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We present our initial results on the behavioral analysis of computer algebra programs. Computer
algebra programs written in symbolic computation languages such as Maple and Mathematica sometimes
do not behave as expected [5], e.g. by triggering runtime errors or delivering wrong results. There has
been a lot of research on applying formal techniques to classical programming languages, e.g. Java [6],
C# [1] and C [3] etc., but we aim to apply the same techniques to computer algebra languages. Therefore
our goal is to design and develop a tool for the static analysis of computer algebra programs [12]. The
tool will automatically find errors in programs annotated with extra information such as variable types
and method contracts [11], in particular type inconsistencies and violations of method preconditions.

The task of applying formal techniques to widely used computer algebra languages (Maple and Math-
ematica) is more complex as these are fundamentally different from classical languages. In particular, we
found the following challenges respectively differences to classical languages for formal type checking
respectively specifying Maple programs (which are typical for most computer algebra languages):

• The language supports some non-standard types of objects, e.g. symbols, unevaluated expressions
and polynomials.

• There is no clear difference between declaration and assignment. A global variable is introduced
by an assignment; a subsequent assignment may modify the type information for the variable.

• The language uses type information to direct the flow of control in the program, i.e. it allows some
runtime type-tests which selects the respective code-block for further execution. This makes type
inference more complex.

• The language allows runtime type checking by type annotations but these annotations are optional
which give rise to type ambiguities. This also makes type inference more complex.

• Maple values are organized in a kind of polymorphic type system with a sub-typing relationship
such that we can assign a value to different types. This also makes type inference more complex.

The challenge for a specification language for Maple is to overcome those particularities of the language
that hinder static analysis because Maple was not designed for this purpose (type checking respectively
verification).

There are various computer algebra languages, Mathematica and Maple being the most widely used
by far [13], both of which are dynamically typed. We have in our work chosen Maple for the following
reasons:

• Maple has an imperative style of programming while Mathematica has a rule-based programming
style with more complex semantics.
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• Maple has type annotations for runtime checking which can be directly applied for static anal-
ysis. (There are also parameter annotations in Mathematica but they are used for selecting the
appropriate rule at runtime).

Still the results we derive with type checking Maple can be applied to Mathematica, as Mathematica has
almost the same kinds of runtime objects as Maple.

As a starting point, we have defined a subset of the computer algebra language Maple called Mini-
Maple [9, 10]. Since type safety is a prerequisite of program correctness, we have formalized a type
system for MiniMaple and implemented a corresponding type checker. Furthermore, we have defined
a specification language to formally specify the behavior of MiniMaple procedures and implemented a
corresponding type checker. As the next step, we will develop a tool to automatically detect errors in
MiniMaple programs with respect to their specifications.

In the following we will brief the main features of our work.
A Type System for MiniMaple: MiniMaple uses Maple type annotations for static analysis. Based

on these annotations we defined a language of types and a corresponding type system. The type system
supports the usual concrete data types, sets, lists and records. It also supports some non-standard types,
e.g. the union type of various types, symbols, unevaluated expressions and polynomials etc. Type
anything is the super-type of all types. The problem of statically type-checking MiniMaple programs
is related to the problem of statically type-checking scripting languages such as Ruby [8], but there are
also fundamental differences due to the different language paradigms.

In the following, we highlight the problems arising from type checking various MiniMaple programs.

• Global variables (declarations) can not be type annotated; therefore to global variables values of
arbitrary types can be assigned in Maple. We introduce global and local contexts to handle the
different semantics of the variables inside and outside of the body of a procedure respective loop.

– In a global context new variables may be introduced by assignments and the types of variables
may change arbitrarily by assignments.

– In a local context variables can only be introduced by declarations. The types of variables
can only be specialized i.e. the new value of a variable should be a sub-type of the declared
variable type.

– The sub-typing relation is observed while specializing the type of a variable.

• Maple supports type tests (i.e. type(I,T)) to direct the control flow of a program. Different branches
of a conditional may have different pieces of type information for the same variable. We keep track
of the type information introduced by the branches to allow only satisfiable tests.

• With the use of type-tests, the number of loop iterations might influence the type information and
one cannot determine the concrete type by the static analysis. To handle this non-determination of
types we put a reasonable upper bound (least fixed point) on the types of variables. As a special
case this upper bound is the type of a variable prior to the body of a loop.

The type checker has been applied to the Maple package DifferenceDifferential [4]. No crucial typing
errors have been found but some bad code parts have been identified that can cause problems.

A Specification Language for MiniMaple: Based on the formalism of our type system we have
defined a formal specification language for MiniMaple. The specification language is a logical formula
language that mainly uses Maple notations but also has its own notations. The language allows to for-
mally specify the behavior of the procedures as a state relationship, e.g. by specifying pre/post-conditions
of a procedure and other constraints. The specification language supports specification declarations, pro-
cedure and loop specifications and assertions. The language also supports abstract data types, while
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the existing specification languages are weaker in such specifications. Currently we are defining formal
semantics of MiniMaple. Based on this semantics we will define formal semantics of the specification
language so that it specifies the intended algebraic properties. The specification language aims to realize
respectively bridge the gap between actual computer algebra algorithm and its corresponding implemen-
tation [4].

We may use this specification language to generate executable assertions that are embedded in Mini-
Maple programs and check at runtime the validity of pre/post conditions. Our main goal, however, is to
use the specification language for static analysis, in particular to detect violations of method precondi-
tions. Here we currently investigate two possibilities:

1. We may directly generate verification conditions and use Satisfiability Modulo Theories (SMT)
solvers or interactive theorem provers to prove their correctness.

2. We may use some existing framework to generate verification conditions and prove the correctness,
e.g. by the Boogie [2] framework developed by Microsoft and Why [7] by LRI-France. Here we
need to translate our specification annotated MiniMaple program into an intermediate language of
Boogie/Why and then use their various proving back-ends for verification.

The formal specification of the DifferenceDifferential package developed at our institute will be the
main test for our specification language and checking framework.
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