and pattern-terms in the last argument positions. However, more effort
has to be made here to improve efficiency of retrieval operations.

3.2 Problems in Applicative Higher Order Form

Warren introduced in [31] a method to translate expressions from higher order
applicative form into first order syntax, preserving both declarative and narrow-

5 Recently, [21] proposed an approach to gain more control on rewriting with sequence
variables in Mathematica.

.var and .seq are THEOREMA tags respectively for variables and for sequences.
wvar[.seq[_]] is a Mathematica pattern which can match any THEOREMA sequence
variable and .seq|-] can match any THEOREMA pattern-term.

7

ing semantics [13]. With this translation, for example, the higher order equa-
tion twice(F)(X) = F(F(X)) is translated into the equations twice(F,X) =
apply(F, apply(F, X)), apply(twiceq, F) = twicei(F), apply(twice,(F),X) =
twice(F, X), where apply is a new binary function and twicey and twice; are new
constructors representing partial applications. Since THEOREMA syntax allows
higher order expressions, the equational prover can accept such an input. Then
the input is translated by Warren’s method into the first order form, on which
the proving procedure is applied. The output is translated back into higher order
form. Thus, the user sees only higher order input and output.

Optionally, if the proving mode is simplification and the goal is universal,
MTTR can be applied immediately, without Warren’s translation, because the
Mathematica programming language supports rewriting with higher order con-
structs. In this case currently the equalities are oriented from left to right, but
we intend to implement HORPO [16] as well.

At the current stage sequence variables and pattern-terms can be used in
higher order problems only in the simplification mode with universal goals.

3.3 Using Mathematica Built-in Functions

We incorporate Mathematica built in functions in the proving task in the follow-
ing way: On the one hand, to be interpreted as a Mathematica built-in function
it is not enough for a function in the proving problem to have a syntax of a
Mathematica function. It has to be stated explicitly that it is a built-in function
(THEOREMA has a special construct built-in for that). Moreover, a function
can get its built-in meaning only when it appears in the goal. After normaliza-
tion, the goal is checked on joinability modulo built-in meaning of the Mathe-
matica functions in it, but the built-ins are not used to derive new goals. On the
other hand, the approach is not completely sceptical: after a built-in function is
identified, it is trusted and the result of computation is not checked. Therefore,
when Mathematica functions are involved in the task, in the prover output it is
stated: “If the built-in computation is correct, the following theorem holds...”.
The integration tool is still at the experimental level and needs further develop-
ment, e.g. integrating existing frameworks of combining computer algebra and
theorem proving/rule based reasoning (with [8] as a particular example).

4 Proof Presentation

We use the Proof Communication Language (PCL) [11] to describe proofs. A
slight modification is needed to represent reduction steps, because MTTR does
not show intermediate rewriting results. Proofs are structured into lemmata.
Proofs of universally closed theorems are displayed as equational chains, while
those of existential theorems represent sequences of equations. The symbols egq,
true and false are not shown. In failing proofs, on the one hand, the theorems
which have been proved during completion are given, and on the other hand,
failed propositions whose proving would lead to proving the original goal are

displayed, if there are any. They are obtained from descendants of the goal and
certain combinations of their sides.

5 Examples

Ezample 1 (Insertion sort). This is an example of using sequence variables and
Mathematica functions. The assumptions specify the insertion sort:

Assumption[“1”,VY(insert(n, ()] = (n))]

n
Assumption[“2”, V (imnsert[n,{(m,X)] =
,m,X
prepend[max|m,n], insert[min[n,m], (x)]])]
Assumption[“3”, sort[()] = ()]
Assumption[“4”, V (sort[{x,¥)] = insert[x, sort[(F)]])
Assumption[“5", V (prepend[x, ()] = (x,7))]
x,y
where min and max are interpreted as the Mathematica Min and Max functions:
Built-in[“MinMax”,
min — Min “Minimum”
max — Max “Maximum’]
We would like to prove the following proposition:

Proposition[“sort”,g(sort[<1,3, 2.4, —4)] = (x))]

The equational prover is called to prove the proposition under the given
assumptions and built-ins. In addition, numbers are treated in the Mathematica
built-in way and all the equations are oriented from left to right:

Prove[Proposition[“sort”],using — {Assumption[“1"], Assumption[“2"],

Assumption[“3"], Assumption[“4"], Assumption[“5"]},

by — EquationalProver,

built—in—){Built—in [“MinMax”], Built-in[“Numbers”]}7
ProverOptions — {EqPrOrdering — “LeftToRight”}]

The output of the prove call is placed in a new notebook. THEOREMA dis-
plays it in an elegant way, with natural language text, hierarchically nested cells,
hyperlinks, colors, etc. We show the (final part of the) generated proof below ®:

To prove (Proposition (sort)), we have to find Z* such that

(1) sort[(1,3,2.4, —4)] = (z*).
We will use the following assumptions, referring to them as axioms:

(Axiom 1) sort[()] = ()-

8 Koji Nakagawa provided a tool to translate the proofs from the THEOREMA proof
format into BTEX form.

(Axiom 2) JX (insert[z1, ()] = (x1)).
(Axiom 3) m‘v’ﬁ(prepend[xl, (x2)] = (=1, 22)).
(Axiom 4) zl\7’@(5’07‘7&[(31:1, 72)] = insert[zl, sort[{z2)]]).
(Axiom 5) V (insertzl,(z2,z3)] =
zl,22,23
prepend[maz[r2, z1],insert[min[z1, x2], (x3)]]).
We choose

T* = Sequence[3,2.4,1, —4]

and show that the equality (1) holds for this value (assuming that the built-in
simplification /decomposition is sound):

(Theorem) sort[(1,3,2.4,—4)] = (3,2.4,1, —4).

Proof.
sort[(1,3,2.4,—-4)] = (3,2.4,1,—4)

if and only if (by (Axiom 4) LR, (Axiom 4) LR, (Axiom 4) LR, (Axiom 4)
LR, (Axiom 1) LR, (Axiom 2) LR)

insert[l, insert[3,insert[2.4,{—4)]]] = (3,2.4,1, —4)

if and only if (by (Axiom 5) LR, (Axiom 2) LR, (Axiom 3) LR)

insert[l, insert[3, (max[—4,2.4], min[2.4, —4]) = (3,2.4,1,—4)

if and only if (by (Axiom 5) LR, (Axiom 5) LR, (Axiom 2) LR, (Axiom 3)
LR, (Axiom 3) LR, (Axiom 5) LR, (Axiom 5) LR, (Axiom 5) LR,
(Axiom 2) LR, (Axiom 3) LR, (Axiom 3) LR, (Axiom 3) LR)

(maz[maz[max[—4,2.4], 3], 1], maz[maz[min[2.4, —4],

min[3, maz[—4,2.4]]], min[1, maz[maz[—4,2.4], 3]]],
maz[min[min[3, maz[—4,2.4]], min[2.4, —4]],

min[min[l, mazx[max[—4,2.4], 3]], maz[min[2.4, —4],

min[3, maz[—4, 2.4]]]]], min[min[min[l, maz[maz[—4, 2.4], 3]],
max[min[2.4, —4], min[3, max[—4, 2.4]]]], min[min[3, max[—4, 2.4]],
min[2.4,—4]]]) = (3,2.4,1, —4)

if and only if (by the built-in simplification/decomposition)

(3,2.4,1,—4) = (3,2.4,1, —4)

which, by reflexivity of equality, concludes the proof.

Ezample 2 (Combinatory logic). This is an example of a problem in applicative
higher order form. The strong fixpoint property holds for the set consisting of
the combinators B and W only®. The prover uses Warren’s method to translate
the problem into first order form, proves it with unfailing completion procedure
and shows the output again in the higher order form. The proof is given below:

Prove:
(Proposition (goal)) strong-fized-point|fized-pt] =

fized-pt| strong-fized-point] fized-pt]]
We will use the following assumptions, referring to them as axioms:
(Axiom1) ¥ (z[y]ly] = Wiz]ly)-
(Axiom 2) v (Blzllyllz] = =[y[z]])-

w7yiz

(Axiom 3) B[W[W]][B[W][B|B][B]]] =strong-fized-point.

We need the following propositions:

(Lemma 1) w\{ (W[W][W|[B[B[z1]]]] = strong-fized-point[z1])

Proof. We take all variables arbitrary but fixed.
W[W][W[B[B[z1]]]] = (by (Axiom 2) RL,(Axiom 2) RL)
WIWI[BW][B[B][B]][z1]] = (by (Axiom 2) RL)
BWWI[BWI[B[B][B]]]lz1] = (by (Axiom 3) LR)
strong-fized-point[z1]. O

(Lemma 2) leQ (xl[W [z2][z2]] = W[W[B[B[z1]]]][=2])
Proof. We take all variables arbitrary but fixed.
z1[Wz2][z2]] = (by (Axiom 1) RL)
55'1[1172[562][562]] = (by (AXiOITl 2) RL)
B[Blz1]][z2][z2][z] = (by (Axiom 1) LR)
WW[B[Blz:]]]][z2]. o

9 In TPTP this problem is stated in the first order form in COL003-12.pr.

(Lemma 3) WIW][W[B[B|fized-pt]]]] =fized-pt [W[W]|[W[B[B|fized-pt]]]]]

Proof.

WWIW[B[B[fized-pt]]]] = (by (Axiom 1) RL)
WIW[B[B|fized-pt]|]|[W[B[B|fized-pt]]]] = (by (Lemma 2) RL)
fized-pt[W[W[B[B[fized-pt]]]|[W[B[B|fized-pt]]]]] = (by (Axiom 1) LR)
Fimed-pt{W [W[W[B[B| fized-pt]]]]]- O

(Proposition 1) fized-pt[strong-fized-point|fized-pt]] = strong-fixed-point[fized-pt].

Proof.

fized-pt[strong-fized-pointfized-pt]] = (by (Lemma 1) RL)
fized-pt|W [W][W|[B[B| fized-pt]]]]] = (by (Lemma 3) RL)
WI[W][W|[B|[B|fized-pt]]]] = (by Lemma 1) LR)
strong-fized-point|fized-pt]. O

Now, we prove (Proposition (goal)).

(Theorem) strong- fized-point|fized-pt| =fized-pt[strong-fized-point| fixed-pt]]

Proof.
strong-fized-point|fized-pt] = (by (Proposition 1) RL)

fized-pt[strong- fized-point|fized-pt]]. O

6 Performance and Future Development

From 431 unit equality problems in TPTPv2.4.0 [29] the prover solved 180 (42%)
within 300 seconds on a Linux PC, Intel Pentium 4, 1.5GHz, 128Mb RAM!0,
The performance is lower than the one of, for instance, WALDMEISTER (85%),
DiScoUNT (70%), FiesTA (68%) or CIME [10] (53%), but it should be taken
into account that Mathematica is fundamentally an interpreter, the prover does
not have many heuristics and is not tuned for any specific class of problems. It
is still at the experimental level, and there is a room to improve in many parts

10 This does not include problems proved with some user interaction (e.g., choosing

appropriate precedence, ordering, age-weight ratio, etc.), but only those ones proved
in the autonomous mode.

of it. Especially, the autonomous mode can be strengthened with a structure
detection facility, and instance and unification retrievals can be done more effi-
ciently. Proving with constraints involving sequence variables might be another
interesting future development.

Strong sides of the prover are its abilities to handle sequence variables and
problems in applicative higher form, and to interface Mathematica functions.
THEOREMA provides yet another advantage — a convenient, user-friendly inter-
face, and human-oriented proof presentation tools.

7 Acknowledgments

My thanks go to Prof. Bruno Buchberger and all the THEOREMA group members.

References

1. J. Avenhaus, J. Denzinger, and M. Fuchs. DISCOUNT: a system for distributed
equational deduction. In J. Hsiang, editor, Proceedings of the 6th RTA, volume
914 of LNCS, pages 397-402, Kaiserslautern, Germany, 1995. Springer.

2. J. Avenhaus, Th. Hillenbrand, and B. L"ochner. On using ground joinable equa-
tions in equational theorem proving. J. Symbolic Computation, 2002. To appear.

3. L. Bachmair, N. Dershowitz, and D. Plaisted. Completion without failure. In
H. A"1t-Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Struc-
tures, volume 2, pages 1-30. Elsevier Science, 1989.

4. B. Buchberger. Mathematica as a rewrite language. In T. Ida, A. Ohori, and
M. Takeichi, editors, Proceedings of the 2nd Fuji Int. Workshop on Functional
and Logic Programming, pages 1-13, Shonan Village Center, Japan, 1-4 November
1996. World Scientific.

5. B. Buchberger. Symbolic computation: Computer algebra and logic. In F. Baader
and K.U. Schulz, editors, Frontiers of Combining Systems, Applied Logic Series,
pages 193-220. Kluwer Academic Publishers, 1996.

6. B. Buchberger. Using Mathematica for doing simple mathematical proofs (invited
paper). In Proceedings of the 4th Mathematica Users’ Conference, pages 80-96,
Tokyo, Japan, 2 November 1996. Wolfram Media Publishing.

7. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proceedings of Calculemus’2000 Conference, pages 98-113,
St. Andrews, UK, 6-7 August 2000.

8. R. Biindgen. Combining computer algebra and rule based reasoning. In J. Calmet
and J. A. Campbell, editors, Integrating Symbolic Mathematical Computation and
Artificial Intelligence. Proceedings of AISMC-2, volume 958 of LNCS, pages 209—
223, Cambridge, UK, 3-5 August 1994. Springer.

9. J. Christian. Flatterms, discrimination trees, and fast term rewriting. J. Automated
Reasoning, 10(1):95-113, 1993.

10. E. Contejean, C. Marche, B. Monate, and X. Urbain. CiME version 2, 2000.
http://cime.lri.fr/.

11. J. Denzinger and S. Schulz. Analysis and representation of equational proofs gen-
erated by a distributed completion based proof system. SEKI-report SR-94-05,
University of Kaiserslautern, Germany, 1994.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

H. Ganzinger, R. Nieuwenhuis, and P. Nivela. Context trees. In R. Gore, A. Leitsch,
and T. Nipkow, editors, Automated Reasoning. Proceedings of the IJCAR’01, vol-
ume 2083 of LNAI pages 242-256, Siena, Italy, June 2001. Springer.

J. C. Gonzdlez-Moreno. A correctness proof for Warren’s HO into FO translation.
In D. Sacca, editor, Proc. of the 8th Italian Conference on Logic Programming
(GULP’93), pages 569-585, Gizzeria Lido, Italy, June 1993. Mediterranean Press.
P. Graf. Substitutin tree indexing. In J. Hsiang, editor, Proceedings of the 6th RTA,
volume 914 of LNCS, pages 117-131, Kaiserslautern, Germany, 1995. Springer.
T. Hillenbrand, A. Buch, R. Vogt, and B. Lochner. WALDMEISTER — high-
performance equational deduction. J. Automated Reasoning, 18(2):265-270, 1997.
J.-P. Jouannaud and A. Rubio. The higher order recursive path ordering. In
Proceedings of the 14th annual IEEE symposium LICS, Trento, Italy, 1999.

T. Kutsia. Solving and proving in equational theories with sequence variables and
flexible arity symbols. Technical Report 02-09, PhD Thesis. Research Institute for
Symbolic Computation, Johannes Kepler University, Linz, Austria, 2002.

T. Kutsia. Theorem proving with sequence variables and flexible arity symbols. In
M. Baaz and A. Voronkov, editors, Logic in Programming, Artificial Intelligence
and Reasoning. International Conference LPAR’02, volume 2514 of LNAI pages
278-291, Thilisi, Georgia, 2002. Springer.

T. Kutsia. Unification with sequence variables and flexible arity symbols and its ex-
tension with pattern-terms. In J. Calmet, B. Benhamou, O. Caprotti, L. Henocque,
and V. Sorge, editors, Proceedings of Joint AISC’2002 — Calculemus’2002 confer-
ence, volume 2385 of LNAI Marseille, France, 1-5 July 2002. Springer.

B. L"ochner and Th. Hillenbrand. A phytography of WALDMEISTER. AI Commu-
nications, 15(2,3):127-133, 2002.

M. Marin. Introducing Sequentica, 2002. http://wuw.score.is.tsukuba.ac. jp/
“mmarin/Sequentica/.

W. W. McCune. Experiments with discrimination-tree indexing and path-indexing
for term retrieval. J. Autornated Reasoning, 9(2):147-167, 1992.

W. W. McCune. OTTER 3.0 reference manual and guide. Technical Report ANL-
94/6, Argonne National Laboratory, Argonne, US, January 1994.

R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality con-
strained clauses. J. Symbolic Computation, 19:321-351, 1995.

I. V. Ramakrishnan, R. Sekar, and A. Voronkov. Term indexing. In A. Robinson
and A. Voronkov, editors, Handbook of Automated Reasoming, volume II, pages
1853-1964. Elsevier Science, 2001.

J. M. Rivero. Data structures and algorithms for automated deduction with equal-
ity. PhD Thesis. Universitat Politecnica de Catalunya, Barcelona, Spain, 2000.
M. Stickel. A Prolog Technology Theorem Prover: implementation by an extended
Prolog compiler. J. Automated Reasoning, 4:353-380, 1988.

M. Stickel. The path indexing method for indexing terms. Technical Report 473,
Artificial Intelligence Center, SRI International, Menlo Park, CA, October 1989.
G. Sutcliffe and C. Suttner. The TPTP Problem Library for Automated Theorem
Proving. http://www.cs.miami.edu/"tptp/.

A. Voronkov. The anatomy of Vampire: Implementing bottom-up procedures with
code trees. J. Automated Reasoning, 15(2):237-265, 1995.

D. H. D. Warren. Higher-order extensions to PROLOG: are they needed? In
Machine Intelligence, volume 10, pages 441-454. Edinburgh University Press, Ed-
inburgh, UK, 1982.

S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram
Research, Inc., fourth edition, 1999.

