
Telescopers for Rational and
Algebraic Functions via Residues

Shaoshi Chen
∗

Department of Mathematics
NCSU

Raleigh, NC 27695, USA

schen21@ncsu.edu

Manuel Kauers
†

RISC
Johannes Kepler University

4040 Linz, Austria

mkauers@risc.jku.at

Michael F. Singer
∗

Department of Mathematics
NCSU

Raleigh, NC 27695, USA

singer@ncsu.edu

ABSTRACT
We show that the problem of constructing telescopers for
functions of m variables is equivalent to the problem of con-
structing telescopers for algebraic functions of m − 1 vari-
ables and present a new algorithm to construct telescopers
for algebraic functions of two variables. These considera-
tions are based on analyzing the residues of the input. Ac-
cording to experiments, the resulting algorithm for rational
functions of three variables is faster than known algorithms,
at least in some examples of combinatorial interest. The al-
gorithm for algebraic functions implies a new bound on the
order of the telescopers.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Symbolic Integration, Creative Telescoping

1. INTRODUCTION
The problem of creative telescoping is to find, for a given

“function” f in several variables t1, . . . , tn, x1, . . . , xm, linear
differential operators L involving only the ti and derivations
with respect to the ti, and some other “functions” g1, . . . , gm
such that

L(f) = Dx1(g1) + · · ·+Dxm(gm),
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where Dxj denotes the derivative with respect to xj . The
main motivation for computing such operators L (called
“telescopers” for f) is that, under suitable technical assump-
tions on f and the domain Ω, these operators have the def-
inite integral

F (t1, . . . , tn) =

∫
Ω

f(t1, . . . , tn, x1, . . . , xm) dx1 · · · dxm

as a solution. Once differential operators for F have been
found, other algorithms can next be used for determining
possible closed forms, or asymptotic information, or recur-
rence equations for the series coefficients of F .

There are general algorithms for computing telescopers
when the input f is holonomic [25, 15, 24, 20, 9] as well
as special-purpose algorithms designed for restricted input
classes [25, 26, 5]. The focus in the present paper is on two
such restricted input classes: rational and algebraic func-
tions of several variables. Our first result is that an algo-
rithm for computing telescopers for rational functions of m
variables directly leads to an algorithm for computing tele-
scopers for algebraic functions of m − 1 variables and vice
versa (Section 2). Our second result is a new algorithm
for creative telescoping of algebraic functions of two vari-
ables (Section 3), which, by the equivalence, also implies a
new algorithm for creative telescoping of rational functions
of three variables. The algorithm for algebraic functions is
mainly interesting because it implies a new bound on the
order of the telescoper in this case (Theorem 15), while the
implied algorithm for rational functions is mainly interesting
because at least for some examples it provides an efficient
alternative to other methods (Section 4).

For a precise problem description, let k be a field of char-
acteristic zero, and k(t,x) be the field of rational functions
in t and x = (x1, . . . , xm) over k. Let x̂m denote the m− 1
variables x1, . . . , xm−1. The algebraic closure of a field K
will be denoted by K. The usual derivations ∂/∂t and ∂/∂xi
are denoted by Dt and Dxi , respectively. Let k(t)〈Dt〉 be
the ring of linear differential operators in t with coefficients
in k(t). Then we are interested in the following two prob-
lems:

Problem 1. Given f ∈ k(t,x), find a nonzero operator L ∈
k(t)〈Dt〉 such that

L(f) = Dx1(g1) + · · ·+Dxm(gm) for some gj ∈ k(t,x).

Such an L is called a telescoper for f , and the rational func-
tions g1, . . . , gm are called certificates of L.



Problem 2. Given α ∈ k(t, x̂m), find a nonzero opera-
tor L ∈ k(t)〈Dt〉 such that

L(α)=Dx1(β1)+· · ·+Dxm−1(βm−1) for some βj ∈ k(t, x̂m).

Such an L is called a telescoper for α, and the algebraic
functions β1, . . . , βm−1 are called certificates of L.

Both the equivalence of these two problems and the new
algorithm for Problem 2 (when m = 2) are based on the
general idea of eliminating residues in the input. As an
introduction to this approach, let us consider the problem
of finding a telescoper and certificate for a rational function
in two variables, that is, given a rational function f ∈ k(t, x),
we want to find a nonzero L ∈ k(t)〈Dt〉 such that L(f) =
Dx(g) for some g ∈ k(t, x). We may consider f as an element
of K(x), where K = k(t), and as such we may write

f = p+

n∑
i=1

mi∑
j=1

αi,j
(x− βi)j

, (1)

where p ∈ K[x], the βi are the roots in K of the denominator
of f and the αi,j are in K. We refer to the element αi,1 as
the residue of f at βi. Using Hermite reduction, one sees
that a rational function h ∈ K(x) is of the form h = Dx(g)
for some g ∈ K(x) if and only if all residues of h are zero.
Therefore to find a telescoper for f it is enough to find a
nonzero operator L ∈ K〈Dt〉 such that L(f) has only zero
residues. For example assume that f has only simple poles,
i.e., f = a

b
, a, b ∈ K[x], degx a < degx b and b squarefree.

We then know that the Rothstein-Trager resultant [23, 19]

R := resultantx(a− zDx(b), b) ∈ K[z]

is a polynomial whose roots are the residues at the poles of f .
Given a squarefree polynomial in K[z] = k(t)[z], differentia-
tion with respect to t and elimination allow one to construct
a nonzero linear differential operator L ∈ k(t)〈Dt〉 such that
L annihilates the roots of this polynomial. Applying L to
each term of (1) one sees that L(f) has zero residues at each
of its poles. Applying Hermite reduction to L(f) allows us
to find a g such that L(f) = Dx(g).

The main idea in the method described above is that
nonzero residues are the obstruction to being the derivative
of a rational function and one constructs a linear operator to
remove this obstruction. Understanding how residues form
an obstruction to integrability and constructing linear oper-
ators to remove this obstruction will be the guiding principal
that motivates the results which follow.

The authors would like to thank Barry Trager for useful
discussions and outlining the proof of Proposition 11.

2. TELESCOPERS FOR RATIONAL
FUNCTIONS

2.1 Rational and algebraic integrability
In this section, we give a criterion which decides whether

or not 1 is a telescoper for a rational function in k(t,x).
Again, let K = k(t). A rational function f ∈ K(x) is said to
be rational integrable with respect to x if f =

∑m
j=1 Dxj (gj)

for some gj ∈ K(x). An algebraic function α ∈ K(x̂m) is
said to be algebraic integrable with respect to x̂m if α =∑m−1
j=1 Dxj (βj) for some βj ∈ K(x̂m). By taking traces,

one can show that if α is algebraic integrable with respect

to x̂m, then an antiderivative of α already exists in the
field K(x̂m)(α).

For a rational function f ∈ K(x), Hermite reduction with
respect to xm decomposes f into

f = Dxm(r) +
a

b
, (2)

where r ∈ K(x) and a, b ∈ K(x̂m)[xm] such that degxm(a) <
degxm(b) and b is squarefree with respect to xm. It is clear
that f is rational integrable with respect to x if and only if
a/b in (2) is rational integrable with respect to x. Over the

field K(x̂m), one can write a rational function f ∈ K(x) as

f = p+

n∑
i=1

mi∑
j=1

αij
(xm − βi)j

,

where p ∈ K(x̂m)[xm] and the αij , βi are in K(x̂m). We call
αi1 the xm-residue of f at βi, denoted by residuexm(f, βi).

Proposition 3. Let f ∈ K(x) and β ∈ K(x̂m). Then

(i) residuexm(f, β) = 0 if f = Dxm(g) for some g ∈ K(x)

(ii) Dxj (residuexm(f, β)) = residuexm(Dxj (f), β) for all j
with 1 ≤ j ≤ m− 1.

Proof. The first assertion follows by observing the effect
of Dxm on each term in the partial fraction decomposition
of g. By Hermite reduction, we can decompose f into

f = Dxm(r) +

n∑
i=1

αi
xm − βi

.

By the first assertion, either residuexm(f, β) = αi if β =
βi or residuexm(f, β) = 0 if β 6= βi for all i = 1, . . . , n.
Applying Dxj to the two sides of the equation above yields

Dxj (f) = Dxj (Dxm(r)) +

n∑
i=1

(
Dxj (αi)

xm − βi
+
αiDxj (βi)

(xm − βi)2

)

= Dxm

(
Dxj (r)−

n∑
i=1

αiDxj (βi)

xm − βi

)
+

n∑
i=1

Dxj (αi)

xm − βi
.

Then we have either residuexm(Dxj (f), β) = Dxj (αi) if β =
βi or residuexm(Dxj (f), β) = 0 if β 6= βi for all i = 1, . . . , n.
The second assertion follows.

If f is written as the form in (2), then we have

residuexm(f, βi) =
a

Dxm(b)

∣∣∣
xm=βi

∈ K(x̂m)(βi).

Therefore, all the xm-residues of f are roots of the Rothstein-
Trager resultant (see [19, 23])

R := resultantxm(b, a− zDxm(b)) ∈ K(x̂m)[z].

Lemma 4. Let f ∈ K(x). Then f is rational integrable
with respect to x if and only if all the xm-residues of f are
algebraic integrable with respect to x̂m.

Proof. By the Hermite reduction and partial fraction de-
composition, f can be written as

f = Dxm(r) +

n∑
i=1

αi
xm − βi

,



where r ∈ K(x), αi, βi ∈ K(x̂m) and the βi are pairwise
distinct.

Suppose that all the xm-residues αi of f are algebraic
integrable with respect to x̂m, i.e., αi =

∑m−1
j=1 Dxj (γi,j) for

some γi,j ∈ K(x̂m)(αi). Note that for each j we have

Dxj (γi,j)

xm − βi
= Dxj

(
γi,j

xm − βi

)
+Dxm

(
γi,jDxj (βi)

xm − βi

)
.

Then we get

αi
xm − βi

=

m−1∑
j=1

Dxj

(
γi,j

xm − βi

)
+Dxm

(m−1∑
j=1

γi,jDxj (βi)

xm − βi

)
.

Therefore, f is rational integrable with respect to x by tak-
ing

gj =

n∑
i=1

γi,j
xm − βi

and gm = r +

n∑
i=1

m−1∑
j=1

γi,jDxj (βi)

xm − βi
.

Note that all the gj and gm are in K(x) because γi,j ∈
K(x̂m)(βi) and βi are roots of a polynomial in K(x̂m)[xm].

Suppose now that f is rational integrable with respect
to x, i.e., f =

∑m
j=1 Dxj (gj) for some gj ∈ K(x). For any i ∈

{1, 2, . . . , n}, taking the xm-residues of f and
∑m
j=1 Dxj (gj),

respectively, and using Proposition 3 we get

residuexm(f, βi) = αi =

m−1∑
j=1

Dxj (residuexm(gj , βi)),

which implies that αi is algebraic integrable with respect
to x̂m.

Example 5. Let f = 1/(x1 +x2). Then the x2-residue of f
at −x1 is 1. Since 1 = Dx1(x1), f is rational integrable with
respect to x1 and x2. More precisely,

f = Dx1

(
x1

x1 + x2

)
+Dx2

(
− x1

x1 + x2

)
.

Example 6. Let f = 1/(x1x2). Then the x2-residue of f

at 0 is 1/x1. Since 1/x1 has no antiderivative in K(x1), f
is not rational integrable with respect to x1 and x2.

2.2 Equivalence

Theorem 7. Let f ∈ k(t,x). Then L ∈ k(t)〈Dt〉 is a
telescoper for f if and only if L is a telescoper for every
xm-residue of f .

Proof. By a similar calculation as in the proof of Proposi-
tion 3, we have

L(residuexm(f, β)) = residuexm(L(f), β) (3)

for any L ∈ k(t)〈Dt〉 and β ∈ k(t, x̂m). If L ∈ k(t)〈Dt〉 is a
telescoper for f , then L(f) =

∑m
j=1 Dxj (gj) for some gj ∈

k(t,x). By Proposition 3 and Equation (3), for the xm-
residue α := residuexm(f, β) at any pole β of f with respect
to xm, we have

L(α) =

m−1∑
j=1

Dxj (residuexm(gj , β)).

So L is a telescoper for α. Conversely, assume that L is a
telescoper for any xm-residue of f . Note that any xm-residue

of L(f) is of the form L(residuexm(f, β)), which is algebraic
integrable by assumption. Then L(f) is rational integrable
by Lemma 4. Therefore, L is a telescoper for f .

Now we can present an explicit translation between the
two telescoping problems by using Theorem 7.

If we can solve Problem 2, then for a rational function f ∈
k(t,x), first, we can perform Hermite reduction to decom-
pose f into f = Dxm(r) + a/b; second, we compute the
resultant R := resultantxm(a − zDxm(b), b) ∈ k(t, x̂m)[z];
finally, we get a telescoper for f by constructing telescop-
ers for all the roots of R in k(t, x̂m) and taking their least
common left multiple.

On the other hand, if we can solve Problem 1, then for
an algebraic function α ∈ k(t, x̂m) with minimal polyno-
mial F ∈ k[t, x̂m, xm], we compute a telescoper L for the
rational function f = xmDxm(F )/F . Note that α is the
xm-residue of f at α. Therefore, L is a telescoper for α.

Example 8. Consider the rational function

f =
2y(1− x)x(x+ 1)(x+ 2)(t+ x)(xy − y − t4)

1− x(2− x+ (x+ 1)(x+ 2)(t+ x)(xy − y − t4)2)
.

In order to find a telescoper for f , we view f as a rational
function in y with coefficients in k(t, x) and determine its

residues in k(t, x). Write a and b for the numerator and
denominator of f . Since b is squarefree, the residues z of f
are precisely the roots of the the Rothstein-Trager resultant
resultanty(a−zDy(b), b) ∈ k(t, x)[z]. In the present example,
these are

t4

x− 1
± 1√

x(x+ 1)(x+ 2)(x+ t)
.

According to Theorem 7, it now suffices to find a telescoper
for this algebraic function. This problem is discussed in the
following section.

3. TELESCOPERS FOR ALGEBRAIC
FUNCTIONS

We showed above how focusing on residues can yield a
technique to find telescopers of rational functions by reduc-
ing this question to a similar one for algebraic functions.
In this section we describe an algorithm to solve this latter
problem for algebraic functions of two variables. In what
follows, the term “algebraic function” will always refer to
functions of two variables t and x. When one tries to use
residues to solve the problem of finding telescopers for al-
gebraic functions one must deal with several complications.
The first is a technical complication. One does not have a
global way of expressing a function similar to partial frac-
tions and so must rely on local expansions. This forces one
to look at differentials rather than functions in order to de-
fine the notion of residue in a manner that is independent of
local coordinates. The second complication is a more sub-
stantial one. There are differentials αdx having zero residues
everywhere that are not of the form dβ = Dx(β)dx, i.e. α
is not the derivative of an algebraic function. Nonetheless,
one knows that there must exist an operator L ∈ k(t)〈Dt〉 of
order equal to twice the genus of the curve associated to f
such that L(α)dx = dβ for some algebraic β. This will force
us to add an additional step to find our desired telescoper.



In Section 3.1, we will gather some facts concerning differ-
entials in function fields of one variable that will be needed
in our algorithm. In Section 3.2 we describe the algorithm.

3.1 Derivations and Differentials
In this section we review some notation and facts concern-

ing function fields of one variable (cf. [2, 4, 8, 11, 16]). In
the previous section the results and calculations depended
heavily on the notion of the residue of a rational function
of y at an algebraic function βi of x. In the present section
we shall also need to use the notion of a residue but since
we are dealing with algebraic functions instead of rational
functions, the appropriate notion is that of a residue of a
differential ω at a place P of the associated function field E.
We will denote this by residueP ω and refer to the above
mentioned books for basic definitions and properties. We
note that when f ∈ E = K(x)(y), and βi ∈ K(x), then
residuey(f, βi) = residueP ω, where ω = fdx and P is the
place (y − βi) of E.

Let K be a differential field of charactersitic zero with
derivation denoted by Dt (for example, K = k(t) with Dt as
above). Let x be transcendental over K and E = K(x, y) an
algebraic extension of K(x). We may extend the derivation
Dt to a derivation Dx

t on K(x) by first letting Dx
t (x) = 0

and then taking the unique extension to E. We define a
derivation Dx on K(x) by letting Dx be zero on K, Dx(x) =
1 and taking the unique extension of Dx from K(x) to E.
We shall also assume that the constants EDx = {c ∈ E |
Dx(c) = 0} are precisely K. This is equivalent to saying
that the minimal polynomial of y over K(x) is absolutely
irreducible (cf. [10]). In [8], Chapter VI, §7, Chevalley shows
that Dx

t can be used to define a map (which we denote again
by Dx

t ) on differentials such that Dx
t (fdx) = (Dx

t (f))dx.
The map Dx

t furthermore has the following properties:

1. Dx
t (dg) = d(Dx

t g) for any g ∈ E, and

2. for any place P of E and any differential ω,

residueP(Dx
t ω) = Dx

t (residueP(ω)).

Given α ∈ E we will want to find an operator L ∈ K〈Dx
t 〉

and an element β ∈ E such that L(α) = Dx(β). In terms of
differentials, this latter equation may be written as L(ω) =
dβ, where ω = αdx.

We shall have occasion to write our field E as E = K(x̄, ȳ)
for some other x̄ which is transcendental over K and ȳ alge-
braic over K(x̄) and work with the derivation Dx̄

t defined in
a similar manner as above. We will need to know that if we
can find a telescoper with respect to the derivation Dx̄

t then
we can convert this into a telescoper with respect to Dx

t .
The following lemma and proposition allow us to do this.

Lemma 9. Let x and x̄ be as above and let ω be a differential
of E. For any i = 1, 2, . . . there exists ui ∈ E such that

(Dx̄
t )i(ω)− (Dx

t )i(ω) = dui. (4)

Proof. Write ω = ᾱdx̄. Lemma 1 of [16] (see also Lemma 3
in Chapter VI, §7 of [8]) implies that

Dx̄
t (ω)−Dx

t (ω) = −d(ᾱDx
t (x̄)). (5)

Letting u1 = −ᾱDx
t (x̄), we have equation (5) for i = 1. One

can verify by induction that (5) holds for ui+1 = Dx̄
t (ui) −

viD
x
t (x̄), where vi = (Dx

t )i[ᾱDxx̄] ·Dx̄(x).

Proposition 10. Let α ∈ E, ω = αdx,

(Dx̄
t )n + an−1(Dx̄

t )n−1 + . . .+ a0 ∈ K〈Dx̄
t 〉,

and β̄ ∈ E such that(
(Dx̄

t )n + an−1(Dx̄
t )n−1 + . . .+ a0

)
(ω) = dβ̄.

One can effectively find β ∈ E such that(
(Dx

t )n + an−1(Dx
t )n−1 + . . .+ a0

)
(α) = Dx(β).

Proof. From Lemma 9 we have that(
(Dx̄

t )n + an−1(Dx̄
t )n−1 + . . .+ a0

)
(ω)

= ((Dx
t )n(ω) + dun) + an−1((Dx

t )n−1(ω) + dun−1)

+ . . .+ a0ω.

Therefore, taking into account that the ai belong to K,(
(Dx

t )n + an−1(Dx
t )n−1 + . . .+ a0

)
(ω)

= d
(
β̄ − un − an−1un−1 − . . .− a1u1

)
,

which implies the conclusion of the proposition with β =
β̄ − un − an−1un−1 − . . .− a1u1.

In the algorithm described in the next section, we will
consider a differential ω in E = K(x, y) and assume that

1. ω has no poles at any place above the place of K(x)
at infinity, and

2. the places where ω does have a pole are all unramified
above places of K(x).

We describe below an algorithm that allows one to select
an x̄ ∈ E such that E = K(x̄, y) and such that ω satisfies
conditions 1. and 2. above with respect to K(x̄). The al-
gorithm of Section 3.2 can be used to produce a telescoper
with respect to Dx̄

t and Proposition 10 allows one to con-
vert this telescoper to a telescoper with respect to Dx

t . In
the following proposition, the proof that condition 2. can be
fulfilled was outlined to us by Barry Trager [21, 22].

Proposition 11. Let ω be a differential in E = K(x, y).
One can effectively find an x̄ ∈ E such that E = K(x̄, y)
and

1. ω has no poles at any place above the place of K(x̄) at
infinity, and

2. the places where ω does have a pole are all unramified
above places of K(x̄).

Proof. If 1. does not hold, let c ∈ K be selected so that ω
has no poles above x = c, let

x̄ =
cx

x− c .

This change of variables interchanges c and the point at in-
finity, so 1. is now satisfied with respect to K(x̄) and we
shall henceforth abuse notation and assume that 1. is satis-
fied with respect to K(x).

Let C be a nonsingular curve that is a model of E. The
elements of E can be considered as functions on C. As noted
in [21, p. 63], ramification occurs when the line of projection
from the curve down to the x-axis is tangent to the curve
and, for each pole of ω, there are only a finite number of
projection directions that are tangent to the curve at this



pole. Therefore for all but finitely many choices of an inte-
ger m, if we let x̄ = x + my, ω will satisfy 2. with respect
to K(x̄). One can refine this argument and produce a finite
set of integers m that are to be avoided. This is done in the
following way.

Let M be an indeterminate and consider the field E1 =
E(M) = k1(x̄, y), where k1 = K(M) and x̄ = x + My. Let
o = K[M ] and assume that (after a possible change of y),
y satisfies a monic polynomial over o[x̄]. The behavior of
various objects in E1 when one reduces o modulo a prime
ideal of o is considered in [11, Chapter III, §6]. We shall
be interested in reducing modulo ideals of the form (M −
m), where m is an integer. One can effectively calculate an
integral basis {wi(M)} of the integral closure of k1[x̄] in E1

(cf. [12, 21]) and from this a complementary basis {w′i(M)}
([2, Chapter 5, §2], [4, §22]). In Chapter III §6.2 of [11],
Eichler gives a method that will produce a finite set S ⊂ Z
such that for m /∈ S, the set {wi(m)} is again an integral
basis of the integral closure of K[x̄] in E. This method can
be refined (and the set S slightly increased if need be) so
that {w′i(m)} is also a complementary basis. Expressing ω
in terms of this complementary basis,

ω =
1

b(x̄)

n∑
i=1

pi(M, x̄)w′i(M)dx̄,

one sees that ω will have poles precisely at the zeroes of b(x̄).
If one selects m ∈ Z such that b(x̄) is relatively prime to
D(x̄), the discriminant of the integral basis {wi(m)}, then
ω will not have poles at ramification points. The finitely
many values of m that do not satisfy this latter condition
are roots of

S(M) = resultantX( resultantY (b(X +MY ), F (X,Y )),

resultantY (D(X +MY ), F (X,Y ))),

where F ∈ K[X,Y ] is the minimal polynomial of y over
K(x).

3.2 An Algorithm to Calculate Telescopers for
Algebraic Functions

We assume we are given a function field of one variable
E = K(x, y) and a differential ω in E. We shall furthermore
assume that ω satisfies conditions 1. and 2. of Proposition 11.
We will describe an algorithm to find a0, . . . , an ∈ K, not
all zero, and β ∈ E such that

(an(Dx
t )n + an−1(Dx

t )n−1 + . . .+ a0)(ω) = dβ.

If ω = αdx, then L = an(Dx
t )n + an−1(Dx

t )n−1 + . . .+ a0 is
a telescoper for α with certificate β. The algorithm has two
steps. The first step finds an operator L1 such that applying
this operator to ω results in a differential L1(ω) with only
zero residues. The second step finds an operator L2 of order
at most twice the genus of E and an element β ∈ E such
that L2(L1(ω)) = dβ.

Step 1. We will describe two methods for constructing an
operator that annihilates the residues of ω. The first one
requires one to calculate in algebraic extensions of K while
the second only requires calculations in K. Throughout, let
F (x, Y ) ∈ K[x, Y ] be a minimal polynomial of y over K(x)
and let

ω = αdx =
A

B
dx

for some A ∈ K[x, y] with no finite poles and B ∈ K[x].

Method 1. We make no assumptions concerning ramification
at the poles but for convenience we do assume that the poles
of ω only occur at finite points. Let a ∈ K be a root of B.
For any branch of F (x, Y ) = 0 at x = a, we may write

ω = pa(z)dz,

where z = (x − a)1/m for some positive integer m and pa
is a Laurent series in z with coefficients in K. One can
calculate the coefficient of 1/z in pa and this will be the
residue of ω at this place. In this way, one can calculate
the possible residues {r1, . . . , rs} of ω. Let K1 be a Galois
extension of K containing {r1, . . . , rs}. Let C be the field of
Dt-constants in K1 and {r̃1, . . . , r̃`} be a C-basis of Cr1 +
. . .+ Crs. Let L(Y ) = wr(Y, r̃1, . . . r̃`) where wr(. . .) is the
Wronskian determinant. One sees that L(Y ) is a nonzero
linear differential polynomial with coefficients in K1 such
that L1(ri) = 0 for i = 1, . . . , s. Define

L1(Y ) = lclm{Lσ(Y ) | σ ∈ G},

where G is the Galois group of K1 over K, Lσ(Y ) denotes
the linear differential polynomial resulting from applying σ
to each coefficient of L and lclm denotes the least common
left multiple. We then have that L1(Y ) has coefficients in
K and annihilates the residues of ω.

Method 2. We now assume that ω has poles only at finite
places and that there is no ramification at the poles. This
implies that at any place corresponding to a pole, we may
write α =

∑
i≥i0 αi(x − x0)i for some αi ∈ K̄. Therefore

the residue of ω at this place is

α−1 =
(
Dx[(x− x0)−i0−1α]

)
x=x0

.

This is the key to the following, parts of which in a slightly
different form appear in [7].

Proposition 12. Given ω as above, one can compute a
polynomial R ∈ K[Z] of degree

m := degZ(R) ≤ degY (F ) degx(B∗),

with B∗ the square free part of B, such that if a is a nonzero
residue of ω then R(a) = 0. Furthermore, one can compute a
nonzero operator L1 = am(Dx

t )m+am−1(Dx
t )m−1+. . .+a0 ∈

K〈Dx
t 〉 such that ω̃ := L1(ω) has residue zero at all places.

Proof. We may write

αdx =
A

B
dx =

A1

B1
dx+

A2

B2
2

dx+ · · ·+ A`
B``

dx,

where the A,Ai ∈ K(x, y) are regular at finite places and
B = B1B

2
2 · · ·B`` ∈ K[x] is the squarefree decomposition

of B. To achieve our goal it is therefore enough to prove the
claim for a differential of the form αdx = A

Bn dx, where A ∈
K(x, y) is regular at finite places and B ∈ K[x] is squarefree.
Following [7], we let u be a differential indeterminate and let

h =
(Au−n)(n−1)

(n− 1)!
∈ K(x, y)〈u〉,

where K(x, y)〈u〉 is the ring of differential polynomials in u

with coefficients in K(x, y) and (. . . )(i) denotes i-fold differ-
entiation with respect to x. Let P be a place where α has
a pole and let a and b denote the values of x and y at the
place. We note that since A is regular at P and P is not



ramified, any derivative of A is also regular at P (one needs
the hypothesis that these places are unramified to make this
claim). Taking into account the rules of differentiation, we
see that

h =
p(x, y, u, u′, . . . , u(n−1))

q(x)ut
,

where p(x, Y, z0, z1, . . . , zn−1) ∈ K[x, Y, z0, z1, . . . , zn−1], t is
some positive integer and q(x) ∈ K[x] does not vanish at P,
i.e. q(a) 6= 0. Let

p̃ = p(x, Y,B′, 1
2
B′′, 1

3
B(3), . . . , 1

n
B(n)) ∈ K[x, Y ]

and

q̃ = q(x)(B′)t ∈ K[x].

One then shows, as in [7], that p̃(a, b)/q̃(a) is the residue of
A
Bn dx at P.

The above argument shows that the polynomial

R = resultantx
(
resultantY (p̃− Zq̃, F ), B

)
∈ K[Z]

vanishes at the residues of αdx. The degree estimate for R
follows from the general degree estimate for resultants which
states for any S, T ∈ K[u, v] that degu(resultantv(S, T )) is
at most

degu(S) degv(T ) + degv(S) degu(T ).

This implies first that the inner resultant in the definition
of R has Z-degree at most degY (F ). (Note that no degree
estimates for p̃ and q̃ are needed because degZ(F ) = 0.) Ap-
plying the rule again to the outer resultant gives the desired
bound degY (F ) degx(B).

Let R ∈ K[Z] be the polynomial above. If necessary,
we may replace R by a squarefree polynomial having the
same nonzero roots so we shall assume that R is square-
free and of degree m. Using the fact that R and dR

dZ
are

relatively prime, there exist polynomials Ri ∈ K[Z] of de-
gree at most m − 1 such that if γ is a root of R, then
Di
t(γ) = Ri(γ) for i = 0, 1, . . .. Since each Ri has degree

at most m − 1, there exist am, . . . , a0 ∈ K, not all zero,
such that (am(Dx

t )m + am−1(Dx
t )m−1 + . . . + a0)(γ) = 0

for any root γ of R. Using the fact that residueP(Dx
t ω) =

Dx
t (residueP(ω)) for any place P, one sees that for L1 =

am(Dx
t )m + am−1(Dx

t )m−1 + . . . + a0, ω̃ = L1(ω) has zero
residue at any place.

Remark. Although Method 2 does not require calculations in
an algebraic extension of K, one needs the condition on ram-
ification to prove that it is correct. This condition is painful
to verify and although Propositions 10 and 11 imply that we
can make a transformation, if necessary, to guarantee that
the differential has poles at places that are not ramified,
making such a transformation can increase the complexity
of the data. In practice, one should calculate the operator L1

above without testing if the places at poles are ramified, cal-
culate the operator L2 as in step 2 below (which requires no
assumption concerning ramification) and then test to see if
the resulting operator L2 ◦ L1 is a telescoper by checking if
the identity L2(L1(α)) = Dx(β) holds, a simple calculation
in K(x, y). If this equality does not hold, then one can make
a change of variable x̄ := x + my for a random m and try
again. Proposition 11 guarantees that after a finite number
of trials one will succeed.

Example 13 (continuing Ex. 8). Let F = y2−x(x+1)(x+
2)(x+ t) and consider

ω =
( t4

x− 1
+

1

y

)
dx =

u

v
dx,

where u = (x − 1)y + t4x(x + 1)(x + 2)(t + x) and v =
x(x+ 1)(x+ 2)(x+ t)(x− 1). The only pole of ω is a simple
pole at x = 1, so the residues of ω are the roots of

residuex(residuey(u− zDx(v), F ), v) = (. . .)(z − t4)2z8,

where (. . .) stands for some factors which are free of z and
therefore irrelevant here. The only nonzero residue t4 is an-
nihilated by L1 := tDt − 4, so

ω̃ = (tDt − 4)(ω) = − (9t+ 8x)y

2x(x+ 1)(x+ 2)(x+ t)2
dx

has no nonzero residues.

Remark. 1. In [21], Trager develops a Hermite reduction
method for algebraic functions which, when applied
to the differential ω above, shows how one can write
ω = (Dx(g1) + g2)dx, where g1, g2 ∈ E and g2 has
only simple poles at finite points. Regretably, g2 may
have poles (of higher order) at infinity. Nonetheless, it
would be interesting to see if Trager’s procedure can
be used to increase efficiency in our algorithm.

2. The above argument strongly relies on the fact that
we are assuming that the places where ω has poles
are not ramified above places in K(x). It would be
of interest to give a method to calculate an operator
L1 satisfying the conclusion of Proposition 12 without
this assumption.

Step 2. Let ω̃ be as in the conclusion of Proposition 12.
Again using the fact that residueP(Dx

t ω̃) = Dx
t (residueP(ω̃))

for any place P, we have for all i ∈ Z that (Dx
t )i(ω̃) is again

a differential with zero residues at all places. Such a differ-
ential is called a differential of the second kind ([8], p. 50)
and a differential of the form dγ, γ ∈ E is called an exact
differential. Note that any exact differential is a differen-
tial of the second kind. Corollary 1 of ([8], p. 130) states
that the factor space of the space of differentials of the first
kind by the space of exact differentials is a K-vector space
of dimension equal to 2G, where G is the genus of E. There-
fore, there exist ã2G, . . . , ã0 ∈ K, not all zero, such that for
L2 = ã2G(Dx

t )2G + ã2G−1(Dx
t )2G−1 + . . . + ã0, L2(ω̃) = dβ

for some β ∈ E. Such L2 and β can be found as follows.
Let ω̃ = α̃dx and let [E : K(x)] = m. For each i ≥ 0,

there exist αi,0, . . . , αi,m−1 ∈ K(x) such that

(Dx
t )i(α̃) = (y, . . . , ym−1)

 αi,0
...

αi,m−1

 .

In addition, there exists an m×m matrix A with entries in
K(x) such that

(Dx(y), . . . , Dx(ym−1)) = (y, . . . , ym−1)A.

Let a0, . . . , a2G be elements of K and β0, . . . , βm−1 elements
ofK(x). Letting β = β0+β1y+. . .+βm−1y

m−1, the equation

dβ = (a2G(Dx
t )2G(α̃) + . . .+ a0α̃)dx



is equivalent to

Dx

 β0

...
βm−1

+A

 β0

...
βm−1



= a2G

 α2G,0

...
α2G,m−1

+ . . .+ a0

 α0,0

...
α0,m−1

 . (6)

In [3], Barkatou describes a decision procedure for deciding if
there exist nontrivial β0, . . . , βm−1 ∈ K(x) and a0, . . . , a2G ∈
K satisfying (6) when K is a computable field (i.e., the arith-
metic operations and derivation are computable and one has
an algorithm to factor polynomials over K). Therefore one
can apply this to K = k(t), where k is a computable field of
characteristic zero to produce a desired L2 and β.

Example 14 (continuing Ex. 13). Let again F = y2−x(x+
1)(x+ 2)(x+ t) and consider the differential

ω̃ = − (9t+ 8x)y

2x(x+ 1)(x+ 2)(x+ t)2
dx.

Since the field E has genus 1 and ω̃ has only zero residues,
there exists a telescoper for ω̃ of order 2. Indeed, the algo-
rithm outlined above finds that L2(ω̃) = dβ, where

L2 = 4(99t5 − 540t4 + 1055t3 − 870t2 + 256t)D2
t

+ 4(297t4 − 1269t3 + 1900t2 − 1152t+ 256)Dt

+ 3(99t3 − 306t2 + 307t− 96)

and

β =
3(429t3 + 330t2x− 891t2 − 648tx+ 384t+ 256x)y

(t+ x)3
.

For the differential ω from Example 13, it follows that we
have Lω = dβ with

L = L2 ◦ (tDt − 4) = 4(t− 2)(t− 1)t2(99t2 − 243t+ 128)D3
t

+ 4t(99t4 − 189t3 − 210t2 + 588t− 256)D2
t

− 3(1089t4 − 4770t3 + 7293t2 − 4512t+ 1024)Dt

− 12(99t3 − 306t2 + 307t− 96).

By Theorem 7, this operator L is also a telescoper for the
trivariate rational function f from Example 8. Certificates
g, h with

L(f) = Dx(g) +Dy(h)

can be obtained from β following the calculations in the proof
of Lemma 4. They are however too long to be printed here.

Remark. Telescopers and certificates for holomorphic differ-
entials arise in Manin’s solution of Mordell’s Conjecture [16,
17] and Step 2 of our procedure is just an effective version
of considerations that appear in these papers. Telescopers
for holomorphic differentials are also referred to as Gauss-
Manin Connections.

Combining the estimates on the order of the operators
computed in steps 1 and 2 gives the following bound on the
order of telescopers for algebraic functions. It can be viewed
as a generalization of Corollary 14 in [5], which says that
for every rational function f = A/B ∈ K(x) there exists a
telescoper of order at most degxB

∗, where B∗ is the square
free part of B.

Theorem 15. Let E be an algebraic extension of K(x), α =
A/B ∈ E so that A is regular at finite places and B ∈ K[x].
Let B∗ be the square free part of B. Then there exists β ∈ E
and a nonzero operator L ∈ K〈Dt〉 with L(α) = Dx(β) and

degDt
(L) ≤ [E : K(x)] degx(B∗) + 2 genus(E).

4. IMPLEMENTATION AND OTHER
EXAMPLES

We have produced a prototype implementation of the al-
gorithms described above on top of Koutschan’s Mathemat-
ica package “HolonomicFunctions.m” [13] and compared the
performance to the built-in creative telescoping implemen-
tations of this package. In order to make the comparison as
fair as possible, we have tried to reuse as much code from
Koutschan’s package as possible, so that the timings will not
implicitly compare two different implementations of some
subroutine but reflect as closely as possible the speed-up (or
slow-down) offered by the ideas presented above.

Five different methods to solve the creative telescoping
problem for a rational function f ∈ k(t, x, y) were consid-
ered: (CC) first use Chyzak’s algorithm [9] to find a holo-
nomic system S of operators in k(t, x)〈Dt, Dx〉 such that
for all L ∈ S there exists a rational function g ∈ k(t, x, y)
with L(f) = Dy(g), afterwards apply the same algorithm
to S to obtain a telescoper L ∈ k(t)〈Dt〉 for f ; (CK) first
compute S ⊆ k(t, x)〈Dt, Dx〉 as in variant (CC), then apply
Koutschan’s ansatz [14] to S to obtain a telescoper L for f ;
(K) compute a telescoper for f directly with Koutschan’s
ansatz; (EC) use the reduction from Section 2, then ap-
ply Chyzak’s algorithm to the resulting algebraic functions,
and then take the least common left multiple of the results;
(EA) use the reduction from Section 2, then apply the al-
gorithm from Section 3 to the resulting algebraic functions,
and then take the least common left multiple of the results.

Table 1 shows the performance of these five approaches
for the following examples.

1. The rational function f from Example 8 above. This
example is not representative but was particularly de-
signed to be easy for our algorithms and difficult for
the known ones.

2. Here f := 1
xy
h( t

xy
, x, y) with h(t, x, y) =

(
1 − x

1−x −
y

1−y −
t

1−t −
xy

1−xy −
xt

1−xt −
yt

1−yt −
xyt

1−xyt

)−1
. This is

the problem of enumerating diagonal 3D-Queens walks
raised in [6]. Our calculation confirms the correctness
of the telescoper conjectured there.

3. Let now h(t, x, y) =
(
1− xy

1−xy−
xt

1−xt−
yt

1−yt−
xyt

1−xyt

)−1

and f = 1
xy
h( t

x2y
, x, y). This is a variation of the

previous problem, with the points (2n, n, n) replacing
the diagonal and now allowing steps along the axes.

4. The rational function h(t, x, y) = 2t2/((1− t)(3− (x+
y+t+xy+xt+yt)+3xyt)) appears in [18] as the gener-
ating function for the probability of certain structures
in random groves. See [18] for details on the combi-
natorial background. Here we compute the diagonal
series coefficients of f by applying creative telescoping
to f = 1

xy
h( t

xy3
, x, y). As can be seen in this example,

our algorithms are in some cases not superior.



CC CK K EC EA
telescoper statistics

order degree bytecount
1 >150h 4000.89 469.03 1.30 1.04 3 6 3464
2 16029.55 40043.01 >100h 1390.14 1646.53 6 71 76472
3 >150h 350495.88 >150h 203.44 328.08 9 93 140520
4 638.70 1099.08 >40Gb 37606.28 216201.88 10 32 41840
5 23823.70 676.13 19085.67 1114.34 3117.43 7 27 25320

Table 1: Runtime comparison for the examples described in the text.

5. With h as before, we now consider f = 1
xy
h( 1

x2y2
, x, y).

Note the large difference between CC and CK.

We have put timings for a number of additional examples
on the website [1]. Also our code and the certificates for
Example 13 can be found there. The examples we tested
suggest that the reduction from rational functions to alge-
braic functions can cause a decent speed-up. It does seem
to depend on whether the Rothstein-Trager resultant of the
input factors into several small factors or not. If it does,
it is advantageous because solving several small instances of
Problem 2 is cheaper than solving a single big one. Whether
after the reduction, the algorithm of Section 3 or some other
method is applied to the resulting algebraic functions, makes
usually not much of a difference. Our algorithm tends to be
faster when Step 1 in Section 3.2 already finds a great part
of the telescoper, leaving only a small coupled differential
system to be solved in Step 2.
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