
The RISC ProgramExplorer
Tutorial and Manual∗

Wolfgang Schreiner
Wolfgang.Schreiner@risc.jku.at

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

http://www.risc.jku.at

October 3, 2011

Abstract

This document describes the use of the RISC ProgramExplorer, an interactive program
reasoning environment which has been developed at the Research Institute for Symbolic
Computation (RISC) and which integrates the previously developed RISC ProofNavigator
as an interactive proving assistant. The environment allows to formally specify, analyze,
and verify programs written in a subset of Java. For this purpose, it translates annotated
programs into a semantic model which describes programs as state relations and is open
for human investigation; from this model the software generates verification conditions
which can be semi-automatically proved. Within the environment the user may elaborate
mathematical theories as the basis of program specifications; an advanced graphical user
interface links theories, programs, semantic models, and verification tasks and allows
to easily navigate between the different views.The software runs on computers with x86-
compatible processors under the GNU/Linux operating system; it is freely available under
the terms of the GNU GPL.

∗The hypertext version of this document can be found at http://www.risc.jku.at/research/
formal/software/ProgramExplorer/manual.

mailto:Wolfgang.Schreiner@risc.jku.at
http://www.risc.jku.at
http://www.risc.jku.at/research/formal/software/ProgramExplorer/manual
http://www.risc.jku.at/research/formal/software/ProgramExplorer/manual

Contents

1. Introduction 3

2. User Interface 5

3. Programs, Theories, and Specifications 13
3.1. Computing Factorial Numbers . 13
3.2. Searching for Records . 22
3.3. Failed Tasks and Interactive Proofs . 28

4. Semantics and Verification 31
4.1. Computing Factorial Numbers . 32
4.2. Recursive Computation of Factorials . 46
4.3. Searching in Arrays . 51
4.4. Program States and Control Flow Interruptions 56
4.5. Objects and Method Side Effects . 60

A. Programs as State Relations 66

B. Programming Language 70

C. Specification Language 73
C.1. Logic Language . 73

C.1.1. Declarations . 73
C.1.2. Types . 74
C.1.3. Mapping Program Types to Logical Types 74
C.1.4. Program Variables . 77
C.1.5. Program States . 78
C.1.6. State Functions . 78

C.2. Theory Definitions . 80
C.3. Class Specifications . 81
C.4. Class Invariants . 82
C.5. Method Specifications . 82
C.6. Loop Specifications . 84
C.7. Statement Specifications . 85

D. New RISC ProofNavigator 87

2 Contents

E. Software Invocation 88

F. Software Installation 90
F.1. README . 90
F.2. INSTALL . 93

G. Task Directories 97

H. Grammars 98
H.1. Programming Language . 98
H.2. Specification Language . 103

1. Introduction

This document describes the use of the RISC ProgramExplorer, an interactive program rea-
soning environment which has been developed at the Research Institute for Symbolic Compu-
tation (RISC) and which integrates the previously developed RISC ProofNavigator [8, 5] as an
interactive proving assistant. The environment allows to formally specify, analyze, and verify
programs written in a subset of Java based on a calculus developed in [6, 7, 9]. In more detail,

• the RISC ProgramExplorer allows the user to elaborate mathematical theories and to
formally specify a program on the basis of these theories;

• it translates the specified program into a semantic model which describes programs
commands as state relations and which is open for human investigation;

• it generates from the semantic model the verification conditions which can be semi-
automatically proved with the help of the RISC ProofNavigator.

The software provides an advanced graphical user interface that links theories, programs, se-
mantic models, and verification tasks and allows the user to conveniently navigate between
the different views.

The system is freely available under the GNU Public License at the URL

http://www.risc.jku.at/research/formal/software/

ProgramExplorer

The software has been reasonably well tested but is certainly not free of bugs; the author is
glad to receive error reports at

Wolfgang.Schreiner@risc.jku.at

The remainder of the document is split in two parts:

• Chapters 2–4 essentially represent a tutorial for the RISC ProgramExplorer based on
examples contained in the software distribution; for learning to use the system, we rec-
ommend to study this material in sequence.

• Appendices A–H essentially represent a reference manual with an explanation of the
software’s programming and specification language; this material can be studied on
demand.

This document does not explain in detail how to interactively prove the generated verification
conditions; this is described in the manual of the RISC ProofNavigator [5].

The RISC ProgramExplorer uses the following third party software; detailed references can
be found in the README file of the distribution listed on page 90:

http://www.risc.jku.at/research/formal/software/ProgramExplorer
http://www.risc.jku.at/research/formal/software/ProgramExplorer
mailto:Wolfgang.Schreiner@risc.jku.at

4 Chapter 1. Introduction

• CVC Lite

• RIACA OpenMath Library

• General Purpose Hash Function Algorithms Library

• ANTLR

• Eclipse Standard Widget Toolkit

• Mozilla Firefox

• GIMP Toolkit GTK+

• Sun JDK

• Tango Icon Library

Many thanks to the respective authors for their great work.

2. User Interface

In the following we explain the main points of interaction with the user interface of the RISC
ProgramExplorer. We assume that the system is appropriately installed (see Appendix F), that
the current working directory is the subdirectory examples of the installation directory with
write permission enabled (respectively that the current working directory is a writable copy of
that directory), and that the task directory has been restored from file PETASKS.tgz (see the
README file in the directory). After typing on the command line

ProgramExplorer &

first a splash screen with a copyright message appears. After a few seconds, a window pops
up that displays the actual startup screen shown in Figure 2.1.

This window initially displays the “Analysis” view of the RISC ProgramExplorer, which is
one of the three main views:

Analysis This view is mainly used to display/edit the source code of a program and theory
file, to select symbols for the investigation of their semantics and to start the execution
of verification tasks.

Semantics This view is used to display the semantics of a program method; it is shown,
when in the menu associated to a method symbol (right-click the symbol) the entry
“Show Semantics” is selected.

Verification This view is used to show a proof resulting from a task; it is displayed, when in
the menu associated to a task (right-click the task), one selects the entry “Execute Task”
(if the proof is not yet completed) respectively “Show Proof” (if the proof is completed).

One may switch to another view by clicking on the corresponding tab on the top-right of the
window (provided the view is currently applicable).

In the following, we only describe the “Analysis” view; the other views are explained in
Chapter 4. As already stated, the main purpose of this view is to edit a program or theory
file; when saving the file, it is automatically type-checked and semantically processed. As a
consequence, in the tab “Symbols”, the resulting semantic symbols (e.g. program methods)
are displayed; in the tab “All Tasks”, the generated (e.g. verification) tasks are shown. Source
code, symbols, and tasks are interlinked; by double-clicking a symbol/task, the corresponding
line in the source code is highlighted; by double-clicking on the defining occurrence of a
symbol name in the source code, the corresponding symbol is high lighted; by double-clicking
any other occurrence is definition is printed.

The view has three menus at the top:

6 Chapter 2. User Interface

Figure 2.1.: Startup Window

File The menu entry “New File” creates a new file; files with extension .java are considered
as program files, files with extension .theory are considered as specification files.
The menu entry “Open File” opens such a file. The menu entry “Close File” closes the
currently selected open file. The menu entry “Close All Files” closes all open files. The
menu entry “Save File” saves the currently selected open file to disk.

The menu entry “Workspace...” displays the window shown in Figure 2.2. This window
displays those directories that together represent the root of the package hierarchy for
the RISC ProgramExplorer. The default is the list of those directories set in the environ-
ment variable PE_CLASSPATH (see Section E) respectively, if the variable is not set,
the current working directory. The buttons “Add Directory” and “Remove Directory”
modify the list, the button “Restore Directories” restores the original setting. The button
“Okay” activates the current selection, the button “Cancel” discards it.

The entry “Properties...” displays the window shown in Figure 2.3. This window allows
to configure various properties related to the installation of the software: the path to the
executable of the Cooperating Validity Checker Lite (CVCL) version 2.0, the path to the
Java compiler, the path to the Java application launcher, the path of the working directory
(used e.g. for creating new files), the path for the main class of the program (the class
containing method main). The values of these variables can be configured by various
environment variables (see Section E). The button “Okay” confirms all modifications,
the button “Cancel” discards them.

7

Figure 2.2.: Workspace Configuration

Figure 2.3.: Properties Configuration

8 Chapter 2. User Interface

Figure 2.4.: Analyze Buttons

The menu entry “Quit” terminates the program.

Edit The menu entry “Undo” undoes the last change in the file currently being edited, the
menu entry “Bigger/Smaller Font” allows to change the size of the font of the editor and
of the console.

Help The entry “Online Manual” displays the hypertext version of this document; the entry
“About RISC ProgramExplorer” displays a copyright message.

Below the menu, a row of buttons is displayed as shown in Figure 2.4.

New File Like the menu option “New File”, this button creates a new file and opens it
in the editing area.

Open File Like the menu option “Open File”, this button opens an already existing file.

Save File Like the menu option “Save File”, this button saves an open file that was
modified in the editing area.

Refresh View This button removes from the view all information (symbols and tasks)
that was created by processing a class or theory.

Run Program This button calls the Java compiler to compile the “Main” class indicated
in the “Properties” configuration and calls the Java application launcher to execute it;
the output is displayed in the console window (currently no input is possible).

The main area of the view is split into four areas (whose borders may be dragged by the mouse
pointer). The central area (which is initially empty) is the “editing” area where program and
specification files may be displayed and edited. The other three areas are:

Console This area displays textual output of the RISC ProgramExplorer, initially a copyright
message. When program/specification files are processed, this area displays the success
status respectively error messages, if something went wrong.

Files/Symbols In this area, the tabs “Files” and “Symbols” display the directory respec-
tively symbol structure of the workspace as shown in Figure 2.5. By moving the mouse
pointer over a directory/file, a yellow “tip” window pops up that displays the path of the
corresponding directory/file respectively information on the corresponding symbol.

Double-clicking on a file opens the corresponding file in the central editing area. Right-
clicking on a directory opens a pop-up menu with an option “Refresh” to refresh the
display of the directory content and an option “Delete” to delete the directory (after a
confirmation). Right-clicking on a file opens a pop-up menu with an option “Open”
to open the file in the editing area and an option “Delete” to delete the file (after a
confirmation).

9

Figure 2.5.: Workspace Files/Symbols

10 Chapter 2. User Interface

Double-clicking on a symbol (e.g. a class symbol or a theory symbol) also opens the
corresponding source file (a .java file or a .theory file) in the editor but also im-
mediately processes it; the success of the operation is displayed in the “Console” area.
There are the following kinds of symbols:

Package A symbol denoted by a package declaration.

Class A symbol introduced by a class declaration.

Class Variable A symbol introduced by the declaration of a static variable in
a class.

Object Variable A symbol introduced by the declaration of a non-static vari-
able in a class.

Class Method A symbol introduced by the declaration of a static method in a
class.

Object Method A symbol introduced by the declaration of a non-static me-
thod in a class.

Constructor A symbol introduced by the declaration of a constructor in a class.

Method Parameter A symbol introduced by the declaration of a parameter in a
method header in a class.

Theory A symbol introduced by a theory declaration.

Type A symbol introduced by a TYPE declaration in a theory.

Value A symbol introduced by a value declaration in a theory.

Formula/Axiom A symbol introduced by a FORMULA/AXIOM declaration in a
theory.

All Tasks/Open Tasks In this area, the tabs “All Tasks” and “Open Tasks” display the tree
of all tasks organized in task folders respectively the list of all open tasks as shown in
Figure 2.6. The status of the task is indicated by in icon and the color of the description:

New Task This task (described in red color) is new i.e. it has not yet been at-
tempted to solve it.

Open/Almost Completed Task If described in red color, this task is open i.e. it
has been already attempted but not yet solved. If described in violet color, this task
is almost completed, i.e. the task was solved by a proof in a previous invocation
of the RISC ProgramExplorer. The corresponding proof may be replayed in the
current invocation to become fully closed.

Closed Task This task (described in blue clor) is closed, i.e. it has been success-
fully solved.

Failed Task This task (described in red) is failed, i.e. the task is impossible to
solve (which indicates a program/specification error).

11

Figure 2.6.: All/Open Tasks

12 Chapter 2. User Interface

By default all task folders are open and display their contents (an exception are those
folders that are marked as “optional”). By right-clicking one of the tabs “All Tasks” or
“Open Tasks” a menu pops up whose entry “Hide Completed Tasks” closes all folders
that do not contain open tasks; the entry “Show All Tasks” opens all folders again. The
entry “Execute All Tasks” attempts all open tasks that have automatic solution strategies
associated.

By moving the mouse pointer over a task, a yellow “tip” window pops up that displays
information on the task such as the kind of task and its status. By double-clicking on the
task, the position in the source code of the program or theory is displayed that triggered
the creation of the task.

The solution of presumably simple tasks (such as type checking) is immediately at-
tempted by an automatic strategy when the task is created; if this fails, the user may
attempt an interactive proof to solve the task. Other presumably complex tasks (such
as the proof of the correctness of loop invariants) are not automatically attempted; their
solution must be explicitly triggered by the user.

By right-clicking on the task a pop-up menu shows various options depending on the
kind of task: “Execute Task” attempts to solve the task e.g. by an automatic proof or, if
that fails, by a computer-assisted interactive proof; “Print Task” prints information on
the task (the content of the “tip” window) in the “Console” area. “Print State Proving
Problem” prints a translation of the task into a proving problem in an extended logic
that involves reasoning about program states. “Print Classical Proving Problem” prints
a translation of the problem into a classical predicate logic proving problem. “Print
Status Evidence (Proof)” shows an associated proof; “Reset Task” resets the task into
the “new” state (and deletes any associated proof).

By right-clicking on a task folder, a pop-up menu shows up whose option “Execute
Task” attempts to solve all tasks that have an automatic solution strategy associated
(interactive proofs have to be individually triggered as shown above).

3. Programs, Theories, and
Specifications

In this chapter, we are going to illustrate the basics of the RISC ProgramExplorer by some
small examples (which are included in the software distribution) that describe how to write
formally specified programs. In more detail, we are going to show how

• to write programs in a subset of Java called “MiniJava” (see Appendix B) and have them
parsed and type-checked;

• to use a logic language (see Appendix C.1) in order to write logical theories (see Ap-
pendix C.2) and have them parsed and type-checked;

• to annotate programs with program specifications (see Appendix C) and have them
parsed and type-checked;

• to prove the generated type-checking conditions, either by automatic proofs (using the
integrated Cooperating Validity Checker Lite CVCL [3, 2]), or, if this should not suc-
ceed, by a computer-assisted interactive proof (using the integrated RISC ProofNaviga-
tor [8, 5]).

In Chapter 4, we will discuss how to investigate the semantics of these programs and how to
reason about them (i.e., how to prove their correctness with respect to their specification).

3.1. Computing Factorial Numbers

This example is about the specification of the following program

public class Factorial
{

public static int fac(int n)
{

int i=1;
int p=1;
while (i <= n)
{

p = p*i;
i = i+1;

}
return p;

http://www.risc.jku.at/research/formal/software/ProofNavigator
http://www.risc.jku.at/research/formal/software/ProofNavigator

14 Chapter 3. Programs, Theories, and Specifications

}
}

The program is written in Java-syntax; it introduces a method fac which is supposed to return
the factorial of its argument n.

The specification of the program is to be based on the mathematical function factorial : N→N
which is uniquely characterized by the axioms

factorial(0) = 1
∀n ∈ N : factorial(n+1) = (n+1) · factorial(n)

First we describe how to define the corresponding mathematical theory, next we describe how
to specify the program with the help of this theory.

Theory We define a theory Math which introduces a function factorial on the natural num-
bers and constrains its behavior by two axioms as discussed above and also contains a logical
consequence of these axioms:

theory Math
{

// an axiomatic specification of
// the factorial function
factorial: NAT -> NAT;
fac_ax1: AXIOM factorial(0) = 1;
fac_ax2: AXIOM FORALL(n: NAT):
factorial(n+1) = (n+1)*factorial(n);

// some auxiliary properties of factorial
fac_1: FORMULA factorial(1) = 1;
...

}

We can use the RISC ProgramExplorer to write this theory in a file Math.theory in the un-
named top-level package as follows: we select the button New File , enter the file name
Math.theory, and press Okay. In the central region a new editing area titled Math.theory opens;
we enter above theory declaration and press the button Save File . The RISC ProgramEx-
plorer window has then the state shown in Figure 3.1. The theory is displayed as

3.1 Computing Factorial Numbers 15

Figure 3.1.: A Logic Theory

with colors indicating keywords of the specification language. Identifiers are active, e.g. by
double-clicking on factorial the identifier is highlighted, the tab Symbol on the left side of the
window highlights the corresponding symbol and the Console area displays

value factorial: (NAT) -> NAT
factorial: (NAT) -> NAT

(likewise the identifiers Math, fac_1, and fac_2 can be double-clicked). Moving the mouse
pointer over the symbol on the left tab displays a corresponding yellow “tip” window, clicking
with the right mouse-button allows to choose between Print Symbol and Print Declaration.
Choosing the symbol Math and selecting Print Symbol displays in the console area output
similar to

theory Math (file /.../examples/Math.theory)

Selecting Print Declaration displays

theory Math
{

factorial: (NAT) -> NAT;

16 Chapter 3. Programs, Theories, and Specifications

fac_ax1: AXIOM factorial(0) = 1;
fac_ax2: AXIOM FORALL(n: NAT): factorial(n+1) = ...;
...

}

If we introduce in the declaration an error, e.g. by mistyping the function name as factorials
in axiom

fac_ax1: AXIOM factorials(0) = 1;

the Console area shows the output

ERROR (Math.theory:5:16):
there is no value named factorials

theory Math was processed with 1 error

In the editing area, the theory is then displayed as

The position of the error in the file is indicated by an icon on the left bar, by a corresponding
red marker on the right bar and by underlining the syntactic phrase in red; moving the mouse
pointer over the icon on the left or over the marker on the right displays the corresponding
error message. The same icon at the top of the editing tab and in the tab Symbols indicates
that the theory has an error. Moving the mouse pointer over the red square on the top-right
corner of the editing area displays the number of errors in the theory. After fixing the error
and pressing the button Save File , the correct state is restored.

The tab All Tasks on the right now contains the following entries:

3.1 Computing Factorial Numbers 17

The folder theory Base contains a subfolder type checking conditions which holds those tasks
that arose from type-checking a built-in “base” theory. The task labels shortly describe the
tasks; the automatically generated tags of the form [Base:ccc] allow unique referencing; the
blue font indicates that all the tasks could be performed with the help of an automatic strategy.
Moving the mouse pointer over the tasks (respectively right-clicking the tasks and selecting
the option Print Task) shows the task descriptions, e.g.

Task: [Base:2f4] Interval [MIN_INT..MAX_INT] is not empty
Status: done (solved by decision procedure)
Type: verify type checking condition
Goal formula: MIN_INT <= MAX_INT

The special icon indicates that it contains (subfolders with) open tasks to be performed.
Indeed it contains a subfolder formulas to be proved with some open tasks labeled in red
referring to formulas that have not yet been proved. The icon indicates that the corre-
sponding task is “new”, while the icon indicates that the task has a previously constructed
proof attempt (i.e. an incomplete proof that may be replaced and completed in the current in-
vocation). On the other hand, those tasks with icon and violet labels are already closed;
they refer to formulas that have been proved in a previous invocation such that the proofs may
be simply replayed in the current invocation.

Right-clicking any of these tasks and selecting the option Print Classical Proving Problem
shows the detailed proofs to be performed for performing the tasks: in the case of “Formula
fac_1”, this proof is

Declarations:
STRING: TYPE;
MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
...
Goal: factorial(1) = 1

Right-clicking the task and selecting the option Execute Task replays the (simple) previously
constructed proof; selecting the option Show Proof displays the view shown in Figure 3.2.
This is essentially a view on the RISC ProofNavigator [8, 5], the computer-assisted interac-
tive proving assistant integrated into the RISC ProgramExplorer. The task generated by the
RISC ProgramExplorer was translated into a proving problem of the RISC ProofNavigator
and performed with human aid (in this case, by invoking the auto command for heuristic
instantiation of quantified formulas). By clicking on the individual nodes of the proof tree
shown to the left, the corresponding proof situations are displayed; pressing the button View
Declarations displays the declarations related to the proof. By selecting the tab “Analysis”
we return to the original view. Right-clicking the task and selecting “Reset Task” resets the
task to its original “new” state (deleting the previously constructed proof) such that a fresh
interactive proof attempt can be performed.

Program We can now create (in analogy to file Math.theory) a program file Factorial.java
which holds the program class Factorial described above. Saving the file type-checks it and

http://www.risc.jku.at/research/formal/software/ProofNavigator

18 Chapter 3. Programs, Theories, and Specifications

Figure 3.2.: An Interactive Proof

creates in tab Symbols a class symbol Factorial with method symbol fac and parameter sym-
bol n. As for theories, also the identifiers in the source file are active, double-clicking e.g. on
fac in the editing area prints the method declaration in the Console area and highlights the
symbol fac in the Symbols tab. Correspondingly, double-clicking the symbol fac moves the
editor to the position of the declaration of the method and highlights its header.

To formally specify the behavior of the method fac with the help of the theory Math, we
annotate the class Factorial by special program comments /*@ ...@*/ as follows:

/*@
theory uses Math {
// the mathematical factorial function
factorial: NAT -> NAT = Math.factorial;

}

3.1 Computing Factorial Numbers 19

@*/
public class Factorial
{

public static int fac(int n) /*@
requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(VAR n);

@*/
{

int i=1;
int p=1;
while (i <= n) /*@
invariant VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT

AND 1 <= VAR i AND VAR i <= VAR n+1
AND VAR p = factorial(VAR i -1);

decreases VAR n - VAR i + 1;
@*/
{

p = p*i;
i = i+1;

}
return p;

}
}

The RISC ProgramExplorer window has then the state shown in Figure 3.3. The actual pro-
gram code is displayed as shown in Figure 3.4. Annotations can become “folded” away from
the program source code; clicking on the icon folds the annotation, clicking on the icon
unfolds it again. Moving the mouse pointer over the icon displays the content of the folded
annotation in a yellow “tip” window.

The annotation theory ... before the class declaration introduces the “local” theory for
the class i.e. those entities that may be further on referenced by short names; the uses Math
clause indicates that the local theory refers to entities of the previously defined theory Math.
The local theory is simple: it just defines a function factorial by the corresponding function
in theory Math which can be referenced by the long name Math.factorial. Alternatively, we
might have referred in the following directly to Math.factorial (however, even then an empty
declaration theory uses Math { } is required because we refer to theory Math) or we
might have just axiomatized the function factorial directly in the local theory (without refer-
ring to theory Math at all).

The annotation requires ...ensures ... after the header of method fac introduces
a method specification by a precondition (requires ...) that describes the assumptions
on the prestate of the method call (in particular constraints of the method arguments) and a
postcondition (ensures ...) that describes the obligation on the poststate of the method
call (in particular obligations on the method result). In our case, the precondition

requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;

20 Chapter 3. Programs, Theories, and Specifications

Figure 3.3.: A Program Class

states that the value of the program variable n (the method parameter) indicated by the term
VAR n must not be negative when the method is called and that the value of factorial(n)
must not exceed the limit of the program type int indicated by the mathematical constant
MAX_INT in the base theory. The postcondition

ensures VALUE@NEXT = factorial(VAR n);

states the method result indicated by the term VALUE@NEXT must be identical to the value of
the logical function factorial when applied to the value of n.

Finally, the body of the while loop is annotated by a loop invariant and a termination term:
the loop invariant essentially states the relationship of the prestate of the loop to the poststate of
every iteration of the loop body; the termination term denotes a non-negative integer number
that is decreased by every iteration of the loop. In our case, the invariant

invariant VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT
AND 1 <= VAR i AND VAR i <= VAR n+1
AND VAR p = factorial(VAR i -1);

decreases VAR n - VAR i + 1;

limits the range of the iteration counter i and states that the value of the program variable p is

3.2 Searching for Records 21

Figure 3.4.: The Program Class in Detail

identical to the factorial of the value of i. The termination term

decreases VAR n - VAR i + 1;

states that the value of i is decremented by every loop iteration but does not become bigger
than n+1.

Type-checking the annotations and semantically processing the class gives rise to a number of
tasks in folder class Factorial organized in a couple of subfolders (as usual double-clicking on
the tasks highlights the corresponding source code positions; moving the mouse over the tasks
shows their description). The folder type checking conditions contains those tasks arising from
type checking the annotations; all of them can be closed by an automatic strategy. The other
conditions refer to the correctness of the method with respect to its specification; they will be
discussed in Chapter 4.

3.2. Searching for Records

This example deals with the specification of a program that searches in an array of records for
a record with a specific key. The example is based on the following program class:

class Record

22 Chapter 3. Programs, Theories, and Specifications

{
String key;
int value;

Record(String k, int v)
{

key = k;
value = v;

}

boolean equals(String k)
{

boolean e = key.equals(k);
return e;

}

public static int search(Record[] a, String key)
{

int n = a.length;
for (int i=0; i<n; i++)
{

Record r = new Record(a[i].key, a[i].value);
boolean e = r.equals(key);
if (e) return i;

}
return -1;

}

public static void main()
{

int N = 10;
Record[] a = new Record[N];
for (int i=0; i<N; i++)

a[i] = new Record("abc", i);
a[5] = new Record("xyz", 5);
int i = search(a, "xyz");
System.out.println(i);

}
}

This program introduces an object type Record with a string field key and an integer field
value. The type has an constructor to build a record from an given string and integer and a
method equals that allows to check whether the record has the denoted key. This function calls
the method equals on object type String; while this class is part of the Java standard library,
it has to be explicitly defined in a file accessible to the RISC ProgramExplorer. We therefore
introduce a dummy class

3.2 Searching for Records 23

package java.lang;
public class String
{

public boolean equals(String s) return false;
}

solely for declaring the method equals (without caring for the actual representation of strings
or the actual implementation of the method). Unlike real Java, our programming language
only allows to call program methods with return values to initialize/assign to variables, not as
parts of program expressions1. The two statements

boolean e = key.equals(k);
return e;

in the body of equals can therefore not be merged into one.

The core of the program is the method search which takes an array a of records and a key
and returns the index of the first record in a that contains that key (or −1, if there is no such
record). The core of the method body is represented by the two statements

Record r = new Record(a[i].key, a[i].value);
boolean e = r.equals(key);

The first statement builds a record r from the key and the value of record a[i]. The second
statement calls the method equals on r to compare its key with key. This apparently clumsy
way of using the function equals is necessary because the specification formalism considers
object variables (variables of object types) to hold object values rather than object references
(which considerably simplifies reasoning because then the modification of an object via one
variable cannot affect an object referenced by another variable).

However, since the programming language Java (like most programming languages) lets ob-
ject variables hold references, the semantics of our programming language would deviate
from classical program semantics. Therefore the type checker ensures that two different pro-
gram variables cannot refer to the same object; consequently it does not make any difference
whether an object variable holds an object value or an object reference. Consequently, if
equals would modify its record, above solution would not update array a (independent of
whether object variables hold object values or object references) while the solution

Record r = a[i];
boolean e = r.equals(key);

would update a in a language with reference semantics for objects but not in a language with
value semantics. For similar reasons, the even shorter solution

boolean e = a[i].equals(key);

is also (even syntactically) prohibited. See Appendix B for a more thorough description of the
constraints of our programming language compared to Java.

1The reason is that methods may cause side effects and we do not want the computation of program expressions
to cause side effects

24 Chapter 3. Programs, Theories, and Specifications

The method main of the program creates an array, fills it with values, updates it, and calls
the method search in the usual way. It also calls the method System.out.println of the Java
Standard API. This method has to be declared with the help of the dummy classes

package java.lang;
import java.io.*;
public class System
{
public static PrintStream out;

}

package java.io;
public class PrintStream
{
public void println(boolean b)
public void println(int i)
public void println(char c)
public void println(String s)
public void println()

}

Type-checking the class Record creates a new theory Record in the same package as the class.
Right-clicking this theory from the tab Symbols and selecting Print Declaration displays

theory Record uses java.lang.String, Base
{

Record: TYPE =
[#key: java.lang.String.String, value: Base.int,

null: BOOLEAN, new: INT#];
null: Record;
newObject: INT -> Record =
LAMBDA(x: INT): null WITH .null:=FALSE WITH .new:=x;

Array: TYPE =
[#value: ARRAY Base.int OF Record, length: Base.nat,

null: BOOLEAN#];
nullArray: Array;
newArray: Base.nat -> Array;
newArrayAxiom:
AXIOM FORALL(x: Base.nat):

LET y = newArray(x) IN
NOT y.null AND y.length = x AND
(FORALL(i: Base.nat): i < x => y.value[i] = null);

}

which introduces the following entities that mathematically model the program operations that
involve program type Record.

• a logical record type Record which contains (among other fields) one field for each
object variable in class Record, the specification language considers program variables

3.2 Searching for Records 25

of object type Record to hold values of the logical type Record (more details later);

• a constant null representing a logical counterpart of the null pointer of type Record;

• a function newObject which returns a non-null object of type Record as created by a call
of a constructor of class Record;

• a type Array representing the logical counterpart of the program type Record[];

• a type nullArray representing the logical counterpart of the null pointer of the type
Record[];

• a function newArray which returns an Array;

• an axiom newArrayAxiom which describes the result newArray as a non-null array of a
certain length whose entries are null.

There are some subtleties about the modeling a program object of type Record as a mathe-
matical Record that should be known for their proper use:

1. If the null field of a valid Record value is not FALSE, the value represents the null
pointer of type Record. The Record pointer null is thus not only represented by the
single mathematical constant null but by every Record value whose null field is TRUE
(the constant null is just an unknown Record value for which the opposite cannot be
proved)2. A precondition that asserts that a Record object is not null must therefore
state for the corresponding Record value r that NOT r.null holds (the condition r /=
null alone is too weak).

2. The field new is initialized to an unknown value at the creation of a record; two records
created in different constructor calls can thus not be proved equal.

The program is now specified with the help of the following local theory

/*@
theory uses Base, Record, java.lang.String, java.io.PrintStream
{

String: TYPE = java.lang.String.String;
notFound: PREDICATE(Record.Array, Base.int, String) =

PRED(a:Record.Array, n: Base.int, key: String):
FORALL(i:INT):

0 <= i AND i < n => a.value[i].key /= key;
}
@*/
class Record { ... }

which introduces a predicate notFound to describe that in an array a of records, all positions
less than n hold records whose keys are different from key.

The program method search can now be specified as

2By this modeling, the proper handling of update operations is simplified: writing a field in a non-null object
automatically yields another non-null object.

26 Chapter 3. Programs, Theories, and Specifications

public static int search(Record[] a, String key) /*@
requires

NOT (VAR a).null AND NOT (VAR key).null AND
(FORALL(i:INT): 0 <= i AND i < VAR a.length =>

NOT (VAR a).value[i].null AND
NOT (VAR a).value[i].key.null);

ensures
(LET result=VALUE@NEXT, n = (VAR a).length IN

IF result = -1 THEN
notFound(VAR a, n, VAR key)

ELSE
0 <= result AND result < n AND
notFound(VAR a, result, VAR key) AND
(VAR a).value[result].key = VAR key

ENDIF);
@*/
{ ... }

The method’s precondition states that search must not be called with the array null as argu-
ment and that its result is either −1 (indicating that the given key has not been found in the
array) or that its result is the smallest index of the array such that the corresponding record has
the denoted key. The specification makes use of local logical variables result and n represent-
ing the return value of the method and the length of the method parameter a.

The core loop of the method’s body can be annotated as

for (int i=0; i<n; i++)
/*@

invariant
NOT (VAR a).null AND NOT (VAR key).null AND
(FORALL(i:INT): 0 <= i AND i < VAR a.length =>

NOT (VAR a).value[i].null AND
NOT (VAR a).value[i].key.null) AND

VAR n = (VAR a).length AND
0 <= VAR i AND VAR i <= VAR n AND
notFound(VAR a, VAR i, VAR key) AND
(RETURNS@NEXT =>

VAR i < VAR n AND
(VAR a).value[VAR i].key = VAR key AND
VALUE@NEXT = VAR i);

decreases VAR n - VAR i;
@*/
{ ... }

to give a suitable invariant and termination term.

The state after type-checking the annotated program is shown in Figure 3.5. All type checking
conditions can be automatically solved; the verification of the other conditions proceeds in a
similar way as discussed in Chapter 4.

3.3 Failed Tasks and Interactive Proofs 27

Figure 3.5.: Searching for Records

3.3. Failed Tasks and Interactive Proofs

The previous sections dealt mainly with tasks (type-checking conditions) that could be auto-
matically solved by the integrated decision procedure. In this section, we discuss in somewhat
more detail what happens if the automatic decision procedure does not succeed, in particular
because it is impossible to achieve the goal of the task (i.e. the task is a priori doomed to fail).

One kind of failure (the goal of a proof is contradictory) can be demonstrated by the theory

theory Proving1
{

// type-checking task can be proved unsatisfiable
a: INT = 1;
b: INT = 0;
T: TYPE = [a..b];

}

which attempts to erroneously define an empty type T (by an interval of the integers whose
lower bound is bigger than the upper bound). Type-checking this theory generates the task

28 Chapter 3. Programs, Theories, and Specifications

Task(Proving1.theory:6:13):
[iai] Interval [a..b] is not empty

Status: new
Type: verify type checking condition
Goal formula: a <= b

The task is labeled in red (which indicates task status “open”) with the icon (which indi-
cates that an automatic proof has been attempted but failed). If we select Execute Task, an
interactive proof with the following root situation is created:

This situation depicts as knowledge three formulas derived from the base theory and no goal
formula. The reason for the disappearance of the goal can be inferred by pressing the button
“View Declarations” which depicts (among others)

From this, the goal a ≤ b was automatically reduced to FALSE and consequently discarded
from the proof situation. The proof could be thus only completed if the knowledge were
inconsistent (such that FALSE could be derived) which is here not the case. We therefore
press the button Quit Proof and return (after a confirmation) to the “Analysis” view with
task status still unchanged as indicated by the icon .

Another kind of failure (the goal of a proof is unprovable) can be demonstrated by the theory

theory Proving2
{
// type-checking task cannot be solved
a: INT;
b: INT;
T: TYPE = [a..b];

}

which defines a type as a subrange of the integers with unspecified bounds a and b. Type
checking this theory yields the task

Task(Proving2.theory:6:13):

3.3 Failed Tasks and Interactive Proofs 29

[iai] Interval [a..b] is not empty
Status: new
Type: verify type checking condition
Goal formula: a <= b

Also for this task the automatic proof fails and it is consequently indicated by the red label
as “open”. If we select Execute Task, an interactive proof with the following root situation is
created:

The knowledge is consistent but does not say anything about the variables a and b referred in
the goal. By pressing the button View Declarations, the declarations related to the proof are
shown below:

Since a and b have no defined values, there is no chance of completing the proof successfully.
We therefore press again the button Quit Proof and return to the “Analysis” view.

It may also (infrequently) happen that the type-checker generates tasks that cannot be solved
by the integrated automatic decision procedure but can be solved by an interactive proof.
If this should be the case, the proof remains persistent across multiple invocations of the
RISC ProgramExplorer; it can be later displayed (menu option Print Status Evidence) and
also replayed again (menu option Execute Task). Menu option Reset Task erases the proof and
returns the task to state “new”.

If there is no ongoing interactive proof, the user may also manually switch to the “Verifica-
tion” view and enter declarations and commands of the RISC ProofNavigator. The use of the
software is then essentially the same as in the standalone version of the RISC ProofNavigator.

Thus the RISC ProofNavigator is already fully integrated into the task solution framework of
the RISC ProgramExplorer; while this is not of major importance for the purpose of verifying
type checking conditions, it becomes essential for verifying program correctness as discussed
in the following chapter.

4. Semantics and Verification

The core idea of the RISC ProgramExplorer is to translate every program into its “semantic
essence”, i.e. a declarative form that exhibits all that is to be known about the program from
the mathematical point of view. This semantics is exhibited to the user for investigation and
analysis (programming and specification errors may so be detected early); it also represents
the basis for the subsequent verification of the program. Given a method

method (...) /*@ ensures f_s @*/
{ c }

with specification fs and body c, c is translated into a formula fc which describes the effect
of c; the proof that the method satisfies its specification is then essentially the proof of

fc⇒ fs

i.e., that the effect of c implies the specification.

In somewhat more detail, we translate every program command (e.g. the body of a program
method) into a logic formula that describes the relationship between the value of every pro-
gram variable x in the prestate of the execution (this value is in the formula denoted as old x)
to the value of the variable in the poststate (this value is denoted as var x). For instance, the
program command

x = x+y

is translated to the formula (the state relation)

var x = old x+old y

This formula, however, does not explicitly say anything about the variables whose values are
not changed (y,z, . . .) such that the post-state value of such variables is undefined. To overcome
this problem, we additionally determine the frame of the variable which is the set of program
variables that may be changed by the command. For above command, the program frame
would be just x, from which we can deduce

var y = old y∧var z = old z∧ . . .

i.e., var v = old v, for every program variable v different from x.

A sequence of commands

y = y+1;
x = x+y

is handled by first translating the individual commands to state relations

4.1 Computing Factorial Numbers 31

var y = old y+1∧var x = old x
var x = old x+old y∧var y = old y

with common frame x,y. These formulas are then combined to a single state relation

∃x0,y0 :
y0 = old y+1∧ x0 = old x ∧
var x = x0 + y0∧var y = y0

where x0,y0 represent the values of the program variables after the execution of the first com-
mand; these values are not visible as pre/post-state values of the combined command and
therefore “hidden” by existential quantification. The combined formula can then be logically
simplified by inserting the definitions of these values. This results in the state relation

var x = old x+old y+1∧var y = old y+1

with frame x,y.

Likewise, a local variable declaration

{var x; c}

is translated to a state relation of form

∃x0,x1 : fc[x0/old x,x1/var x]

where fc denotes the state relation of c; in this formula, all references to old x respectively
var x are substituted by references to existentially quantified variables x0 respectively y0. A
conditional command

if (e) then c1 else c2

is translated to a statue relation

if fe then f1 else f2

(which is syntactic sugar for (fe⇒ f1)∧ (¬ fe⇒ f2)) where fe, f1, f2 denote the translations
of e,c1,c2. Finally, a while loop

while (e) /*@ invariant f; @*/ c

is translated to the state relation

f ∧¬ f ′e
i.e. a loop invariant just denotes (an upper bound approximation of) the loop’s state relation;
the formula f ′e describes that the value of e in the poststate is false.

The translation of program commands to state relations is more thoroughly discussed in Ap-
pendix A; in the following we present its application to some sample programs.

4.1. Computing Factorial Numbers

In this section, we investigate the semantics and the verification of the program for computing
factorial numbers already presented in Section 3.1:

32 Chapter 4. Semantics and Verification

public static int fac(int n) /*@
requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(VAR n);

@*/
{

int i=1;
int p=1;
while (i <= n) /*@
invariant VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT

AND 1 <= VAR i AND VAR i <= VAR n+1
AND VAR p = factorial(VAR i -1);

decreases VAR n - VAR i + 1;
@*/
{

p = p*i;
i = i+1;

}
return p;

}

Method Semantics

Right-clicking the item fac in the “Symbols” tree and selecting the menu entry “Show Seman-
tics” lets the RISC ProgramExplorer switch to the “Semantics” view and display the informa-
tion shown in Figure 4.1.

The view is split into several parts:

Method Definition In the left pane, the definition of the method is shown with a column
of active buttons (squares turning blue when the mouse is moved over them) to select
the whole method body or an individual command of the body; additionally for each
command a radio button is shown (see item “Condition Box” for their usage).

Statement Knowledge In the right pane, all information derived from the analysis of the
selected command is shown (see below for a detailed explanation of this information).

Condition Box Below the method definition, a text box is shown. The user may select via
the radio buttons to the left of the method body a single command, enter a state condition
into the textbox, and fix this condition (via the two radio buttons below the box) to be
either a “Prestate” or a “Poststate” condition. By pressing the button “Submit”, an
additional view will be displayed that exhibits the effect of “pushing” the condition
through the rest of the method body (we will later give an example).

In the pane “Bodsy/Statement Knowledge”, the following information is displayed for the
selected method/command (which is also shown at the bottom of the pane):

Pre-State Knowledge A condition which is known to hold whenever the command starts
execution.

4.1 Computing Factorial Numbers 33

Figure 4.1.: Semantics of Method fac

34 Chapter 4. Semantics and Verification

Effects The effects that may be produced by the execution of the command.

Variables The set of variables that may be modified by the command.

Exceptions The set of exceptions that may be thrown by the command.

Executes True, only if the command may terminate with the execution of a “normal”
statement.

Continues True, only if the command may terminate by executing continue.

Breaks True, only if the command may terminate with the execution of break.

Returns True, only if the command may terminate with the execution of return.

Transition Relation The transition relation of the command, i.e., a formula describing the
relationship between the pre-state and the post-state of the command execution.

Termination Condition The termination condition of the command, i.e., a formula that
describes a condition on the pre-state of the command execution which guarantees the
termination of the execution.

By default, all formulas are shown after extensive logical simplification. By selecting the link
“Show Original Formulas” the original formulas as constructed by the formal calculus are
displayed (these are potentially huge but may be of interest if it is unclear how the simplified
formula was derived).

For example, for the body of the method fac, the following information is derived:

This is a copy of the method precondition.

The method ends with a return statement and does not modify any global variable (all
modified variables are local to the method).

The core of this relation is the existential formula from which the formula value@next =
factorial(old n) can be derived, i.e., the result of the function is the factorial of parameter n
(the term value@next denotes the returned value in the post-state of the method execution).
The remaining information drawn from the relation is that the original value of n must not

4.1 Computing Factorial Numbers 35

be negative (old n ≥ 0), that the factorial of this value must not exceed the limit of type
int (factorial(old n) ≤ Base.MAXINT), and that the command always terminates with the
execution of a return statement (returns@next).

The formula states that the method body terminates, if the original value of n is not negative
(or that a predecessor command prevents the execution of the command, i.e., the pre-state of
the command execution is not an “executing” one such that executes@now does not hold).
This information is deduced from the fact that the value of the loop’s termination term must
be initially non-negative.

By selecting the body of the while loop, the following information is displayed:

We see from the pre-state knowledge that the body is only executed for 1≤ old i≤ old n and
that old p = factorial(old i−1); from the effects and the transition relation we can determine
that the only effect of the body is to increment i and multiply p with (the old value of) i.

Selecting the whole loop, gives the following information:

36 Chapter 4. Semantics and Verification

We see from the pre-state knowledge that the loop is executed with old n ≥ 0 and old i =
1; from this and the termination condition old n− old i ≥ −1, the termination of the loop
can be established. The transition relation also tells us that var i = old n+ 1, i.e., that the
loop terminates with the value of i being n+ 1 (since from the effects we know that n is not
changed); from this and var p = factorial(var i−1), we know that the loop terminates with p
being factorial(n).

We may also the investigate the effect of imposing additional constraints on certain states. For
example, we may select with the radio button the body of the while loop and enter into the
textbox as a “Prestate” condition

VAR i=2

After pressing the “Submit” button, we get the view depicted in Figure 4.2.

The green marker indicates for which statement the condition has been fixed that is indicated
at the bottom of the left pane. By moving the mouse over the markers we may investigate the
effects of this constraint for selected statement. For instance, when selecting

p = p*i;

we get the information

4.1 Computing Factorial Numbers 37

Figure 4.2.: Constraining a State

38 Chapter 4. Semantics and Verification

When selecting

i = i+1;

we get

i.e., we know that after the execution of the loop body p is even and i equals 3.

Method Verification

After the investigation of the method semantics (which has not given any indication of a prob-
lem so far), we may turn to the actual verification of the method. We return to the “Analysis”
view and investigate the task tree of the method which is displayed in Figure 4.3 (some of the
tasks labeled in violet may also be labeled red, if the corresponding proof has not yet been
performed). Open tasks are indicated by red task labels.

The solution of a task proceeds by

1. translating the task to a “state proving problem” in the language of the RISC ProgramEx-
plorer (such a problem may include built-in state predicates that are not part of classical
logic), then

2. translating the state proving problem into a “classical proving problem” in the language
of the RISC ProgramExplorer (the built-in state predicates have been translated to de-
fined predicates), and finally

3. translating the classical proving problem into a “ProofNavigator problem”, i.e. a prob-
lem in the language of the RISC ProofNavigator (which is slightly different from that of
the RISC ProgramExplorer).

By right-clicking the symbol of an open task, a menu appears that allows to print the corre-
sponding task translations in a linear format (this is mainly useful to investigate how the final
proof problem was generated from the original task).

For solving the proof problem associated to an open task, there exist three options:

4.1 Computing Factorial Numbers 39

Figure 4.3.: Verification Tasks

40 Chapter 4. Semantics and Verification

1. For certain tasks, the built-in validity checker is automatically applied to the problem; if
it is successful, the task label turns blue immediately.

2. Otherwise (the validity checker does not succeed or is not even attempted due to minor
chances of success), a proof is required. Such a proof is started by right-clicking a task
symbol and selecting “Execute Task”. Then the automatic scatter strategy is applied;
if it is successful, the task label turns blue.

3. Otherwise (the scatter strategy does not succeed), an interactive proof is started.
The RISC Program Explorer switches to the “Verification” view which is essentially
the interface of the RISC ProofNavigator. This view is left by pressing the button Quit
Proof (after confirmation); if the proof has been completed, the task label turns blue,
otherwise it stays red.

In the last two cases, a proof is generated and stored on disk. If the RISC ProgramExplorer
is terminated and restarted, the labels of the corresponding tasks are displayed in violet color.
On performing “Execute Task”, the stored proof is replayed and the label turns blue again.

In detail, the following tasks need to be performed:

Effects This is the task to show that the method only modifies those global variables that are
indicated in the modifies clause of the method header. This task can be automatically
performed by the implemented calculus1.

Postcondition This is the task to show the partial correctness of the method, i.e. that
the method ensures the postcondition indicated in the ensures clause of the method
header. No attempt is made to apply the validity checker; there is always a proof re-
quired.

Termination This is the task to extend the partial correctness of the method to its total
correctness, i.e. to show that the method also terminates. It is first attempted to solve
the task by the validity checker before a proof is requested.

Measure For a recursive method, this is the task to show that the method measure is well-
formed, i.e. that the method precondition implies that the method measure is not neg-
ative (the fact that the measure is decreased by a recursive call is proved as part of the
caller method’s termination condition).

Preconditions Each statement (such as an assignment) may be only executed, if the state-
ment’s precondition is satisfied (e.g. that the evaluation of an expression that occurs in
the statement does not yield an arithmetic overflow). For every statement with a non-
trivial precondition, a task is generated to show that the precondition is ensured when
the statement is executed. It is first attempted to solve the task by the validity checker
before a proof is requested.

Loops For each loop (for or while loop), several tasks are generated:

1However, iff a modifies clause lists some object variable, the task of verifying that the other variables of
the object are not modified, is added to the verification of the method’s postcondition

4.1 Computing Factorial Numbers 41

Invariant is preserved This is the task to show that the invariant is preserved by the
execution of the loop body (the fact that the invariant initially holds is added to
the loop’s precondition). No attempt is made to apply the validity checker; there is
always a proof required.

Measure is well-formed This is the task to show that the value of the termination
term does not become negative2 by any execution of the loop body (the fact that
the value of the termination term is initially not negative is shown as part of the
enclosing method’s termination condition). The validity checker is applied before
a proof is requested.

Measure is decreased This is the task to show the value of the termination term is
decreased by every execution of the loop body3. The validity checker is applied
before a proof is requested.

Type-checking Conditions Most aspects of a formula’s type correctness can be verified
by a static calculus, some aspects (such that in a particular occurrence of a term x/y
the variable y is not negative) give rise to verification tasks. Most of these tasks can be
performed by the validity checker; in some cases, however, a proof is requested.

Specification Validation (Optional) The software also generates two conditions whose
proofs are not mandatory but which may/should be performed before proceeding with
the rest of the verification.

• It should be shown that a “specification is satisfiable”, i.e., that for every pre-state
value that satisfies the method’s precondition there exists a post-state value that
satisfies the postcondition. If a specification is not satisfiable, every attempt to
verify partial correctness is a priori doomed.

• It should be shown that a “specification is not trivial”, i.e., that for every pre-state
value that satisfies the method’s precondition there exists a post-state value that
does not satisfy the postcondition. If a specification is trivial, it indicates that every
implementation is legal, which is a strong hint that the specification is flawed.

No attempt is made to apply the validity checker; there is always a proof requested.

The tasks are partially interdependent, e.g., the proof of partial correctness (performed in the
“postcondition” task) depends of the correctness of the “preconditions” and of the “invariants”.
However, the tasks can be performed in any order, e.g. it is recommended to first solve the
“postcondition” task (under the assumption that the invariants hold) and only afterward solve
the “invariants” tasks (which are typically more difficult). In this way, no time is wasted on
proving the correctness of an invariant that is not strong enough to show the partial correctness
of a method.

In the following, we investigate the tasks for the method fac in some more detail.

2 A termination term is either a single integer or a vector of integers; in the latter case, all components must not
be negative.

3If the termination term is a vector of integers, some component i must be decreased while all prior components
0, . . . , i−1 must stay the same.

42 Chapter 4. Semantics and Verification

Postcondition For a method with precondition p and state relation r, to show that the
postcondition q is satisfied amounts to proving

p∧ r⇒ q

(logically equivalent to r⇒ (p⇒ q)). Here p and q are part of the method header (requires
p ensures q) and r is shown in the Semantics view of the method (“State Relation”).

In our case, we have to prove

where the first line corresponds to p, the next two lines correspond to r, and the last line
corresponds to q. The proof succeeds by the automatic scatter strategy.

Termination The proof that the “method body terminates” is of form

p∧¬d⇒ t

where p represents the precondition of the method, d represents the diverges condition in
the method’s specification (an optional condition under which the method is allowed to run
forever) and t is the loop body’s termination condition (as depicted in the “Semantics” view
of the method).

In our case, the termination condition is essentially old n≥ 0 which is part of the pre-condition;
the corresponding task is solved by the validity checker.

Preconditions For a command with pre-state knowledge k and pre-condition c, to show
that the pre-condition is met amounts to proving

k⇒ c

where both k and c are displayed in the Semantics view of the method (“Pre-State Knowledge”
and “Precondition”).

In our example, there are three precondition tasks, one for the loop (to show that the loop
invariant initially holds), the other two for the assignments and in the loop body (to show that
no arithmetic overflows occur). The first proof of

4.1 Computing Factorial Numbers 43

is (after triggering the proof) solved automatically. The second proof of

(which correspods to the assignment p = p*i) requires some arithmetic reasoning with the
help of additional lemmas about the factorial function specified in theory Math; we omit it
here. The third proof of

(which corresponds to the assignment i = i+1) is simpler; it only depends on the theorem
∀n ∈ N : n > 2⇒ factorial(n)> n; the corresponding proof tree is

Loops For a while loop with invariant i and a body with state relation r, the proof of the
correctness of the invariant amounts to proving a formula of form

i′∧ e∧ r⇒ i′′

Here i′ represents a variant of i that expresses the relationship between the initial state 0 of the
loop and the state 1 before the current loop iteration, e expresses the fact that the loop condition
holds at state 1, r expresses the relation between the states 1 and 2 before and after the current
loop iteration, and i′′ represents a variant of i that expresses the relationship between states 0
and 2:

44 Chapter 4. Semantics and Verification

0 1 2

e

i′′

i′ r

In our example, this amounts to proving (after some simplification) the formula

This corresponding proof tree is

i.e., the proof requires the heuristic instantiation of formula “1yj” which represents the facto-
rial axiom ∀n ∈ N : factorial(n+1) = (n+1) · factorial(n).

The proof that the loop “measure is well-formed” is essentially to show

i′∧ e∧ r⇒ t ′ ≥ 0

where i′, e, and r are as indicated in the paragraph “Invariants” above and t ′ represents the
value of the termination term after the loop iteration.

In our case, t ′ is denoted by old n− var i+ 1 where e represents old i ≤ old n and r implies
var i = old i+1; the corresponding task can be solved by the validity checker.

The proof that the loop “measure is decreased” is essentially to show

i′∧ e∧ r⇒ t > t ′

where i′, e, r, and t ′ are indicated as above and t represents the value of the termination term
before the iteration of the loop.

In our case, t is denoted by old n− old i + 1 with the other definitions given above; the
corresponding task can be solved by the validity checker.

Type Checking Conditions The type checking conditions all result from the fact that
in the method specification respectively loop invariant terms like factorial(var n) respectively
factorial(var i− 1) occur; for each such occurrence it has to be shown that the argument
of factorial : N→ N (which is by static type checking known to be an integer number) is a
natural number, i.e., not negative. All the corresponding tasks can be automatically solved by
the validity checker.

4.2 Recursive Computation of Factorials 45

Specification Validation The validation of a method specification with precondition p
and postcondition q amounts to proving

∀x : p(x)⇒∃y : q(x,y)
∀x : p(x)⇒∃y : ¬q(x,y)

where x represents the pre-state of the method (containing method arguments etc) and y rep-
resents its post-state (containing the method result); we thus show that for every legal input
there exists some legal output (the specification is satisfiable) and some output that is not legal
(the specification is not trivial).

In case of the method fac, this amounts to proving the following:

The corresponding proof trees are as follows:

The proof for satisfiability amounts to instantiating, for given method argument n0, the exis-
tential formula with a poststate derived from the prestate “now_” by setting the return value to
factorial(n0); in the proof of non-triviality, the return value is set to −1 (a state, i.e. a value of
type “STATE”, is a record whose field val denotes the state’s return value, if there is any).

4.2. Recursive Computation of Factorials

We revisit the computation of factorial numbers by discussing a directly recursive solution and
an indirectly recursive solution.

The directly recursive solution implemented by a method fac0 is straight-forward:

public static int fac0(int n) /*@
requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(VAR n);
decreases VAR n;

@*/

46 Chapter 4. Semantics and Verification

{
if (n <= 0) return 1;
int n0 = fac0(n-1);
return n*n0;

}

The specification is extended by a recursion measure, i.e., a term whose value must be de-
creased by every recursive invocation of that method.

If we switch to the “Semantics” view and select the method call int n0 = fac0(n-1),
the following semantics is displayed:

The transition relation of that call is derived from the method’s postcondition: it says that the
poststate s2 of the method execution (next∼ s2 indicates that this state has the same variable
values as the poststate next of the method call) returns the value of factorial(n− 1) which is
stored in the variable n0 (which is the only visible variable that is modified by the statement).
Since every statement is only executed in a prestate now with property executes@now, the
pre-state knowledge tells us that n is positive and factorial(n) is in the range of type int, as
is required by the precondition of the method call.

4.2 Recursive Computation of Factorials 47

From the transition relation of the method call, the transition relation of the whole method
body can be derived:

We can clearly see two cases depending on the truth value of old n <= 0: if this is false, the
second branch tells us that the method terminates by returning old n · factorial(old n− 1); if
this is true the first branch tells4 that the return value of the method is 1.

4Since executes@state0 and returns@state0 are contradictory, the inner conditional formula can be reduced to
its second branch; here the formula is not yet sufficiently simplified by the RISC ProgramExplorer.

48 Chapter 4. Semantics and Verification

In the “Analysis” view, the following non-trivial verification tasks are displayed:

Among these, only the task for the postcondition and the preconditions require major human
interaction. As for the proof of the postcondition, by some human guidance

we reduce the proof to the only interesting subsituation:

Here it has to be shown (by appropriate instantiation of formula “1yj” derived from axiom
fac_ax2 in theory Math) that factorial(nold) = nold · factorial(nold−1).

4.2 Recursive Computation of Factorials 49

The proof of the preconditions essentially have to show that the argument of the recursive
factorial call and the return value are in the range of type int; the detailed proofs are not
difficult but a a bit tedious:

The RISC ProgramExplorer also supports arbitrary mutual recursion. As an example, take the
following computation of the factorial numbers performed by two methods fac1 and fac2
which call each other:

public static int fac1(int n) /*@
requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(VAR n);
decreases VAR n;

@*/
{

if (n <= 0) return 1;
int n0 = fac2(n-1);
return n*n0;

}

public static int fac2(int n) /*@
requires VAR n >= 0 AND factorial(VAR n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(VAR n);
decreases VAR n;

@*/
{

if (n <= 0) return 1;
int n0 = fac1(n-1);
return n*n0;

}

The methods have the same state relations and verification tasks as the directly recursive
method fac0; we thus omit the details.

50 Chapter 4. Semantics and Verification

4.3. Searching in Arrays

Our next example discusses the semantics and verification of a method search which im-
plements linear search of a given integer array a for a key x; the method returns the smallest
position of an occurrence of x in a, respectively −1, if x does not occur in a.

public class Searching
{
public static int search(int[] a, int x) /*@
requires ...;
ensures ...;

@*/
{

int n = a.length;
int r = -1;
int i = 0;
while (i < n && r == -1) /*@

invariant ...;
decreases ...;

@*/
{

if (a[i] == x)
r = i;

else
i = i+1;

}
return r;

}
}

The specification of the method is as follows:

requires NOT (VAR a).null;
ensures
LET result = VALUE@NEXT, n = (VAR a).length IN

IF result = -1 THEN
FORALL(i: INT): 0 <= i AND i < n =>

(VAR a).value[i] /= VAR x
ELSE

0 <= result AND result < n AND
(FORALL(i: INT): 0 <= i AND i < result =>

(VAR a).value[i] /= VAR x) AND
(VAR a).value[result] = VAR x

ENDIF;

The program array a is represented by a mathematical variable var a with the following type
IntArray (declared in theory Base):

4.3 Searching in Arrays 51

int: TYPE = [MIN_INT..MAX_INT];
nat: TYPE = [0..MAX_INT];
IntArray: TYPE =

[#value: ARRAY int OF int, length: nat, null: BOOLEAN#];

The precondition states that a must not be the null pointer. The postcondition describes the
two possible method results using the terms var a.length to refer to the number of elements in
a and var a.value[i] to refer to the value at position i.

The loop is correspondingly annotated with the following invariant and termination term:

invariant NOT (VAR a).null AND VAR n = (VAR a).length
AND 0 <= VAR i AND VAR i <= VAR n
AND (FORALL(i: INT): 0 <= i AND i < VAR i =>

(VAR a).value[i] /= VAR x)
AND (VAR r = -1 OR (VAR r = VAR i AND VAR i < VAR n AND

(VAR a).value[VAR r] = VAR x));
decreases IF VAR r = -1 THEN VAR n - VAR i ELSE 0 ENDIF;

The termination term is defined by two cases, since if x is found in a, i is not incremented but
r is set to −1.

From the specified method, the following information is displayed in the “Semantics” view of
method linsearch:

52 Chapter 4. Semantics and Verification

We see that the body is executed in a state when a is not null and that the termination con-
dition is ensured since the length of a is always non-negative; from the transition relation, we
can deduce that up to a certain position 0≤ in≤ old a.length (the value of i at the termination
of fac) the key x does not occur in a and that one of the two cases occurs:

1. the return value is −1 and in = n, or

2. the return value equals in and a holds x at that position.

From this the partial correctness of the method is pretty self-evident.

The semantics of the while loop is depicted as follows:

In the pre-state knowledge, we can derive the values of n, r, and i when the loop starts ex-
ecution. From the effect clause, we can deduce that the loop is only terminated by the loop
expression and that the only modified variables are r and i. The transition relation gives essen-
tially the same information as for the method body discussed above. The termination condition
states that the termination term must be initially non-negative; from the pre-state knowledge,
we know that this is the case because n equals the length of a and i is 0.

4.3 Searching in Arrays 53

The semantics of the loop body is depicted as follows:

We see that only the variables r and i are modified as described by the transition relation. The
semantics of the body statement i=i+1

has a precondition that restricts the value of old i+1 to the domain of type int; fortunately
this can be established from the pre-state knowledge old i≥ 0 and old i< old n= old a.length.

54 Chapter 4. Semantics and Verification

The “Analysis” view depicts the following (non-trivial) verification tasks:

We see that the verification of the method’s effects, its termination, and that the loop measure
is well-formed and decreased by every iteration have been performed automatically by the
validity checker. The verification of the individual preconditions can be performed by the
automatic scatter strategy respectively built-in simplification of the RISC ProofNavigator.
The only two tasks that require interactive proofs are related to the method’s partial correctness
and the preservation of the invariant.

The verification of partial correctness amounts to proving that the method’s state relation de-
picted above implies the post-condition; the corresponding proof proceeds with minor help:

Also the verification of the loop invariant requires only minor guidance to split the goal ap-
propriately towards those two proof branches that can be solved by heuristic instantiation:

4.4 Program States and Control Flow Interruptions 55

We see that with slightly more aggressive automation of proof search, also these proofs could
have been performed fully automatically.

4.4. Program States and Control Flow Interruptions

The RISC ProgramExplorer also supports the arbitrary use of the commands continue,
break, return, throw that interrupt the control flow by jumping to the next loop iter-
ation, to the command succeeding the loop, to the caller of a method, or to the handler of
an exception. The specification language takes this feature into account by supporting a type
STATE(T) which denotes the state before/after execution of a command inside a method that
returns a value of type T (i.e., T denotes the mathematical counterpart of the corresponding
program type); the type STATE denotes the corresponding type for a method of type void. In
a specification, the constants NOW and NEXT are of this type; NOW denotes the pre-state of the
command and NEXT denotes its post-state. Specifications may expressed with the following
state functions (where s denotes a state):

VALUE@s which denotes the state’s return value (if s results from the execution of the state-
ment return value);

MESSAGE@s which denotes the state’s exception message (if s results from the execution of
the statement throw new exception(message)).

The most frequently occurring term of this kind is VALUE@NEXTwhich describes a function’s
return value.

Furthermore, we have the following state predicates (which are exhaustive and disjoint; i.e. a
state is exactly in one of the denoted modes):

EXECUTES@s s is executing, i.e. s results from the execution of a command that does not
interrupt the normal control flow.

CONTINUES@s s is continuing, i.e. s results from the execution of command continue;
execution continues with the next iteration of the enclosing loop.

BREAKS@s s is breaking, i.e. s results from the execution of command break; execution
continues with the command after the enclosing loop;

RETURNS@s s is returning, i.e. s results from the execution of command return; execution
returns to the caller of the current method.

THROWS@s s is throwing, i.e. s results from the execution of command throw; execution
jumps to the currently active exception handler (if any). THROWS(E)@s is a special
version of the predicate that is only true if the exception thrown is of type (class) E.

Finally, we have the state predicate s1 ∼ s2 which denotes that s1 and s2 (which may be of
different state types) are equal up to the state’s return value.

After translation of a verification condition from state logic to classical logic, a state is repre-
sented by a record type

56 Chapter 4. Semantics and Verification

STATE: TYPE =
[#mode: INT, val: ..., exception: INT, message: ...#];

where an integer field mode holds a numerical code for the execution mode, val holds the
state’s return value, exception holds a code for the exception’s type, and message holds the ex-
ception’s message. The state functions above are translated to corresponding functions value_
and message_ that extract the corresponding information from the record. The state predicates
above are translated to corresponding predicates executes_, continues_, breaks_, returns_,
throws_, and throwsException_ that test the record’s mode field.

As a simple example, take the following method isSorted which returns TRUE if and only
if a given integer array is sorted in ascending order:

/*@
theory uses Base {

int: TYPE = Base.int;
intArray: TYPE = Base.IntArray;
isSorted: PREDICATE(intArray, int) =
PRED(a: intArray, n: int):

FORALL(i: INT): 1 <= i AND i < n =>
a.value[i-1] <= a.value[i];

}
@*/
class Arrays
{

public static boolean isSorted(int[] a) /*@
requires NOT (VAR a).null;
ensures (VALUE@NEXT=TRUE) <=>

isSorted(VAR a, (VAR a).length);
@*/
{
int n = a.length;
for (int i=1; i<n; i++)
/*@ invariant ...; decreases ...; @*/
{

if (a[i-1] > a[i]) return false;
}
return true;

}
}

The program loop is adequately specified by the following invariant and termination term:

invariant NOT (VAR a).null AND VAR n = (VAR a).length
AND 1 <= VAR i AND (VAR n >= 1 => VAR i <= VAR n)
AND (EXECUTES@NEXT => isSorted(VAR a, VAR i))
AND (RETURNS@NEXT =>

VALUE@NEXT = FALSE AND
VAR i < VAR n AND

4.4 Program States and Control Flow Interruptions 57

(VAR a).value[VAR i-1] > (VAR a).value[VAR i]);
decreases VAR n - VAR i + 1;

The invariant says that, if the loop is still executing, the array is know to be sorted up to
position i; if the loop, however, executes the return statement, it is with a return value
false because at position i the order is violated.

If we switch to the “Semantics” view of the method, we can consequently investigate the
semantics of return false (which as seen by the effects always returns)

of the loop body (which as seen by the effects may or may not return)

and of the whole loop

as indicated by the loop invariant.

58 Chapter 4. Semantics and Verification

The semantics of the whole method body is

The state relation shows that there exist two cases in the second case, the return value is “false”
because a violation in the sorting order has been detected at position in; in the first case (whose
description could be considerably simplified because executes@state1 and returns@state1 are
incompatible), the result is “true” and the array is sorted up to position in = n = old a.length.

4.5 Objects and Method Side Effects 59

For method isSorted the usual verification tasks are generated where only the proof of the
postcondition, the loop precondition, the preservation of the loop invariant, and the decrement
of the loop measure require human guidance. For instance, the postcondition proof

requires the expansion of the predicate isSorted and the heuristic instantiation of the re-
sulting universal formula. The proof of the loop precondition (the loop invariant hold initially)

requires the expansion of auxiliary predicates “executes_” and “returns_” (which represent in
the RISC ProofNavigator the corresponding state predicates mentioned above) to show that
they cannot hold for the same state. The other proofs proceed in a similar fashion.

4.5. Objects and Method Side Effects

The RISC ProgramExplorer also supports reasoning over objects as shown in the following
implementation of the abstract datatype “stack”:

public class Stack2 /*@
invariant

NOT (VAR stack).null AND
0 <= VAR n AND VAR n <= (VAR stack).length;

@*/

60 Chapter 4. Semantics and Verification

{
private int[] stack;
private int n;

public Stack2() /*@
assignable this;
ensures VAR n = 0;

@*/
{

stack = new int[10];
n = 0;

}

public boolean isEmpty() /*@
ensures VALUE@NEXT = TRUE <=> VAR n = 0;

@*/
{

return n == 0;
}

public int top() /*@
requires VAR n > 0;
ensures VALUE@NEXT = (VAR stack).value[VAR n-1];

@*/
{

return stack[n-1];
}

public int pop() /*@
requires VAR n > 0;
assignable n;
ensures VALUE@NEXT = (VAR stack).value[OLD n-1]

AND VAR n = OLD n-1;
@*/
{

int result = top();
n = n-1;
return result;

}

public void push(int v) /*@
requires (VAR n = (VAR stack).length =>

2*(VAR stack).length+1 <= Base.MAX_INT);
assignable stack, n;
ensures VAR n = OLD n+1

4.5 Objects and Method Side Effects 61

AND (VAR stack).value[OLD n] = VAR v;
@*/
{

if (n == stack.length)
stack = resize();

stack[n] = v;
n = n+1;

}

private int[] resize() /*@
helper;
requires

NOT (VAR stack).null AND
0 <= VAR n AND VAR n <= (VAR stack).length AND
2*(VAR stack).length+1 <= Base.MAX_INT;

ensures LET result = VALUE@NEXT IN
NOT result.null AND
result.length > (OLD stack).length AND
(FORALL(i: INT): 0 <= i AND i < VAR n =>

result.value[i] = (OLD stack).value[i]);
@*/
{

int[] stack0 = new int[2*stack.length+1];
for (int i=0; i<n; i++) /*@
invariant

NOT (VAR stack).null AND
0 <= VAR n AND VAR n <= (VAR stack).length AND
0 <= VAR i AND VAR i <= VAR n AND
NOT (VAR stack0).null AND
(VAR stack0).length > (OLD stack).length AND
(FORALL(i: INT): 0 <= i AND i < VAR i =>

(VAR stack0).value[i] = (OLD stack).value[i]);
decreases VAR n - VAR i;

@*/
stack0[i] = stack[i];

return stack0;
}

}

The main features of this program are the following:

1. The invariant in the class header specifies an object invariant, i.e. a state condition

a) that is added to the postcondition of every constructor and object method,

b) that is added to the precondition of every object method (not constructor)

provided the method is not tagged as helper (as is the auxiliary method resize()

62 Chapter 4. Semantics and Verification

above5

2. The assignable clauses in the method headers constrain the side effects of the
method by indicating which globally visible variables may be changed by the execution
of the method. A specification assignable this indicates that every variable in
the current object may be changed; a specification of assignable var (with object
variable var) specifies that only the variable var in the current object may be changed
(all other variables in the current object remain the same); a specification assignable
object.var specifies that in object object only the variable var may be changed.

Similar specifications are allowed for class variables (in the current class or other classes
using the syntax assignable class.var). If no assignable clause is given,
the method is “pure”, i.e., does not change any object or class variable.

An object of type Stack2 is represented by the following record type (defined in the auto-
matically generated theory Stack2):

Stack2: TYPE =
[#stack:

[#value: ARRAY Base.int OF Base.int,
length: Base.nat, null: BOOLEAN#],

n: Base.int, null: BOOLEAN, new: INT#]

The record type contains one field for every object variable as well as the automatically gen-
erated fields null (if set to TRUE, the record represents the null value) and new (set to an
unknown value after the construction of the object; the results of two constructor calls are thus
never equal). The specification variable this is a value of this type.

5Currently this is mainly a feature to avoid repetition in method specifications; it is e.g. not yet checked whether
a helper method is private as would be required for a true modular reasoning about objects.

4.5 Objects and Method Side Effects 63

Based on this representation, the semantics of the object method push is as follows:

We see that the effect of the method is a modification of the value of this (of record type
Stack2); if some object variables are not changed, a corresponding equality is provided as part
of the transition relation.

For each of the object methods, as usual a couple of tasks are generated; however, most of
them can be solved automatically by the validity checker or the scatter strategy. Also the
remaining interactive proofs are very simple and require only minor human guidance.

References

[1] ANTLR v3 Parser Generator, 2010. http://www.antlr.org.

[2] Clark Barrett. CVC Lite Homepage, April 2006. New York University, NY, http:
//www.cs.nyu.edu/acsys/cvcl.

[3] Clark Barrett and Sergey Berezin. CVC Lite: A New Implementation of the Cooperating
Validity Checker. In Computer Aided Verification: 16th International Conference, CAV
2004, Boston, MA, USA, July 13–17, 2004, volume 3114 of Lecture Notes in Computer
Science, pages 515–518. Springer, 2004.

[4] The Java Modeling Language (JML), 2010. http://www.jmlspecs.org.

[5] The RISC ProofNavigator, 2010. Research Institute for Symbolic Computation (RISC),
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at/research/
formal/software/ProofNavigator.

[6] Wolfgang Schreiner. A Program Calculus. Technical report, Research Insti-
tute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Aus-
tria, September 2008. http://www.risc.jku.at/people/schreine/papers/

ProgramCalculus2008.pdf.

[7] Wolfgang Schreiner. Understanding Programs. Technical report, Research Insti-
tute for Symbolic Computation (RISC), Johannes Kepler University, Linz, Austria,
July 2008. http://www.risc.uni-linz.ac.at/people/schreine/papers/

Understanding2008.pdf.

[8] Wolfgang Schreiner. The RISC ProofNavigator: A Proving Assistant for Program Verifi-
cation in the Classroom. Formal Aspects of Computing, 21(3):277–291, 2009.

[9] Wolfgang Schreiner. Computer-Assisted Program Reasoning Based on a Relational Se-
mantics of Programs (Extended Abstract). In Pedro Quaresma and Ralph-Johan Back,
editors, THedu’11, CTP Components for Educational Software, Workshop associated to
CADE-23, number 2011/001 in CISUC Technical Report, pages 55–59, Wroclaw, Poland,
July 31, 2011. Center for Informatics and Systems, University of Coimbra, Portugal.

http://www.antlr.org
http://www.cs.nyu.edu/ acsys/cvcl
http://www.cs.nyu.edu/ acsys/cvcl
http://www.jmlspecs.org
http://www.risc.jku.at/research/formal/software/ProofNavigator
http://www.risc.jku.at/research/formal/software/ProofNavigator
http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf
http://www.risc.jku.at/people/schreine/papers/ProgramCalculus2008.pdf
http://www.risc.uni-linz.ac.at/people/schreine/papers/Understanding2008.pdf
http://www.risc.uni-linz.ac.at/people/schreine/papers/Understanding2008.pdf

A. Programs as State Relations

In this chapter (whose material is based on [9]), we sketch the formal calculus on which the
RISC ProgramExplorer is founded. To simplify the presentation, we do not refer to the subset
of Java which is actually used in the software but to a simple command language without
control flow interruptions and method calls. In this language, a command c can be formed
according to the grammar

c ::= x = e | {var x; c} | {c1;c2}
| if (e) then c | if (e) then c1 else c2 | while (e) f ,t c

where x denotes a program variable, e denotes a program expression, and a while loop is
annotated by an invariant formula f and termination term t. The semantics of a command
c is defined, for a given set Store of possible states (store contents), by a binary relation
[c] ⊆ Store× Store that defines the possible state transitions of the command and by a set
〈〈c〉〉 ⊆ Store that defines those pre-states where the command must perform a transition to
some post-state; for a definition of the semantics, see [6].

In Figures A.1, A.2, and A.3, we give rules (where the terms old xs and var xs refer to the sets
of values of the program variables xs in the pre-/post-state) to derive for the commands shown
above the following three kinds of judgments:

• c : [fr]
xs
g,h denotes the derivation of a state relation fr from command c together with the

set of program variables xs that may be modified by c. The derived relation is correct
if the derived state-independent condition g holds, and if the derived state condition
h holds on the pre-state of c. The rationale for g is is to capture state-independent
conditions such as the correctness of loop invariants; the purpose of h is to capture
statement preconditions that prevent e.g. arithmetic overflows. These side conditions
have to be proved; they are separated from the transition relation fr to make the core of
the relation better understandable.

• c ↓gc fc denotes the derivation of a state condition (termination condition) fc from c; the
derived condition is correct, if the state-independent condition gc holds. The purpose of
this side condition is to capture that the initial value of a loop’s termination term is a
natural number.

• PRE(c, fq) = fp and POST(c, fp) = fq denote derivations that compute from a command
c and a condition fq on the post-state of c a corresponding condition fp on the pre-state,
respectively from c and pre-condition fp the post-condition fq. The corresponding rules
in Figure A.3 show that these conditions can be computed directly from the transition
relation of c.

66 Chapter A. Programs as State Relations

c : [f]xs
g,h x 6∈ xs

c : [f ∧var x = old x]xs ∪ {x}
g,h

e'h t

x = e : [var x = t]{x}true,h
c : [f]xs

g,h

{var x; c} : [∃x : f]xs\x
g,∀x : h[x/old x]

c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

PRE(c1,h2) = h3

{c1;c2} : [∃ys : f1[ys/var xs]∧ f2[ys/old xs]]xs
g1∧g2,h1∧h3

e'h fe c1 : [f1]
xs
g1,h1

if (e) then c : [if fe then f1 else var xs = old xs]xs
g1,h∧ (fe⇒ h1)

e'h fe c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

if (e) then c1 else c2 : [if fe then f1 else f2]
xs
g1∧g2,h∧ if fe then h1 else h2

e'h fe c : [fc]
xs
gc,hc

g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒
h[ys/old xs]∧ f [xs/old xs,zs/var xs]

while (e) f ,t c : [f ∧¬ fe[var xs/old xs]]xs
gc∧g,h∧ f [old xs/var xs]

Figure A.1.: The Transition Rules

x = e ↓true true
c ↓g f

{var x; c} ↓g ∀x : f
c1 ↓g1 f1 c2 ↓g2 f2 PRE(c1, f2) = f3

{c1;c2} ↓g1∧g2 f1∧ f3

e'h fe c ↓g f
if (e) then c ↓g fe ⇒ f

e'h fe c1 ↓g1 f1 c2 ↓g2 f2
if (e) then c1 else c2 ↓g1∧g2 if fe then f1 else f2

e'h fe c : [fc]
xs
gc,hc

c ↓gt ft
g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒

gt [ys/old xs]∧ ft [ys/old xs]∧ let n = t[zs/old xs] in n ∈ N∧n < t[ys/old xs]
while (e) f ,t c ↓g t ∈ N

Figure A.2.: The Termination Rules

c : [f]xs
g,h

PRE(c, fq) = ∀xs : f [xs/var xs]⇒ fq[xs/old xs]

c : [f]xs
g,h

POST(c, fp) = ∃xs : fp[xs/old xs]∧ f [xs/old xs,old xs/var xs]

Figure A.3.: The Pre-/Postcondition Rules

67

The derivations make use of additional judgments e ' fe f and e ' fe t which translate a
boolean-valued program expression e into a logic formula f and an expression e of any other
type into a term t, provided that the state in which e is evaluated satisfies the condition fe (the
rules for these judgments are omitted).

One should note that the rules presented in Figures A.1 and A.2 can be applied recursively
over the structure of a command; first we determine the transition/termination formula of
the subcommands, then we combine the formulas to the transition/termination formula of the
whole command. Along this process, the side condition h is constructed which has to be
shown separately to hold in the pre-state of the command in order to verify the correctness of
the translation.

A special case is the rule for while loops. Here the result is only determined by the invariant
formula respectively termination term by which the loop is annotated; additionally, a proof
obligation g is generated to verify the correctness of the loop body with respect to invariant and
termination term. In a similar way, in the full programming language calls of program methods
are handled: the transition relation of the method call is derived from the specification of the
method; the correctness of the implementation of the method is to be established separately.
We thus yield a modular approach to the derivation of transition relations and termination
conditions; the size of the derived formula is independent of the sizes of the bodies of the
loops executed respectively of the methods called. Furthermore, the approach gives rise to
some sort of “correct by construction” approach: we may first develop loop invariants and
method preconditions (and verify the correctness of programs executing the loops and calling
the methods) before we implement the bodies of the loops and methods (and consequently
verify the correctness of implementations).

Formally, the derivations satisfy the following soundness constraints.

Theorem 1 (Soundness) For all c ∈ Command, fr, fc, fp, fq,g,h ∈ Formula, and for all xs ∈
P(Variable), the following statements hold:

1. If we can derive the judgment c : [fr]
xs
g,h, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([c](s,s′)⇒ [fr](s,s′)∧∀x ∈ Variable\xs : [x](s) = [x](s′)).

2. If we can (in addition to c : [fr]
xs
g,h) derive the judgment c ↓gc fc, then we have for all

s ∈ Store
[g]∧ [gc]∧ [h](s)⇒ ([fc](s)⇒ 〈〈c〉〉(s)).

3. If we can (in addition to c : [fr]
xs
g,h) also derive the judgment PRE(c, fq) = fp or the

judgment POST(c, fp) = fq, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([fp](s)∧ [fr](s,s′)⇒ [fq](s′)).

The semantics [f](s,s′) of a transition relation f is determined over a pair of states s,s′ (and a
logic environment, which is omitted for clarity); the semantics of state condition g is defined

68 Chapter A. Programs as State Relations

as [g](s)⇔∀s′ : [g](s,s′) and the semantics of a state independent-condition h is defined as
[h]⇔∀s,s′ : [h](s,s′).

In [7], the formal semantics of commands and formulas has been defined and the soundness
of (a preliminary form of) the calculus has been proved. In [6], a concise definition of the
semantics, judgments, and rules of (an older form of) the calculus is given.

B. Programming Language

In this appendix, we sketch the language that is used in the RISC ProgramExplorer for describ-
ing programs (its formal syntax is described in Appendix H.1). This programming language
can in the following sense be considered as a “MiniJava”, i.e. as (a variant of) a subset of
Java: Assume that a program can be parsed and type-checked by the RISC ProgramExplorer
without error. If this program can be also compiled by the Java compiler without error, then
the execution of the generated target code behaves as specified by Java1.

Deviations In detail, MiniJava has the following deviations compared to Java (such that a
program that can be parsed and type-checked by the RISC ProgramExplorer cannot be com-
piled in Java):

Visibility Modifiers The modifiers public, protected, and private are recognized
but ignored; in fact MiniJava treats all entities as if declared with modifier public.
Consequently, if a MiniJava program violates the specified access constraints, it cannot
be compiled by a Java compiler.

Constraints The following items describe constraints of MiniJava (such that a program
that can be compiled with Java cannot be parsed or type-checked by the RISC ProgramEx-
plorer)2.

Inheritance MiniJava does not support inheritance; every class denotes an object type that
is incompatible with the object type of any other class.

Interfaces MiniJava does not support interfaces.

Method Calls A method call with a return value may only appear on the right side of of a
variable initialization or of a variable assignment, not as an expression within another
expression.

For Loops The initialization part of a for loop header must be an initialized variable declara-
tion or a variable assignment; the update part of the header must be a variable assignment
or increment.

1It should be noted that “MiniJava” was designed as a simple imperative programming language whose concrete
syntax and semantics is immediately familiar to many programmers and can thus represent the basis for
understanding formal specifications of imperative languages. It is not designed as the starting point of the
specification of full Java.

2Actually, only the major constraints are listed (more constraints can be detected by investigating the syntax
specified in Appendix H.1).

70 Chapter B. Programming Language

Throwing Exceptions An exception can be only thrown by a statement of form throw
new Exception(string)where string denotes a string literal, respectively a value
of type java.lang.String.

Null The keyword null may only appear on the right hand side of an initialization or as-
signment statement or on the right hand side of an equality or inequality expression.

Array Types Currently only one-dimensional arrays are supported (i.e. the base type of an
array must not itself be an array type).

References The type system restricts a program such that that every object variable can be
considered to hold the object value (rather than a reference to the value) which con-
siderably simplifies reasoning about objects. This restriction ensures that two different
references cannot denote the same object (and so an update of the object value via one
reference cannot affect the object value denoted by any other reference). In particular,

• a variable of an object type may only receive the result of a constructor call or of a
method call;

• a return statement may only return (the result of) a constructor call, a method
call, or an object path v..., where v denotes a local variable of the current
method;

• a method/constructor call may receive as an argument of an object type only (the
result of) a constructor call, a method call, or an object path v... where v denotes
a local variable or a method parameter that is not the base of an object path which
appears as another argument in the same method/constructor call.

In the description above, an object path v... denotes the variable v , possibly trailed
by a sequence of selectors of the form .var (an object variable selector) or [exp] (an
array index selector).

Parameters In a method, a parameter that denotes an object or array must not be assigned a
new value (but the contents of the object or array may be modified). The reason is that
the RISC ProgramExplorer handles such parameters as “transient” (the corresponding
arguments may have new values after the call of the method); the restriction ensures that
this view coincides with the Java semantics of object/array parameters holding pointers.

Java Classes The RISC ProgramExplorer does not itself provide/implement the classes
of the Java API (also not the classes java.lang.String used for character strings or the
class java.lang.System used for standard input/output); if such classes are used in pro-
grams, the programmer must provide corresponding class stubs in (a subpackage of) a pack-
age java within the package hierarchy seen by the RISC ProgramExplorer (see Section E).
If no class String is provided, strings are represented by a built-in STRING type.

Specification Comments The contents of program comments of the form /*@ ...@*/
and //@ ... are interpreted as formal program specifications; the language of these speci-
fications are explained in the following section.

C. Specification Language

In this appendix, we describe the language that is used in the RISC ProgramExplorer for spec-
ifying programs. This language is based upon the logic language of the RISC ProofNavigator
as explained in Section C.1. With this language whose formal syntax is described in Ap-
pendix H.2, theories can be constructed as described in Sections C.2 and C.3. With the help
of theories, we may specify programs as described in Sections C.5, C.6, and C.7.

C.1. Logic Language

The logic language of the RISC ProgramExplorer is based on the language of the RISC Proof-
Navigator [5, 8]. In the following, we only describe the differences respectively extensions.

C.1.1. Declarations

The logic language allows to introduce by declarations

• type constants,

• object/function/predicate constants,

• constants denoting formulas (to be proved) and axioms (assumed true).

While the language of RISC ProofNavigator considers both terms and formulas as elements
of the syntactic domain (value) expression (formulas are just expressions denoting a Boolean
value, mismatches between terms and formulas are detected by the type checker), the RISC
ProgramExplorer decomposes expression into two syntactic domains term and formula (which
already enables the parser to detect mismatches). Nevertheless, on the semantic level predi-
cates are just considered as functions whose result is a Boolean value.

Object/function/predicate constants can now be defined as follows:

ident:type=term This definition introduces an object constant ident defined as term. If
type denotes the type BOOLEAN, ident can be used as a 0-ary predicate constant.

ident:type<=>formula This definition introduces a 0-ary predicate constant ident; type
must denote the type BOOLEAN.

ident:type=LAMBDA(params):term This definition introduces a new function con-
stant ident which is defined as a function that binds its concrete arguments to the param-
eters params and returns as a a result the value of term in the environment set up by the

http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_10.html
http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_10.html
http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_10.html

72 Chapter C. Specification Language

binding. Here type must denote a corresponding function type. If the domain of type
denotes the type BOOLEAN, ident can be considered as a predicate constant.

ident:type=PRED(params):formula This definition introduces a predicate constant
ident which is defined as a predicate that binds its concrete arguments to the parameters
params and returns as a a result the truth value of formula in the environment set up
by the binding. Here type must denote a corresponding function type whose domain
denotes the type BOOLEAN; here the type PREDICATE (see the following subsection)
is recommended.

C.1.2. Types

The RISC ProgramExplorer introduces the additional types

STRING
PREDICATE(types)

STRING is an unspecified type which plays a role in the mapping of program types to logical
types, see the next subsection.

PREDICATE(types) is a synonym of

(types)->BOOLEAN

The use of this type syntactically simplifies the definitions of predicate constants (see the
previous subsection).

C.1.3. Mapping Program Types to Logical Types

The subsequent subsections describe how a logical formula may refer to the values of program
variables. This requires the mapping of program values to logical values and of program types
to logical types. The mapping is based on the automatically generated theory Base in the
unnamed top-level package:

theory Base
{

MIN_INT: INT = -2147483648;
MAX_INT: INT = 2147483647;
minIntAxiom: AXIOM MIN_INT < 0;
maxIntAxiom: AXIOM MAX_INT > 0;
int: TYPE = [MIN_INT..MAX_INT];
nat: TYPE = [0..MAX_INT];
char: TYPE;
intTrunc: REAL -> INT;
intTruncAxiom: AXIOM FORALL(x: REAL):

(IF x >= 0 THEN x-1 < intTrunc(x) AND intTrunc(x) <= x
ELSE x <= intTrunc(x) AND intTrunc(x) < x+1 ENDIF);

intDivOverflow: (int, int) -> int;

C.1 Logic Language 73

intDiv0: (int, int) -> INT = LAMBDA(x: int, y: int):
(IF y /= 0 THEN intTrunc(x/y) ELSE intDivOverflow(x, y) ENDIF);

zero: int = 0;
nullChar: char;
nullString: STRING;
newString: INT -> STRING;
IntArray: TYPE =

[#value: ARRAY int OF int, length: nat, null: BOOLEAN#];
nullIntArray: IntArray =

(#value:=ARRAY(y: int): zero, length:=zero, null:=TRUE#);
newIntArray: nat -> IntArray = LAMBDA(x: nat):

(#value:=ARRAY(y: int): zero, length:=x, null:=FALSE#);
CharArray: TYPE =

[#value: ARRAY int OF char, length: nat, null: BOOLEAN#];
nullCharArray: CharArray =

(#value:=ARRAY(y: int): nullChar, length:=zero, null:=TRUE#);
newCharArray: nat -> CharArray = LAMBDA(x: nat):

(#value:=ARRAY(y: int): nullChar, length:=x, null:=FALSE#);
BooleanArray: TYPE =

[#value: ARRAY int OF BOOLEAN, length: nat, null: BOOLEAN#];
nullBooleanArray: BooleanArray =

(#value:=ARRAY(y: int): FALSE, length:=zero, null:=TRUE#);
newBooleanArray: nat -> BooleanArray = LAMBDA(x: nat):

(#value:=ARRAY(y: int): FALSE, length:=x, null:=FALSE#);
StringArray: TYPE =

[#value: ARRAY int OF STRING, length: nat, null: BOOLEAN#];
nullStringArray: StringArray =

(#value:=ARRAY(y: int): nullString, length:=zero, null:=TRUE#);
newStringArray: nat -> StringArray = LAMBDA(x: nat):

(#value:=ARRAY(y: int): nullString, length:=x, null:=FALSE#);
}

In detail, program types are mapped to logical types as follows:

boolean The program type boolean is mapped to the logical type BOOLEAN.

int The program type int is mapped to the logical type Base.int (which is a subrange
of the type INT of all integer numbers).

char The program type char is mapped to the logical type Base.char (which is currently
unspecified).

class C Every class C is automatically translated to a theory C that resides in the same
package as the class. This theory contains a record type C to which the program type
(class) C is mapped. A record of this type contains

• one field for every object variable of the class;

• a field null of type BOOLEAN which, if set to true, indicates that the program
value represents the null pointer (then the other fields are meaningless);

• a field new of type INT which is set to a unique value when the corresponding
object is newly created (i.e., two object allocations yield different objects).

74 Chapter C. Specification Language

The theory also contains an array type Array to which the program type (class) C[]
is mapped (see below for the details of array representations).

Additionally the automatically generated theory contains the following constants:

null: C This constant represents a program value of type C that is null.

newObject: INT->C This function is used to represent the allocation of a value of
type C (the argument is an unspecified integer by which the new field of the object
is initialized).

nullArray: Array This constant represents a program value of type C[] that is
null.

newArray: INT->Array This function is used to represent the allocation of an
array of type C[] (the argument represents the length of the array); an axiom
newArrayAxiom specifies that all elements in the range of the array are null.

In the translation of an object access object.field, the RISC ProgramExplorer uses the
precondition NOT object.null. If an object, for which this precondition can be es-
tablished is updated by an assignment to an object variable, also the new object value
satisfies that condition. On the other side, null is just an unspecified value for which
the precondition simply can not be established. As a consequence, in method precon-
ditions not the test object /= C.null but the test NOT object.null must be applied.
Therefore also a program test object != null is automatically translated to the
logical test NOT object.null.

Character strings If the user provides a program class java.lang.String, string lit-
erals in programs are considered as values of this class which is mapped to the logical
type java.lang.String.String.

However, if the user does not provide such a class, string literals in programs are con-
sidered as values of a pseudo-type that is mapped to the logical type STRING.

T[] If T denotes a class, then the program type T[] is mapped to the record type Array in
the theory of C. If T is boolean, int, char, or String, the theory Base contains
a record type TArray (the name of T is capitalized) to which the program type T[] is
mapped. Other array types are currently not supported.

The record type contains the following fields:

value: ARRAY Base.int OF T’ This field represents the sequence of array el-
ements; T’ is the type to which the program type T is mapped.

length: Base.nat This field indicates that in value only the elements at indices
from 0 inclusive to length exclusive are defined.

null: BOOLEAN If set to true, this field indicates that the program value represents
the null pointer (then the other fields are meaningless);

A class T contains also constants nullTArray and newTArray that represent array
values that are null respectively result from the allocation of a new array (see above).

C.1 Logic Language 75

If T is boolean, int, char, or String, the theory Base contains also constants
nullTArray and newTArray (again the name of T is capitalized) that represent
array values that are null respectively result from the allocation of a new array.

As for objects, in method preconditions not the test array /= T.null but the test NOT
array.null must be applied (see the explanation for objects above).

C.1.4. Program Variables

Synopsis

OLD var
VAR var

Description Within the context of a state predicate of a specification (e.g. in a class invari-
ant or in a method precondition), both OLD var and VAR var refer to the “current” state of
the program variable var.

Within the context of a state relation of a specification (e.g. a method postcondition or loop
invariant), OLD var refers to the value of the program variable var in the prestate of the
specified execution; VAR var refers to the value of var in the corresponding poststate.

More specifically, OLD var respectively VAR var denotes the logical value to which the
value of the program variable is mapped. Therefore the type of OLD var respectively VAR
var is the logical type to which the type of the program variable is mapped.

Pragmatics A reference to a program variable var in a formula is tagged with keyword
OLD or VAR to explicitly distinguish it from a reference to a logical variable; we thus empha-
size that its value actually results from mapping a program value to a logical value.

We choose the keywords and their interpretations in both state conditions and state relations
in order to minimize the confusion of programmers:

• If there is a corresponding state relation (e.g. method postcondition), we may prefer in
the precondition the use of OLD var since we thus refer in both the precondition and
the postcondition to the same value in the same way.

However, if there is no corresponding state relation, the syntax OLD var in a state
condition looks awkward since the condition only refers to a single state: here we may
prefer VAR var.

• In a loop invariant (which also denotes a state relation), VAR var refers to the value of
the variable after the execution of the loop body, while OLD var refers to the state of
the variable in the prestate of the loop. If the invariant does not refer to the prestate (as
it is often the case), the invariant can be thus expressed in terms of VAR var only.

76 Chapter C. Specification Language

C.1.5. Program States

The logic language introduces a new kind of values called states with corresponding types,
constants, functions, and predicates.

Type STATE

Synopsis

STATE
STATE(type)

Description A type of this family denotes the set of states that may result from the execu-
tion of a command. The type STATE indicates that the execution of the command must not
return a value (i.e. that the command is executed within a function of result type void); the
type STATE(type) indicates that the command may return a value of the denoted type.

State Constants

Synopsis

NOW
NEXT

Description Within the context of a state predicate of a specification (e.g. a method pre-
condition), both constants NOW and NEXT denote the “current” state.

Within the context of a state relation of a specification (e.g. a method postcondition or loop
invariant), the constant NOW denotes the prestate of the specified execution while the constant
NEXT denotes the corresponding poststate.

Pragmatics To simplify the semantics, NEXT is also defined in the context of a state pred-
icate.

In a loop invariant, NOW refers to the prestate of the loop, while NEXT refers to the poststate
of the loop body.

C.1.6. State Functions

Synopsis

VALUE@state
MESSAGE@state

C.1 Logic Language 77

Description These functions are evaluated over state whose type is of form STATE or
STATE(result).

If state results from the execution of return value, then the term VALUE@next refers
to (the logical mapping of) value. The type of state must be of form STATE(result);
the type of VALUE@next is result (which is the logical mapping of the type of value).

If state results from the execution of throw new exception(message), the term
MESSAGE@next refers to (the logical mapping of) message. Its type is the logical mapping
of the program type java.lang.String (which must be the type of message).

State Predicates

Synopsis
EXECUTES@state
CONTINUES@state
BREAKS@state
RETURNS@state
THROWS@state
THROWS(exception)@state

Description These predicates are evaluated over state whose type is of form STATE or
STATE(result):

• EXECUTES@state is true if and only if none of the following four predicates is true.

• CONTINUES@state is true if and only if state results from executing continue.

• BREAKS@state is true if and only if state results from the execution of break.

• RETURNS@state is true if and only if state results from the execution of return or
return value.

• THROWS@state is true if and only if state results from the execution of throw new
exception(message) (for any exception type and string message).

• THROWS(exception)@state is true if and only if state results from the execution
of throw new exception(message) (for any character string message).

State Equality

Synopsis
state1~state2

Description This predicate is evaluated over two states state1 and state2 which may be
of different state types STATE(type1) and STATE(type2) (respectively STATE). The
result is true if and only if both states are equal except for their values VALUE@state1
respectively VALUE@state2 (if applicable).

78 Chapter C. Specification Language

Pragmatics The predicate may be required to express the relationship between the post-
state of a called method and the poststate of the calling method (which may have different
return types).

State Pair Predicates

Synopsis

READSONLY
WRITESONLY var, ...

Description These formulas are evaluated in the context of a pair of execution states (e.g.
a method postcondition or loop invariant) called the “prestate” and the “poststate” of the exe-
cution.

READSONLY is true if and only if the value of every program variable is in the poststate of the
execution the same as in the prestate.

WRITESONLY name, ... is true if and only if the value of every program variable that is
not listed in “var, . . . ” is in the poststate of the execution the same as in the prestate.

C.2. Theory Definitions

Synopsis

package package ;
import package.* ;
import package.theory ;
...
theory theory uses theories
{ declarations }

Description A theory definition introduces by a list of declarations a “theory” i.e.
a collection of logic entities that may be used in other theories or for the specification of
programs.

The clause theory theory states the name of the theory as theory . The optional clause
package package states that the new theory resides in package and may be referenced
elsewhere by the long name package.theory; likewise any entity this is introduced
by declarations may be referenced elsewhere by package.theory.entity . If the
package clause is omitted, the theory resides in the unnamed top-level package.

An import clause imports theories from other packages such that they may be referenced
from the current theory not only by their long names of form package.theory by also by
their short names of form theory . A clause

C.3 Class Specifications 79

import package.*;

imports all theories from package; a clause

import package.theory;

imports from package only theory . If multiple package.* import theories with the
same name, these theories can be only referenced by their long name unless one of the pack-
ages is also imported as package.theory; then this theory can also be referenced by the
short name. Multiple package.theory imports of different theories with the same short
name theory are prohibited.

Every theory referenced by declarations in the current theory must be listed in the clause uses
theory, ..., either by the long name of the theory or, if the theory was imported, by its
short name.

Pragmatics A theory with long name package.theory must reside in a file with name
theory.theory in a subdirectory package of a directory that is considered as a root of
the package hierarchy. The name package may have form p1.p2....pn; the correspond-
ing directory path is then p1/p2/.../pn.

The clause import ... is modeled after the semantics of the corresponding Java clause but
imports theories rather than classes.

The clause uses theory, ... was introduced to simplify the computation of dependen-
cies between classes and theories; in a subsequent version of the language, this clause may be
well dropped.

C.3. Class Specifications

Synopsis

/*@
import package.*;
import package.theory;
...
theory uses theory, ...
{ declarations }

@*/
classheader { ... }

Descriptions A class specification introduces by a list of declarations the “local the-
ory” of a class i.e. a theory of those entities that may be referenced by their short names in the
specification of methods, loops, and commands of the class (the entities introduced in other
theories may be always referenced by the long name package.theory.entity). If a

80 Chapter C. Specification Language

class has no such specification, the local theory is empty; the specifications in this class may
therefore only refer to entities introduced in other theories.

An import clause imports theories from other packages, see Section C.2.

Every theory referenced by declarations in the local theory (respectively by the specifica-
tions of methods, loops, statements in the current class) must be listed in the clause uses
theory, ..., either by the long name of the theory or, if the theory was imported, by its
short name.

Pragmatics The clause import ... is modeled after the semantics of the corresponding
Java clause but imports theories rather than classes.

The clause uses theory, ... was introduced to simplify the computation of dependen-
cies between classes and theories; in a subsequent version of the language, this clause may be
well dropped.

C.4. Class Invariants

Synopsis

classheader {
/*@ invariant formula ; *@/
...

}

Descriptions A class invariant denotes a formula that is implicitly added

• to every precondition of every (non-constructor) object method, and

• to every postcondition of every constructor and object method.

As an exception, if the constructor or object method is marked as a helper (see Section C.5),
then the formula is added neither to the precondition nor to the postcondition.

Pragmatics A class invariant ensures that, after the allocation of an object, during its full
life-time, at every call/return from a (non-helper) method invoked on that object, the stated
formula holds.

C.5. Method Specifications

Synopsis

C.5 Method Specifications 81

methodheader
/*@
helper;
assignable vars ;
signals exceptions ;
requires formula ;
diverges formula ;
ensures formula ;
decreases term, ... ;

@*/
{ statements }

Description This specification describes the observable behavior of a given method (class
method, object method, or constructor) by the following clauses:

helper This optional clause may be given for a constructor or an object method. It indicates
that the method is a helper method that must not assume the class invariant as its pre-
condition and need not ensure the class invariant as its postcondition (see Section C.4).

assignable vars This optional clause lists the variables vars that are visible in the scope
of the declaration of the method (object and class variables of the current class, class
variables of other classes, respectively variables that represent components of such vari-
ables, but not local variables of the method) and whose values may be changed by the
execution of the method.

If the clause is omitted, the method must not modify any variable that is visible in the
scope of the method declaration.

If the variable this is added to the clause, it indicates that all object variables of the
current class may be modified.

A parameter of the current method may be only listed in the clause, if it denotes an
array or an object; the clause then indicates that the contents of the array/object may be
changed by the call of the method.

signals exceptions This optional clause lists the types of the exceptions that may be
thrown by the execution of the method (excluding “runtime exceptions” such as “divi-
sion by zero” that may be thrown by the execution of primitive operations).

If the clause is omitted, the method must not throw any exception.

requires formula This optional clause states that it is only legal to call the method in a
state (the method’s “prestate”) that satisfies the given formula.

If the clause is omitted, the formula is considered as “true”, i.e. it is legal to call the
method in any state.

diverges formula This optional clause states that the method will terminate (by return-
ing normally or by throwing an exception) when called in any legal state that satisfies

82 Chapter C. Specification Language

also the negation of formula (i.e. the method is allowed to run forever when called in
any legal state that satisfies formula).

If the clause is omitted, the formula is considered as “false”, i.e. the method must termi-
nate when called in any legal prestate.

ensures formula This optional clause states that, for every legal prestate of the method,
every state in which the method terminates is only legal if it is related to the method’s
prestate by formula.

If the clause is omitted, the formula is considered as “true”, i.e. the method may termi-
nate with any poststate.

decreases term, . . . This optional clause states that, for every call of the method in a
legal state, the value of the a given term sequence decreases according to a well founded
ordering. If the sequence consists of a single term, the term denotes a non-negative
integer number which is decreased in every (directly or indirectly) recursive call of the
method (such that chain of recursive method calls must eventually end). If the sequence
has more than one elements, then the values of some term1, . . . , termi may remain the
same while termi+1 is decreased as described above (decreasing lexicographical order-
ing). If the clause is omitted, no default is assumed.

Pragmatics This specification is in essence modeled after the “light-weight” specification
format of JML, the Java Modeling Language [4]; however, a fixed order is required and spe-
cific default values for missing clauses are given. Furthermore, the specification follows (not
precedes) the method’s declaration header to emphasize that the specification appears in the
scope of the parameters of the method.

If the clause decreases term is missing in a (directly or indirectly recursive) method, the
termination of the method can be probably not proved.

If in an assignable clause specific components of an object (e.g. specific fields of the
current object) are listed, the “frame condition” itself just verifies that only the object (e.g.
this) is modified; however, the “postcondition” is appropriately extended to ensure that only
the specified components of the object are modified.

In an assignable clause, parameters may be listed that denote objects or arrays. The RISC
ProgramExplorer handles such parameters not as input parameters but as transient parameters
that may have a new value after the call of the method (methods are allowed to update the
components of such parameters, not to assign new values to them). Therefore e.g. also a
method that sorts a given array in place may be appropriately analyzed and verified.

C.6. Loop Specifications

Synopsis

C.7 Statement Specifications 83

while (exp) for (forheader)
/*@ /*@

invariant formula ; invariant formula ;
decreases term, ... ; decreases term, ... ;

@*/ @*/
body body

Description The optional clause invariant formula states that the state in which the
loop checks the value of exp for the first time (the loop’s “prestate”) is related by formula

1. to the loop’s prestate itself and

2. to every state that arises immediately after the execution of the loop’s body (the body’s
“poststate”).

If the clause is omitted, the formula is assumed to be “true”.

The optional clause decreases term states that

1. the value of term in the loop’s prestate and in every poststate of the loop’s body denotes
a non-negative integer number, and that

2. the value of term immediately before the execution of the loop’s body is greater than the
value of term after the execution of the loop’s body.

Consequently the loop cannot perform an infinite number of iterations.

If the clause has form decreases term1,...,termn with n > 1, then then the values
of some term1, . . . , termi may remain the same while termi+1 with i+ 1 ≤ n is decreased as
described above (decreasing lexicographical ordering).

Pragmatics It should be noted that the formulation of the invariant above relates the loop’s
prestate to the body’s poststate which, due to the existence of state functions and state pred-
icates in the formula language, may be considered as different from the prestate of the sub-
sequent loop iteration, respectively, if the loop terminates, from the loop’s poststate. For
instance, if the body executes a break statement, the loop’s prestate is related to the body’s
poststate by the formula BREAKS@NEXT but to the loop’s poststate by EXECUTES@NEXT.
The first formula is more precise since it describes that the loop terminates from the execution
of the loop body which the second formula does not. Our formulation therefore allows to
express stronger invariants.

C.7. Statement Specifications

Synopsis

//@ assert formula ’;’
statement

84 Chapter C. Specification Language

Description The specification states that immediately before the execution of statement
(i.e. in the statement’s “prestate”) formula holds.

Pragmatics The specification creates an additional proof obligation but then also more
information for the verification of statement and its successors.

D. New RISC ProofNavigator

The RISC ProgramExplorer includes an updated version of the RISC ProofNavigator; as
shown in Appendix E, the RISC ProgramExplorer may also be invoked in a mode that ex-
poses only the RISC ProofNavigator interface and can be used very much like the original
RISC ProofNavigator.

However, there are various differences between the new version of the RISC ProofNavigator
and the original one:

Bug Fixes The new version fixes various bugs of the original version; these fixes have not
been propagated to the original version, i.e. the original version is not maintained any
more. It is therefore strongly recommended to switch to the new version included in the
RISC ProgramExplorer.

Interaction On some occasions, the RISC ProofNavigator asks the user for input (e.g.,
whether the user really wants to quit). In the original version, the input was provided
by text input from the command line. In the new version, a corresponding interaction
window pops up.

Commands The original RISC ProofNavigator supported the commands type, formula,
value for printing the definition of a type, formula, or value; the command names
could thus not be used as identifiers.

The new version calls these commands printt, printv, and printf.

Context Directories The contents of the context directories have been stream-lined (see
Appendix G).

Since these changes are only minor, we still refer to the original manual [5] for the documenta-
tion of the RISC ProofNavigator. However, in the future, the new version may further diverge
from the original one.

E. Software Invocation

The shell script ProgramExplorer is the main interface to the program i.e. the program is
typically started by executing

ProgramExplorer &

However, if the script is copied/renamed/linked to ProofNavigator and executed as

ProofNavigator &

the program starts with a standalone interface to the RISC ProofNavigator [5] (which is part
of the RISC ProgramExplorer).

Invoking the script as

ProgramExplorer -h

gives the following output which lists the available startup options and the environment vari-
ables used:

RISC ProgramExplorer Version 1.0 (September XX, 2011)
http://www.risc.jku.at/research/formal/software/ProgramExplorer
(C) 2008-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "ProgramExplorer -h" to see the options available.

Usage: ProgramExplorer [OPTION]...
OPTION: one of the following options:

-h, --help: print this message.
-cp, --classpath [PATH]: directories representing

the top package.

Environment Variables:
PE_CLASSPATH:

the directories (separated by ":") representing
the top package
(default the current working directory)

PE_CVCL
the command for executing the cvcl checker
(default "cvcl")

87

PE_JAVAC
the command for compiling java programs
(default "javac")

PE_JAVA
the command for executing java programs
(default "java")

PE_CWD
the directory used for compiling/executing
(default the current working directory)

PE_MAIN
the name of the main class of the program
(default "Main")

The command accepts the following startup options:

-h, –help With this option, the description shown above is printed and the program termi-
nates.

-cp, –classpath Path This option expects as Path a sequence of directories separated by
the colon character “:”. The program considers these directories to jointly represent the
root of the package hierarchy; by default, the current working directory (path “.”) alone
represents the root. The directories in Path must not have different class files (extension
.java), theory files (extension .theory), or subdirectories of the same name.

The program uses the values of the following environment variables.

PE_CLASSPATH If the program is started without the option -cp/-classpath Path,
the value of this variable is considered as the Path, see the description of the option
given above.

PE_CVCL The value of this environment variable is considered as the path to the executable
of the Cooperating Validity Checker (CVC) Lite version 2.0; by default, the path cvcl
is assumed.

PE_JAVAC The value of this environment variable is considered as the path to the executable
of the Java compiler; by default, the path javac is assumed.

PE_JAVA The value of this environment variable is considered as the path to the executable
of the Java runtime environment; by default, the path java is assumed.

PE_CWD The value of this environment variable is considered as the path of the directory
used for compiling/executing respectively creating subdirectories; by the default the
current working directory “.” is used.

PE_MAIN The value of this environment variable is considered as the name of the main class
of the program to be compiled and executed; by default the value Main is used.

F. Software Installation

The installation of the program is thoroughly described in the files README and INSTALL of
the distribution; we include these files verbatim below.

F.1. README

--
README
Information on the RISC ProgramExplorer.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2008-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--

RISC ProgramExplorer

http://www.risc.jku.at/research/formal/software/ProgramExplorer

This is the RISC ProgramExplorer, an interactive program reasoning environment
developed at the Research Institute for Symbolic Computation (RISC). This
software is freely available under the terms of the GNU General Public License,
see file COPYING. The RISC ProgramExplorer runs on computers with
x86-compatible processors under the GNU/Linux operating system. For learning
how to use the software, see the file "main.pdf" in the directory "manual";
examples can be found in the directory "examples".

The current version is a release candidate that

* provides the overall technological and semantic framework
(programming language and formal specification language),

* translates annotated programs into the semantic model
(programs commands as state relations) which is open
for human investigation,

* generates from the semantic model the verification conditions
which can be semi-automatically proved with the help of

F.1 README 89

the RISC ProofNavigator, an interactive proof assistant
which is integrated into the RISC ProgramExplorer.

Please send bug reports to the author of this software:

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
http://www.risc.jku.at/home/schreine
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University
A-4040 Linz, Austria

A Virtual Machine with the RISC ProgramExplorer

On the RISC ProgramExplorer web site, you can find a virtual GNU/Linux machine
that has the RISC ProgramExplorer preinstalled. This virtual machine can be
executed with the free virtualization software VirtualBox
(http://www.virtualbox.org) on any computer with an x86-compatible processor
running under Linux, MS Windows, or MacOS. You just need to install VirtualBox,
download the virtual machine, and import the virtual machine into VirtualBox.

This may be for you the easiest option to run the RISC ProgramExplorer;
if you choose this option, see the web site for further instructions.

Running the RISC ProgramExplorer Examples

The installation of the RISC ProgramExplorer contains a subdirectory "examples"
with a number of specified and verified example programs. To (re)run the
examples, go to the directory, unzip the PETASKS.tgz file and start the RISC
ProgramExplorer:

cd examples
tar zxf PETASKS.tgz
ProgramExplorer &

Select the tab "Symbols" and double-click e.g. on "Sum" to see the file
"Sum.java". Right-click in the "Symbols" tab the method "sum" and select "Show
Semantics" to see the method semantics. Right-click in the "Tasks" tab any task
displayed in purple and select "Execute Task" to replay the corresponding proof.

Third Party Software

The RISC ProgramExplorer uses the following open source programs and
libraries. Most of this is already included in the RISC ProgramExplorer
distribution, but if you want or need, you can download the source code from
the denoted locations (local copies are available on the RISC ProgramExplorer
web site) and compile it on your own. Many thanks to the respective
developers for making this great software freely available!

CVC Lite 2.0
http://www.cs.nyu.edu/acsys/cvcl

This is a C++ library/program for validity checking in various theories.

The RISC ProgramExplorer currently only works with CVCL 2.0, not the newer
CVC3 available from http://www.cs.nyu.edu/acsys/cvc3. To download the CVCL 2.0
source, go to the RISC ProofNavigator web site (URL see above), Section "Third
Party Software", and click on the link "CVCL 2.0 local copy".

RIACA OpenMath Library 2.0
http://www.riaca.win.tue.nl/products/openmath/lib

This is a library for converting mathematical objects to/from
the OpenMath representation.

Go to the link "OMLib 2.0" and then "Downloads".
Download one of the "om-lib-src-2.0-rc2.*" files.

90 Chapter F. Software Installation

General Purpose Hash Function Algorithms Library
http://www.partow.net/programming/hashfunctions

A library of hash functions implemented in various languages.

Go to the link "General Hash Function Source Code (Java)" to download
the corresponding zip file.

ANTLR 3.2
http://www.antlr.org

This is a framework for constructing parsers and lexical analyzers used for
processing the programming/specification language of the RISC ProgramExplorer.

On a Debian 6.0 GNU/Linux distribution, just install the package "antlr3"
by executing (as superuser) the command

apt-get install antlr3

ANTLR 2.7.6b2
http://www.antlr.org

This is a framework for constructing parsers and lexical analyzers used for
processing the logic language of the RISC ProofNavigator.

On a Debian 6.0 GNU/Linux distribution, just install the package "antlr"
by executing (as superuser) the command

apt-get install antlr

The Eclipse Standard Widget Toolkit 3.7
http://www.eclipse.org/swt

This is a widget set for developing GUIs in Java.

Go to section "Stable" and download the version "Linux (x86/GTK2)" (if you use
a 32bit x86 processor) or "Linux (x86_64/GTK 2)" (if you use a 64bit x86
processor).

Mozilla Firefox 3.* or SeaMonkey 2.* (or higher)
http://www.mozilla.org

See the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" in the FAQ at
http://www.eclipse.org/swt/faq.php.

Chances are that the SWT browser will work with the Firefox included in your
Linux distribution (but it will *not* work with the Firefox downloaded from
the Mozilla site). For instance, on a Debian 6.0 GNU/Linux distribution, just
install Firefox by executing (as superuser) the command

apt-get install iceweasel

If the SWT browser does not work with the Firefox included in your GNU/Linux
distribution, go to the page http://www.mozilla.org/projects/seamonkey to
download and install the SeaMonkey 2.* browser instead. You might have to
set the environment variable MOZILLA_FIVE_HOME in the "ProgramExplorer" script
to "/usr/lib/mozilla".

The GIMP Toolkit GTK+ 2.X (or higher)
http://www.gtk.org

This library is required by "Eclipse Linux (x86/GTK2)" and by
"Mozilla 1.7.8 GTK2".

F.2 INSTALL 91

On a Debian 6 GNU/Linux distribution, the package is automatically
installed, if you install the "mozilla-browser" package (see above).

On another GNU/Linux distribution, go to the GTK web package, section
"Download", to download GTK+.

Java Development Kit 6 (or higher)
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Go to the "Downloads" section to download the JDK 6.

Tango Icon Library 0.8.90
http://tango-project.org/

Go to the section "Base Icon Library", subsection "Download", to download
the icons used in the ProgramExplorer.

--
End of README.
--

F.2. INSTALL
--
INSTALL
Installation notes for the RISC ProgramExplorer.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2008-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--

Installing the RISC ProgramExplorer

The RISC ProgramExplorer is available for computers with x86-compatible
processors (32 bit as well as 64 bit) running under the GNU/Linux operating
system. The core of the RISC ProgramExplorer is written in Java but it depends
on various third-party open source libraries and programs that are
acknowledged in the README file.

To use the RISC ProgramExplorer, you have three options:

A) You can just use the distribution, or
B) you can compile the source code contained in the distribution, or
C) you can download the source from a Subversion repository and compile it.

The procedures for the three options A-C are described below,
but please read the following remark first.

Mathematical Fonts in the RISC ProgramExplorer

92 Chapter F. Software Installation

--
After an installation of the RISC ProgramExplorer, the mathematical fonts
displayed by the RISC ProgramExplorer (i.e. by the embedded Mozilla browser) may
not look nice. For an aesthetically pleasing display, proceed as described on

Fonts for MathML-enabled Mozilla
https://developer.mozilla.org/en/Mozilla_MathML_Project/Fonts

In a nutshell, create in your home directory a subdirectory ".fonts",
download into this directory the STIX font archive "STIX-mozilla1.9.zip",
and unzip the archive (which will create a number of font files .fonts/*.otf").
Then (re)start the RISC ProgramExplorer.

A) Using the Distribution

We provide a distribution for computers with ix86-compatible processors
running under the GNU/Linux operating system (the software has been developed
on the Debian 6.0 "squeeze" distribution, but any other distribution will work
as well). If you have such a computer, you need to make sure that you also have

1) A Java 6 or higher runtime environment.

You can download a JRE 6 from
http://www.oracle.com/technetwork/java/javase/downloads/index.html

2) The Mozilla Firefox or SeaMonkey browser.

On a Debian 6.0 GNU/Linux system, just install the package
"iceweasel" by executing (as superuser) the command

apt-get install iceweasel

On other Linux distributions, first look up the FAQ on

http://www.eclipse.org/swt/faq.php

for the question "What do I need to run the SWT browser in a standalone
application on Linux GTK or Linux Motif?" The RISC ProgramExplorer uses the
SWT browser, thus you have to install the software described in the FAQ.

See the README file for further information.

3) The GIMP Toolkit GTK+ 2.6.X or higher.

On a Debian 6.0 GNU/Linux system, GTK+ is automatically installed,
if you install the Mozilla browser as described in the previous paragraph.

On other Linux distributions, download GTK+ from http://www.gtk.org

For installing the RISC ProgramExplorer, first create a directory INSTALLDIR
(where INSTALLDIR can by any directory path). Download from the website the
file

ProgramExplorer-VERSION.tgz

(where VERSION is the number of the latest version of the ProofNavigator) into
INSTALLDIR, go to INSTALLDIR and unpack by executing the following command:

tar zxf ProgramExplorer-VERSION.tgz

This will create the following files

README ... the readme file
INSTALL ... the installation notes (this file)
CHANGES ... the change history
COPYING ... the GNU Public License

F.2 INSTALL 93

bin/
ProgramExplorer ... the main script to start the program
cvcl ... CVC Lite, a validity checker used by the software.

doc/
index.html ... API documentation

examples/
README ... short explanation of examples

*.theory ... some example theories

*.java ... some example program specifications
PETASKS.tgz ... an archive of sample program verifications

lib/
Screenshot.png ... startup splash screen

*.jar ... Java archives with the program classes
swt32/ ... SWT for GNU/Linux computers with 32 bit processors

swt.jar
swt64/ ... SWT for GNU/Linux computers with 64 bit processors

swt.jar
manual/

main.pdf ... the PDF file for the manual
index.html ... the root of the HTML version of the manual

src/
fmrisc/ ... the root directory of the Java package "fmrisc"

ProgramExplorer/
Main.java ... the main class for the RISC ProgramExplorer

ProofNavigator/

*.java ... the sources for the RISC ProofNavigator
External/

*.java ... third-party sources

Open in a text editor the script "ProgramExplorer" in directory "bin" and
customize the variables defined for several locations of your environment. In
particular, the distribution is configured to run on a 32-bit processor. If
you use a 64-bit processor, uncomment the line "SWTDIR=$LIBDIR/swt64" (and
remove the line "SWTDIR=$LIBDIR/swt32").

Put the "bin" directory into your PATH

export PATH=$PATH:INSTALLDIR/bin

You should now be able to execute

ProgramExplorer

to run the RISC ProgramExplorer. If you rename/copy/link the script to
"ProofNavigator" and execute

ProofNavigator

the program starts with a standalone interface to the RISC ProofNavigator.

B) Compiling the Source Code

To compile the Java source, first make sure that you have the Java 6 SE
development environment installed. You can download the Java 6 SE from

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Furthermore, on a GNU/Linux system you need also the Mozilla Firefox or
SeaMonkey browser, GTK2 and the GIMP toolkit GTK+ installed (see Section A).

Now download the distribution and unpack it as described in Section A.

The RISC ProgramExplorer distribution contains an executable of the validity
checker CVC Lite for GNU/Linux computers with x86-compatible processors. To
compile the validity checker for other systems, you need to download the CVC
Lite source code (see the README file) and compile it with a C++ compiler. See

94 Chapter F. Software Installation

the CVC Lite documentation for more details.

To compile the Java source code, go to the "src" directory and execute from
there

javac -cp ".:../lib/*:../lib/swt32/*" fmrisc/ProgramExplorer/Main.java

(replace "swt32" by "swt64" on a 64bit system).

You may ignore the warning about "unchecked" or "unsafe" operations, this
refers to Java files generated automatically from ANTLR grammars.

Then execute

jar cf ../lib/fmrisc.jar fmrisc/*/*.class fmrisc/*/*/*.class fmrisc/*/*/*/*.class

Finally, you have to customize the "ProgramExplorer" script in directory "bin"
as described in Section A. You should then be able to start the program by
executing the script.

C) Downloading the Source Code from the Subversion Repository

You can now download the source code of any version of the ProofNavigator
directly from the ProofNavigator Subversion repository.

To prepare the download, first create a directory SOURCEDIR (where SOURCEDIR
can be any directory path).

To download the source code, you need a Subversion client, see
http://en.wikipedia.org/wiki/Comparison_of_Subversion_clients for a list of
available clients. On a computer with the Debian 6.0 distribution of
GNU/Linux, it suffices to install the "svn" package by executing (as
superuser) the command

apt-get install svn

which will provide the "svn" command line client.

Every ProofNavigator distribution has a version number VERSION (e.g. "0.1"),
the corresponding Subversion URL is

svn://svn.risc.jku.at/schreine/FM-RISC/tags/VERSION

If you have the "svn" command-line client installed, execute the command

svn export
svn://svn.risc.jku.at/schreine/FM-RISC/tags/VERSION SOURCEDIR

to download the source code into SOURCEDIR. With other Subversion clients, you
have to check the corresponding documentation on how to download a directory
tree using the URL svn://... shown above.

After the download, SOURCEDIR will contain the files of the distribution as
shown in Section A; you can compile the source code as explained in Section B.

--
End of INSTALL.
--

G. Task Directories

The system generates in the current working directory (respectively the directory specified
by the environment variable PE_CWD, see the previous section) two subdirectories named
.ProofNavigator and .PETASKS.Tag.0.

The directory .ProofNavigator represents a context directory of essentially that form
that is described in the manual of the RISC ProofNavigator [5]; it is used, if the user enters in
the Analyze view directly (not in the context of any task as described below) commands for the
RISC ProofNavigator. In order to save disk space, the format of the entries has been slightly
changed: for every declaration of a logical entity name of kind kind, rather than three separate
files kind_name_hash.txt, kind_name_time.txt, and kind_name_refs.xml,
a single file kind_name_info.xml is generated that combines the information of the three
files; furthermore, the file kind_name_decl.xgz is not generated any more.

The directory .PETASKS.Tag.0 represents the persistent store for the task tree of the pro-
gram; Tag is a number that denotes the time when the program was started that created this di-
rectory. The content of the directory is a hierarchy of subdirectories that corresponds to the hi-
erarchy of task folders and tasks of the program. Each directory is named Name.Tag.Cntr
where Name is derived from the name of the task folder respectively task, Tag denotes the time
when the program was started that created this directory, and Cntr represents an automatically
generated sequence counter.

The content of each task directory depends on the particular kind of the task. Currently the
directory may contain the following items:

File goal_ This file contains the log of an attempt to perform the task fully automatically
by translating it to a CVCL query and invoking CVCL.

Directory ProofNavigator This represents a context directory of the RISC ProofNav-
igator [5] that contains all information related to an attempt to perform the task by a
computer-assisted manual proof (also here the contents have been slightly changed as
described above).

The directory .PETASKS.Tag.0 and each of its subdirectories contains a file .PEDIR; if
the directory contains also a file FREED this indicates that the directory was freed and may
be reused. If a new directory is to be created, it is first attempted to reuse a directory with
the same basic Name from a previous invocation of the program (as indicated by Tag) or a
freed directory of the same invocation (as indicated by Tag and FREED); in both cases, thus
previously created RISC ProofNavigator proofs of tasks with the same names will be retained.
Otherwise, a new directory is created; if a directory of the desired name already exists, the
value of Cntr is incremented to yield a new directory name.

http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_77.html
http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_77.html
http://www.risc.uni-linz.ac.at/research/formal/software/ProofNavigator/manual/index_77.html

H. Grammars

In this appendix, we describe the concrete syntax of the programming language and of the
specification language. The grammars are given in the notation of the parser generator ANTLR
v3 [1] used for the implementation of the parser and of the lexical analyzer. Non-determinism
in grammatical rules is resolved by extra means provided by ANTLR (in particular seman-
tic predicates) which are omitted from this presentation. On the level of the programming
language described in Section H.1, every specification annotation is lexically parsed as a com-
ment yielding the token ANNOTATION; the actual grammar of the various kinds of annota-
tions is described in Section H.2 under the header “specifications” by the syntactic domains
unitspec, methodspec, loopspec, and statementspec. The grammar of theory declarations is
specified there by the syntactic domain theorydecl.

H.1. Programming Language

// --
// classes and methods
// --

// a compilation unit
unit: classdecl ;

// a class declaration
classdecl:

(’package’ name ’;’)?
(’import’ name (’.’ ’*’)? ’;’)*
(ANNOTATION)?
(’abstract’ | ’final’ | ’public’)* ’class’ IDENT
(’extends’ name ’implements’ names)?
(ANNOTATION)?
’{’ (topdecl)* ’}’
EOF ;

// a top-level declaration
topdecl:
objectvar | classvar | constructor | objectmethod | classmethod ;

// an object variable, possibly with initialization
objectvar:

modifiers typeexp IDENT (’=’ valexpnull)? ’;’ ;

H.1 Programming Language 97

// a class variable, possibly with initialization
classvar:
modifiers ’static’ modifiers typeexp IDENT
(’=’ valexpnull)? ’;’ ;

// a constructor declaration
constructor:

visibility IDENT ’(’ (params)? ’)’
throwdecls (ANNOTATION)? block ;

// declaration of an object method
objectmethod:

modifiers (typeexp | ’void’) IDENT ’(’ (params)? ’)’
throwdecls (ANNOTATION)? block ;

// declaration of a class method
classmethod:

modifiers ’static’ modifiers
(typeexp | ’void’) IDENT ’(’ (params)? ’)’
throwdecls (ANNOTATION)? block ;

// --
// statements
// --

// an execution statement
statement:
(an=ANNOTATION)?
(emptystat | block | assignment | methodcall | localvar
| conditional | whileloop | forloop
| continuestat | breakstat | returnstat | throwstat
| trycatch | assertion) ;

// an empty statement
emptystat: ’;’ ;

// a statement block
block: ’{’ (statement)* ’}’ ;

// an assignment or method call with return value
assignment: assigncore ’;’ ;

// the core of an assignment statement
assigncore:

lval
(’=’

(valexpnull | name ’(’ valexps ’)’ | ’new’ name ’(’ valexps ’)’)
| ’++’
| ’+=’ valexp
| ’--’
| ’-=’ valexp
) ;

98 Chapter H. Grammars

// a method call without return value
methodcall: name ’(’ valexps ’)’ ’;’ ;

// a local variable declaration, possibly with initialization
localvar: localvarcore ’;’ ;

// the core of a local variable declaration
localvarcore:

(’final’)? typeexp IDENT
(’=’

(valexpnull
| name ’(’ valexps ’)’
| ’new’ name ’(’ valexps ’)’)

)? ;

// a conditional statement with one or two branches
conditional: ’if’ ’(’ valexp ’)’ statement (’else’ statement)? ;

// a while loop
whileloop: ’while’ ’(’ valexp ’)’ (ANNOTATION)? statement ;

// a for loop
forloop:

’for’ ’(’
(assigncore | localvarcore)? ’;’ (valexp)? ’;’ (assigncore)?

’)’ (ANNOTATION)? statement ;

// a continue statement
continuestat: ’continue’ ’;’ ;

// a break statement
breakstat: ’break’ ’;’ ;

// a return statement, possibly with return value
returnstat: ’return’ (valexpnull)? ’;’ ;

// a throw statement
throwstat: ’throw’ ’new’ name ’(’ valexp ’)’ ’;’ ;

// a try catch block
trycatch: ’try’ block (’catch’ ’(’ param ’)’ block)+ ;

// an assertion
assertion: ’assert’ valexp ’;’ ;

// --
// value expressions
// --

// a value expression that also includes "null"
valexpnull: valexp | ’null’ ;

H.1 Programming Language 99

// value expressions
valexp: valexp3 ;

// disjunctions
valexp3: valexp4 (’||’ valexp4)* ;

// conjunctions
valexp4: valexp8 (’&&’ v1=valexp8)* ;

// equalities/inequalities
valexp8:

valexp9
(’==’ valexp9 | ’!=’ valexp9 | ’==’ ’null’ | ’!=’ ’null’)* ;

// relations
valexp9:

valexp11
(’<’ valexp11 | ’<=’ valexp11 | ’>’ valexp11 | ’>=’ valexp11)* ;

// sums and differences
valexp11: valexp12 (’+’ valexp12 | ’-’ valexp12)* ;

// products and quotients
valexp12: valexp13 (’*’ valexp13 | ’/’ valexp13 | ’%’ valexp13)* ;

// array creation
valexp13: ’new’ typeexp ’[’ valexp ’]’ | valexp14 ;

// unary operators
valexp14: ’+’ valexp14 | ’-’ valexp14 | ’!’ valexp14 | valexp15 ;

// selector operations
valexp15: valexp16 (rselector (rselector)*)? ;

// atoms
valexp16:

IDENT | INT | ’true’ | ’false’ | STRING | CHAR | ’(’ valexp ’)’ ;

// --
// auxiliaries
// --

// class-level modifiers
modifiers: visibility (’final’ visibility)? ;

// visibility modifiers
visibility: (’private’ | ’protected’ | ’public’)? ;

// throw declarations
throwdecls: (’throws’ names)? ;

100 Chapter H. Grammars

// a method’s parameter list
params: param (’,’ param)* ;

// a method parameter
param: typeexp IDENT ;

// a type expression
typeexp: typeexpbase (’[’ ’]’)? ;

// a type expression
typeexpbase: ’int’ | ’boolean’ | ’char’ | name | IDENT ;

// a value expression list
valexps: (valexpnull (’,’ valexpnull)*)? ;

// a name
name: (IDENT ’.’)* IDENT ;

// a sequence of names
names: name (’,’ name)* ;

// a location of a variable
lval: IDENT (lselector)* ;

// an lvalue selector
lselector: ’[’ valexp ’]’ | ’.’ IDENT ;

// an rvalue selector
rselector: ’[’ v=valexp ’]’ | ’.’ ’getMessage’ ’(’ ’)’ | ’.’ IDENT ;

// --
// lexical syntax
// --

IDENT : REALLETTER (LETTER | DIGIT)* ;
INT : DIGIT (DIGIT)* ;
STRING : ’"’ (~(’"’ | ’\\’ | EOL) | ESCAPED)* ’"’ ;
CHAR : ’\’’ (~(’\’’ | ’\\’ | EOL) | ESCAPED) ’\’’ ;
WS : (’ ’ | ’\t’ | EOL);
ANNOTATION:

(’//’ (’@’ .* EOL | .* EOL) WS?)+
| ’/*’ (’@’ .* ’@*/’ | .* ’*/’) ;
REALLETTER : (’a’..’z’ | ’A’..’Z’);
LETTER : (’a’..’z’ | ’A’..’Z’ | ’_’);
DIGIT : (’0’..’9’);
EOL : (’\n’ | ’\r’ | ’\f’ | ’\uffff’);
ESCAPED : ’\\’

(’\\’ | ’"’ | ’\’’ | ’n’ | ’t’ | ’b’ | ’f’ | ’r’ |
(’u’ HEX HEX HEX HEX)) ;

HEX : ’0’..’9’ | ’a’..’f’ | ’A’..’F’ ;

H.2 Specification Language 101

H.2. Specification Language

// --
// specifications
// --

// a unit specification
unitspec:
imports ’theory’ (’uses’ names)? ’{’ declarations ’}’ EOF ;

// a class specification
classspec: (’invariant’ formula ’;’)? EOF ;

// a method specification
methodspec:

(’helper’ ’;’)?
(’requires’ formula ’;’)?
(’assignable’ names ’;’)?
(’signals’ names ’;’)?
(’ensures’ formula ’;’)?
(’diverges’ formula ’;’)?
(’decreases’ term (’,’ term)* ’;’)?
EOF ;

// a loop annotation
loopspec:

(’invariant’ formula ’;’)?
(’decreases’ term (’,’ term)* ’;’)?
EOF ;

// a command pre-state annotation
statementspec: (’assert’ formula ’;’)? ;

// a theory declaration
theorydecl:

(’package’ name ’;’)? imports
(’public’)* ’theory’ IDENT (’uses’ names)?
’{’ ((declaration)? ’;’)* ’}’ EOF ;

imports: (’import’ name (’.’ ’*’)? ’;’)* ;

declarations: ((declaration)? ’;’)* ;

declaration:
IDENT ’:’
(’TYPE’
| ’TYPE’ ’=’ typeExp
| ’FORMULA’ formula
| ’AXIOM’ formula
| typeExp (’=’ term |

’=’ ’PRED’ paramList ’:’ formula |
’<=>’ formula)?

102 Chapter H. Grammars

) ;

typeExp:
(typeExpBase ’->’ typeExp
| ’(’ typeExp (’,’ typeExp)+ ’)’ ’->’ typeExp
| ’ARRAY’ typeExpBase ’OF’ typeExp
| typeExpBase
) ;

typeExpBase:
(name
| ’BOOLEAN’
| ’INT’
| ’NAT’
| ’REAL’
| ’STRING’
| ’STATE’ (’(’ typeExp ’)’)?
| ’[’ typeExp (’,’ typeExp)+ ’]’
| ’[’ typeExp ’]’
| ’[#’ IDENT ’:’ typeExp (’,’ IDENT ’:’ typeExp)* ’#]’
| ’SUBTYPE’ ’(’ term ’)’
| ’[’ term ’..’ term ’]’
| ’PREDICATE’ (’(’ typeExp (’,’ typeExp)* ’)’)?
| ’(’ typeExp ’)’) ;

// --
// formulas
// --

// quantifiers bind weakest
formula:
(’FORALL’ paramList ’:’ formula
| ’EXISTS’ paramList ’:’ formula
| formula10
) ;

// lets
formula10:
(’LET’ vdefinition (’,’ vdefinition)* ’IN’ formula10
| formula20
) ;

// implications, equivalences, exclusive ors (= non-equivalences)
formula20:
(formula30 ’=>’ formula20
| formula30 (’<=>’ formula30 | ’XOR’ formula30)?
) ;

// disjunctions
formula30: formula40 (’OR’ formula40)* ;

// conjunctions

H.2 Specification Language 103

formula40: formula50 (’AND’ formula50)* ;

// logical negations
formula50: ’NOT’ formula50 | formula60 ;

// equality and inequality and relations
formula60:

term
(’=’ term | ’/=’ term | ’<’ term | ’<=’ term | ’>’ term | ’>=’ term)

| formula70 ;

// atomic predicates
formula70:

name ’(’ term (’,’ term)* ’)’
| ’EXECUTES’ ’@’ statearg | ’CONTINUES’ ’@’ statearg
| ’BREAKS’ ’@’ statearg | ’RETURNS’ ’@’ statearg
| ’THROWS’ ’@’ statearg | ’THROWS’ ’(’ name ’)’ ’@’ statearg
| formula100 ;

// argument to state predicate
statearg: ’NOW’ | ’NEXT’ | name ;

// atoms
formula100:

(name | ’(’ ’OLD’ name ’)’ | ’(’ ’VAR’ name ’)’)
(’.’ (NUMBER | IDENT) | ’[’ term ’]’)*

| ’TRUE’ | ’FALSE’
| ’IF’ formula ’THEN’ formula

(’ELSIF’ formula ’THEN’ formula)* ’ELSE’ formula ’ENDIF’
| ’WRITESONLY’ names | ’READSONLY’
| ’(’ formula ’)’
;

// --
// terms
// --

// quantifiers bind weakest
term: ’LAMBDA’ paramList ’:’ term | ’ARRAY’ paramList ’:’ term | term10 ;

// lets
term10: ’LET’ vdefinition (’,’ vdefinition)* ’IN’ term10 | term20 ;

// sums and differences
term20: term30 (’+’ term30 | ’-’ term30)* ;

// products and quotients
term30: term40 (’*’ term40 | ’/’ term40)* ;

// power terms
term40: term50 (’^’ term50)* ;

104 Chapter H. Grammars

// unary arithmetic operators
term50: ’+’ term50 | ’-’ term50 | term60 ;

// updates
term60:

term70
(’WITH’ (’.’ (NUMBER | IDENT) | ’[’ term ’]’)+ ’:=’ term70)* ;

// selections
term70: term80 (’.’ (NUMBER | IDENT) | ’[’ term ’]’)* ;

// applications
term80:

’VALUE’ ’@’ term100 | ’MESSAGE’ ’@’ term100
| term100 (’(’ term (’,’ term)* ’)’)* ;

// atoms
term100:

name | NUMBER | STRING | ’TRUE’ | ’FALSE’
| ’OLD’ name | ’VAR’ name | ’NOW’ | ’NEXT’
| ’(’ term (’,’ term)* ’)’
| ’(#’ IDENT ’:=’ term (’,’ IDENT ’:=’ term)* ’#)’
| ’IF’ formula ’THEN’ term

(’ELSIF’ formula ’THEN’ term)* ’ELSE’ term ’ENDIF’ ;

// --
// auxiliaries
// --

paramList: ’(’ param[params] (’,’ param[params])* ’)’ ;

param: IDENT (’,’ IDENT)* ’:’ typeExp ;

// value definition
vdefinition: IDENT ’:’ typeExp ’=’ term | IDENT ’=’ term ;

// a name
name: IDENT (’.’ IDENT)* ;

// a sequence of names
names: name (’,’ name)* ;

// --
// lexical syntax
// --

IDENT: REALLETTER (LETTER | DIGIT)* ;
NUMBER: DIGIT (DIGIT)* ;
STRING : ’"’ (~(’"’ | ’\\’ | EOL) | ESCAPED)* ’"’ ;
REALLETTER: (’a’..’z’ | ’A’..’Z’);
LETTER: (REALLETTER | ’_’);
DIGIT: (’0’..’9’);

H.2 Specification Language 105

WS: (’ ’ | ’\t’ | EOL | COMMENT) { $channel=HIDDEN; };
EOL: (’\n’ | ’\r’ | ’\f’);
COMMENT : ’//’ .* EOL | ’/*’ .* ’*/’ ;
ESCAPED : ’\\’

(’\\’ | ’"’ | ’\’’ | ’n’ | ’t’ | ’b’ | ’f’ | ’r’ |
(’u’ HEX HEX HEX HEX)) ;

HEX : ’0’..’9’ | ’a’..’f’ | ’A’..’F’ ;

	Introduction
	User Interface
	Programs, Theories, and Specifications
	Computing Factorial Numbers
	Searching for Records
	Failed Tasks and Interactive Proofs

	Semantics and Verification
	Computing Factorial Numbers
	Recursive Computation of Factorials
	Searching in Arrays
	Program States and Control Flow Interruptions
	Objects and Method Side Effects

	Programs as State Relations
	Programming Language
	Specification Language
	Logic Language
	Declarations
	Types
	Mapping Program Types to Logical Types
	Program Variables
	Program States
	State Functions

	Theory Definitions
	Class Specifications
	Class Invariants
	Method Specifications
	Loop Specifications
	Statement Specifications

	New RISC ProofNavigator
	Software Invocation
	Software Installation
	README
	INSTALL

	Task Directories
	Grammars
	Programming Language
	Specification Language

