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Abstract. We prove an integrability criterion of order 3 for a homoge-
neous potential of degree −1 in the plane. Still, this criterion depends on
some integer and it is impossible to apply it directly except for families of
potentials whose eigenvalues are bounded. To address this issue, we use
holonomic and asymptotic computations with error control of this cri-
terion and apply it to the potential of the form V (r, θ) = r−1h(exp(iθ))
with h ∈ C[z], deg h ≤ 3. We find then all meromorphically integrable
potentials of this form.

1. Introduction

We begin with some definitions concerning homogeneous potentials and
integrability.

Definition 1. Let H be a Hamiltonian of the form

H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2) + V (q1, q2)

with the associated system of differential equations

(1) q̇i =
∂

∂pi
H, ṗi =

∂

∂qi
H, i = 1, 2,

where V is assumed to have the following form in polar coordinates:

V (r, θ) =
1

r
U(θ), U : C → C̄ meromorphic and 2π-periodic.

with the notations

r2 = q2
1 + q2

2 r cos θ = q1 r sin θ = q2

This implies that V is a homogeneous function of degree −1. In the complex,
the potential V is well defined on a Riemann surface given by r2 = q2

1 + q2
2.

We say that I is a meromorphic first integral of H, if I is a meromorphic
function in p1, p2, q1, q2, r and such that

İ = {H, I} =
2
∑

i=1

(

∂

∂pi
H

∂

∂qi
I − ∂

∂qi
H

∂

∂pi
I

)

= 0.
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Obviously, the Hamiltonian H itself is a first integral. We will say that V
is meromorphically integrable if it possesses an additional meromorphic first
integral which is independent almost everywhere from H.

Definition 2. We call c = (c1, c2) ∈ C a Darboux point of V if

(2)
∂

∂q1
V (c) = αc1 and

∂

∂q2
V (c) = αc2

where α ∈ C is called the multiplicator. Because V has singularities, we will
always suppose that c2

1 + c2
2 6= 0. Because of homogeneity, we can always

choose α = 0 or α = −1. We say that c is not degenerated if α 6= 0. To the
Darboux point c we associate a homothetic orbit given by

(3) qi(t) = ciφ(t), pi(t) = ciφ̇(t) (i = 1, 2),

with φ satisfying the following differential equation

1

2
φ̇(t)2 = − α

φ(t)
+ E, E ∈ C.

Definition 3. The first order variational equation of H near a homothetic
orbit is given by

Ẍ(t) =
1

φ(t)3
∇2V (c)X(t).

After diagonalisation (if possible) and the change of variable φ(t) −→ t, the
equation simplifies to

2t2(Et + 1)Ẍi − tẊi = λiXi,

where the λi are the eigenvalues of the Hessian of V evaluated at the Darboux
point c, i.e., λi ∈ Sp

(

∇2V (c)
)

.

Theorem 1. (Morales, Ramis, Yoshida [18],[15],[13],[14]) If V is mero-
morphically integrable, then the neutral component of the Galois group of
the variational equation near a homothetic orbit with E 6= 0 is abelian at all
orders. If we fix the multiplicator of the associated Darboux point to −1, the
Galois group of the first order variational equation has an abelian neutral
component if and only if

Sp
(

∇2V (c)
)

⊂
{

1
2(k − 1)(k + 2) : k ∈ N

}

.

If the multiplicator of the Darboux point is 0, the Galois group of the first
order variational equation has an abelian neutral component if and only if

Sp
(

∇2V (c)
)

⊂ {0} .

In fact, this is not exactly the same statement as the original theorem
because we allow r to appear in the potential and in the first integrals. Such
a small generalization is already proved in [4] by Theorem 4,15, and so we
give here only a sketch of proof. There are two important arguments to
apply Morales-Ramis approach:
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(1) The first integrals need to have an expansion as series on the curve
(or the quotient of two series in the meromorphic case). This is
guaranteed by the fact that we impose for a Darboux point c that
c2

1 + c2
2 6= 0.

(2) The coefficients of this expansion will be functions of the time t,
and the corresponding field will be the base field to be considered
in the Galois group computation. Morales and Ramis used Kimura
classification [7] which corresponds to a Galois group computation
over C(t), and not a meromorphic field. This is here equivalent
because the variational equation is Fuchsian.

Remark that in the degenerate Darboux point case, the proof is more difficult
because the variational equation is not Fuchsian. In particular, we need
explicitly that the first integral is meromorphic including the point r = 0.

2. Main Results

In this section we are going to state the main theorems of this article.
The remaining parts of this paper are dedicated to their proofs.

Theorem 2. Let V be a homogeneous potential of degree −1 in the plane.
We suppose that c = (1, 0) is a Darboux point of V with multiplicator −1. If
the variational equation is integrable at order 3, then the following conditions
are fulfilled

Sp
(

∇2V (c)
)

=
{

2, 1
2(p − 1)(p + 2)

}

for some p ∈ N.

If p is even then
(

∂3V

∂q1∂q2
2

)2

f1(p) +

(

∂3V

∂q3
2

)2

f2(p) +

(

∂4V

∂q4
2

)

f3(p) = 0,

and if p is odd then

∂3V

∂q3
2

= 0 and

(

∂3V

∂q1∂q2
2

)2

f1(p) +

(

∂4V

∂q4
2

)

f3(p) = 0,

where the functions f1, f2, f3 satisfy explicit P-finite recurrences, i.e., linear
recurrences with polynomial coefficients.

This theorem is a generalization of the criterion given by Yoshida for
homogeneous potentials in the case of degree −1 and dimension 2. A similar
theorem could be proven in higher dimensions, but the main problem is that
Theorem 2 is almost inapplicable in this form. In most cases, it is necessary
to study more closely the expression of the functions f1(p), f2(p), f3(p) to
apply it, and for the moment, because of limitations of computing power, it
seems only possible to do in dimension 2 (for which the computations are
already tedious).
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Theorem 3. The functions f1(2n), f2(2n), f3(2n) can be written as

f1(2n) = ǫ1(n)

(

1511011

67108864n2
− 1511011

134217728n3
+

31731231

4294967296n4

)

f2(2n) = ǫ2(n)

(

22665165

1073741824n4
− 22665165

1073741824n5
+

298125

4194304n6

)

f3(2n) = ǫ3(n)

(

− 1740684681

68719476736n2
+

1740684681

137438953472n3
− 2400813907

68719476736n4

)

(4)

with

|ǫi(n) − 1| ≤ 10−5 ∀n ≥ 100.

With this, we can apply Theorem 2 to some concrete example:

Theorem 4. Let V be a potential in the plane expressed in polar coordinates
by

(5) V (r, θ) = r−1
(

a + beiθ + ce2iθ + de3iθ
)

.

If V is meromorphically integrable, then V belongs to one of the following
families

(6)
V = r−1a, V = r−1

(

a + beiθ
)

, V = r−1
(

aeiθ + be3iθ
)

,

V = r−1
(

a + be2iθ
)

, V = r−1
(

a + be3iθ
)

, V = r−1
(

a + beiθ
)3

,

with a, b ∈ C.

The three first families are integrable, with a polynomial first integral of
degree 1 or 2 in p. The status of the three last families is unknown. This is
not due to an incomplete application of Morales Ramis Theorem, but linked
to the fact that either they do not possess any Darboux points, or in the
last case the only Darboux point is very degenerated and so Morales Ramis
Theorem gives no integrability constraints at any order, as proven in [4].

In practical problems like Theorem 4, studying integrability only using
the Morales-Ramis criterion is impossible because of two facts: first we need
a Darboux point of our problem; if we do not have any, the only thing we
can do is trying to find an additional first integral using the direct method
of Hietarinta [6].

The second problem is the following scenario: inside the family of poten-
tials given by Theorem 4, there exist submanifolds in the space of parameters
for which the potential possesses only one Darboux point and the eigenvalue
at this Darboux point can be arbitrarily high. In this case, the higher vari-
ational method is required. But the constraint at order 2 does not give
sufficient conditions to conclude, and it is necessary to go to the third order.

But the expression of this constraint cannot be written explicitly for all
possible eigenvalues, only for a finite number of them. To apply this third-
order criterion, we derive P-finite recurrences and asymptotic expansions
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with error control in Theorem 3. This allows us to prove that the integra-
bility condition is not fulfilled. The proof of Theorem 4 therefore will be
splitted into two parts:

(1) The first part consists in constructing a manifold M in the space of
the paramters a, b, c, d such that if the eigenvalues for all Darboux
points are real, then the parameters belong to M . Then we pro-
duce a decomposition M = M1 ∪ . . . Mk and study each manifold
separately. For some of them, the corresponding potentials possess
sufficiently many Darboux points to give a strong enough condition
for integrability only using the Morales-Ramis criterion at order 1
(there could exist some resistant cases for which a higher variational
equation is needed but without the phenomenon of arbitrary high
eigenvalues like in [12]). But for specific cases, this phenomenon oc-
curs. It has already been noticed by Maciejweski in [11] who lets
this specific case open.

(2) The second part will be devoted to these specific manifolds Mi where
the Morales-Ramis criterion at order 1 is almost completely power-
less. Here we use Theorems 2 and 3 to solve these hard cases.

3. Eigenvalue Bounding

Definition 4. We will denote

M =
{

V (r, θ) = r−1U(θ) with U meromorphic and 2π-periodic
}

.

Let V ∈ M. We denote by d(V ) the set of Darboux points c of V with
multiplicator −1 and ‖c‖2 6= 0. For c ∈ d(V ) we have Sp

(

∇2V (c)
)

= {2, λ}
and we denote

Λ(c) =

{

λ if λ ∈ R

−∞ otherwise
.

Definition 5. We consider a subset E ⊂ M and define

Λ(E) = sup
V ∈E, d(V ) 6=∅

inf
c∈d(V )

Λ(c).

We say that the problem of finding all meromorphically integrable potentials
in E is a bounded eigenvalue problem if Λ(E) < ∞.

Remark 1. We have Λ(M) = ∞ because of the following family

V (r, θ) = r−1
(

(1 + a) − 2aeiθ + ae2iθ
)

, a ∈ R,

for which only one Darboux point c = (1, 0) exists; the corresponding eigen-
value is λ = 2a − 1. This proves by the way that the family of potentials
considered in Theorem 4 is an unbounded eigenvalue problem.

Lemma 1. For a potential V ∈ M the Darboux points c such that ‖c‖2 6= 0
can be written as c = (c1, c2) = (r0 cos(θ0), r0 sin(θ0)) with θ0 being a critical
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point of U . The Darboux point c is not degenerated if and only if U(θ0) 6= 0
and in this case, the eigenvalues of the Hessian of V , evaluated at c, are

Sp
(

∇2V (c)
)

=

{

2,
U ′′(θ0)

U(θ0)
− 1

}

.

if we choose the multiplicator of c to be −1.

Proof. For V = r−1U(θ) the conditions (2) that c is a Darboux point are:

r−3
0

(

−c1U(θ0) − c2U ′(θ0)
)

= αc1,

r−3
0

(

−c2U(θ0) + c1U ′(θ0)
)

= αc2.

Assuming c2
1 + c2

2 6= 0, it follows that U(θ0) = −αr3
0 and U ′(θ0) = 0, which

means that θ0 is a critical point of U . Since c2
1 + c2

2 6= 0 implies that
r0 6= 0, we also have that α = 0 (degenerated Darboux point) is equivalent
to U(θ0) = 0. Setting α = −1 and U ′(θ0) = 0 we get the Hessian matrix

∇2V (c) =
1

r5
0

(

(2c2
1 − c2

2)U(θ0) + c2
2U ′′(θ0) c1c2(3 U(θ0) − U ′′(θ0))

c1c2(3 U(θ0) − U ′′(θ0)) (2c2
2 − c2

1)U(θ0) + c2
1U ′′(θ0)

)

whose eigenvalues are exactly those claimed above (using U(θ0) = r3
0). �

Recall that the potentials given by (5) are V (r, θ) = r−1U(θ) with U(θ) =
a + beiθ + ce2iθ + de3iθ. Suppose now that V possesses at least one non-
degenerated Darboux point c with ‖c‖2 6= 0. After rotation, we can always
suppose that c = (1, 0) is a Darboux point. As given by Lemma 1, it
corresponds to a critical point for θ = 0. Moreover, because this Darboux
point is not degenerated, we know that U(0) 6= 0. Then by dilatation, we
can also suppose that U(0) = 1 and get the following equations

U(0) = a + b + c + d = 1,

U ′(0) = i(b + 2c + 3d) = 0.

Solving these equations for c and d, yields the expression

Va,b = r−1
(

a + beiθ + (3 − 3a − 2b)e2iθ + (2a + b − 2)e3iθ
)

for the potentials where a, b ∈ C.
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Theorem 5. If Va,b is meromorphically integrable, then it belongs to one of
the following families

E1 = r−1
(

−1

3
b + 1 + beiθ − be2iθ +

1

3
be3iθ

)

,

E2 = r−1
(

−1

6
k(k + 1)e3iθ +

1

4
k(k + 1)e2iθ − 1

12
k2 − 1

12
k + 1

)

,

E3 = r−1
(

−1

4
k(k + 1)e2iθ +

1

2
k(k + 1)eiθ − 1

4
k2 − 1

4
k + 1

)

,

E4 = r−1

(

(s − 6λ2)λ2

18(λ1 + λ2)
e3iθ − (3λ1 + s − 3λ2)λ2

6(λ1 + λ2)
e2iθ+ ,

(6λ1 + s)λ2

6(λ1 + λ2)
eiθ +

−9λ1λ2 − λ2s + 18λ1 + 18λ2 − 3λ2
2

18(λ1 + λ2)

)

where b ∈ C and k ∈ N. The quantities arising in E4 are

s2 = 6λ2
1λ2 + 6λ1λ2

2 − 36λ1λ2,

λi =
1

2
(ki − 1)(ki + 2) + 1 (i = 1, 2),

with k1 ∈ N \ {0, 3} and k2 ∈ N∗.

Proof. For all non-degenerated Darboux points c = (γ cos(θ0), γ sin(θ0)) the
corresponding eigenvalue λ satisfies

(7) U ′′(θ0) − (λ + 1)U(θ0) = 0 and U ′(θ0) = 0

(note that this condition is also satisfied if c is degenerated). We write
U(θ) = ha,b(exp(iθ)), U ′(θ) = izh′

a,b(exp(iθ)), and U ′′(θ) = h̃a,b(exp(iθ))
with

ha,b(z) = a + bz + (3 − 3a − 2b)z2 + (2a + b − 2)z3,

h̃a,b(z) = −bz − 4(3 − 3a − 2b)z2 − 9(2a + b − 2)z3.

So to find the eigenvalues of all Darboux points, one just needs to compute
the following resultant which corresponds to the conditions (7):

Pa,b(λ) = resz

(

h̃a,b(z) − (λ + 1)ha,b(z), h′
a,b(z)

)

= (2a + b − 2)(6a + 2b − 6 + (λ + 1))(−18ab2 − 6b3 + 18b2 + (λ + 1)

× (108a3 + 108a2b − 216a2 + 36ab2 + 108a − 108ab − 9b2 + 4b3))

All the roots of Pa,b(λ) correspond to an eigenvalue of some Darboux
point, except possibly in those cases (a, b) where Pa,b vanishes as a polyno-
mial in λ or in the case where h′

a,b(z) has the root 0.

Let us begin with the special cases. We compute the points (a, b) ∈ C2

for which Pa,b = 0 in C[λ]. We find that it is the zero set of the ideal
〈2a + b − 2〉 ∩ 〈a, b〉. Moreover, the polynomial h′

a,b(z) has a zero root if and
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only if b = 0. So, all the specific cases belong to the zero set of 〈2a+b−2〉∩〈b〉.
First, for b = 0 we find

Q1 = resz(h̃a,0(z) − (λ + 1)ha,0(z), h′
a,0(z)/z, z)

= 216(a − 1)3(6a − 6 + (λ + 1)),

and second, for b = 2 − 2a we get

Q2 = resz(h̃a,2−2a(z) − (λ + 1)ha,2−2a(z), h′
a,2−2a(z), z)

= −4(a − 1)2(2a − 2 + (λ + 1)).

As we know that the eigenvalues should be of the form 1
2(k − 1)(k + 2),

k ∈ N, we obtain the potentials E2 and E3 from these two cases.
Now for the generic case, we express a and b depending on the roots of

Pa,b(λ) and obtain the expression E4. Since it is not valid for k1 = k2 = 0,

we study this case separately and find the condition a = −1
3b + 1, which

gives E1. Note that fixing λ1 = 0 in E4 yields the potential E2, whereas
λ1 = 6 results in E3. The case k2 = 0 produces V = r−1 which already
belongs to E1. �

Corollary 1. With the same notation as in Theorem 5, we have Λ(E1) = −1
and Λ(E2) = Λ(E3) = Λ(E4) = ∞.

Remark 2. The types of E2, E3 and E4 differ fundamentally although they
are all unbounded eigenvalue problems. This is because the dimension of E4

is 2 and the dimension of E2 and E3 is only 1. Because of that, we could call
E4 a doubly unbounded eigenvalue problem because it possesses two Darboux
points whose eigenvalues can be independently arbitrarily high. Because of
that, we will need to apply a third order integrability criterion simultaneously
at the two Darboux points. The potential E1 has only one Darboux point with
eigenvalue −1. This eigenvalue belongs to the Morales-Ramis table and so
higher variational methods will be required, but only for this fixed eigenvalue
(which is much easier).

After our decomposition of the parameter space, we get 4 algebraic mani-
folds. For E2, E3, and E4, a tedious treatment with higher variational
equations is required. For E1 we will be able to check integrability easily
with Theorem 2. A similar procedure could be applied to any set of homoge-
neous potentials depending rationally on some parameters. Here computat-
ing power is the main limitation; in particular, because for typical problems,
the number of parameters is much smaller than the number of roots which
necessitates resultant computations and prime ideal decompositions. One
should note that we have deliberately chosen a set of potentials (5) which
is particularly difficult to treat. For most common problems (outside the
general complete classification), these unbounded eigenvalue manifolds have
small dimension (1 in the case found by [11]) or even inexistent like in [12]
or [16].
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4. Higher Order Variational Methods

We will first recall some properties of the solutions of the first order
variational equations. After diagonalisation and in the integrable case, the
equation is the following (after fixing the energy E = 1)

(8) 2t2(1 + t)y′′(t) − ty′(t) − 1
2(n − 1)(n + 2)y(t) = 0 (n ∈ N).

After the change of variables t −→ (t2 − 1)−1, this equation becomes

(9) (t2 − 1)y′′(t) + 4ty′(t) − (n − 1)(n + 2)y(t) = 0 (n ∈ N).

A basis of solutions is given by (Pn, Qn) where Pn are polynomials in t (for
n ≥ 1) and the functions Qn are

Qn(t) = Pn(t)

∫

1

(t2 − 1)2Pn(t)2
dt.

The functions Qn are multivalued except for n = 0 which will be a special
case. Indeed, the Galois group of (8) in this case is Id instead of C.

The polynomials Pn can be computed using the Rodrigues type formula

(10) Pn(t) =
1

t2 − 1

∂n−1

∂tn−1
(t2 − 1)n (n ≥ 1)

which also gives a normalisation for their leading coefficient. The functions
Qn can be written as

(11) Qn(t) = ǫnPn(t) arctanh

(

1

t

)

+
Wn(t)

t2 − 1
(n ≥ 1)

where Wn are polynomials given by

W2k(t) =
(−1)k(t2 − 1)

24k

(

π 2F1
(

1
2 − k, k + 1, 1

2 , t2
)

Γ
(

k + 1
2

)2 +

2kt(2k + 1) arctanh(t) 2F1
(

1 − k, k + 3
2 , 3

2 , t2
)

(k!)2

)

,

W2k+1(t) =
(−1)k(t2 − 1)

24k+2

(

πt(k + 1)(2k + 1)2F1(1
2 − k, k + 2, 3

2 , t2)

Γ(k + 3
2)2

−

2 arctanh(t) 2F1(−k, k + 3
2 , 1

2 , t2)

(k!)2

)

and ǫn is a real sequence given by

ǫn =
n(n + 1)

4n(n!)2
.

Conventionally, we will take for n = 0:

P0(t) =
t

t2 − 1
, Q0(t) =

1

t2 − 1
.
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Lemma 2. The functions Pn(t) and 1
ǫn

Qn(t) satisfy the differential equa-

tion (9) and the three-term recurrence

4n(n + 1)(n + 2)yn(t) − 2t(n + 2)(2n + 3)yn+1(t) + (n + 3)yn+2(t) = 0.

Proof. Given the explicit expressions (10) and (11) we can use holonomic
closure properties to derive the differential equation resp. recurrence they
satisfy. We first express (10) as

Pn(t) =
(n − 1)!

2πi(t2 − 1)

∮

(u2 − 1)n

(u − t)n
du

by Cauchy’s differentiation formula. By the method of creative telescoping
we obtain the differential equation and the recurrence (this calculation was
carried out by the software package HolonomicFunctions [8, 10]). Similarly
we can apply holonomic closure properties to the closed form expression (11).

�

Lemma 3. (proved in [5]) Let F ∈ C(z1) [z2] and f(t) = F
(

t, arctanh
(

1
t

))

.
We consider the field extension

K = C

(

t, arctanh

(

1

t

)

,

∫

f dt

)

and the monodromy group G = σ(K,C(t)). If G is abelian, then

∂

∂α
Rest=∞ F

(

t, arctanh

(

1

t

)

+ α

)

= 0.

Proof. We will consider two paths, the “eight” path σ1 around the singu-
larities −1 and 1, and the path σ2 around infinity. At infinity, the function
F
(

t, arctanh
(

1
t

)

+ α
)

will have a series expansion of the kind
∫

F

(

t, arctanh

(

1

t

)

+ α

)

dt =
∞
∑

n=n0

an(α)tn + r(α) ln t

because the function arctanh
(

1
t

)

has a regular point at infinity. Let us now
consider the monodromy commutator

σ = σ−1
2 σ

−
β

2iπ

1 σ2σ
β

2iπ

1 .

We have that σ
β

2iπ

1 (f) = F
(

t, arctanh
(

1
t

)

+ β
)

and σ2(ln t) = ln t + 2iπ. We
deduce that

σ(f) = f + r(β) − r(0).

This r(α) corresponds to the residue of F
(

t, arctanh
(

1
t

)

+ α
)

at infinity. If
the monodromy is commutative, then the commutator σ should act trivially
on f . This is the case only if r(β) − r(0) = 0 for all β ∈ Z. The function r
is a polynomial in β, so r(β) − r(0) = 0 for all β ∈ C. From this the claim
follows. �

For the following, we will also need to use the following lemma which is
a kind of reciprocal version of Lemma 3.
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Lemma 4. (proved in [5]) We consider

F (t) =
3
∑

i=0

Hi(t) arctanh

(

1

t

)i

with H0, . . . , H3 ∈ C[t]. If the conditions of Lemma 3 are satisfied, then

• If Rest=∞ F (t) = 0, then
∫

F dt ∈ C
[

t, arctanh
(

1
t

)]

• If Rest=∞ F (t) 6= 0, then
∫

F dt ∈ C
[

t, arctanh
(

1
t

)

, ln
(

t2 − 1
)

]

Theorem 6. Let V be a homogeneous potential of degree −1 in the plane.
We suppose that c = (1, 0) is a Darboux point of V with multiplicator −1.
If the variational equation is integrable at order 2 then

Sp
(

∇2V (c)
)

=
{

2, 1
2(p − 1)(p + 2)

}

, p ∈ N,

and for odd p we have ∂3V
∂q3

2
= 0.

This theorem is in fact a particular case of Theorem 2 in [5] for which the
three indices i, j, k are equal.

Remark 3. Because the constraint appears only for odd p, the variational
equations of order 2 give no constraint for even p. Hence this is not sufficient
for proving non-integrability for an unbounded manifold.

5. Proof of Theorem 2

Proof. The variational equation at order 3 is given by

Ẍ1 =
2

φ3
X1 +

1

2

a

φ4
Y1,1 − 4b

3φ5
Z3

Ẍ2 =
λ

φ3
X2 +

a

φ4
Y2,1 +

b

φ4
Y1,1 +

c

φ5
Z3

Ẏ1,1 = 2Y1,2

Ẏ1,2 =
λ

φ3
Y1,1 +

b

φ4
Z3 + Y1,3

Ẏ1,3 =
λ

φ3
Y1,2 +

b

φ4
Z2Ż

Ẏ2,1 = Y2,2 + Y2,3

Ẏ2,2 =
2

φ3
Y2,1 − 4b

3φ5
Z3 + Y2,4

Ẏ2,3 =
λ

φ3
Y2,1 + Y2,4

Ẏ2,4 =
2

φ3
Y2,3 − 4b

3φ5
Z2Ż +

λ

φ3
Y2,2

Z̈ =
2

φ3
Z



12 THIERRY COMBOT AND CHRISTOPH KOUTSCHAN

where λ = 1
2(n−1)(n+2). The coefficients a, b, c correspond to the following

derivatives

a =
∂3

∂q1∂q2
2

V (c), b =
1

2

∂3

∂q3
2

V (c), c =
1

6

∂4

∂q4
2

V (c),

and the others are given using the Euler relation for homogeneous functions.
A complete procedure to build these equations is given by [1]. The functions
Y1,1 and Y2,1 are solutions of a system of linear differential equations with
an inhomogeneous term, and the homogeneous part is in fact a symmetric
product of the first order variational equation. Here, we already put to
zero terms that we think in advance they will not produce integrability
constraints. As before, we use the change of variables φ(t) −→ (t2 − 1)−1.

We choose Z(t) = Qn and compute the solution for X2 of the above
system. We first remark that X2 is in the Picard-Vessiot field, so it is also
the case for its derivative. We now perform integration by parts and see
that one term is already in the Picard-Vessiot field, and the other is

(12)

∫

2(t2 − 1)2
(

a2tPnQnI1 + 4b2P 2
nQnI2 + c(t2 − 1)Q4

n

)

dt

where

I1 =

∫





∫

(

t(t2−1)2Q3
n

Pn
+ I3

(t2−1)2P 2
n

)

dt

t2(t2 − 1)2
+

∫

I3
t2(t2−1)2 dt

(t2 − 1)2P 2
n



 dt

I2 =

∫

∫

(

(t2 − 1)2Q3
n + 2

(t2−1)2P 2
n

∫

(t2 − 1)4PnQ2
n(PnQ̇n − QnṖn)dt

)

dt

(t2 − 1)2P 2
n

dt

I3 =

∫

t(t2 − 1)4Q2
n

(

PnQ̇n − QnṖn

)

dt

Let us now study this expression term by term. We begin with the third
summand of (12) which is

2c

∫

(

t2 − 1
)3

Q4
n dt.

It has already the form of Lemma 3. So as in the proof of Lemma 3, the
monodromy commutator will be computed using

Rest=∞(t2 − 1)3(Qn + ǫnαPn)4dt.

Now look at the term in b2. It is not as complicated as we could think
because of the following relation

PnQ̇n − ṖnQn = (t2 − 1)−2 ∀n ∈ N

which is linked to the Wronskian of Equation (9). Thanks to that, the term
in b2 can be written as

8b2
∫

P 2
nQn(t2 − 1)2

∫

∫

(t2 − 1)2Q3
n + 2

∫

PnQ2
n(t2−1)2dt

(t2−1)2P 2
n

dt

(t2 − 1)2P 2
n

dt dt
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and then using integration by parts, this gives

16b2
∫

Q3
n(t2−1)2

∫

PnQ2
n(t2−1)2dt dt−8b2

∫

PnQ2
n(t2−1)2dt

∫

Q3
n(t2−1)2dt

Now by Lemma 4 we have for all even integers n > 1:
∫

PnQ2
n(t2 − 1)2dt,

∫

Q3
n(t2 − 1)2dt ∈ C(t)

[

arctanh

(

1

t

)]

.

So we are integrating a polynomial in arctanh with rational coefficients, and
this corresponds to the hypotheses of Lemma 3. The second term does not
provide any monodromy, so we only have to study the first term and thus
the sequence

Rest=∞(Qn + ǫnαPn)3(t2 − 1)2
∫

Pn(Qn + ǫnαPn)2(t2 − 1)2dt.

Now we look at the term in a2. It can be simplified to

∫

2a2(t2 − 1)2PnQnt

∫

∫ (t2−1)2Q3
nt

Pn
+

∫

(t2−1)2Q2
nt dt

(t2−1)2P 2
n

dt

t2(t2 − 1)2
+

∫

∫

(t2−1)2Q2
nt dt

t2(t2−1)2 dt

(t2 − 1)2P 2
n

dt

We now use again integrations by parts (recall that P2 = 4t)

8a2
∫

(t2 − 1)2Q2
nQ2

∫

(t2 − 1)2Q2
nt dt − 8a2

∫

(t2 − 1)2Q2
nt

∫

(t2 − 1)2Q2
nQ2dt

Now to conclude we can use again Lemma 3 and Lemma 4. We first prove
that

∀n 6= 1

∫

P2Q2
n(t2 − 1)2dt,

∫

Q2
nQ2(t2 − 1)2dt ∈ C(t)

[

arctanh

(

1

t

)]

The case n = 1 corresponds to λ = 0, for which we have always the coefficient
a = 0. Now we make a final integration by parts and this gives

16a2
∫

(t2−1)2Q2
nQ2

∫

(t2−1)2Q2
nt dt dt−8a2

∫

(t2−1)2Q2
nt dt

∫

(t2−1)2Q2
nQ2dt

Thanks to that, we get a constraint of the form given by Theorem 2 and the
coefficients are given by (multiplying them by ǫ−2

n for further simplifications)

f1(n) = 〈α3〉 2ǫ−2
n Rest=∞

(

(t2 − 1)2(Qn + ǫnαPn)2(Q2 + ǫ2αP2)(13)

×
∫

(t2 − 1)2(Qn + ǫnαPn)2P2 dt

)

,

f2(n) = 〈α3〉 2ǫ−2
n Rest=∞

(

(t2 − 1)2(Qn + ǫnαPn)3(14)

×
∫

(t2 − 1)2(Qn + ǫnαPn)2Pn dt

)

,

f3(n) = 〈α3〉 1

6
ǫ−2
n Rest=∞

(

(t2 − 1)3(Qn + ǫnαPn)4
)

,(15)
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where 〈·〉 denotes coefficient extraction. In fact, only the coefficient of α3

appears in these residues. We need not to prove this fact, because we simply
select the coefficient of α3, ignoring the question whether the other coeffi-
cients are zero or not.

We now look at the case n = 0. All our previous calculations are also
valid in this case except those involving Lemma 4 because we only have
∫

P0Q2
0(t2 − 1)2dt,

∫

Q3
0(t2 − 1)2dt ∈ C(t)

[

arctanh

(

1

t

)

, ln(t2 − 1)

]

∫

P2Q2
0(t2 − 1)2dt,

∫

Q2
0Q2(t2 − 1)2dt ∈ C(t)

[

arctanh

(

1

t

)]

So, the coefficients in a2, c are also

2 Rest=∞

(

(t2 − 1)2Q2
0Q2

∫

(t2 − 1)2P2Q2
0 dt

)

,

1

6
Rest=∞

(

(t2 − 1)3Q4
0

)

We find that these residues are both 0, and so the corresponding integral
does not provide any additional monodromy. The case of the coefficient in b2

is a little more difficult because the integral does not satisfy the conditions
of Lemma 3. After explicit computation, we arrive at the following integral

∫

1

t2 − 1

(

−t arctanh

(

1

t

)

− 1

2
ln
(

t2 − 1
)

)

dt =

1

2
ln (2) ln (t − 1) +

1

2
dilog (t + 1) +

1

8
ln (t + 1)2 +

1

4
ln (t + 1) ln (t − 1) − 1

8
ln (t − 1)2

All the terms are in C[t, arctanh
(

1
t

)

, ln
(

t2 − 1
)

] except one, the dilogarith-

mic term

dilog (t + 1) =

∫

ln(t + 1)

t
dt

With the same idea as in Lemma 3, we get that this term has a noncommu-
tative monodromy because of the following residue in 0

Rest=0
ln(t + 1) + α

t
= α

which depends explicitly on α. So, for n = 0, the integrability condition at
order 3 is in fact just b2 = 0.

�

6. Holonomicity and Asymptotics

In this section we are going to derive P-finite recurrences (i.e., linear
recurrences with polynomial coefficients) for the sequences f1(n), f2(n), and
f3(n) that appeared in the previous section. The methods that we employ
are based on Zeilberger’s holonomic systems approach [19]. The recurrences
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presented below were computed with the method of creative telescoping, to
which a brief introduction is given here (see [8] for more details).

Let Sn denote the forward shift operator in n, i.e., Snf(n) = f(n + 1),
and Dx the derivative w.r.t. x, i.e., Dxf(x) = f ′(x). The method works for
the class of holonomic functions, which in short are (multivariate) functions
that are solutions of maximally overdetermined systems of linear difference
and differential equations with polynomial coefficients. The set of all equa-
tions which a given holonomic function satisfies forms a left ideal (we call it
annihilating ideal) in some Ore algebra of the form

C(m, n, . . . , x, y, . . . )〈Sm, Sn, . . . , Dx, Dy . . . 〉.
The nice fact about holonomic functions is that this class is closed under
certain operations (addition, multiplication, certain substitutions, definite
summation and integration) which can be executed algorithmically: given
the defining systems of equations for two holonomic functions f and g, there
are algorithms to compute a holonomic system for f + g, f · g, etc.

For computing integrals (or residues), the method of creative telescoping
makes use of the fundamental theorem of calculus. Consider a definite inte-
gral of the form

∫ b
a f dx where the integrand f depends also on some other

(discrete and/or continuous) parameters. We need f to be holonomic, i.e.,
there is some left ideal I of annihilating operators in the corresponding Ore
algebra O. The idea is now to come up with an operator A + DxB ∈ I
where A, B ∈ O and A does not depend on x and Dx (the concept of Gröb-
ner bases [2] plays a crucial rôle in this step). Then after integration we
get,

P

∫ b

a
f dx +

[

Qf
]b

a
= 0,

in other words, we found a (possibly inhomogeneous) equation for the in-
tegral in question. The examples below will demonstrate this methodology
clearly; we start with the simplest one, the sequence f3(n).

Lemma 5. The sequence f3(n) given in (15), satisfies the P-finite recur-
rence

(4n + 11)(4n + 9)(n + 1)3(n + 3)2f3(n + 2) −
(2n + 3)(16n6 + 144n5 + 515n4 + 930n3 + 888n2 + 423n + 81)f3(n + 1) +

(4n + 3)(4n + 1)(n + 2)3n2f3(n) = 0.

subject to the initial conditions

f3(1) = − 8

105
, f3(2) = − 8

385
.

Proof. It is an easy exercise to compute the first values of f3(n) explic-
itly with a computer algebra system. Thus we basically have to derive
the recurrence. For this purpose, we compute an annihilating ideal I for
(t2 − 1)3(Qn + ǫnαPn)4 which is the expression in the residue (15). For this
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purpose we apply holonomic closure properties (note that Qn + ǫnαPn sat-
isfies the same equations as Qn itself). The resulting Gröbner basis is too
large to be printed here, namely a full page of equations approximately. It
is represented in the Ore algebra C(n, t)〈Sn, Dt〉. In the next step we make
use of a special algorithm [9] for computing a creative telescoping operator

A(n, Sn) + DtB(n, t, Sn, Dt) ∈ I

(its existence is guaranteed by the theory of holonomy). Because we are
dealing with a residue we can forget about the part B and find that A anni-
hilates the residue. In order to obtain f3(n) we need to multiply the residue
with 2ǫ−2

n , which can be done again by closure properties. The resulting op-
erator represents exactly the above recurrence. All these computations were
done with the above mentioned package HolonomicFunctions [8, 10]. �

Lemma 6. The sequence f1(n) given in (13) satisfies the P-finite recurrence

(4n + 11)(4n + 9)(n + 4)2(n + 1)3(4n2 + 8n − 9)f1(n + 2) −
(2n + 3)(64n8 + 768n7 + 3580n6 + 8028n5 + 8113n4 +

834n3 − 4863n2 − 3276n − 648)f1(n + 1) +

(4n + 3)(4n + 1)(n + 2)3(n − 1)2(4n2 + 16n + 3)f1(n) = 0

subject to the initial conditions

f1(2) =
16

1155
, f1(3) =

16

2145
.

Proof. The proof is based on the same ideas as in Lemma 5, except that
the expression of which we have to take the residue is more complicated. In
particular, an indefinite integral occurs (recall that indefinite integration is
not among the holonomic closure properties) and it is not clear a priori how
to choose the integration constant such that the result is again holonomic.
We start by computing an annihilating ideal I for

F (n, t) = (t2 − 1)2(Qn + ǫnαPn)2.

Thus for all A ∈ I the operator ADt annihilates the indefinite integral
∫

F (n, t) dt. Additionally, from a creative telescoping operator A + DtB ∈ I
we can derive more such annihilating operators. Let J denote the annihilat-
ing ideal for B(F ) which can be obtained by holonomic closure properties.
Then for every C ∈ J , the operator CA annihilates the indefinite inte-
gral as well. Altogether we obtain a zero-dimensional annihilating ideal for
∫

F (n, t) dt, and continue as in Lemma 5. �

These recurrences in Lemmas 5 and 6 are irreducible (in the sense that
the corresponding operator cannot be factorized), and so we are not able
to find closed forms for f1 and f3. The recurrence for f2(2n) is given by a
third-order recurrence with polynomial coefficients of degree larger than 50,
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which we do not state here explicitly. The initial conditions are

f2(2) =
16

1155
, f2(4) =

184

183141
, f2(6) =

38308

181081875
.

This recurrence is reducible and possesses a hypergeometric solution

f2(2)
8π2Γ(n + 1)Γ(5/6 + n)2Γ(1/6 + n)2Γ(n)3

25Γ(n + 2/3)2Γ(3/2 + n)3Γ(1/2 + n)Γ(4/3 + n)2

but because f2(2) 6= 0, the recurrence for f2(2n) cannot be reduced.
We are interested in a practical way to apply the third-order variational

equation. To do this, these recurrences are not enough, since we need closed
forms. As these closed forms do not exist, we will instead produce closed
form expressions which approach f1, f2, and f3 with a controlled relative
error. In the following, we will denote the harmonic numbers

H(n) =
n−1
∑

i=1

1

i
.

Definition 6. Let us consider an operator L ∈ C〈n, Sn〉, in other words L
represents a linear recurrence with polynomial coefficients. We will say that
L is regular at infinity if for all solutions u (i.e., Lu = 0) there exist α ∈ Z,
β ∈ N, and γ ∈ C such that

u(n) ∼ γnαH(n)β for n → ∞.

Theorem 7. Let us consider L ∈ C〈n, Sn〉 of order k and suppose it is
regular at infinity. Then for all p ∈ N and for all u solution of Lu = 0, it
exists a function F ∈ C(n)[H(n)] with degree in H(n) less than k − 1 such
that

u(n) = F (n) + O

(

H(n)k−1

np

)

.

Such a theorem is directly implied by Theorem of Birkoff given in [17],
which gives a form of asymptotic expansion which is always possible. In
our case, we will only use what we call the regular case, which in a Birkoff
expansion correspond not to have an exponential part.

Definition 7. Let us consider a function f : N −→ R and a function
F ∈ R(n)[H(n)]. We say that F is an approximation of f with relative
error ǫ at rank n0 if

∣

∣

∣

∣

f(n)

F (n)
− 1

∣

∣

∣

∣

≤ ǫ ∀n ≥ n0.

We consider p functions f1, . . . , fp : N −→ R and approximations F1, . . . ,
Fp ∈ R(n)[H(n)] with relative error ǫ at rank n0. We define the error
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amplification factor A by

A = min















Ã ∈ R∗
+ such that

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

i=1
fi(n)

p
∑

i=1
Fi(n)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

≤ Ãǫ ∀n ≥ n0















.

Lemma 7. We consider p functions f1, . . . , fp : N −→ R and approxima-
tions F1, . . . , Fp ∈ R(n)[H(n)] with relative error ǫ < 1 at rank n0 and A
their amplification factor. Then

A ≤ max
n≥n0

p
∑

i=1
|Fi(n)|

∣

∣

∣

∣

p
∑

i=1
Fi(n)

∣

∣

∣

∣

.

Proof. The lemma is equivalent to prove that
∣

∣

∣

∣

∣

∣

∣

∣

p
∑

i=1
fi(n)

p
∑

i=1
Fi(n)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ max
n≥n0

p
∑

i=1
|Fi(n)|

∣

∣

∣

∣

p
∑

i=1
Fi(n)

∣

∣

∣

∣

So one just needs to maximize the left hand side. We already know that
|fi(n)/Fi(n) − 1| ≤ ǫ. So depending on the sign of fi(n) we replace fi(n) by
(1 − ǫ)Fi(n) or (1 + ǫ)Fi(n). We then expand

∣

∣

∣

∣

∣

∣

∣

∣

p
∑

i=1
fi(n)

p
∑

i=1
Fi(n)

− 1

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

ǫ
p
∑

i=1
sign(fi(n))Fi(n)

p
∑

i=1
Fi(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∣

∣

ǫ
p
∑

i=1
|Fi(n)|

p
∑

i=1
Fi(n)

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ max
n≥n0

p
∑

i=1
|Fi(n)|

∣

∣

∣

∣

p
∑

i=1
Fi(n)

∣

∣

∣

∣

using the fact that fi(n) and Fi(n) have always the same sign for n ≥ n0

(because ǫ < 1). �

In practice, we first check that the sign of the functions Fi(n) and their
sum does not change for n ≥ n0 and then we prove a majoration of the
resulting expression in R(n, H(n)). So all comes down to prove that some
polynomial in R[n, H(n)] does not vanish for n ≥ n0. This can be done by
first making an encadrement of the function H(n) and then prove that the
corresponding bivariate polynomial does not vanish on a particular algebraic
subset. Such a problem can be algorithmically decided.

Theorem 8. Consider the recurrence equation

(16) u(n + 1) = A(n)u(n) ∀n ∈ N, A(n) ∈ Mp(C)
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Consider ‖·‖ a matricial norm and R(n) the resolvant matrix of equation (16).
Suppose that

M(∞) =
∞
∑

j=0

‖A(j) − Ip‖ < 1

Then

‖R(n) − Ip‖≤ M(∞)

1 − M(∞)
∀n ∈ N

Proof. We write

R(n) =
n−1
∏

i=0

A(i) =
n−1
∏

i=0

((A(i) − Ip) + Ip)

Let us pose

M(n) =
n−1
∑

j=0

‖A(j) − Ip‖

We want to prove in fact a majoration of the type

(17) ‖R(n) − Ip‖≤ CM(n)

with a suitable constant C > 0. For n = 1, this is true with C = 1. Let us
prove equation (17) by recurrence.

R(j) =
j−1
∏

i=0

((A(i) − Ip) + Ip) = (A(j − 1) − Ip)
j−2
∏

i=0

A(i) +
j−2
∏

i=0

A(i)

R(j) − R(j − 1) = (A(j − 1) − Ip)
j−2
∏

i=0

A(i) = (A(j − 1) − Ip)R(j − 1)

Then we sum these equations for 1 ≤ j ≤ n which produces

‖R(n) − Ip‖= ‖
n−1
∑

j=0

(A(j) − Ip)(R(j) − Ip) + (A(j) − Ip)‖

≤
n−1
∑

j=0

‖A(j) − Ip‖‖R(j) − Ip‖+‖A(j) − Ip‖

≤ M(n) +
n−1
∑

j=0

‖A(j) − Ip‖CM(j) = M(n) + CM(n)2

≤ (1 + CM(∞))M(n)

using the fact that M(n) is a growing sequence. So the recurrence property
is proved if C ≤ 1 + CM(∞) which is equivalent to C ≥ (1 − M(∞))−1 ≥ 1.
So this proves that

‖R(n) − Ip‖≤ M(n)

1 − M(∞)
≤ M(∞)

1 − M(∞)

which gives the theorem �
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The main application of this theorem is to compute a sequence with con-
trolled error. Let us take an operator L ∈ R〈n, Sn〉 regular at infinity. We
can then compute an asymptotic expansion of the resolvant matrix of L,
and an error matrix which will satisfy an equation like (16). Then for an
n0 ∈ N, we can apply Theorem 8 for the shifted sequence u(n + n0), and the
majoration M(∞) will become very small for n0 big enough, giving us that
the error is always lower than some explicit bound. This has very impor-
tant consequences for the application of the higher variational method. In
particular, it becomes possible to rigorously prove that a sequence of poten-
tials with the unbounded eigenvalue property does not satisfy integrability
criteria for λ large enough, and thus coming back to a bounded eigenvalue
problem.

7. Application at Order 2

We now apply the second-order criterion to our example. We begin with
the case E4. Before we state the corresponding theorem, we need a prepara-
tory lemma concerning the solutions of a certain Diophantine equation.

Lemma 8. The set of solutions (k1, k2) ∈ N2 of the Diophantine equation

R(k1, k2) = k2
2k2

1 + k2k2
1 − 75k2

1 − 75k1 + k2k1 − 27k2 + k2
2k1 − 27k2

2 = 0

is given by {(0, 0), (6, 14)}.

Proof. We begin by proving that for k2 ≥ 50, the condition R = 0 implies
4 < k1 < 5, and similarly, for k1 ≥ 50, we have 8 < k2 < 9. These statements
can be written as logical expressions involving polynomial inequalities

∀k1∀k2 : (k1 ≥ 0 ∧ k2 ≥ 50 ∧ R(k1, k2) = 0) =⇒ 4 < k1 < 5,(18)

∀k1∀k2 : (k1 ≥ 50 ∧ k2 ≥ 0 ∧ R(k1, k2) = 0) =⇒ 8 < k2 < 9.(19)

Such formulas can be proven routinely with quantifier elimination techniques
like cylindrical algebraic decomposition [3]. Indeed, applying the Mathemat-
ica command CylindricalDecomposition to the above formulae reveals
that they are true. Therefore, there are no integer solutions for k1 ≥ 50
or k2 ≥ 50 and an exhaustive search delivers exactly the solutions claimed
above.

However, if we want to prove (18) and (19) “by hand” (let’s consider the
first one for the moment), we have to look at the largest real root of the
polynomial

resk1

(

R(k1, k2),
∂R(k1, k2)

∂k1

)

R(4, k2) R(5, k2).

We find that this root is smaller than 50 (using real root isolation) and that
the limit

lim
k2→∞

κ(k2) = −1

2
+

1

2

√
109
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is between 4 and 5, where κ(k2) denotes the positive solution of R(k1, k2) = 0
regarded as an equation in k1. The implication (18) follows, and (19) can
be proven analogously. �

Theorem 9. We consider the potential E4 given in Theorem 5. If the
variational equation near all Darboux points is integrable at order 2, then
the corresponding eigenvalues are of the form 1

2(k − 1)(k + 2) with k being
an even natural number.

Proof. We use the notation U = rE4 from Theorem 5. The condition
U ′(θ) = 0 yields the two Darboux points

c1 : eiθ = 1,

c2 : eiθ =
s + 6λ1

s − 6λ2
.

(20)

There are singular cases of the second equation, namely for s + 6λ1 = 0 or
s−6λ2 = 0. After solving and replacing, we find that these cases correspond
exactly to k1 = 0 and k1 = 3, which were excluded from E4.

We now compute the third derivative of V , evaluated at the two Darboux
points c1 and c2 given by expression (20):

∂3V

∂q3
2

(c1) =
iλ1(s + 15λ1 + 9λ2)

λ1 + λ2
,

∂3V

∂q3
2

(c2) = − iλ2(s − 15λ2 − 9λ1)

3(λ1 + λ2)
.

In the case (k1, k2) both odd, both derivatives should vanish. We solve the
system and we find 4i(k2 + 1)k2 = 0. This is impossible for odd values. In
the case k1 odd k2 even, the first one should vanish, and in the case k1 even
k2 odd the second one should vanish. We get the equations

k2
1(k1 + 1)2(k2

2k2
1 + k2

2k1 − 27k2
2 − 27k2 − 75k1 + k2k1 − 75k2

1 + k2k2
1)

12(k2
2 + k2 + k1 + k2

2)

k2
2(k2 + 1)2(k2

1k2
2 + k2

1k2 − 27k2
1 − 27k1 − 75k2 + k1k2 − 75k2

2 + k1k2
2)

12(k2
1 + k1 + k2 + k2

2)

(21)

These two conditions are symmetric. The first terms can never vanish
because we have k1 odd for the first one and k2 odd for the second one. To
conclude, we need to look at the last term, which corresponds to a Diophan-
tine equation, and to prove that this equation does not have a solution k1

odd k2 even.
With Lemma 8, we have no k1 odd k2 even or k1 even k2 odd solutions

from the second term. We conclude that all the possibilities left are for
k1, k2 even. This concludes the theorem. �

It is well known that Diophantine equations in general cannot be solved
(Matiyasevich’s theorem). This means that Lemma 8 is a lucky case, al-
though not trivial to prove. We therefore should remark that the study of
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Figure 1. Graph of R−1(0). The graph R−1(0) ∩ R+2
is

not compact but the infinite branches are asymptotes with
rational or vertical slopes; here the asymptotes are k1 + 1

2 −
1
2

√
109 = 0 and k2 + 1

2 − 1
2

√
301 = 0.

this equation is not absolutely mandatory. We could simply skip it, assume

that it is satisfied and continue further to the third-order condition. This
condition would add two additional equations in k1 and k2 and thus would
allow to solve the problem in all generality.

Here we are in a special case. A Diophantine equation R(k1, k2) = 0 can
be solved only using real algebraic geometry in one of the following cases:

(1) The set R−1(0) ∩ R+2
is compact. In this case we only have a finite

number of points to test.

(2) The set R−1(0) ∩ R+2
is not compact but all infinite branches are

asymptotes and the corresponding asymptotic straight lines have
a rational slope. In this case, either R is homogeneous and has an
infinite number of solutions, or the integer solutions can be bounded:
when approaching infinity, the infinite branch of R−1(0) comes closer
to the asymptotic line without touching it; for rational slope, there
is then a nonzero infimum for the distance between the asymptotic
straight line and integer points).

The first case can be considered to be part of the second one with no asymp-
totes at all. In Lemma 8, we encounter the second case.

Remark 4. The potential corresponding to k1, k2 = (6, 14) is the following
(with the good choice of valuation for the square root)

V (r, θ) =
1

r

(

−20 +
105

2
eiθ − 42e2iθ +

21

2
e3iθ

)
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This potential has two Darboux points, it is integrable at order 2 near these
two Darboux points and we have also that the third derivative near one of
the Darboux points is zero (which is not needed for integrability at order 2
but gives interesting properties in practice at order 3).

Theorem 10. Among the potentials in the families E1, E2, E3, if a potential
V is meromorphically integrable, then it is of the form (after multiplying by
some constant factor)

V =
1

r

(

−1

3
k(2k + 1)e3iθ +

1

2
k(2k + 1)e2iθ − 1

6
(2k2 + k − 6)

)

V =
1

r

(

−1

2
k(2k + 1)e2iθ + k(2k + 1)eiθ − 1

2
(2k2 + k − 2)

)

for k ∈ N.

Proof. The potentials E2, E3 possess only one Darboux point. The corre-
sponding potentials are

E2 : V = r−1
(

−1

6
k(k + 1)e3iθ +

1

4
k(k + 1)e2iθ − 1

12
k2 − 1

12
k + 1

)

E3 : V = r−1
(

−1

4
k(k + 1)e2iθ +

1

2
k(k + 1)eiθ − 1

4
k2 − 1

4
k + 1

)

We know that if k is odd, we have an additional integrability condition at
order 2. We find that

∂3V

∂q3
2

(c) =
5

2
ik(k + 1) for E2,

∂3V

∂q3
2

(c) =
3

2
ik(k + 1) for E3.

These terms should vanish. This is never fulfilled for odd k. The sequence
of potentials given by Theorem 10 corresponds exactly to the cases of even k
(for which there is no condition for integrability at order 2). At last, we have
the potential E1. The corresponding eigenvalue is always −1, so it is always
integrable at order 2. At order 3, we know that the integrability condition
is U (3)(θ = 0) = 0. We get

U (3)(θ = 0) = −2ib

So the only possibility is b = 0 and this corresponds to the potential V = r−1.
This potential is integrable and already belongs to the family described by
Theorem 10.

�

8. Application at Order 3

We will now prove Theorem 3, building an algorithm to prove it.

Proof. The scheme of the proof is the following

• First we prove that the recurrences for f1, f2, f3 are regular at infin-
ity.
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• We then produce a series expansion R̃i(n) at infinity at an order high
enough of the resolvant matrix Ri(n) associated to these recurrences.

• We then write Ri(n) = R̃i(n)R̃i(n0)−1Ri(n0)Ei(n) for a large enough
n0 ∈ N and build a recurrence of the form (16) whose resolvant
matrix is Ei(n) (after basis change), which will be noted Ei(n+1) =
Ai(n)Ei(n). We have moreover that Ei(n0) is the identity matrix.

• As R̃i(n) is a good approximation of Ri(n) when n −→ ∞, the
matrix Ai(n) will tend to the identity matrix when n −→ ∞. Using
Theorem 8 with a shift in the indices, we will have that

‖Ei(n) − I‖ ≤

∞
∑

j=n0

‖Ai(j) − I‖

1 −
∞
∑

j=n0

‖Ai(j) − I‖
∀n ≥ n0

• If we have choosen an expansion order and n0 large enough, this
sum will be finite and small, and thus will give us an approximation
of Ri(n) by R̃i(n) with relative error control. The expressions in
Theorem 3 follow.

For f3(2n), we find the following asymptotic expansion (a high order
makes up the computation easier for error control)

c1

(

1

n4
− 1

n5
+

25

32n6
− 35

64n7
+

183

512n8

)

+

c2

((

3

16n4
− 3

16n5
+

75

512n6
− 105

1024n7
+

549

8192n8

)

H(n)+

1

n2
− 1

2n3
+

19951

46848n4
− 7507

46848n5
+

96541

1499136n6
− 58151

2998272n7

)

This proves by the way that the recurrence for f3(2n) is regular. We do the
same for f1(2n) and f2(2n) and we find that they are regular too. We then
find a majoration of the norm of the error matrix A3(n)

‖A3(n)‖∞ ≤ 9975

256n6
+

29925

4096

H(n)

n6
+

9975

256n8
+

29925

4096

H(n)

n8

We choose now n0 = 100. We majorate the sum of this majoration beginning
at n = 100. We find a majoration of this sum by

∞
∑

n=100

‖A3(n)‖∞ ≤ 4.84522 × 10−9

‖E3(n)‖ ≤ 4.84522 × 10−9

1 − 4.84522 × 10−9
∀n ≥ n0

(an explicit rational number). We then compute the recurrence up to n =
100, and then produce an encadrement (with error less than 10−10) of the
result with rational numbers. Although it is not mandatory in theory, in
practice recurrences tend to produce very large rational numbers, whose size
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grows linearly with n, and thus are impractical to manipulate. This gives
us the coefficients c1, c2 with a good error control:

c1 = − 883919839

274877906944
, c2 = −1740684681

8589934592
.

We then compute the error amplification of the sum, and find it is less than
33/32. As the resulting expression is too complicated to manipulate for
applications, we only keep the terms up to order 3 and prove that this new
approximation has a relative error less than 10−5. The expressions for f1, f2

are found with a similar way, with the exception that at the end, to produce a
sufficiently simple and accurate formula, it is not sufficient to keep the terms
up to order 2 (after there is a H(n) that we want to avoid), so we need to
add a term of order 3 (without H(n)) with a well chosen coefficient such
that the error stay below 10−5 (else the result is only accurate to 10−3). �

Theorem 11. The third order integrability conditions for the families

V =
1

r

(

−1

3
k(2k + 1)e3iθ +

1

2
k(2k + 1)e2iθ − 1

6
(2k2 + k − 6)

)

V =
1

r

(

−1

2
k(2k + 1)e2iθ + k(2k + 1)eiθ − 1

2
(2k2 + k − 2)

)

where k ∈ N∗, are

9(k + 1)2(2k − 1)2f1(2k) = 25k2(2k + 1)2f2(2k) + (66k2 + 33k − 9)f3(2k),

9(k + 1)2(2k − 1)2f1(2k) = 9k2(2k + 1)2f2(2k) + (42k2 + 21k − 9)f3(2k),

respectively. They are never satisfied.

Proof. We replace f1(2k), f2(2k), f3(2k) by their approximations, and then
compute the error amplification. It is less than 33/32, and the resulting
expression does not vanish for k ≥ 100. For k < 100, we make exhaustive
testing and we do not find any solutions. For the second equation, we do
not find any solution either. �

Theorem 12. We consider the family of potentials E4

E4 : V = r−1
(

(s − 6λ2)λ2

18(λ1 + λ2)
e3iθ − (3λ1 + s − 3λ2)λ2

6(λ1 + λ2)
e2iθ+

(6λ1 + s)λ2

6(λ1 + λ2)
eiθ +

−9λ1λ2 − λ2s + 18λ1 + 18λ2 − 3λ2
2

18(λ1 + λ2)

)

with

s2 = 6λ2
1λ2 + 6λ1λ2

2 − 36λ1λ2 λ1 =
1

2
(k1 − 1)(k1 + 2) + 1

λ2 =
1

2
(k2 − 1)(k2 + 2) + 1 k1, k2 ∈ N∗ k1 6= 3

The third order integrability condition for E4 is of the form

Qk1,k2(f1(k1), f2(k1), f3(k1)) = 0
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Qk2,k1(f1(k2), f2(k2), f3(k2)) = 0

where Q is a quadratic form depending polynomially on k1, k2.

Proof. We use Theorem 2 and compute the derivatives of the potentials in
the family E4. These derivatives depend rationally on k1, k2, s. As there
are two Darboux points, we get two conditions (C1), (C2) linearly depen-
dent on f1(k1), f2(k1), f3(k1) or f1(k2), f2(k2), f3(k2) respectively for each
Darboux point. To remove the quadratic extension s, we make the product
(C1) × subs(s = −s, (C1)) and (C2) × subs(s = −s, (C2)). The fact that
in the potentials of E4, the two parameters λ1, λ2 have a symmetric role
produces the two conditions Qk1,k2 = 0, Qk2,k1 = 0 where the role of k1, k2

is symmetric.
�

Remark 5. Here we did not use an information that could be useful. Indeed,
the conditions Qk1,k2 , Qk2,k1 are not equivalent to the conditions (C1), (C2).
We can solve (C1) in the quadratic extension and get for example that s
should be rational because f1, f2, f3 are always rational (this can be proven
even without the P-finite recurrences since they correspond to a particular
term in the series expansion of rational expressions in t, Pn(t), Qn(t)). We
get that

√

3k1k2(k2 + 1)(k1 + 1)(k1 + k2
1 + k2 + k2

2 − 12) ∈ N(22)

if some generic condition depending on the fi(k2), fi(k1) is satisfied. It cor-
responds to a Diophantine equation but it does not possess the nice properties
we used to solve Lemma 8. We know moreover that (k1, k2) should be even.
A direct search produces the picture given in Figure 2.

Theorem 13. The third order integrability condition for E4 is never satis-
fied except for (k1, k2) = (2, 2).

Proof. Recall that the parameters (k1, k2) need to be both even for a po-
tential E4 to be integrable at order 2 near all Darboux points. We begin
by solving Qk2,k1(f1(k2), f2(k2), f3(k2)) = 0 in k1. This is a polynomial of
degree 4 in k1 and as a polynomial, its Galois group is D4. This allows us
to write the solution in a relatively simple form

k1 = −1

2
+
√

F1(k2) + wF2(k2) with w2 =

9(k2 + 2)2(k2 − 1)2f1(k2)f2(k2) − 6(k2 + 3)(k2 − 2)f2(k2)f3(k2) + 36f3(k2)2

(23)

where F1, F2 ∈ Q(f1, f2, f3, k2). Moreover, the k1, k2 are even integers. Let
us prove that in fact, for even k2 ≥ 200, the expression

−1

2
+
√

F1(k2) + wF2(k2)
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Figure 2. Each dot corresponds to a possible even (k1, k2).
The solutions seems to be unbounded, and the set is proba-
bly Zarisky dense. Thus, no practical algebraic information
can be extracted from this constraint. There are infinitely
many solutions (because the diagonal part reduces to a Pell
equation) with simultaneously arbitrarily high k1, k2. So here
Theorem 2 is useless without Theorem 3.

is always complex for all possible valuations of the square roots. To have real
values, we need that F1(k2) + wF2(k2) be positive for at least one valuation
of the square root. Let us begin by proving that w never vanishes. The
function w2 is a polynomial in Q[f1, f2, f3, k2]. Thanks to Theorem 3, we
can express f1, f2, f3 in k2 with controlled relative error. We check that the
amplication of the error is small after summation of all terms (here it is less
than 1 + 10−3) and that the approximated expressions never vanish. Now
we need to prove that

F1(k2) + wF2(k2) < 0 and F1(k2) − wF2(k2) < 0

We first prove that F2(k2) and F1(k2) (which are in Q[f1, f2, f3, k2] of degree
3, 4 in fi respectively) are always negative. Then we just have to prove that

F1(k2)

wF2(k2)
> 1 ⇐⇒ F1(k2)2

w2F2(k2)2
> 1 ⇐⇒ F1(k2)2 − w2F2(k2)2 > 0

The last expression is in Q[f1, f2, f3, k2] (of degree 8 in fi), so we can prove
this statement. Again we compute the error amplification of the sum and it
stays below 1 + 10−3, and the error is then still less than 10−4. Eventually,
we prove that this approximated expression never vanishes and is always
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positive. For the remaining cases, we use exhaustive testing and we find
only one solution (k1, k2) = (2, 2). �

The case (k1, k2) = (2, 2) corresponds to the second case of Theorem 4.
It is really integrable with a quadratic in momenta additional first integral
which is given in [6] page 107 case (8).

9. Remaining Cases and Conclusion

The remaining cases are the ones which do not posess a non-degenerated
Darboux point.

Theorem 14. Consider the set of potentials V given by (5) and suppose
that V does not possess a non-degenerated Darboux point c. If V is mero-
morphically integrable, then V belongs to one of the families

V =
1

r

(

a + beiθ
)

, V =
1

r

(

a + be2iθ
)

,

V =
1

r

(

a + be3iθ
)

, V =
1

r

(

a + beiθ
)3

,

with a ∈ C, b ∈ C∗.

Proof. First let us suppose that V does not possess any Darboux point c.
This means that the function

U(θ) = a + beiθ + ce2iθ + de3iθ

does not possess any critical point. The only possibility is that U(θ) = F (eiθ)
with F (z) = a + bzn, b 6= 0. This corresponds to the three first cases of
Theorem 14. Now suppose there exists one Darboux point c but degenerated.
After rotation, we can suppose that the Darboux point corresponds to θ = 0.
We have moreover the integrability constraint that U ′′(0) = 0. This gives
the potential

V =
a

r

(

eiθ − 1
)3

.

After rotation, this corresponds to the fourth case of Theorem 14. �

The family V = 1
r

(

a + beiθ
)

is integrable as given in [6]. For the other

ones, the integrability status is still unknown. Let us remark now on the
open cases. After rotation and dilatation, these cases correspond in fact to
a finite number of potentials which are the following:

V = r−1e2iθ, V = r−1
(

e2iθ − 1
)

,

V = r−1
(

e3iθ − 1
)

, V = r−1
(

eiθ − 1
)3

.

We cannot study these cases because we do not have a particular solution
to study, or for the last case a sufficiently non-degenerated one (studying
degenerated Darboux points with higher variational method is in fact useless
and does not give any additional integrability condition). This is of course
the main weakness of Morales-Ramis theory. This is not due to difficulty
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of application of Morales-Ramis theory as we treat in this article but much
more a fundamental limitation that seems hard to overcome. One approach
could consist to search special algebraic orbits of these systems using a direct
search. This is not successful for all these potentials.

To conclude, let us remark that our holonomic approach to higher varia-
tional methods is very general, and in no way limited to this example. This
could work at least for all problems about integrability of homogeneous
potentials, allows to compute various higher integrability conditions of any
fixed order. This is linked to the fact that the first order variational equation
of a natural Hamiltonian system often corresponds to a spectral problem of
a second order differential operator, which generates P-finite sequences of
functions, which in turn appear in the study of higher variational equations.
We could also wonder if these arbitrary high eigenvalues are really possible,
and if this work is only conceptual and in practice useless. Indeed, very high
eigenvalues should correspond to very high degree first integrals, and count-
ing the number of conditions and number of free parameters for the existence
of such high degree first integrals strongly suggests they do not exist. But
this intuition is wrong, as Andrzej J. Maciejewski, Maria Przybylska found
quite recently such an example in dimension 3. This is probably linked to
the fact that most of integrable cases come from ultra-degenerated cases,
as in our analysis: The generic case E4 contains only one possibility, and
when we look at the third order integrability condition, it seems really to be
a miracle that this condition could ever be satisfied. On the contrary, the
cases without Darboux points contain lots of integrable potential.
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