
Solving Equations Involving Sequence Variables
and Sequence Functions

Temur Kutsia?

Research Institute for Symbolic Computation,
Johannes Kepler University Linz,

A-4040 Linz, Austria
kutsia@risc.uni-linz.ac.at

Abstract. Term equations involving individual and sequence variables,
and individual and sequence function symbols are studied. Function sym-
bols can have either fixed or flexible arity. A new unification procedure for
solving such equations is presented. Decidability of unification is proved.
Completeness and almost minimality of the procedure is shown.

1 Introduction

We study term equations with sequence variables and sequence function sym-
bols. A sequence variable can be instantiated by any finite sequence of terms,
including the empty sequence. A sequence function abbreviates a finite sequence
of functions all having the same argument lists.1 An instance of such a function is
IntegerDivision(x,y) that abbreviates the sequence Quotient(x, y), Remainder(x, y).

Bringing sequence functions in the language naturally allows Skolemization
over sequence variables: Let x, y be individual variables, x be a sequence variable,
and p be a flexible arity predicate symbol. Then ∀x∀y∃x.p(x, y, x) Skolemizes to
∀x∀y.p(x, y, f(x, y)), where f is a binary Skolem sequence function symbol. An-
other example, ∀y∃x.p(y, x), where y is a sequence variable, after Skolemization
introduces a flexible arity sequence function symbol g: ∀y.p(y, g(y)).

Equation solving with sequence variables plays an important role in various
applications in automated reasoning, artificial intelligence, and programming.
At the end of the paper we briefly review some of the works related to this topic.

We contribute to this area by introducing a new unification procedure for
solving equations in the free theory with individual and sequence variables, and
individual and sequence function symbols. Function symbols can have either
fixed or flexible arity. We prove that solvability of an equation is decidable in
such a theory, and provide a unification procedure that enumerates an almost
minimal complete set of solutions. The procedure terminates if the set is finite.
This work is an extension and refinement of our previous results [10].

? Supported by the Austrian Science Foundation (FWF) under Project SFB F1302.
1 Semantically, sequence functions can be interpreted as multi-valued functions.

We implemented the procedure (without the decision algorithm) in Mathe-
matica [18] on the base of a rule-based programming system ρLog2 [13].

The paper is organized as follows: In Section 2 basic notions are introduced.
In Section 3 decidability is proved. In Section 4 relation with order-sorted higher-
order E-unification is discussed. In Section 5 the unification procedure is defined
and its properties are studied. In Section 6 some of the related work is reviewed.

A longer version of this paper with full proofs is available on the web [12].

2 Preliminaries

We assume that the reader is familiar with the standard notions of unification
theory [3]. We consider an alphabet consisting of the following pairwise disjoint
sets of symbols: individual variables VInd, sequence variables VSeq, fixed arity in-
dividual function symbols FFix

Ind , flexible arity individual function symbols FFlex
Ind ,

fixed arity sequence function symbols FFix
Seq , flexible arity sequence function sym-

bols FFlex
Seq . Each set of variables and sequence function symbols is countable.

Each set of individual function symbols is finite or countable. Besides, the al-
phabet contains the parenthesis “(”, “)” and the comma “,”. We will use the fol-
lowing denotations: V := VInd∪VSeq; FInd := FFix

Ind ∪FFlex
Ind ; FSeq := FFix

Seq ∪FFlex
Seq ;

FFix := FFix
Ind ∪ FFix

Seq ; FFlex := FFlex
Ind ∪ FFlex

Seq ; F := FInd ∪ FSeq = FFix ∪ FFlex.
The arity of f ∈ FFix is denoted by Ar(f). A function symbol c ∈ FFix is called
a constant if Ar(c) = 0.

Definition 1. A term over F and V is either an individual or a sequence term
defined as follows:

1. If t ∈ VInd (resp. t ∈ VSeq), then t is an individual (resp. sequence) term.
2. If f ∈ FFix

Ind (resp. f ∈ FFix
Seq), Ar(f) = n, n ≥ 0, and t1, . . . , tn are individual

terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.
3. If f ∈ FFlex

Ind (resp. f ∈ FFlex
Seq) and t1, . . . , tn (n ≥ 0) are individual or

sequence terms, then f(t1, . . . , tn) is an individual (resp. sequence) term.

The head of a term t = f(t1, . . . , tn), denoted by Head(t), is the function
symbol f . We denote by TInd(F ,V), TSeq(F ,V), and T (F ,V), respectively, the
sets of all individual terms, all sequence terms, and all terms over F and V. An
equation over F and V is a pair 〈s, t〉, denoted by s ≈ t, where s, t ∈ TInd(F ,V).

Example 1. Let x, y ∈ VInd, x ∈ VSeq, f ∈ FFlex
Ind , g ∈ FFix

Ind , f ∈ FFlex
Seq , g ∈ FFix

Seq ,
Ar(g) = 2, and Ar(g) = 1. Then f(x, g(x, y)) and f(x, f(x, x, y)) are indi-
vidual terms; f(x, f(x, x, y)) and g(f(x, x, y)) are sequence terms; f(x, g(x)),
f(x, g(x, y)) and f(x, g(x, y)) are not terms; f(x, g(x, y)) ≈ g(x, y) is an equa-
tion; f(x, g(x, y)) ≈ g(x, y), x ≈ f(x) and g(x) ≈ f(x) are not equations.

2 Available from http://www.ricam.oeaw.ac.at/people/page/marin/RhoLog/.

If not otherwise stated, the following symbols, maybe with indices, are used
as metavariables: x and y – over individual variables; x, y, z – over sequence
variables; v – over (individual or sequence) variables; f , g, h – over individ-
ual function symbols; f , g, h – over sequence function symbols; a, b, c – over
individual constants; a, b, c – over sequence constants; s, t, r, q – over terms.

Let T be a term, a sequence of terms, or a set of terms. Then we denote by
IVar(T) (resp. by SVar(T)) the set of all individual (resp. sequence) variables
in T ; by Var(T) the set IVar(T) ∪ SVar(T); by IFun(T) (resp. by SFun(T))
the set of all individual (resp. sequence) function symbols in T ; by Fix(T) (resp.
by F lex(T)) the set of all fixed (resp. flexible) arity function symbols in T .

Definition 2. A variable binding is either a pair x 7→ t where t ∈ TInd(F ,V)
and t 6= x, or an expression x 7→ pt1, . . . , tnq3 where n ≥ 0, for all 1 ≤ i ≤ n we
have ti ∈ T (F ,V), and if n = 1 then t1 6= x.

Definition 3. A sequence function symbol binding is an expression of the form
f 7→ pg1, . . . , gmq, where m ≥ 1, if m = 1 then f 6= g1, and either f, g1, . . . , gm ∈
FFix

Seq , with Ar(f) = Ar(g1) = · · · = Ar(gm), or f, g1, . . . , gm ∈ FFlex
Seq .

Definition 4. A substitution is a finite set of bindings {x1 7→ t1, . . . , xn 7→
tn, x1 7→ ps1

1, . . . , s
1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q, f1 7→ pg1

1 , . . . , g1
l1

q, . . . , fr 7→
pgr

1, . . . , g
r
lr

q} where n,m, r ≥ 0, x1, . . . , xn, x1, . . . , xm are distinct variables and
f1, . . . , fr are distinct sequence function symbols.

Lower case Greek letters are used to denote substitutions. The empty sub-
stitution is denoted by ε.

Definition 5. The instance of a term t with respect to a substitution σ, denoted
tσ, is defined recursively as follows:

1. xσ =
{

t, if x 7→ t ∈ σ,
x, otherwise.

2. xσ =
{

t1, . . . , tn, if x 7→ pt1, . . . , tnq ∈ σ, n ≥ 0,
x, otherwise.

3. f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).
4. f(t1, . . . , tn)σ ={

g1(t1σ, . . . , tnσ), . . . , gm(t1σ, . . . , tnσ), if f 7→ pg1, . . . , gmq ∈ σ,

f(t1σ, . . . , tnσ), otherwise.

Example 2. Let σ = {x 7→ a, y 7→ f(x), x 7→ pq, y 7→ pa, xq, g 7→ pg1, g2q}. Then
f(x, x, g(y, g()), y))σ = f(a, g1(f(x), g1(), g2()), g2(f(x), g1(), g2()), a, x).

Definition 6. The application of σ on f , denoted fσ, is a sequence of function
symbols g1, . . . , gm if f 7→ pg1, . . . , gmq ∈ σ. Otherwise fσ = f .

3 To improve readability, we write sequences that bind sequence variables between p
and q.

Applying a substitution θ on a sequence of terms pt1, . . . , tnq gives a sequence
of terms pt1θ, . . . , tnθq.

Definition 7. Let σ be a substitution. (1) The domain of σ is the set Dom(σ) =
{l | lσ 6= l} of variables and sequence function symbols. (2) The codomain of σ
is the set Cod(σ) = {lσ | l ∈ Dom(σ)} of terms and sequence function symbols.4

(3) The range of σ is the set Ran(σ) = Var(Cod(σ)) of variables.

Definition 8. Let σ and ϑ be two substitutions:

σ = { x1 7→ t1, . . . , xn 7→ tn, x1 7→ ps1
1, . . . , s

1
k1

q, . . . , xm 7→ psm
1 , . . . , sm

km
q,

f1 7→ pf1
1 , . . . , f1

l1
q, . . . , fr 7→ pfr

1 , . . . , fr
lr

q} ,

ϑ = { y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1
1 , . . . , q1

k′1q, . . . , ym′ 7→ pqm′
1 , . . . , qm′

k′m′
q,

g1 7→ pg1
1 , . . . , g1

l′1
q, . . . , gr′ 7→ pgr′

1 , . . . , gr′
l′
r′

q} .

Then the composition of σ and ϑ, σϑ, is the substitution obtained from the set

{ x1 7→ t1ϑ, . . . , xn 7→ tnϑ, x1 7→ ps1
1ϑ, . . . , s1

k1
ϑq, . . . , xm 7→ psm

1 ϑ, . . . , sm
km

ϑq,

f1 7→ pf1
1 ϑ, . . . , f1

l1
ϑq, . . . , fr 7→ pfr

1 ϑ, . . . , fr
lr

ϑq ,

y1 7→ r1, . . . , yn′ 7→ rn′ , y1 7→ pq1
1 , . . . , q1

k′1q, . . . , ym′ 7→ pqm′
1 , . . . , qm′

k′m′
q,

g1 7→ pg1
1 , . . . , g1

l′1
q, . . . , gr′ 7→ pgr′

1 , . . . , gr′
l′
r′

q}

by deleting

1. all the bindings xi 7→ tiϑ (1 ≤ i ≤ n) for which xi = tiϑ,
2. all the bindings xi 7→ psi

1ϑ, . . . , si
ki

ϑq (1 ≤ i ≤ m) for which the sequence
si
1ϑ, . . . , si

ki
ϑ consists of a single term xi,

3. all the sequence function symbol bindings fi 7→ pf i
1ϑ, . . . , f i

li
ϑq (1 ≤ i ≤ r)

such that the sequence f i
1ϑ, . . . , f i

lr
ϑ consists of a single function symbol fi,

4. all the bindings yi 7→ ri (1 ≤ i ≤ n′) such that yi ∈ {x1, . . . , xn},
5. all the bindings yi 7→ pqi

1, . . . , qi
k′iq (1 ≤ i ≤ m′) with yi ∈ {x1, . . . , xm},

6. all the sequence function symbol bindings gi 7→ pgi
1, . . . , gi

l′iq (1 ≤ i ≤ r′)
such that gi ∈ {f1, . . . , fr}.

Example 3. Let σ = {x 7→ y, x 7→ py, xq, y 7→ pf(a, b), y, g(x)q, f 7→ pg, hq}
and ϑ = {y 7→ x, y 7→ x, x 7→ pq, g 7→ pg1, g2q} be two substitutions. Then
σϑ = {y 7→ x, y 7→ pf(a, b), x, g1(), g2()q, f 7→ pg1, g2, hq, g 7→ pg1, g2q}.
Definition 9. A substitution σ is called linearizing away from a finite set of
sequence function symbols Q iff the following three conditions hold: (1) Cod(σ)∩
Q = ∅. (2) For all f, g ∈ Dom(σ) ∩ Q, if f 6= g, then {fσ} ∩ {gσ} = ∅. (3) If
f 7→ pg1 . . . , gnq ∈ σ and f ∈ Q, then gi 6= gj for all 1 ≤ i < j ≤ n.
4 Note that the codomain of a substitution is a set of terms and sequence function

symbols, not a set consisting of terms, sequences of terms, sequence function symbols,
and sequences of sequence function symbols. For instance, Cod({x 7→ f(a), x 7→
pa, a, bq, c 7→ pc1, c2q}) = {f(a), a, b, c1, c2}.

Intuitively, a substitution linearizing away from Q either leaves a sequence
function symbol in Q “unchanged”, or “moves it away from” Q, binding it with
a sequence of distinct sequence function symbols that do not occur in Q, and
maps different sequence function symbols to disjoint sequences.

Let E be a set of equations over F and V. By ≈E we denote the least con-
gruence relation on T (F ,V) that is closed under substitution application and
contains E. More precisely, ≈E contains E, satisfies reflexivity, symmetry, tran-
sitivity, congruence, and a special form of substitutivity: For all s, t ∈ T (F ,V),
if s ≈E t and sσ, tσ ∈ T (F ,V) for some σ, then sσ ≈E tσ. Substitutivity in this
form requires that sσ and tσ must be single terms, not arbitrary sequences of
terms. The set ≈E is called an equational theory defined by E. In the sequel,
we will also call the set E an equational theory, or E-theory. The signature of
E is the set Sig(E) = IFun(E) ∪ SFun(E). Solving equations in an E-theory
is called E-unification. The fact that the equation s ≈ t has to be solved in an
E-theory is written as s≈?

Et.

Definition 10. Let E be an equational theory with Sig(E) ⊆ F . An E-unifi-
cation problem over F is a finite multiset Γ = {s1 ≈?

E t1, . . . , sn ≈?
E tn} of

equations over F and V. An E-unifier of Γ is a substitution σ such that σ is
linearizing away from SFun(Γ) and for all 1 ≤ i ≤ n, siσ ≈E tiσ. The set of
all E-unifiers of Γ is denoted by UE(Γ), and Γ is E-unifiable iff UE(Γ) 6= ∅.

If {s1 ≈?
E t1, . . . , sn ≈?

E tn} is a unification problem, then si, ti ∈ TInd(F ,V)
for all 1 ≤ i ≤ n.

Example 4. Let Γ = {f(g(x, y, a)) ≈?
∅ f(g(c, b, x))}. Then {x 7→ c1, y 7→ pc2, bq,

x 7→ a, c 7→ pc1, c2q} ∈ U∅(Γ).
Let Γ = {f(g(x, y, a)) ≈?

∅ f(h(c, x))}. Then U∅(Γ) = ∅. If we did not require
the E-unifiers of a unification problem to be linearizing away from the sequence
function symbol set of the problem, then Γ would have ∅-unifiers, e.g., {x 7→
c1, y 7→ pc2, bq, x 7→ a, g 7→ h, c 7→ pc1, c2q} would be one of them.

In the sequel, if not otherwise stated, E stands for an equational theory, X
for a finite set of variables, and Q for a finite set of sequence function symbols.

Definition 11. A substitution σ is called erasing on X modulo E iff either
f(v)σ ≈E f() for some f ∈ Sig(E) and v ∈ X , or x 7→ pq ∈ σ for some x ∈ X .
We call σ non-erasing on X modulo E iff σ is not erasing on X modulo E.

Example 5. Any substitution containing x 7→ pq is erasing modulo E = ∅ on
any X that contains x.

Let E = {f(x, f(y), z) ≈ f(x, y, z)} and X = {x, x}. Then any substitution
that contains x 7→ f(), or x 7→ pq, or x 7→ pt1, . . . , tnq with n ≥ 1 and t1 = · · · =
tn = f(), is erasing on X modulo E. For instance, the substitutions {x 7→ f()},
{x 7→ f()}, {x 7→ pq}, {x 7→ pf(), f(), f(), f()q} are erasing on X modulo E.

Definition 12. A substitution σ agrees with a substitution ϑ on X and Q mod-
ulo E, denoted σ =X ,Q

E ϑ, iff (1) for all x ∈ X , xσ ≈E xϑ; (2) for all f ∈ Q,
fσ = fϑ; (3) for all x ∈ X , there exist t1, . . . , tn, s1, . . . , sn ∈ T (F ,V), n ≥ 0,
such that xσ = pt1, . . . , tnq, xϑ = ps1, . . . , snq and ti ≈E si for each 1 ≤ i ≤ n.

Example 6. Let σ = {x 7→ a}, ϑ = {x 7→ pb, cq, a 7→ pb, cq}, and ϕ = {x 7→
pb, cq, a 7→ pb, cq}. Let also X = {x}, Q = {a}, and E = ∅. Then σϕ =X ,Q

E ϑ.

Definition 13. A substitution σ is more general (resp. strongly more general)
than ϑ on X and Q modulo E, denoted σ≤¦ X ,Q

E ϑ (resp. σ¹¦ X ,Q
E ϑ), iff σϕ =X ,Q

E ϑ
for some substitution (resp. substitution non-erasing on X modulo E) ϕ.

Example 7. Let σ = {x 7→ y}, ϑ = {x 7→ pa, bq, y 7→ pa, bq}, η = {x 7→ pq, y 7→
pq}, X = {x, y}, Q = ∅, E = ∅. Then σ≤¦ X ,Q

E ϑ, σ¹¦ X ,Q
E ϑ, σ≤¦ X ,Q

E η, σ 6¹¦ X ,Q
E η.

A substitution ϑ is an E-instance (resp. strong E-instance) of σ on X and
Q iff σ≤¦ X ,Q

E ϑ (resp. σ¹¦ X ,Q
E ϑ). The equivalence associated with ≤¦ X ,Q

E (resp.

with ¹¦ X ,Q
E) is denoted by =¦

X ,Q
E (resp. by ≈¦X ,Q

E). The strict part of ≤¦ X ,Q
E (resp.

¹¦ X ,Q
E) is denoted by <¦X ,Q

E (resp. ≺¦ X ,Q
E). Definition 13 implies ¹¦ X ,Q

E ⊆ ≤¦ X ,Q
E .

Definition 14. A set of substitutions S is called minimal (resp. almost min-
imal) with respect to X and Q modulo E iff two distinct elements of S are
incomparable with respect to ≤¦ X ,Q

E (resp. ¹¦ X ,Q
E).

Minimality implies almost minimality, but not vice versa: A counterexample
is the set {σ, η} from Example 7.

Definition 15. A complete set of E-unifiers of an E-unification problem Γ is
a set S of substitutions such that (1) S ⊆ UE(Γ), and (2) for each ϑ ∈ UE(Γ)
there exists σ ∈ S such that σ≤¦ X ,Q

E ϑ, where X = Var(Γ) and Q = SFun(Γ).
The set S is a minimal (resp. almost minimal) complete set of E-unifiers of

Γ , denoted mcuE(Γ) (resp. amcuE(Γ)) iff it is a complete set that is minimal
(resp. almost minimal) with respect to X and Q modulo E.

Proposition 1. An E-unification problem Γ has an almost minimal complete
set of E-unifiers iff it has a minimal complete set of E-unifiers.

If Γ is not E-unifiable, then mcuE(Γ) = amcuE(Γ) = ∅. A minimal (resp.
almost minimal) complete set of E-unifiers of Γ , if it exists, is unique up to the

equivalence =¦
X ,Q

E (resp. ≈¦X ,Q

E), where X = Var(Γ) and Q = SFun(Γ).

Example 8. 1. Γ = {f(x) ≈?
∅ f(y)}. Then mcu∅(Γ) = {{x 7→ y}}, amcu∅(Γ) =

{{x 7→ y}, {x 7→ pq, y 7→ pq}}.
2. Γ = {f(x, x, y) ≈?

∅ f(f(x), x, a, b)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→
f(), x 7→ pq, y 7→ pf(), a, bq}}.

3. Γ = {f(a, x) ≈?
∅ f(x, a)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq}, {x 7→

a}, {x 7→ pa, aq}, . . .}.
4. Γ = {f(x, y, x) ≈?

∅ f(c, a)}. Then mcu∅(Γ) = amcu∅(Γ) = {{x 7→ pq, y 7→
c, x 7→ a}, {x 7→ c, y 7→ pq, x 7→ a}, {x 7→ c1, y 7→ c2, x 7→ a, c 7→ pc1, c2q}}.

Definition 16. A set of substitutions S is disjoint (resp. almost disjoint) wrt
X and Q modulo E iff two distinct elements in S have no common E-instance
(resp. strong E-instance) on X and Q, i.e., for all σ, ϑ ∈ S, if there exists ϕ

such that σ≤¦ X ,Q
E ϕ (resp. σ¹¦ X ,Q

E ϕ) and ϑ≤¦ X ,Q
E ϕ (resp. ϑ¹¦ X ,Q

E ϕ), then σ = ϑ.

Disjointness implies almost disjointness, but not vice versa: Consider again
the set {σ, η} in Example 7.

Proposition 2. If a set of substitutions S is disjoint (almost disjoint) wrt X
and Q modulo E, then it is minimal (almost minimal) wrt X and Q modulo E.

However, almost disjointness does not imply minimality: Again, take the set
{σ, η} in Example 7. On the other hand, minimality does not imply almost
disjointness: Let σ = {x 7→ f(a, y)}, ϑ = {x 7→ f(y, b)}, X = {x}, Q = ∅, and
E = ∅. Then {σ, ϑ} is minimal but not almost disjoint with respect to X and Q
modulo E, because σ¹¦ X ,Q

E ϕ and ϑ¹¦ X ,Q
E ϕ, with ϕ = {x 7→ f(a, b)}, but σ 6= ϑ.

The same example can be used to show that almost minimality does not imply
almost disjointness either. From these observations we can also conclude that
neither minimality nor almost minimality imply disjointness.

The equational theory E = ∅ is called the free theory with sequence variables
and sequence function symbols. Unification in the free theory is called the syn-
tactic sequence unification. The theory E = {f(x, f(y), z) ≈ f(x, y, z)} that we
first encountered in Example 5 is called the flat theory, where f is the flat flexible
arity individual function symbol. We call unification in the flat theory the F -
unification. Certain properties of this theory will be used in proving decidability
of the syntactic sequence unification.

3 Decidability and Unification Type

We show decidability of a syntactic sequence unification problem in three steps:
First, we reduce the problem by unifiability preserving transformation to a uni-
fication problem containing no sequence function symbols. Second, applying yet
another unifiability preserving transformation we get rid of all free flexible arity
(individual) function symbols, obtaining a unification problem whose signature
consists of fixed arity individual function symbols and one flat flexible arity in-
dividual function symbol. Finally, we show decidability of the reduced problem.

Let Γ be a general syntactic sequence unification problem and let Q =
SFun(Γ). Assume Q 6= ∅. We transform Γ performing the following steps: (1)
Introduce for each n-ary f ∈ Q a new n-ary symbol gf ∈ FFix

Ind . (2) Introduce
for each flexible arity f ∈ Q a new flexible arity symbol gf ∈ FFlex

Ind . (3) Replace
each sequence function symbol f in Γ with the corresponding gf .

The transformation yields a new unification problem Λ that does not con-
tain sequence function symbols. We impose the first restriction on individual
variables, shortly RIV1, on Λ demanding that for any syntactic unifier λ of Λ
and for any x ∈ VInd, Head(xλ) must be different from any newly introduced
individual function symbols.

Theorem 1. Γ is syntactically unifiable iff Λ with the RIV1 is syntactically
unifiable.

Remark 1. Unifiability of Λ without the RIV1 does not imply unifiability of Γ :
Let Γ be {f(x) ≈?

∅ f(c)}. Then Λ = {f(x) ≈?
∅ f(cc)}. Γ is not unifiable, while

{x 7→ cc} is a unifier of Λ, because x ∈ VInd can be bound with cc ∈ TInd(F ,V).

Next, our goal is to construct a general syntactic sequence unification prob-
lem without sequence function symbols that is unifiable (without restrictions)
iff Λ with the RIV1 is syntactically unifiable. We construct a finite set of in-
dividual terms I consisting of a new individual constant c, exactly one term of
the form h(y1, . . . , yn) for each fixed arity h ∈ IFun(Γ) such that n = Ar(h)
and y1, . . . , yn are distinct individual variables new for I and Λ, and exactly
one term of the form h(x) for each flexible arity h ∈ IFun(Γ) such that x is a
sequence variable new for I and Λ.

Theorem 2. Let Λ have the form {s ≈?
∅ t} with IVar(Λ) = {x1, . . . , xn} and

g ∈ FFix be a new symbol with Ar(g) = n + 1. Then Λ with the RIV1 is
syntactically unifiable iff there exist fresh instances r1, . . . , rn of elements in I
such that the general syntactic unification problem (without sequence function
symbols) {g(s, x1, . . . , xn) ≈?

∅ g(t, r1, . . . , rn)} is unifiable.

Thus, we have to show that unifiability of a general syntactic unification
problem ∆ without sequence function symbols is decidable. We assume that
F lex(∆) 6= ∅, otherwise ∆ would be a Robinson unification problem. We trans-
form ∆ performing the following steps: (1) Introduce a new flat symbol seq ∈
FFlex

Ind . (2) Introduce a new unary symbol gf ∈ FFix
Ind for each f ∈ F lex(∆). (3)

Replace each term f(r1, . . . , rm), m ≥ 0, in ∆ by gf (seq(r1, . . . , rm)).
The transformation yields a new general flat unification problem Θ. Sequence

variables occur in Θ only as arguments of terms with the head seq. We impose
the second restriction on individual variables, RIV2, on Θ demanding that, for
any F -unifier ϑ of Θ and for any x ∈ VInd, Head(xϑ) 6= seq.

Theorem 3. ∆ is syntactically unifiable iff Θ with the RIV2 is F -unifiable.

Remark 2. F -unifiability of Θ without the RIV2 does not imply syntactic unifi-
ability of ∆: Let ∆ be {f(x) ≈?

∅ f(a, b)}, f ∈ FFlex. Then Θ = {gf (seq(x)) ≈?
F

gf (seq(a, b))}. Obviously ∆ is not unifiable, while {x 7→ seq(a, b)} is an F -unifier
of Θ, because seq(seq(a, b)) ≈F seq(a, b).

Next, our goal is to construct a general F -unification problem that is F -
unifiable (without restrictions) iff Θ with the RIV2 is F -unifiable. First, we
construct a finite set J of individual terms consisting of a new individual con-
stant d and exactly one term of the form h(y1, . . . , yn) for each h ∈ Fix(Θ) such
that n = Ar(h) and y1, . . . , yn are distinct individual variables new for J and
Θ.

Theorem 4. Let Θ be {s ≈?
F t} with IVar(Θ) = {x1, . . . , xn} and h ∈ FFix

be a new symbol with Ar(h) = n + 1. Then Θ with the RIV2 is F -unifiable
iff there exist fresh instances r1, . . . , rn of elements in J such that the general
F -unification problem {h(s, x1, . . . , xn) ≈?

F h(t, r1, . . . , rn)} is F -unifiable.

Thus, we are left with proving that unifiability of an F -unification problem
Φ, whose signature consists of fixed arity individual function symbols and the
only flexible arity flat individual function symbol seq, is decidable.

Let Ψ be an F -unification problem obtained from Φ by replacing each x ∈
SVar(Φ) with a new individual variable xΨ . It is easy to see that Φ is unifiable
iff Ψ is. Indeed, replacing each variable binding x 7→ ps1, . . . , snq in a unifier of
Φ with xΨ 7→ seq(s1, . . . , sn) yields a unifier of Ψ , and vice versa.

We can consider Ψ as an elementary unification problem in the combined
theory E1∪E2, where E1 is a flat equational theory over {seq} and VInd, and E2

is a free equational theory over Fix(Ψ) and VInd. E1-unification problems are,
in fact, word equations, while E2-unification is Robinson unification. Using the
Baader-Schulz combination method [2], we can prove the following theorem:

Theorem 5. F -unifiability of Ψ is decidable.

Hence, unifiability of general syntactic sequence unification problem is decid-
able.

As for the unification type, in Example 8 we have seen that mcu∅(Γ) is
infinite for Γ = {f(a, x) ≈?

∅ f(x, a)}. It implies that the syntactic sequence uni-
fication is at least infinitary. To show that it is not nullary, by Proposition 1,
it is sufficient to prove existence of an almost minimal set of unifiers for every
syntactic sequence unification problem. We do it in the standard way, by proving
that for any Γ , every strictly decreasing chain σ1Â¦ X ,Q

∅ σ2Â¦ X ,Q
∅ · · · of substitu-

tions in U∅(Γ) is finite, where X = Var(Γ) and Q = SFun(Γ). Hence, syntactic
sequence unification is infinitary.

4 Relation with Order-Sorted Higher-Order Unification

Syntactic sequence unification can be considered as a special case of order-sorted
higher-order E-unification. Here we show the corresponding encoding in the
framework described in [9]. We consider simply typed λ-calculus with the types
i and o. The set of base sorts consists of ind, seq, seqc, o such that the type of
o is o and the type of the other sorts is i. We will treat individual and sequence
variables as first order variables, sequence functions as second order variables and
define a context Γ such that Γ(x) = ind for all x ∈ VInd, Γ(x) = seq for all x ∈
VSeq, Γ(f) = seq → seqc for each f ∈ FFlex

Seq , and Γ(f) = ind→ · · · → ind︸ ︷︷ ︸
n times

→

seqc for each f ∈ FFix
Seq with Ar(f) = n. Individual function symbols are treated

as constants. We assign to each f ∈ FFlex
Ind a functional sort seq → ind and

to each f ∈ FFix
Ind with Ar(f) = n a functional sort ind→ · · · → ind︸ ︷︷ ︸

n times

→ ind.

We assume equality constants ≈s for every sort s. In addition, we have two
function symbols: binary pq of the sort seq → seq → seq and a constant [] of
the sort seq. Sorts are partially ordered as [ind ≤ seqc] and [seqc ≤ seq]. The
equational theory is an AU-theory, asserting associativity of pq with [] as left
and right unit. We consider unification problems for terms of the sort ind where

terms are in βη-normal form containing no bound variables, and terms whose
head is pq are flattened. For a given unification problem Γ in this theory, we
are looking for unifiers that obey the following restrictions: If a unifier σ binds a
second order variable f of the sort seq→ seqc, then fσ = λx.pg1(x), . . . , gm(x)q
and if σ binds a second order variable f of the sort ind→ · · · → ind︸ ︷︷ ︸

n times

→ seqc,

then fσ = λx1. . . . xn.pg1(x1, . . . , xn), . . . , gm(x1, . . . , xn)q, where m > 1 and
g1, . . . , gm are fresh variables of the same sort as f .

Hence, syntactic sequence unification can be considered as order-sorted se-
cond-order AU-unification with additional restrictions. Order-sorted higher-or-
der syntactic unification was investigated in [9], but we are not aware of any
work done on order-sorted higher-order equational unification.

5 Unification Procedure

In the sequel we assume that Γ , maybe with indices, and Γ ′ denote syntactic
sequence unification problems. A system is either the symbol ⊥ (representing
failure), or a pair 〈Γ ; σ〉. The inference system U consists of the transformation
rules on systems listed below. The function symbol g ∈ FFlex

Ind in the rule PD2 is
new. In the Splitting rule f1 and f2 are new sequence function symbols of the
same arity as f in the same rule. We assume that the indices n,m, k, l ≥ 0.
Projection (P):

〈Γ ; σ〉 =⇒ 〈Γϑ; σϑ〉, where ϑ 6= ε, Dom(ϑ) ⊆ SVar(Γ) and Cod(ϑ) = ∅.
Trivial (T):

〈{s ≈?
∅ s} ∪ Γ ′; σ〉 =⇒ 〈Γ ′; σ〉.

Orient 1 (O1):

〈{s ≈?
∅ x} ∪ Γ ′; σ〉 =⇒ 〈{x ≈?

∅ s} ∪ Γ ′; σ〉, if s /∈ VInd.

Orient 2 (O2):

〈{f(s, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(x, t1, . . . , tm) ≈?
∅ f(s, s1, . . . , sn)} ∪ Γ ′; σ〉, if s /∈ VSeq.

Solve (S):

〈{x ≈?
∅ t} ∪ Γ ′; σ〉 =⇒ 〈Γ ′ϑ; σϑ〉, if x /∈ IVar(t) and ϑ = {x 7→ t}.

Total Decomposition (TD):

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tn)} ∪ Γ ′; σ〉 =⇒

〈{s1 ≈?
∅ t1, . . . , sn ≈?

∅ tn} ∪ Γ ′; σ〉
if f(s1, . . . , sn) 6= f(t1, . . . , tn), and si, ti ∈ TInd(F ,V) for all 1 ≤ i ≤ n.

Partial Decomposition 1 (PD1):

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{s1 ≈?
∅ t1, . . . , sk−1 ≈?

∅ tk−1, f(sk, . . . , sn) ≈?
∅ f(tk, . . . , tm)} ∪ Γ ′; σ〉

if f(s1, . . . , sn) 6= f(t1, . . . , tm), for some 1 < k ≤ min(n, m),
sk ∈ TSeq(F ,V) or tk ∈ TSeq(F ,V), and si, ti ∈ TInd(F ,V) for all 1 ≤ i < k.

Partial Decomposition 2 (PD2):

〈{f(f(r1, . . . , rk), s1, . . . , sn) ≈?
∅ f(f(q1, . . . , ql), t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{g(r1, . . . , rk) ≈?
∅ g(q1, . . . , ql), f(s1, . . . , sn) ≈?

∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉.
if f(f(r1, . . . , rk), s1, . . . , sn) 6= f(f(q1, . . . , ql), t1, . . . , tm).

Sequence Variable Elimination 1 (SVE1):

〈{f(x, s1, . . . , sn) ≈?
∅ f(x, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn) ≈?
∅ f(t1, . . . , tm)} ∪ Γ ′; σ〉

if f(x, s1, . . . , sn) 6= f(x, t1, . . . , tm).

Sequence Variable Elimination 2 (SVE2):

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn)ϑ ≈?
∅ f(t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(t) and ϑ = {x 7→ t}.
Widening 1 (W1):

〈{f(x, s1, . . . , sn) ≈?
∅ f(t, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(x, s1ϑ, . . . , snϑ) ≈?
∅ f(t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(t) and ϑ = {x 7→ pt, xq}.
Widening 2 (W2):

〈{f(x, s1, . . . , sn) ≈?
∅ f(y, t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1ϑ, . . . , snϑ) ≈?
∅ f(y, t1ϑ, . . . , tmϑ)} ∪ Γ ′ϑ; σϑ〉

where ϑ = {y 7→ px, yq}.
Splitting (Sp):

〈{f(x, s1, . . . , sn) ≈?
∅ f(f(r1, . . . , rk), t1, . . . , tm)} ∪ Γ ′; σ〉 =⇒

〈{f(s1, . . . , sn)ϑ ≈?
∅ f(f2(r1, . . . , rk), t1, . . . , tm)ϑ} ∪ Γ ′ϑ; σϑ〉

if x /∈ SVar(f(r1, . . . , rk)) and ϑ = {x 7→ f1(r1, . . . , rk)}{f 7→ pf1, f2q}.
We may use the rule name abbreviations as subscripts, e.g., 〈Γ1; σ1〉 =⇒P

〈Γ2; σ2〉 for Projection. We may also write 〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 to indicate
that 〈Γ1; σ1〉 was transformed to 〈Γ2; σ2〉 by some basic transformation (i.e.,
non-projection) rule. P, SVE2, W1, W2, and Sp are non-deterministic rules.

A derivation is a sequence 〈Γ1;σ1〉 =⇒ 〈Γ2; σ2〉 =⇒ · · · of system trans-
formations. A derivation is fair if any transformation rule which is continuously
enabled is eventually applied. Any finite fair derivation S1 =⇒ S2 =⇒ · · · =⇒ Sn

is maximal, i.e., no further transformation rule can be applied on Sn.

Definition 17. A syntactic sequence unification procedure is any program that
takes a system 〈Γ ; ε〉 as an input and uses the rules in U to generate a tree of
fair derivations, called the unification tree for Γ , UT (Γ), in the following way:

1. The root of the tree is labeled with 〈Γ ; ε〉;
2. Each branch of the tree is a fair derivation either of the form 〈Γ ; ε〉 =⇒P

〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · or 〈Γ ; ε〉 =⇒BT 〈Γ1; σ1〉 =⇒BT

〈Γ2; σ2〉 =⇒BT · · · . The nodes in the tree are systems.
3. If several transformation rules, or different instances of the same transfor-

mation rule are applicable to a node in the tree, they are applied concurrently.

4. The decision procedure is applied to the root and to each node generated by a
non-deterministic transformation rule, to decide whether the node contains
a solvable unification problem. If the unification problem ∆ in a node 〈∆; δ〉
is unsolvable, then the branch is extended by 〈∆; δ〉 =⇒DP ⊥.

The leaves of UT (Γ) are labeled either with the systems of the form 〈∅; σ〉
or with ⊥. The branches of UT (Γ) that end with 〈∅; σ〉 are called successful
branches, and those with the leaves ⊥ are failed branches. We denote by Sol∅(Γ)
the solution set of Γ , i.e., the set of all σ-s such that 〈∅; σ〉 is a leaf of UT (Γ).

5.1 Soundness, Completeness and Almost Minimality

In this section we assume that X = Var(Γ) and Q = SFun(Γ) for a syntactic
sequence unification problem Γ . The soundness theorem is not hard to prove:

Theorem 6 (Soundness). If 〈Γ ; ε〉 =⇒+ 〈∅; ϑ〉, then ϑ ∈ U∅(Γ).

Completeness can be proved by showing that for any unifier ϑ of Γ there
exists a derivation from 〈Γ ; ε〉 that terminates with success and the substitution
in the last system of the derivation is strongly more general than ϑ:

Lemma 1. For any ϑ ∈ U∅(Γ) there exists a derivation of the form 〈Γ0; σ0〉 =⇒X

〈Γ1; σ1〉 =⇒BT 〈Γ2; σ2〉 =⇒BT · · · =⇒BT 〈∅; σn〉 with Γ1 = Γ and σ1 = ε such
that if ϑ is erasing on X then X = P, otherwise X = BT, and σn¹¦ X ,Q

∅ ϑ.

From Theorem 6, Lemma 1, and the fact that ¹¦ X ,Q
E ⊆ ≤¦ X ,Q

E , by Defini-
tion 17 and Definition 15 we get the completeness theorem:

Theorem 7 (Completeness). Sol∅(Γ) is a complete set of unifiers of Γ .

The set Sol∅(Γ), in general, is not minimal with respect to Var(Γ) and
SFun(Γ) modulo the free theory. Just consider Γ = {f(x) ≈?

∅ f(y)}, then
Sol∅(Γ) = {{x 7→ y}, {x 7→ pq, y 7→ pq}}. However, it can be shown that
Sol∅(Γ) is almost minimal. In fact, the following stronger statement holds:

Theorem 8 (Almost Disjointness). Sol∅(Γ) is almost disjoint wrt X and Q.

Theorem 7, Theorem 8 and Proposition 2 imply the main result of this sec-
tion:

Theorem 9 (Main Theorem). Sol∅(Γ) = amcu∅(Γ).

6 Conclusions and Related Work

We showed that general syntactic unification with sequence variables and se-
quence functions is decidable and has the infinitary type. We developed a unifi-
cation procedure and showed its soundness, completeness and almost minimality.

Historically, probably the first attempt to implement unification with se-
quence variables (without sequence functions) was made in the system MVL [7].

It was incomplete because of restricted use of widening technique. The restriction
was imposed for the efficiency reasons. No theoretical study of the unification
algorithm of MVL, to the best of our knowledge, was undertaken.

Richardson and Fuchs [16] describe another unification algorithm with se-
quence variables that they call vector variables. Vector variables come with their
length attached, that makes unification finitary. The algorithm was implemented
but its properties have never been investigated.

Implementation of first-order logic in Isabelle [14] is based on sequent cal-
culus formulated using sequence variables (on the meta level). Sequence meta-
variables are used to denote sequences of formulae, and individual meta-variables
denote single formulae. Since in every such unification problem no sequence
meta-variable occurs more that once, and all of them occur only on the top
level, Isabelle, in fact, deals with a finitary case of sequence unification.

Word equations [1, 8] and associative unification [15] can be modelled by
syntactic sequence unification using constants, sequence variables and one flex-
ible arity function symbol. In the similar way we can imitate the unification
algorithm for path logics closed under right identity and associativity [17].

The Set-Var prover [4] has a construct called vector of (Skolem) functions
that resembles our sequence functions. However, unification does not allow to
split vectors of functions between variables: such a vector of functions either
entirely unifies with a variable, or with another vector of functions.

The programming language of Mathematica uses pattern matching that
supports sequence variables (represented as identifiers with “triple blanks”, e.g.,
x) and flexible arity function symbols. Our procedure (without sequence func-
tion symbols) can imitate the behavior of Mathematica matching algorithm.

Buchberger introduced sequence functions in the Theorema system [6] to
Skolemize quantified sequence variables. In the equational prover of Theorema
[11] we implemented a special case of unification with sequence variables and
sequence functions: sequence variables occurring only in the last argument po-
sitions in terms. It makes unification unitary. Similar restriction is imposed on
sequence variables in the RelFun system [5] that integrates extensions of logic
and functional programming. RelFun allows multiple-valued functions as well.

In [10] we described unification procedures for free, flat, restricted flat and
orderless theories with sequence variables, but without sequence functions.

Under certain restrictions sequence unification problems have at most finitely
many solutions: sequence variables in the last argument positions, unification
problems with at least one ground side (matching as a particular instance), all
sequence variables on the top level with maximum one occurrence. It would be
interesting to identify more cases with finite or finitely representable solution
sets.

7 Acknowledgements

I thank Bruno Buchberger and Mircea Marin for interesting discussions on the
topic.

References

1. H. Abdulrab and J.-P. Pécuchet. Solving word equations. J. Symbolic Computation,
8(5):499–522, 1990.

2. F. Baader and K. U. Schulz. Unification in the union of disjoint equational theories:
Combining decision procedures. J. Symbolic Computation, 21(2):211–244, 1996.

3. F. Baader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov,
editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532.
Elsevier Science, 2001.

4. W. W. Bledsoe and Guohui Feng. Set-Var. J. Automated Reasoning, 11(3):293–
314, 1993.

5. H. Boley. A Tight, Practical Integration of Relations and Functions, volume 1712
of LNAI. Springer, 1999.

6. B. Buchberger, C. Dupré, T. Jebelean, F. Kriftner, K. Nakagawa, D. Vasaru, and
W. Windsteiger. The Theorema project: A progress report. In M. Kerber and
M. Kohlhase, editors, Proc. of Calculemus’2000 Conference, pages 98–113, St. An-
drews, UK, 6–7 August 2000.

7. M. L. Ginsberg. User’s guide to the MVL system. Technical report, Stanford
University, Stanford, California, US, 1989.

8. J. Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
9. M. Kohlhase. A mechanization of sorted higher-order logic based on the resolution

principle. PhD Thesis. Universität des Saarlandes. Saarbrücken, Germany, 1994.
10. T. Kutsia. Solving and proving in equational theories with sequence variables and

flexible arity symbols. Technical Report 02-31, RISC-Linz, Austria, 2002.
11. T. Kutsia. Equational prover of Theorema. In R. Nieuwenhuis, editor, Proc.

of the 14th Int. Conference on Rewriting Techniques and Applications (RTA’03),
volume 2706 of LNCS, pages 367–379, Valencia, Spain, 9–11 June 2003. Springer.

12. T. Kutsia. Solving equations involving sequence variables and sequence functions.
Technical Report 04-01, RISC, Johannes Kepler University, Linz, Austria, 2004.
http://www.risc.uni-linz.ac.at/people/tkutsia/papers/SeqUnif.ps.

13. M. Marin and T. Kutsia. On the implementation of a rule-based programming
system and some of its applications. In B. Konev and R. Schmidt, editors, Proc.
of the 4th Int. Workshop on the Implementation of Logics (WIL’03), pages 55–68,
Almaty, Kazakhstan, 2003.

14. L. Paulson. Isabelle: the next 700 theorem provers. In P. Odifreddi, editor, Logic
and Computer Science, pages 361–386. Academic Press, 1990.

15. G. Plotkin. Building in equational theories. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 7, pages 73–90. Edinburgh University Press, 1972.

16. J. Richardson and N. E. Fuchs. Development of correct transformation schemata
for Prolog programs. In N. E. Fuchs, editor, Proc. of the 7th Int. Workshop
on Logic Program Synthesis and Transformation (LOPSTR’97), volume 1463 of
LNCS, pages 263–281, Leuven, Belgium, 10–12 July 1997. Springer.

17. R. Schmidt. E-Unification for subsystems of S4. In T. Nipkow, editor, Proc. of the
9th Int. Conference on Rewriting Techniques and Applications, RTA’98, volume
1379 of LNCS, pages 106–120, Tsukuba, Japan, 1998. Springer.

18. S. Wolfram. The Mathematica Book. Cambridge University Press and Wolfram
Research, Inc., fourth edition, 1999.

