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Normal forms of Ore polynomial matrices

Kurzfassung/Abstract

Kurzfassung

Diese Doktorarbeit behandelt Normalformen von Matrizen iiber Ringen von Ore-Polynomen. Sie

ist in drei Teile geteilt: Zuniachst werden Ore-Polynome vorgestellt und ihre grundlegenden Eigen-

schaften. Dieser Teil beinhaltet einen Exkurs iiber Integro-Differential-Operatoren. Zum zweiten

werden im Hauptteil ein- und beidseitige Normalformen von Matrizen behandelt. Genauer legen

wir unseren Fokus auf die Popov-, die Hermite- und die Jacobsonform. Der letzte Teil der Arbeit

beschiftigt sich mit einer Anwendung von Normalformen auf ein Problem aus der Kontrolltheorie.
Im folgenden soll auf alle diese Teile noch ein mal genauer eingegangen werden.

Ore-Polynome, die von einigen Autoren auch als Schiefpolynome bezeichnet werden, wurden
zuerst von Jystein Ore untersucht in [Ore32a, Ore32b]. Sie verallgemeinern die gewshnlichen Poly-
nome, wobei sie fast alle deren Eigenschaften erhalten mit der Ausnahme, dass die Multiplikation
nicht kommutativ sein muss: Weder wird vorausgesetzt, dass die Koeffizienten miteinander kom-
mutieren, noch muss die Unbestimmte mit diesen kommutieren. Ore-Polynome kénnen verwendet
werden, um Ringe von Differential- oder Differenzoperatoren zu modellieren. Unter anderem ist die
bekannte Weyl-Algebra ein Ore-Polynomring.

Als eine Art ausfiihrliches Beispiel benutzen wir Ore-Polynome, um Integro-Differential-Operatoren
mit polynomiellen Koeffizienten darzustellen. Dieser Teil basiert auf unserem ISSAC 2009-Artikel
[RRMO09]. Wir erhalten eine Konstruktion, die groBe Ahnlichkeit zur Weyl-Algebra im rein differen-
tiellen Fall aufweist.

Im Hauptteil der Doktorarbeit werden zunichst Normalformen von Matrizen betrachtet. Diese
bieten eine Moglichkeit, Systeme von linearen Operatorgleichungen darzustellen und auf Losbarkeit
oder andere Eigenschaften hin zu untersuchen. Wir widmen uns zunéichst Normalformen in Bezug
auf Zeilenoperationen. Die Untersuchung erstreckt sich dabei auf Zeilenreduktion, Hermite-, Popov-
und verschobene Popovformen. Wir stellen eine Verbindung dieser Normalformen zu Grobnerbasen
iiber Moduln her. Als eine mogliche Anwendung dieser Verbindung wird ein modifizierter FGLM-
Algorithmus vorgestellt, der es erlaubt, von einer Normalform in eine andere zu wechseln. Teile
dieser Arbeit wurden auf der ACA 2010 und in [Mid10] vorgestellt.

Weiterhin betrachten wir die Jacobsonform, die eine Normalform in Bezug auf simultane Zeilen-
und Spaltenoperationen darstellt. In diesem Teil beschrinken wir uns auf Differentialoperatoren
mit kommutierenden Koeffizienten. Wir prisentieren einen modularen Algorithmus, der die Jacob-
sonform mit Hilfe von zyklischen Vektoren berechnet und der zumindest bei Kérpern der Charak-
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teristik Null immer ein Ergebnis liefert. Wir geben Bedingungen an, wann er auch bei positiver
Charakteristik erfolgreich ist.

Der letzte Teil der Arbeit behandelt ein Thema aus der Kontrolltheorie. Wir untersuchen lin-
eare, zeitvariante Systeme mit Totzeiten auf differentielle und auf 7-Flachheit, wobei wir Ideen aus
[MCL10] aufgreifen. Unsere Methode basiert auf den einseitigen Normalformen aus dem Hauptteil
der Doktorarbeit anstelle der urspriinglich vorgeschlagenen Jacobsonform. Diese Arbeit wird auf der
AMMCS 2011 vorgestellt und ist bei der CDC 2011 eingereicht. Erste Resultate wurden in [AM10]
prasentiert.

Abstract

This thesis treats normal forms of matrices over rings of Ore polynomials. The whole thesis is divided
in three parts: First, Ore polynomials are described and basic facts about them are recalled. This
part also includes integro-differential operators as an extended example. Second, in the main part
we present one- and two-sided normal forms of matrices. More precisely, we deal with the Popov
normal form, Hermite normal form and the Jacobson normal form. In the last part, we explore an
application of matrix normal forms to a problem in control theory.

Below, we describe each of the parts in more detail.

Ore polynomials, sometimes called skew polynomials, arise from the work of @ystein Ore in
[Ore33]. They are a generalisation of the usual polynomials with almost all of their properties with
the main exception being that the multiplication in not necessarily commutative: Neither need the
coefficients commute with each other, nor does the indeterminate have to commute with them. Ore
polynomials can be used to model differential or difference operators. For example, the famous Weyl
algebra can be considered to be an Ore polynomial ring.

As an example, we model integro-differential operators with polynomial coefficients using Ore
polynomials. This part is based on our ISSAC 2009 paper [RRMO09]. We arrive at a construction
which is similar to the Weyl algebra in the purely differential case.

In the main part, we consider normal forms of matrices. These make it possible to express systems
of linear equations involving operators and to determine the properties of these systems such as, for
example, solvability. We first consider normal forms with respect to row-operations. The coefficient
domain here is a skew field. We treat row-reduction, the Hermite normal form, the Popov normal
form and shifted Popov normal forms. We draw a connection between these normal forms to Grébner
bases over modules. As an application of this connection, we present a modified FGLM algorithm for
converting matrices from one normal form into another. Parts of this were presented at ACA 2010
and in [Mid10].

We also consider the Jacobson normal form which is a normal form with respect to simultaneous
row- and column-operations. Here, we restrict ourselves to differential operators over a commutative
coefficient domain. We present a modular algorithm for computing a Jacobson normal form which is
based on cyclic vectors and which is guaranteed to succeed in characteristic zero, but under certain
conditions also yields a result in positive characteristic.

The last part deals with a topic from control theory. We examine linear time-varying differential
systems with delays for differential flatness and n-flatness where we use an idea from [MCL10].
For this, we apply the one-sided normal forms from the main part instead of the originally proposed
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Jacobson normal form. This will be presented at AMMCS 2011 and is also submitted to CDC 2011—
initial results were presented at [AM10].
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Overview

This thesis is devoted to the study of matrices over rings of non-commutative polynomials. It consid-
ers one- and two-sided normal forms of such matrices as well as an application. In this chapter we
will give just a brief overview over the field. In the following, the individual chapters will contain
more detailed information on the background of their respective topics.

As basic domain for investigations, we will consider Ore polynomials which first appeared in
[Ore33]. Named after their inventor, @ystein Ore, they are a class of (univariate) non-commutative
polynomials that may be characterised by the fact that the multiplication respects the usual degree
rule deg(f g) < deg f +deg g which is taken from the usual polynomials. The latter are also an example
of Ore polynomials and the only one where the multiplication is commutative. Two more prominent
examples are differential operators and difference operators which are both generalised by the Ore
construction. Other examples include g-difference operators or integro-differential operators. Confer
also [CS98, Table 1] for a list of more operators that can be modelled using Ore polynomials.

The degree rule implies that Ore polynomials must fulfil the so-called commutation rule da =
o(a)d +9(a) where 0 is the indeterminate, a is an element of the coefficient domain and o and 9 are
maps of the coefficients into themselves. Setting for instance ¢ to the identity and 9 to the derivation
d/dt, the commutation rule models the composition of differential operators.

Of the many possible instances of Ore polynomials we chose to investigate integro-differential
operators more closely. As in [RRMO09] we define the integro-differential Weyl algebra. This is an
extension of the famous differential Weyl algebra where in addition to the derivative an integral
has been added. That is, the elements of the integro-differential Weyl algebra can be used to model
operators from calculus like, for example,

fof+f0x(x3f)’dx—f’.

Integro-differential operators provide an algebraic setting in which initial and boundary value prob-
lems may be studied. Confer, for example, [KRR11]. Since the addition of the integral introduces
zero-divisors, the integro-differential Weyl algebra does not have all of the properties of its differen-

tial counterpart. For instance, it is not a simple ring.
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The main focus of this thesis are matrices over Ore polynomial rings and their normal forms.
As in the usual linear algebra, matrices of operators can be thought of as representing systems of
equations involving these operators. For example, the system f'+ g =0 and g —xg” = 0 may be

represented in the following way
d
= 1 (f ) ~0
dZ = V.
0 1-x a2 g

Like in the usual linear algebra over fields, elementary transformations of matrices do not alter the
system. They may hence be utilised to compute normal forms which make reasoning about these
systems easier. This includes, of course, solving these systems. Other applications of normal forms
include the comparision of two different systems: The answer to the question whether one system
includes another one may directly be translated to an inclusion of the corresponding solution spaces.

In this thesis we consider normal forms with respect to elementary row-operations and normal
forms where additional column-operations are allowed. The first case, the one-sided normal forms,
include the Hermite normal form and the Popov normal form—confer, for example, [BLLV99]. While
the first normal form is a generalisation of the row echelon form for matrices over fields; the latter, the
Popov normal form, arising from the considerations in [Pop70], gives a minimal degree description of
the row-space of the matrix.

For the special case of differential operators, we consider the Jacobson normal form. This is a
diagonal matrix which includes at most one non-trivial diagonal element. Its interpretation in the
setting of systems of differential equation is the translation of system to a single (usually high-order)
equation. In the above example, the Jacobson normal form is

1 0)[< 1 0 1 1 0
d? dx d? ( d): d? d
xm—l 1 0 I—Xm 1 ~dx 0 Xﬁ—%

meaning that f'+g=0=g —xg" it is equivalent to the single equation x2"” = A’. Thus, the Jacobson
normal form may be used as an instrument for solving systems of differential equations—see, for
example, also [CQO5].

Another prominent application of normal forms except for solving systems is the examination of
their properties in more specialised fields of mathematics. For example, in conirol theory, matrix
normal forms may be applied to determine the properties of control systems. In this thesis, we will
treat the problem of (differential) flatness of such systems—see Chapter 8 for a definition. We describe
an algorithm to solve the question whether a system is flat using the one-sided normal forms from
earlier chapters.
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Outline of the thesis

The whole thesis is divided into three parts. In the first part, we will introduce rings of so-called Ore
polynomials; in the second part, we will consider matrices over those rings; and in the third part, we
will present an application of the first two parts in the frame of control theory.

We start with a general overview over Ore polynomials in Chapter 3. After recalling the defini-
tion and the most basic properties in Section 3.1, we discuss as most prominent examples in Sec-
tion 3.2 the commutative polynomials, the differential operators and the difference operators. The
next section, Section 3.3, deals with the multiplication and (Euclidean) division of Ore polynomials.
Section 3.4 list two less basic theorems: The universal property of Ore polynomials and one of its
consequences. Chapter 3 is concluded with an overview of fractions over non-commutative domains.

As an extended example, Chapter 4 contains a treatise on the integro-differential Weyl algebra.
This is an analogon to the famous differential Weyl algebra which includes, besides the derivation,
also an integral operator. In Section 4.1 we give an overview over the previous work on integro-
differential operators over general integro-differential algebras. Then, in Section 4.2, we restrict
ourselves to (commutative) polynomials are coefficient domain for our operators—just as in the Weyl
algebra. The resulting operator ring is then dubbed the integro-differential Weyl algebra. We in-
vestigate its ideal structure and prove that it is slightly more general than the integro-differential
operators with respect to the definition in Section 4.1.

We also consider two important special cases: integro-differential operators with constant coef-
ficients and integral operators with polynomial coefficients. The later we will call the integro Weyl
algebra. For both special cases we will derive descriptions of the ideal structure and possible bases.

In Chapter 5 we start with the examination of matrices over Ore polynomial rings and their
properties. The chapter begins in Section 5.1 with an overview over the notations for matrices that
will be used in this thesis. The first main topic in the matrix part is then row-reduction which will be
explained in Section 5.2. The section includes also a short review on Grobner bases over rings which
will be linked to row-reduction. Section 5.3 does a basic complexity analysis for the row-reduction
algorithm which we be referenced in later chapters. At the end of Chapter 5, in Section 5.4, we
explain how row-reduction may be used for the inversion of matrices and for computing greatest
common divisors.
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Chapter 6 is devoted to the study of one-sided normal forms of matrices. Objects of this study
will be the Popov normal form, shifted Popov normal forms which are explained in Section 6.1 and
the Hermite normal form which we define in Section 6.2. Both sections do also contain some basic
properties of the respective normal forms. In Section 6.3, we will then recall Grobner bases for
free modules over Ore polynomial rings. They will be connected to the one-sided normal forms in
Section 6.4 where we will prove that the Popov normal form, the shifted Popov normal forms and the
Hermite normal form are indeed reduced Grébner bases. We apply this result in Section 6.5 to derive
a conversion algorithm for normal forms that is based on the famous FGLM algorithm.

We shift our focus from one-sided normal forms to a two-sided normal form in Chapter 7 where we
consider the Jacobson normal form for matrices of differential operators. We present the definition of
the Jacobson normal form in Section 7.1. In the next section, Section 7.2, we recall existing methods
for the computation of the Jacobson normal form. In the remaining three sections of Chapter 7 we
then derive a new method which is based modular computations. We start with pre-conditioning the
matrix in Section 7.3 where we reach a decomposition of the quotient of the row-space into the torsion
and free part. In Section 7.4 we will concentrate on the torsion part and derive conditions for it being
a cyclic module. This is then be used in Section 7.5 where an algorithm is presented that allows to
compute a Jacobson normal form with corresponding transformation matrices from a cyclic vector in
the torsion part.

Finally, in Chapter 8, we provide an example on how normal forms may be applied to solve prob-
lems in the field of control theory. We start with a rough overview of control theory in Section 8.1.
Then, in Section 8.2, we will concentrate on the notions of differential flatness and of n-flatness and
will discuss an algorithm which checks whether a given system has one of these properties.

For illustrational purposes, this thesis includes MAPLE code for the conversion of one-sided nor-

mal forms into each other in the appendix. We did, however, decide to not develope this code into a
complete package as the methods or at least parts of them are already included in MAPLE.
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Part 11

Ore polynomials
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Definitions and basic facts

3.1 Definition

Ore polynomials originate from the works of @ystein Ore (see [Ore32a, Ore32b] or [Ore33]). The
main idea was to study polynomials whose multiplication is non-commutative but which still fulfill
the condition that the degree of a product does not exceed the sum of the degrees of the factors.
Assume we are given two rings A and R such that A € R and such that there exists an element 0
whose powers generate R as a left A-module. That is, the elements of R are of the form

F=a,0" +ap_10" 1 +...+a20% +a10+ag

where n € IN and ao,...,a, € A.' We assume further that this representation is unique, that is, that
the powers of d are A-linearly independent. If in the above representation a, # 0, then we call n
the degree of f denoted by degf = n and we call a, the leading coefficient of f for which we write
le(f) = a,. In order to avoid case distinctions we set deg0 = —oo, while 1¢(0) remains undefined.
Additionally, we define the sth coefficient to be coeff(0%, f) = a, for s < n and coeff(3°, f) = 0 otherwise.
The condition that we would like to impose on the elements of R can now be written down as

deg(fg)<degf +degg forall f and geR.
In particular, if f =0 and g =a € A, then we obtain the commutation rule
O0a =o(a)d+9a) 3.1)

where g(a) and 9(a) € A denote two elements that are uniquely determined by the condition that the
powers of 0 are linearly independent. Regarding o and 9 as functions 60: A — A and 9: A — A, the
distributive law of R implies

o(a+b)d+9(a+b)=0(a+b)=0a+0db=(0(a)+0(b))d+(Ia)+ b))

1In this thesis, the natural numbers IN always contain 0.
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and thus g(a +b) = o(a)+0(b) and Ia+b) = a)+I(b) for all a and b € A using again the uniqueness
of the representation of the elements in R. Using the associativity and the unit in R, it is possible to
prove that 0 must be an endomorphism of A and that 9 is a g-derivation:

Definition 3.1 (o-derivation). Let A be a ring and let 0: A — A be an endomorphim. A o-derivation
is an additive map 9: A — A satisfying the o-Leibniz rule

9(abd) = o(a)d(b) +9a)b 3.2)
foralla and be A.

If o is the identity function id, then 9 just satisfies the usual Leibniz rule from calculus. In that
case we call 9 simply a derivation.

Until now, we assumed that a ring R with the specified properties was given. But it is in fact
possible for every ring A that is endowed with an endomorphim o: A — A and a o-derivation 9: A —
A to construct such a superring. See, for example, [Coh85, Theorem 0.10.1] where the construction
is carried out analogously to the usual polynomials by embedding A into the (group) endomorphisms
of AN and defining 3: AN — AN in a way such that its powers are A-linearly independent and such
that the commutation rule (3.1) is fulfilled. The resulting ring is denoted by A[J;0,9] and is called
the ring of Ore polynomials over A in the variable 0 with respect to 0 and 9. Some authors (including
[Coh85]) prefer the name “skew polynomials”—but as this term is also used more specifically for
certain subclasses of Ore polynomials (for example, [BCLO06] reserves it for the case 9 = 0) we decided
not to use it in this thesis.

There are generalisations of Ore polynomials. For example, in [CS98, Definition 1.2] so-called
Ore algebras are defined. These are iterated Ore polynomial rings with the additional condition that
the indeterminates commute. Even more general is the concept of so-called Poincaré-Birkhoff-Witt
rings which are multivariate non-commutative polynomial rings with a slightly more complicated
commutation rule than Ore algebras. See, for example, [BGTV03, Definition 2.2.5] for a definition.
In [BGTVO03, Corollary 2.3.3] it is shown that Ore algebras over skew fields are Poincaré-Birkhoff-
Witt rings.

3.2 Examples

Commutative polynomials

First of all, the usual commutative polynomials are a special case of Ore polynomials. Indeed, if
we take the identity function id and the zero-map 0, then in A[d;id,0] the commutation rule (3.1)
becomes just

0a =ad

for all a € A. That means, that the ring A[d;id,0] is isomorphic to the ring A[X] of commutative
polynomials over A.
Differential operators

Another important class of examples for Ore polynomials are differential operators. Here, we have
o =1id and 9 is a derivation in the ordinary sense. The commutation rule (3.1) becomes

0a =ad+9(a)
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forallae A.

The connection to differential operators in the analytic sense can be drawn as follows. Let
9: A — A be a derivation. We let A act on itself by left multiplication, that is, with each a € A
we associate the function a* = x — ax. The functions a* with a € A and 9 generate a subring in
the group endomorphisms of A that can be identified with A[d;id, 9] if the powers of ) are A-linear
independent. The reason is that using the Leibniz rule, we see that for every b € A

Yoa™(b)=Nab) =ad(b)+a)b = (a” o9 +(a)")(d),
that is, we have the following identity of functions
Hoa* =a* o9+ 9a)*
which is essentially the same as the commutation rule above.

A famous special case of differential operators is the (first) Weyl algebra A1(d) which has a univari-
ate polynomial ring A = K[x] over a field K as coefficient domain and uses the standard derivation
d/dx which maps x to 1. Note that fixing the derivative of x always yields unique derivation on K[x]
which extends the zero-derivation a — 0 on K. See, for example, [Kap76, 1.2 Examples 4]. We refer
the reader to [Cou95, Chapter 1] for a definition of and an extensive overview over the Weyl algebra.
The introduction of [Cou95] contains a detailed historical overview.

Difference operators

The last major example that we are treating here are the difference operators which are sometimes
also labelled shift or delay operators . The general case is that 9 is simply the zero-map which makes
the commutation rule (3.1) become
Oa = o(a)o.

The name “difference operator” comes from the case that A is a ring of functions in the real variable
tand g: A — A is the function a(¢) — a(¢ — 1) that shifts the functions in A by a fixed amount 7 € R.

This class of Ore polynomials is also called “skew polynomials” by some authors (for example,
[BCLO6]).

3.3 Elementary properties

Multiplication

Let A be aring, and let 0: A — A be an endomorphism and 9: A — A be a o-derivation. We abbrevi-
ate A[0;0,9] by R. If we take f = f,0™ +...+ f10+ fo € R where fy,...,[n €A, then

of =Y of;0' =Y a(fpd’t+ Y a(fe.
j=0 Jj=0 Jj=0

Letting 0 and 9 act on elements in R by coefficient-wise application, the above equation may be
written more succinctly as

of = a(£)d+9(f). (3.3)

Since multiplication by d from the right is just a shift of the coefficients, we need m applications of o
and 9 and m — 1 additions in order to compute this product. That means to compute the product fg
for g € R, we could apply the following naive method:
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1. Compute iteratively /g = (0’ 1g) = 0(3/ " 1g)a+ 9/ g) for j=1,...,m.
2. Compute the products fj&jg for j=0,...,m.
3. Compute the sum f,,0"g +...+ f10g + fog.

Let degg = n. Since computing /g from 8’1 g needs (j—1)+n applications of o and 9 and (j—1)+n—1
additions, the first step needs

. ((-D+n)=mr-D+ lezm(n—l)+W:m(n—%+§m)
J Jj=

»—AMS

applications of 0 and 9 and m(n— % - %m) additions. Computing the products in the second step needs

S (j+n) = (m+ Dn+ ED

(m+1)(n+ 1m)
=0 2

multiplications in A, and the third step needs m(n — % + %m) additions.

Remark 3.2. Counting applications of ¢, 9, additions and multiplications in A all as atomic opera-
tions, we see that in order to compute the product £ g of two elements f and g € R of degree degf =m
and degree degg = n, we need

O(m-max{m,n})

operations in A.

It is also possible to derive direct formulee for the coefficients of a product in means of the coeffi-
cients of the factors. See, for example, [Ore33, Equation (13)]. We repeat it here for the convenience
of the reader.

Definition 3.3 (Diffnomial). Let 2 <m, andlet 0: A — A and 9: A — A be mappings for a ring A.
By {7/} we denote the sum of all compositions of ¢ and 9 of length m where ¢ occurs exactly  times,

that is,
ld lfk =m= 0’
mlaa={" ifk=m,
k : - gm iR = O,
{'Z__ll} °o+ {mk_l} o9, otherwise.

We call {7} a diffnomial for the pair ¢ and 9.

The diffnomials are also introduced—without a name though—in [Ore33]. We give explicit for-
mulée for two special cases.

Example 3.4. 1. Ifo=id then forallm =k

T I e

since there is a one-to-one correspondence between the summands of {rg} and the (m — k)-
element subsets of {1,...,m} given by the positions of where 9 occurs in the compositions.
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2. If 9 =0 then
m| o™, ifm=k,
E[ |0, otherwise.
The diffnomials provide a short way to write down products with a skew variable using a notation
that reminds a little bit of the general Leibniz rule.

Lemma 3.5 ([Ore33, Equation (13)]). Let A be a ring with endomorphism o: A — A and o-derivation
9: A — A. For the (left) skew polynomial [ € Al0;0,9] and every m = 0 we have

of=y {’Z}(f)ak
k=0

where a(f) denotes [ with o applied to all its coeffcients and 9(f) means f with 9 applied to its
coefficients. That is, if [ = [,0" +...+ f10+fo with fo,...,[n € A then o(f) = 0(f,)0" +...+0(f1)0+0(fo)
and I(f) =9(f,)0" +...+9(f1)0 + 9(fy).

Proof. We use induction on m. The formula is obviously true for m = 0 since both the left hand side
and the right hand side will be just /. For m =1 we obtain
of = ) 0fr0" =Y (o(fr)d+9(fx))0" = ) o(fz)30" + Y_ 9(fr)d" = o(f)d+I(f)
k=0 k=0 k=0 k=0

where f = f,0" +...+ f10+ fo with fo,...,fn € A. Assume now that m = 0. Then

L =™ (0(f)d+ O(F)) = Ao (f)d+ ™ O(f)

=) 3 (o(fNa*a+ ) b (9(f)o
k=0 k=0
m+1 m mm
= oo (f)d" + { }oﬂ(f)ak

k=1 {k - 1} kgo k

m+1 m m m+1 m+1
= 9ok = o*
Bl afer oo B o
using the case m =1 for the first and the induction hypothesis for the fourth identity. O

The formula dg = o(g)0 + 9(g) for non-zero g € R implies that lc(0g) = o(le(g)) unless o(le(g)) = 0.
Iterating this, we obtain for any non-zero f € R the identity

le(f g) = 1e(f) o487 (le(g)) (3.4)

provided that neither le(f) is a zero divisor nor o9¢8/ (Ie(g)) = 0. In particular, if A does not contain
zero divisors and o is injective, then the above formula always holds. Hence, in this case R will be a

(non-commutative) domain.
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Greatest common divisors

If A is a field and ¢ is an automorphism, then the leading coefficient formula (3.4) and the degree
formula imply that for any non-zero f and g € R with degg < degf the polynomial

Lot %8 e85 (1e(g) o8 ~dess . g

has the same degree and leading coefficient as f. Consequently, subtracting it from f yields a polyno-
mial of degree strictly smaller than degf. Iterating this reduction we obtain polynomials ¢ € R and
r € R such that

f=qg+r
where degr < degg. We refer to this as (Euclidean) right division. It can be shown that ¢ and r are
uniquely determined by these conditions. Analogously, also

g0 degg (10( )1l f)) gdesf—degg
has the same leading coefficient and degree as f and we may compute ¢ and 7 € R such that
f=gq+F
and deg# < degg. This will be called (Euclidean) left division.

It is also possible to do pseudo-division in a way analogous to the case of commutative polynomi-
als. See, for example, [Li98].

Example 3.6. Consider the difference operators Q(X)[d;s,0] where sa(X) = a(X —1). Let f =02+
X0+1land g= %6+ 1 then we have

f=(1+X)0-X)g+(X+1) and f=g(X-DX+X-1)+2-X)

illustrating that neither the quotient nor the remainder needs to be the same when going from left
to right division.

The left and right division make R a left and right Euclidean ring. In particular R is a principal
left and right ideal domain. Moreover, it is possible to compute greatest common left or right divisors
as well as least common left or right multiples using a version of the Euclidean algorithm. This
appeared already in [Ore33, Section 2]. Other presentations may be found, for example, in [BP96,
Secion 3]. In [Li98, Proposition 6.1] an algorithm for greatest common divisors is presented which
is based on subresulant methods, while [L.i96] contains—at least for special coefficient domains—a
modular method for the computation of greatest common right divisors.

Below in Lemma 5.16, we will present a method to compute greatest common divisors that is
based on row-reduction. It will compute the greatest common divisor as well as the Bézout cofactors.

3.4 Further properties of Ore polynomial rings

Below we will need the following universal property of Ore polynomial rings which we cite from
[MRO1, § 1.2.5]. The homomorphism mentioned there corresponds to the substitution homomorphism
in the commutative case—see, for example, [Wae03, Page 45] or [Jac85, Theorem 2.10]—where the
condition on the element ¢ is void since o =1id, 9 =0 and A as well as the image w(A) of A in S are
commutative.
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Theorem 3.7 (Universal property/[MRO1, § 1.2.5]). Let A be a ring with endomorphism o: A — A
and o-derivation 9: A — A. Let S be another ring, w: A — S and ¢ € S such that

¢y(a) =y(o(a))s +y(d(a)

for all a € A. Then there exists a unique ring homomorphism y: Al0;0,9] — S extending v such that
x(0) = ¢ and the diagram

A———— Al0;0,9]
X e
S

is commutative.

Anideal I < A of A is called an o-9-ideal—or just 9-ideal if ¢ = id—if for all @ € I we have a(a) € I
and 9(a) € A. Using the commutation rule (3.1), it is easy to see that the ideal which is generated by
I in A[0;0,9] consists just of the set of all Ore polynomials with coefficients from I. This is analogous
to the commutative case as the following result is—where again the conditions on I trivially hold.
See, for example, [Vet02, Satz 7.10].

Corollary 3.8. Let A be a ring with endomorphism o: A — A and g-derivation 9: A — A. Let Ic A
be a (two-sided) o-0-ideal, that is, an ideal such that

ol)cI and I <.

Then
(A/D)d;6,91= Alo; o, 9I)

where & and 9 are the homomorphism and &-derivation induced by o and 9 and (I) is the ideal
generated by I in Al0;0,9].

Proof. Since I is two-sided, A/l is a ring. Let m: A — A/I be the canonical homomorphism. The
induced homomorphism & : A/I — A/I is defined as 6((a)) = n(o(a)) for all a € A. This is well-defined
since a — b € I implies o(a —b) € 0(I) < I and thus 0 = n(g(a) — (b)) = n(o(a)) — n(a(b)) for all b € A.
Analogously, we prove that 9((a)) = 7(9(a)) yields a well-defined map of A/I. We have

I((a@)m(b)) = H(n(ab)) = n(9(ab)) = m(a(a)I(b) + Ia)b)
= 11(a(a))n(9(b)) + n(9@)n(b) = 6(w(a))((b)) + I((a))n(b)

for all @ and b € A meaning that 9 is a -derivation. Thus, the ring (A/I )[5;6,9] exists.
Foralla€e A is
on(a) = 6(m(a))d + I((a)) = 1(o(a))d + n(Na)).

Thus, by the universal property 3.7 there must be a ring homomorphism y: A[d;c,9] — (A/I)[0;5,9].
Its kernel consists of all Ore polynomials in A[0;0,d] with all coefficients being in I. This is precisely
the ideal (1) generated by I in A[d;0,9]. Thus, by the homomorphism theorem for rings—confer, for
example, [Coh00, Theorem 1.21]—the claim follows. O
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3.5 Rings of fractions

In the application part we will need to consider localisations of Ore polynomial rings. A general
theory for fractions in non-commutative domains was given by [Ore31]—see also [Coh61] or [Coh00,
Section 5.1]. In this thesis, we are going to use the formulae from [JeZ96], which includes also a
section about derivatives of fractions. This will be needed below in Section 8.2 in order to define
iterated Ore polynomial extensions including fractions.

Just as in the commutative theory, localisations over a non-commutative ring A are represented
as pairs of a denominator and a numerator, that is, the pair (a,b) € A x A represents the element
b~ la in the—yet to be defined—ring of fractions over A. Having the denominator on the left hand
side is referred to as left fractions. Analogously, we could represent fraction with the denominators
written on the right hand side instead, that is, we could consider right fractions. This is possible as
well under similar conditions as in the left case. Below, we will only list the formulee for left fractions,
though. For the other case, we refer the reader to [Jez96].

Instead of considering merely multiplicative subsets for the denominators as in the commutative
case, we need to be more restrictive in the non-commutative case. The problem is that to resolve
products like 5 1a-d !¢ we need to commute @ and ¢!, that is, we need a fraction ¢~ 1p such that
ac™! =g 1p or, denoted differently, we need a denominator g and an arbitrary element p such that

ga=pc.
This consideration motives the following definition: A subset S € A is called a left Ore set if

1. 1S and S is closed under multiplication,
2. S does not contain left or right zero divisors, and

3. forall seS and a € A we have RsNSa # @.

See also [Jez96, Page 87] or [Coh00, Page 177] for the right Ore set case.

Using the algorithm for least common multiples from, for example, [BP96], we see that for every
Ore polynomial ring R = K[0;0,9] over a field K and with automorphism ¢: K — K and o-derivation
9: K — K the set S = R\ {0} is a left Ore set. See also [Coh03, Proposition 7.3.4]. But not every
multiplicative subset of R has this property, as the following example shows.

Example 3.9. Let A = Q(¢), the field of rational functions in the indeterminate ¢, and let o be the
substitution ¢ — ¢ — 1. Consider R = A[d;0,0] and = = 0 +¢. We prove by induction, that the powers of
7 are not a left Ore set in R. That is, we have to prove that there is a € R such that there exists no
n =0 and no f € R with

aa=fm,

or, put differently, we have to prove that = is not a right divisor of 7"a for all n = 0. We choose a = ¢
and proceed using induction. Obviously, 7 cannot divide ¢ because of the degree. Assume that 7 does
not divide n™*¢ for some n = 0. Since

7"t =10t + %) = 2" (¢ - Do+ 12) = n" (¢ - D@+ 1) + 1) = 2"t - Dm + "¢,

we see that if 7 divided 7”1 from the right, then 7 also divided #"¢ from the right contradicting our
assumption. Thus, S ={7n" | n = 0} cannot be a left Ore set of R.
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It can be proved that for any left Ore set S € A we construct a ring S1A such that every element
in S71A can be expressed as fraction s 'a with s € S and a € A. Moreover, the map a — 17 'a from
A to S71A is an embedding, that is, an injective homomorphism and all images of elements in S are
invertible. See, for example, [JeZ96] of [Coh00, Theorem 5.2] for the dual case.

In particular doing for R = K[0;0,9] as above the full ring of fractions (R \{0}) 1R exist. We will
usually denote it just by K(9;0,9). By [Coh00, Proposition 5.3]—which can be formulated and proved
for left fractions as well—we can bring every finite set of fractions to a common denominator.

We will here just cite the formulae for addition, multiplication and—in the case that A has a
derivation 9: A — A—derivation of fractions. Let 6 'a and d 'c € S™1A be given. Then by [Je796,
Equation (40)] we have

b la+d e =(db) (da+bc)

where b and d € S satisfy bd = db, by [Jez96, Equation (41)]
bla-d e =(db) Hac)
where da = dd, and finally using [Jez96, Theorem 13] with 9: S™1A — S71A defined by
B(b ™ a) = (5b) "' (b8(a) - xa)

where 59(b) = xb we obtain a derivative on S™1A which extends 9.
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Extended example: Integro-differential
operators

4.1 Integro-differential operators

As an extended example we would like to show how integro-differential operators may be modelled by
Ore polynomials. Integro-differential operators arise from the work in [RR08] based itself on [Ros05].
Just as we have argued that differential operators may be modelled algebraically in Section 3.2,
integro-differential operators are a way to model operators that are build from a derviation as well
as an antiderivation, commonly called an integral. They have applications in treating boundary
value problems in a symbolic fashion. See [RRTB11, Section 5] for this, where integro-differential
operators are used to achieve a factorization of boundary value problems into smaller parts which
then can be attacked separately.

In this chapter, we will discuss our joint with Georg Regensburger and Markus Rosenkranz work
in [RRM09] where we examined how to model integro-differential operators as Ore polynomials.’

In this whole chapter, all fields will be of characteristic zero. We start with the definition of
an integro-differential algebra. This is the base point for our integro-differential operators as it
will serve both as coefficient domain and also as target for possible actions of integro-differential
operators.

Definition 4.1 (Integro-differential algebra, [RRMO09, Definition 1]). Let & be a commutative al-
gebra over a field K. Assume that there are two maps 9: & — &% and p: & — & such that 9 is a
derivation, p is a K-linear right-inverse of 9, that is, 9p = id, and the differential Baxter axiom holds,
that is, for all f and g€ & it is

b(O(H)b(9(2)) = b(0(f)) g + f b(9(@) - b ((f ).

Then, the triple (&,9,p) is called a integro-differential algebra. The map p is called an integral for 9.

1In [RRMO09] the term “skew polynomials” was used for Ore polynomials.
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Usually the integral p and derivation 9 are denoted just by the symbols | and d known from
calculus. Denoting the derivation by the even more common prime, the differential Baxter axiom
would be denoted as

Jf'-J&' =[f"g+f-J&'-[(fg).
We will here, however, refrain from this notation since we would like to reserve the symbols 0 and [

for the indeterminates of an integro-differential operator ring below. In this, we differ from [RRMO09]
and [RRTB11].

The most prominent example of an integro-differential algebra are the smooth functions & =
C®(R) over the reals together with the usual derivation 9 = d/dx and the corresponding integral
b=1Ff— [y f(&)dé. Here, the integral is indeed only a one-sided inverse of the derivation since in
general

poc)= [ CF©dE = FOITE = F@) - FO) £ F@)

for a function f € C*°(R). Thus, here we have p9 #id.
Another—more algebraic—example which we will consider below are the polynomials K[x] over a
commutative field K of characteristic zero together with the formal derivation 9 = d/dx with respect

to x and p given by x" — n%

1x’”l. This example shows also that p needs not to be uniquely deter-
mined since for every ¢ € K the map p, defined by x™ — %(ac”+1 —¢"*1) yields a right-inverse of 9

which fulfills the differential Baxter axiom.

Substituting p(f) for £ and p(g) for g in the differential Baxter axiom and using that p is a right-
inverse of 9 and the Leibniz rule as well as the linearity of p yields

b(H)b(@) = b(ID(FN) b(I(B(8)) =p(IB(fN) b(&) +b(f)B(ID(2))) = b(I(f)b(8))
=b()b(@) +b(F)b(&) ~b(b(HIP(&)+ID(fND(&)) = 2b(f)b(&) ~b(b(f)g) —b(fb(g))

which is equivalent to
b()b@) =b(b(f)g) +b(fb(g)-

The last rule is generally known as integration by parts—as can be easily seen from the more famil-
iar notation F-G = [FG' + [F'G where F = [f and G = [g. The above equation is not in general
equivalent to the differential Baxter axiom by itself. See [RRTB11, Proposition 7] for the conditions
necessary in order to define an integro-differential algebra using integration by parts. A description
of the properties of an integral purely by itself is the pure Baxter axiom

b(Pb(g) =b(fb(g) +h(gh(f))

which can be found in [RRTB11, Definition 8]—in [RRTB11, Proposition 10] it is shown that it holds
in an integro-differential algebra.

Since the integral is only a right inverse—also called a section—of the derivation, the map ¢ =
b9 —id is in general not zero. In [RRTB11, Section 3] it is proven that ¢ is a multiplicative projector.
We call € an evaluation. This name is justified by the facts that in the standard examples & = C*°(RR)
and & = Klx] a function (or polynomial function) f is evaluated to &(f) = f(c) where c € K is the
lower limit of the integration. Thus, ¢ is a K-linear map from &% to K, a so-called character. It
makes it possible to formulate initial value problems—see also the explanation just behind [RRTB11,
Corollary 18].
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In [RRTB11]—and also in the introductory part of [RRMO09]—it is usually assumed that one is
given other characters apart from €. Since they do not occur in the integro-differential Weyl algebra
we will be concentrating on below, we do not give any details here.

In [RRMO09] integro-differential operators have been introduced in two different but equivalent
ways. The first involves considering an integro-differential algebra (&,9,p) and considering the free
algebra Z (0, [) over Z in the indeterminates 0 and [. Then, relations which model the compositions
of integral operators and differential operators are identified and combined into a rewriting system
which allows one to compute normal forms in (9, [}. This whole approach is described in great de-
tail in [RRTB11]. The reference also outlines a THIOREMV implementation of this with the complete
code being available online.

The other approach—which we will describe now—models the integro-differential operators in
three separate parts: Differential operators, integral operators and boundary operators. This is
motivated by [RRTB11, Proposition 26] where it is shown that every integro-differential operator—
as defined there—can be written uniquely as a sum of these three types of operators.

In [RRMO09, Section 3] we took this sum decomposition as a definition. We will outline this here
for the convenience of the reader. See also [KRR11] for a more detailed description and an imple-
mentation of integro-differential operators in MAPLE using this approach. This reference contains
applications of integro-differential operators to boundary value problems as well. Also here, the
package is available online.

Let first (&,90,p) be an integro-differential algebra over K. We start by defining the differential
operators by simply setting &[0] = &10;id, 9] as in Section 3.2.

Next, we define integral operators [ []. For this we need to choose a basis B of & as an K-space.
The integral operators are then defined as the free &-module over the elements [b where b € 9B3.
Note that ['b is considered as a purely symbolic value. We will also write non-basis elements v on the
right hand side of /. This is to be understood as v =Y pe3 ¢p [ b where v = Y pem cpb. This models
the K-linearity of the integral which is ultimately also the reason for choosing a basis here as right
hand sides. The multiplication in & is based on the equation

[b-[=p®B)[ - [b(b) (4.1)

where b € 9B and [p(b) has to be represented as described above. This models the integration by
parts rule. The multiplication can be extended to all of &[ [] using associativity and distributivity.

Finally, we need to define the boundary operators F|[E] that represent those integro-differential
operators containing the evaluation € = p9—1. The set F[E] is defined to be the left & -module
spanned by the (again purely symbolic) elements 4’ for j = 0. They model evalutation of a derivative
of a function. The product in & is obtained from

E0' - fEY = e(9'(f))EdY

with i and j = 0—which is motivated by the Leibniz rule and the fact that ¢ is a projection. Again,
distributivity and associativity are used to expand this to all of F[E].

Now, we finally may define the integro-differential operators as the direct sum
Z10, 1= F[0le F[[1e F[E]. 4.2)

It remains to define the products of basis elements from the different parts with each other. In the
following let b € B, f € & and i and j = 0. Then we have for products of differential and integral

Page 21 of 102



Normal forms of Ore polynomial matrices

operators

o-ffb=Ffb+0(f)fb and  [b-fo=bf— [Obf)—e(bf)E.

In order to multiply differential and boundary operators we need the equations

o' fed' =9'(f)e¢'  and  EO'-f0 =) e(fi)Ed/
k=0

where fo,...,f; € F are the coefficients of 3'f = ZZ:O f20%. Finally, to multiply integral and boundary
operators we use
i-1
[b-fEd' =p(bf)Ed"  and  E-f[b=) e(gy)Ed”
k=0
where }:2:1 f20" 716 = Zi;%gkak in Z[0] with fy,...,f% as before.
It is not difficult but tedious to prove that these rules make [0, []into a ring. (The unit element
1 is contained in the first direct summand %[d].) It yields exactly the relations of the approach in
[RRTB11].
The last two equations show that multiplying anything with a boundary operators from either
side will result in a boundary operator again. Hence, boundary operators form a two-sided ideal in
the ring 1[0, [1 that we labeled evaluation ideal in [RRMO09].

4.2 Modelling integro-differential operators with Ore polyno-
mials

In this chapter, we will concentrate on the algebra K[x] with the standard derivation given by x — 1
and the integration defined via 1 — x. Note, that by [Kap76, 1.2 Examples 4], prescribing a derivative
for x will fix the derivation on all of K[x] uniquely. Also, note fixing p(1) = x actually fixes the integral
of x™ to p(x") = ﬁx”“ for every n = 0: Taking p(1) = x as the base case, induction using the pure
Baxter axiom yields

+ ib(anrl)

1 n+2 _ ny_ n n _ 1,.n+1 n+ly_ 1
—— =p(Dp(x"™) = p(1p(x™) +p(x" (1)) = p(52" ) + p(x" ) = "
and thus p(x"*1) = n—}rzx"m.

This setting will lead to an integro-differential algebra that is analogue to the Weyl algebra A;(d)
in the differential case.

For this ring we need only a small subset of the multiplication rules of the integro-differential
operators defined in the last section that are sufficient generate all the others. This will be proven in
Theorem 4.23. The initial multiplication rules are just

Ox =x0+1, f=x[—fx and 4f=1

Here, the first rule is the commutation rule in K[x][0]; the second rule is Equation (4.1) for b = 1; and
the last rule follows from the cross multiplication of K[x][d] and K[x][f]. The boundary operators
will in this setting be defined purely in terms of d and J.
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The straight-forward approach to implement these rules in an Ore polynomial ring would be
to start with the already known Weyl algebra A;(0) = K[x][0;id,d/dx] and extend this by a second
variable [ with a corresponding derviation. This however fails since the Baxter axiom

Jx=-f+x]

violates the degree rule: Considering the degree in [, we have deg / = 1 and degx = 0 and are thus
expecting deg [x = 1; but on the right hand side we encounter a polynomial of second degree in |.

The way to overcome this problem is to note that while the degree in [ in the above equation
is different on the left and on the right hand side, the degree in x is the same. The same is true
also for the Leibniz rule dx = x0 + 1. This observation leads to the following attempt to define the
integro-differential Weyl algebra: First, construct the ring of integro-differential operators K[9, ]
with constant coefficients; and second, use this ring as the coefficient domain for an Ore extension
K0, [1[x;id, 9] in the variable x with a fittingly chosen derivation 9 of K[9, [1.

Integro-differential operators with constant coefficients

We start by examining the ring of integro-differential operators with constant coefficients. This
corresponds roughly to the fourth section of [RRMO09]. Let K be a (commutative) field. We want to
introduce two variables 4 and [ such that [ is a right inverse of 3. For this we consider the free
algebra K(D,L). Let (DL —1) <K(D,L) denote the two-sided ideal that is generated by DL — 1.

Definition 4.2 ((RRM09, Definition 2]). The algebra K{9, [} is the quotient K(D,L)/(DL - 1) where
8 denotes the residue class of D and [ denotes that of L.

When we will add x below, we need to fulfil the relations
x0=0x-1 and xf =[x+ /%

If we are to regard these identities as instances of the commutation rule, then the derivation 9: K(9, ) —
K {9, ) must fulfil

90)=-1 and ()= />

We can define a derivation 9: K(D,L) — K(D,L) by 9(D) = -1 and 9(L) = L?>—see, for example,
[Coh69] or [BD78]. Because of

9DL-1)=dD)L+DAL)=-L+DL?=(DL-1)L

the ideal (DL — 1) is a differential ideal and 9 induces a well-defined derivation 9: K (0, NH—=K@,[)
with the relations we were looking for.

Algebras with one-sided inverses have already been studied in [Jac50], one consequence of this
paper being that K (9, [} is neither (left or right) Noetherian nor (left or right) Artinian. Later, [Ger00]
extended this results describing the right modules and derivations over K9, ). In the notation of
[Ger00], we have 9 = —0y. .

As K-vector space, K(9, [} is generated by all monomials of the form [ '67 since every monomial
reduces to this form using the relation /= 1. We follow [Jac50] and define for i and j =0

E=1-/0 and e;;=['5d.
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In particular, it is E = egg. As before, E corresponds to an evaluation. Thus, the equation
E2=1- [0+ [0— [0fo=1-[d=E

can be understood in such a way that evaluating a function twice is the same as evaluating it only
once, since the result of the first evaluation will be a constant which always evaluates to itself. Since

dE=0-0[/0=0-0=0, and Ef=[-[0[=0,

K {9, [) has zero divisors. Confer also [Jac50] and [Ger00]. Note, that the first equation can be
interpreted in a way that deriving a function that is evaluated to a constant yields zero; while the
second equation means that the integral from c to ¢ yields zero as well. Extending the equations
derived above we obtain for all i, j, s and ¢ = 0 that

[Ed/5Ed, ifj>s
eijest = ['EY [*E0' ={ ['E[*ED!, ifs>

['EEQ", otherwise
Since for j # s the term simplifies to 0 and E? = E, we are left with the equation
€jj€st =0js€it

where 6 denotes the Kronecker symbol. This means that the e;; behave like matrix units—see [Jac50]
or [Coh85, Section 0.1]. Further identities involving the e;; are

ei_1,;, ifi=1,
eii=ejtlj and Oeji = (4.3)
Jeij=eir, " {O, ifi=0
as well as
e;j-1, ifj=1,
ejj0=e;ji1 and eijfz{O:J i£i=0 . (4.4)

The latter equations show that the two-sided ideal (g) generated by E has the e;; as a K-basis. Hereby,
the linear indepedence can be proven by expanding the equation

ei;j=['E0 = [T(1- [0)0) = ['6) — [H1o7*,

This allows to translate any relation of the e;; into one of the K-basis [*4".
The last equation can be rewritten as

fi+16j+1:—e,-j+fiaj.

Applying this recursively yields a way of expressing every polynomial | '8/ in terms of the est and
pure powers of either d or [. More precisely, we obtain

P R
o/t _Z;ezlei—k,j—k’ if j=i

for the conversion between the standard basis and the e;;.
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Example 4.3. Consider the operator
f=[0%+[0+0d%

Using the formula, we see that [0=1-& and [0>=d—e( and thus
f= l+6+62—E—eo,1.

In total, this yields already half of the proof of the following theorem which will serve as a first
step of unifying K(d, /) with the integro-differential operators in Equation (4.2).

Theorem 4.4 ((RRMO09, Proposition 3]). We have the decomposition
K, [y=K[0]®eK[[1[ & ()

as direct sum of K-vector spaces where K[d] is a differential subring of K{0, [ with respect to 9, K[ [1f
is a differential subring without unit and (E) is a differential ideal.

Proof. We have already seen that K (9, [) may be decomposed as direct sum. It remains to prove the
statements about the structure of the sumands. First, since 0 commutes with the elements in K,
we see that K[0] is actually just a commutative polynomial ring. Since 9(d) = —1 € K[d], we obtain
9(K[0]) < K[d]. Analogously, since for p [ € K[[1/ we have 9(p ) = 9(p)[ +p[* € K[[1] we see that
also K[ [1/ is closed under 9. Of course is K[ []/ as (two-sided) ideal of the commutative polynomial
ring K[ [ closed under addition, multiplication and additive inverses. Finally, we have

() = —0(f8) = —([90) +9()d) = (- [+ [*0) = [(1- [9) = [E€ () (4.5)

and thus 9(e;;) = (DS + [P9(E) + ['EO@') € (E) for all i and j = 0. This implies that also (£) is
closed under 9. O

The ideal () that has been mentioned in the preceeding theorem has an interesting property
which can also be found in [Jac50].

Lemma 4.5 ((RRM09, Lemma 4]). Every non-zero ideal in K{(9, [} contains (g).

Proof. Let I <K(0,[) be any ideal in K9, [, and assume that there exists an element f # 0 such
that f € I. We want to prove that e € I. Using the decomposition of Theorem 4.4, we may write
f=p+q+e,where peKIdl, g€ K[[]1[ and e € ().

Assume first, that p + g # 0. Multiplying / with a sufficiently high power 8* of @ we obtain an
element 0% f € I nK[d] since because of J =1 the terms of g get “shifted” into 0" q € K[4] and because
of 3i*tle; 7 =0 the terms of 0*e vanish. Denote now the degree of *f in 0 by p. We may assume that
0" f is monic. Then

ed*f M =gel

since all terms Ec ,-af in E0* f with ¢ j €K and j < g upon multiplication with | from the left become
c;Ef*7 =0 since u—j=1. We obtain (g) = I.

If p+q =0, then we must have e # 0. Choose i maximal such that e;; appears in e with a non-zero
coefficient. Then multiplying with 8* from the left yields de = cgeqq +... + cveqy for some v = 0 where
co,...,cy € K. Assume that ¢, # 0. Then Oiefv =cyE€ I and thus () € I also in this case. O

The idea of the proof is illustrated by the following example.
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Example 4.6. Consider the operator
f=02+fo+[*=0>+1+ [*-E.
Multiplying f by 82 from the left yields
0%f =020 +1+ [P —p)=0"+0% + 1.
Multiplication with E from the left leads to
E0%f)=E(0*+0%+1)=egq+ega+E,
and finally multiplying by [ * from the right yields

E@0?F)[* = (eos+eoa+E) [P =E
using the identities in Equation 4.4.

Things get even more special if we consider 9-ideals. In fact, the choice of them in K (9, [ is pretty
limited.

Theorem 4.7 ((RRMO09, Proposition 51). The only (two-sided) 9-ideals in K(d, [) are {0}, (E) and
K@, [) itself.

Proof. We have seen in Lemma 4.5 that (g) is a 9-ideal and obviously the other two are 9-ideals as
well.

Let now a 9-ideal I be given and assume that I # {0} and I # (). By Theorem 4.4, this means that
there is an element f = p + g + e € I with p € K[0], ¢ € K[[1/ and e € () where p + ¢ # 0. Analogously
to the proof of Lemma 4.5 we can find some % = 0 such that 8*f € K[4]. We must have 0% f # 0—
since p + g # 0—and thus m = degd®f = 0. Because 9 acts on K[d] as d/dd, applying 9" just yields
90" £) = m!1e(d* f) € K \ {0} which must also be in I since it is a 9-ideal. Thus, there is a unit in I
and we obtain I =K (9, [). O

In an integro-differential algebra the integral is only a right-inverse of the derivation. An inter-
esting question is thus: What happens if we make it a two-sided inverse, that is, enforce the relation
J0—1=g=0? Intuitively this would turn K(9, /) into some kind of Laurent polynomial ring. And
indeed, this is just the result of the following theorem.

Theorem 4.8 ((RRM09, Proposition 6]). The map
K@,

= KIZ,Zz71
(E

defined by 0+ (E) — Z and [+ (&) — Z~! is a differential ring isomorphism with respect to 9 and
-d/dZ.

Proof. We regard both K(d, [) and K[Z,Z '] as K-spaces. The linear map ¢ which maps the basis
element [*6’ with i and j >0 of K (9, [) to the basis element Z/~ of K[Z,Z 1] is thus well defined. We
prove first that ¢ is also a differential homomorphism. It is sufficient to check this for basis elements.
Let i, j, m and n = 0. Assuming first m = j, we obtain

(p(fiaj ~fm0n) — (p(fi+mfjan) — Zn—i—m+j — Zj—iZn—m — (p(fiaj)-(p(fma");
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and analogously for m < j we have
(p(fiaj 'fman) — (p(fiaj—m+n) — Zj—m+n—i — Zj—iZn—m — (p(f‘a])q)(f’"a")
This proves that ¢ is a ring homomorphism. Because for all i and j = 0 we have

P(9([*0))) = (700 + 0([)d) = p(—j [' L +i [ o)

— gy iz i P G

i d L
—gJt— to/
dz az
we see that ¢ is even a differential homomorphism.

By [Kap76, Theorem 1.2], this means that the kernel of ¢ must be a differential ideal which by
Theorem 4.7 leaves only three choices. We can rule out ker¢ = K since ¢(1) =1 # 0 and also ker ¢ = {0}
since

pE)=@p(f0-1)=1-1=0.
Thus, we conclude that ker¢ = (g). Furthermore, ¢ is surjective since each Z¢ is either the image of

0% if @ = 0 or that of /™% otherwise. Again from [Kap76, Theorem 1.2] we obtain that K(d, [)/(E) is
differentially isomorphic to the image K[Z,Z 1] O

Using the previous theorem together with the third isomorphism theorem—confer, for example,
[Coh00, Theorem 1.23]—we conclude that there is a one-to-one correspondence between the ideals of
K[Z,Z71] and the non-zero ideals of K (9, /). Theorem 4.8 leads thus to a complete description of the
ideal structure of the integro-differential operators K(9, [) with constant coefficients. We remark,
that the Laurent polynomials K[Z,Z '] are a principal ideal domain by [BIV89, Theorem 2.18].

Remark 4.9 ([RRMO09, Proposition 16]). Instead of modelling the derivation in Theorem 4.8 by set-
ting the derivative of Z to —1 which mimicks the derivative of d in K0, f ), we could also have set it
to Z2 thereby mimicking the derivative of J. Not surprisingly, also this approaches yield a differen-
tial isomorphism of rings: It is easy to prove that ¢: K[Z,Z 11— K[Y,Y '] defined by Z — Y lis a
differential isomomorphism with respect to —d/dZ in K[Z,Z 1] and Y2-d/dY in K[Y,Y 1], since
Y2

d d d
2— = 2— _1:——:— = — = B
Y dY(p(Z) Y dYY Y2 1=¢(=1) <,0( dZZ)'

Thus, composition of the isomomorphisms shows that d + () — Y ! and [+ (&) — Y would be a
differential isomomorphism between K (0, f y and the Laurent polynomials, too.
Integro-differential operators with polynomial coefficients

After investigating the integro-differential operators with constant coefficients, we are now prepared
to add the Ore indeterminate x. This leads to the integro-differential Weyl algebra which we study
in this section.

Definition 4.10 (Integro-differential Weyl algebra/[RRMO09, Definition 71). The integro-differential
Weyl algebra is defined to be the Ore polynomial ring

A1, [) =K (0, [[x;id, 9]

where K0, [) and 9: K(d, [Y — K(d, /) have been defined in the last section.
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As promised, this ring fulfils the relations
x0=0x+9@) =0x—-1, «xf=[x+0()=[x+[? and 4f=L
Hence it is exactly the ring we have been looking for.

Since K (9, [ is not left Noetherian—as may be found in [Jac50]—there is an infinite ascending
chain of left ideals in K(9, f). This gives rise to an infinite ascending chain of left ideals in A1 (9, ).
Consequently, the integro-differential Weyl algebra is not left Noetherian, too. Analogously, we see
that A;(9, [) is not right Noetherian and neither left nor right Artinian. This is a major difference to
the differential Weyl algebra which is not only left and right Noetherian but by [Sta78, Corollary 3.2]
all (one-sided) ideals are generated by only two elements.

The structure of two-sided ideals of the differential Weyl algebra is even more specific, namely,
the differential Weyl algebra is a simple ring—confer, for example, [Cou95, Theorem 2.1]. This is
another result which does not hold for A (9, /).

Theorem 4.11 ((RRMO09, Proposition 81). The ring A1(9, [) is not simple.

Proof. We will use [Lam01, Theorem 3.15] which says that a ring of differential operators over a
Q-algebra is simple if and only if the coefficient algebra has no non-trivial differential ideals and the
derivation is not inner. Since we required charK = 0 in this section, the theorem is applicable to
K0, f ). We have already shown in Theorem 4.7 that K0, f ) does have a non-trivial 9-ideal, namely
(E). Thus, A1(9, /) is not simple. O

Remark 4.12. Additionally, we may prove that 9 is not an inner derivation. For assume, it was.
Then there was p € K(9, [} such that [p,d] = 9(p) = —1. On the other hand, since by Theorem 4.8
K (9, [Y/(E) is commutative, we obtain m = 0 in the quotient ring, that is, [p,0] € (). This is a
contradication to the fact that (g) is a proper ideal—see Theorem 4.4.

Integral operators

The (usual) differential Weyl algebra is a subring of the integro-differential Weyl algebra. The same
is true if we consider only integral operators. This leads to the following definition

Definition 4.13 (Integro Weyl algebra/[RRM09, Definition 9]). The subring A;(f) = K[ [1lx;id, 9] of
A1(9, [) is called the integro Weyl algebra.

In contrast to its differential counterpart, the integro Weyl algebra seems to have attracted less
attention. In particular, they seem not to have been studied in an Ore polynomial setting before. We
would, however, like to refer the reader to the original work about the similar Rota-Baxter algebras
in [Bax60] and [Rot69].

Since K[ [] as a commutative polynomial ring is an integral domain, A;(J) also does not have
zero-divisors. This is different from A1(9, [) as we have shown earlier but analogue to the differential
Weyl algebra. Another notable difference is that A;(J) does have a natural grading: In the equation
x[ =[x+ [? assigning both x and [ a similar weight, we have the same weight sums on both sides.
An immediate consequence of this together with the absence of zero divisors is that A;(f) cannot be
simple because for instance the ideal generated by x contains only terms of weight 1 or higher and
thus no units. We will come back to this below in Theorem 4.20 where we will present a proof that
fits more into the Ore polynomial setting.
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The basis elements of the integro Weyl algebra as a K space are the terms [ 'x/ with i and j=0.
We will call this basis the left basis of A1(f). We will discuss now how the identity x / = [x+ /? can be

used to switch the sides of [ and x. This leads to the right basis x' [ J with i and j = 0. The following
lemma describes how the bases map onto each other.

Lemma 4.14 (([RRMO09, Lemma 10]). We have the identities

n —m)enk no(_m)enk
X" M= Z(—l)k—( n;)' ~ Rk and M=y EmFn” nZ i xR gk
k=0 : k=0 :

for changing between the left and right basis where n% = n(n —1)---(n — k + 1) denotes the falling
factorial.

Proof. Using Lemma 3.5 together with the formula for diffnomials from Example 3.4 part 1, we
obtain that for every f € A;(f)

k=0

Analogously, we may prove that for all f € A;(/)
- B[\ n-k ok
fa =) (=DF| | TR0R(f)
k=0 k

using fx =xf —9(f) in the induction step. (Using x * f = fx, the formula reads x * f = f *x—9(f) and
can thus be interpreted as a commutation rule in the opposite ring with —9 as derivation—then the
second identity is again an instance of Lemma 3.5.)

We apply the formule to £ = /™. We have to use

n|_nt ko rm k k rm+k
=— and (M =CDFEmtS
k| k!

where the last identity follows from iterating 9(/™) = m ™ *1_which holds since 9 is a derivation.
With these identities, the claim of the lemma follows. O

The identities in the previous lemma are written in such a way that their relation to the corre-
sponding formule for the differential Weyl algebra becomes evident. In fact, they are very similar to
[SST00, Equation (1.4)] if we regard [ as a 07! as sketched in Theorem 4.8.

In order to identify A;(J) later with the summand K[x][f] in Equation (4.2) we will present
now yet another basis which is more similar to the definition of K[x][f]. More precisely, we will
prove below that the terms x™ with m > 0 and x’ [x/ with i and j > 0 are a K-basis of A;(/). This
corresponds to the definition of K[x][f] since a K-basis of the polynomial ring K[x] is given by just
the powers of x. We will call this basis the mid basis. If we let the operators act on a function space,
then the mid basis has the interesting interpretation that all iterated integrals can be replaced by
just single integrals. It thus never necessary to integrate twice. This may be regarded as an algebraic
analogue of the Cauchy formula for repeated integration—confer, for example, [0S74, Page 38].

Lemma 4.15 ((RRMO09, Lemma 111). It is x" [~ [x" =n [x"" L[ for all n = 0.
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Proof. The identity obviously holds for n = 0. We will now prove it for n + 1. Using the right to left
basis formula from Lemma 4.14 in the case m = 1, we obtain

n 542 n+1 Bl

(n+D)f " [ =Y (n+ DELEF2gnk o _ fntl L N (g Dl fRHnelk

£=0 k=0

using (-1)%/k! = (-1)*. Since the sum on the right hand side is just x**! J by the second identity in
Lemma 4.14, the desired formula follows. O

From this lemma we obtain:

Corollary 4.16 ([RRMO09, Corollary 121). The monomials of the form x™ for m =0 and x' [/ with i
and j =0 form a K-basis of A1()).

Proof. Just as the differential Weyl algebra, also the integro Weyl algebra may be represented as a
quotient of a free algebra. More precisely, we have

K(L,X)

M= Frorx -1

identifying x = X and [ = L. By Lemma 4.15, the expressions
1
LX"L — _(Xn+1L _LXn+1)
n+1

belong to the ideal (XL —LX —L?). They form a Grobner basis with respect to to the following
admissible ordering as described in [Ufn98, Page 268]: Words are compared first by L-degree, then
in total degree, and finally lexicographically (with either L < X or X < L). It is easy to check that the
overlaps LX"LX™L are resolvable. Thus, do the residue classes of the monomials X” and X’LX/
form a K basis of the quotient by [Ufn98, Theorem 7]. O

We collect the identities that govern the transitions between the left, the right and the mid basis
in the following lemma.

Lemma 4.17 ([RRM09, Lemma 13]). The following equations hold in A1(f) for all m and n = 0:
o Mmookl & ! —h+1
xmfxn :I;)Efm + xk+n, xmfxn :kzz‘b(_l)n kExWkan + ,

m k
1 k k
and  ["= X ™I

Proof. The first two identities may immediately be derived from Lemma 4.14 where we applied an
index transformation to sort the terms with respect to x instead of with respect to . Note that using
distributivity it is sufficient to consider n = 0 for the first formula and m = 0 for the second.

The third identity is proven by induction: It definitely holds for m = 0. Assume that it is true for
m = 0. Then multiplying it from the left with [ and applying Lemma 4.15 yields

fm+1 — G vk fxm—kka - i -1 (xm+1f—xm_kka+1)
izo kl(m —k)! (B + D!(m - k) )

£=0
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Using a well-known formula for binomial coefficients, we obtain

L (-1 2o (—1)*(m+ 1) m pe1[m+1] [m+1
' = = - —_ = =
URND DY ey 3 Tl By sy Tt DU M VAN R

since the summation is only up to m. Using this in the calculation above, we see that

S T N o S
izo (R +Dl(m —k)! izo (B + Dli(m - k)!
m+1 (—l)k m+1 (—l)k
_ m+l m+1-k .k _ m+1-k .k
DR A Mrremr vy LA L Dl e s AL
which is the promised identity for m + 1. O

The previous lemma may also be used for an alternative proof that the mid basis is indeed a
K-basis: By the last identity in the lemma, the mid basis is a generating set for A;(f). The linear
independence may be obtained by the first formula: Assume that

m n b
Z Z apvxt [x¥ + Z ﬁkxk =0 (4.6)
p=0v=0 k=0

for some @, , and f € K. We compute first the coefficient of x9. Using the first identity of Lemma 4.17,
this must be .
Bo+ Y ut[* a0

pu=0
since x° can occur in the sum only for terms of the form x*[x° and only where the summation
index in the formula of the lemma % is zero. By assumption the coefficient of x° must vanish, which
implies that the above sum vanishes. Since the powers of [ in the sum are all different, this means
that Bo = @0 =... = @m0 = 0. In particular, no term of the form x* J with =0 occurs in the sum in
Equation (4.6). Dividing it by x from the right—remember here that A;( /) is integral—we can iterate
this argument eventually proving that all a,, and §, with u, v and ¢ = 0 must vanish. This shows
that the mid basis elements are K-linearly independent and hence really a basis.

Example 4.18. Changing from the left to the mid basis we may compute

1 1 1 1
Lo Par=a?f—xfa+ = [22+ ) - [o)x= =22 - = [«?
2 2 2 2
using the last formula from Lemma 4.17.

Since in K[ 1 we have 9(q [) = 9(q)[ + q /% € ([), we see that () is a 9-ideal. Thus, the set of all
operators with coefficients in () is an ideal in A1 (). Denote this set by A;(f)[.? Using the left basis,
A1())[ is generated by all terms of the form [ m*t1yn with m and n = 0. Using the third identity in
the lemma, such a term corresponds to a sum of mid basis terms in which an [ occurs. Conversely, by
the first identity does every mid basis term with an [ expand to a sum of terms of the form [ mAln

2Although this notation is usually reserved to one-sided ideals in the remainder of the thesis, we use it here in a purely

symbolical way since it has been used in [RRMO09], too.
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with m and n = 0 in the left basis. Thus, the mid basis terms x’ [x/ with i and j = 0 form a basis of
Ai(NHS.

Since A;())[ is a two-sided ideal of A;(f) which does contain no units because all terms have at
least weight 1, we may conclude that the integro Weyl algebra in contrast to its differential counter-
part is not simple. This fact will also be proven differently below in Theorem 4.20.

We can establish a homomorphism between A;(f) and the direct summand K[x][f] in Equa-
tion (4.2) mapping the mid basis terms to the corresponding terms in K[x][f]. Using Lemma 4.15
it is easy to check that the multiplication in A;(f)/ corresponds to the multiplication in K[xI[f] as
defined in Equation (4.1). That means that the mapping is not only K-linear but also multiplicative.’

We will end this section with the promised alternative proof that A;(f) is not simple. For this we
will need a lemma first which generalises our reasoning about (/) above.

Lemma 4.19. [RRM09, Lemma 14]. An ideal I < K[ []is a non-trivial 9-ideal if and only if I = (/™)
with m >0

Proof. Since for m >0 we have 9(f/™)=m [™"" the ideal generated by /™ is obviously a 9-ideal.
Conversely, let I < K[ f 1 be a O-ideal which is different from K and {0} but otherwise arbitrary.
Since K[ f11s just a commutative polynomial ring, there exists an element g € K[ [] with degg =m >0
such that I =(q). Assume that q = Z;’ikaif’ for some m =k =0 with ap,...,a,, € K and with a; #0.
Because we assumed I to be an 9-ideal, we have 9(q) € I and thus 9(q) = rq for some r € K[ []. Since

m 1 m+1 .
NP =Y a;ifT =Y aiG-DJ
i=k i=k+1

has degree m + 1, we must have degr = 1 and thus r = b1 [ + b9. Equating the coefficients of [ m+l
and fk in 9(q) and rq we obtain a,,b1 = ma,, and apbg = 0. This implies b; = m and by = 0. If we
had & < m then the coefficients of |’ k1 were kaj, in 9(q) and may, in rq which implied (m —k)az =0
contradicting our assumptions. Thus, we must have k = m and hence ¢ = a,, /™. Consequently, we
obtain I = (/™). O

The lemma does not only give a complete description of the 9-ideals of K[ 1, but analogously to
Theorem 4.11 we may use it to prove that A;(f) must have non-trivial ideals.

Theorem 4.20. [RRM09, Proposition 15]. The integro Weyl algebra A;([) is not simple.

Proof. Since there exist non-trivial 9-ideals in K[[]1, by [Lam01, Theorem 3.15] A;(J) cannot be
simple. O

Connection to integro-differential operators

This section is dedicated to the comparision of the integro-differential Weyl algebra with the integro-
differential operators as defined in Section 4.1. While in the latter we always worked with a fixed
integral, in the construction of the integro-differential Weyl algebra we required the symbol [ to
merely be any one-sided inverse of 0. This lets us expect that the integral in A;(9, [) is more versatile
than its counterpart from Section 4.1. That this intuition is correct will be proven in Theorem 4.23.

31t is not a homomorphism, though, since neither K[x][ /] nor A;(J) contain an unit element and they are not rings.
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But first, we will once more examine the consequences of making [ a two-sided inverse as for
constant coefficients we already did in Theorem 4.8. There, we proved that K(d, /) and the Laurent
polynomial ring K[Z,Z 1] are differentially isomorphic if we interpret Z as 9, that is, if we set the
derivative of Z to —1. In Remark 4.9 we proved that also the dual approach of interpreting Z as [
by setting its derivative to Z? yields a differential isomorphism. By the universal property of Ore
polynomials (see Theorem 3.7), this isomorphism lifts to the Ore polynomial rings. That is, we have

K(Z,Z x;id,-d/dZ] = K[Z,Z [x;id, Z2-d/d Z]

as rings.

If we extend the isomorphism of Theorem 4.8 using the universal property in Theorem 3.7, then
we obtain the following result. This is the connection between integro-differential Ore polynomials
in rings with integrals that are one-sided inverses to those where they are two-sided inverses.

Theorem 4.21 ((RRMO09, Theorem 18]). We have

A0, )
()

= K(Z,Z Ylx;id,—d/dZ]

as rings.

As last result in this chapter we finally want to connect the integro-differential Weyl algebra
to the integro-differential operators. Using the direct sum decomposition of K(d, [} in Theorem 4.4
coefficient-wise, we obtain a direct sum decomposition

A100,NH=A100)0A1()) [ (E)

where () denotes the ideal generated by £ in A1 (9, f). Since (E) is a 9-ideal, it consists of all those Ore
polynomials whose coefficients are in () <K (0, f ). This corresponds directly to the decomposition of
K[x][9, [1in its defining Equation (4.2). It remains to map each summand to its counterpart.

The important step for this will be to fix the constant of integration ¢ € K. For this we have to
investigate the last summand in the above decomposition more closely. First, we consider analogously
to the boundary operators K[x][E] the subspace B of A1(9, [) with basis x*Ed7 with & and j = i. Here,
it is important to note, that the identities

ox=x0+1, [x=x[-/? and Ex=xE-[E

which come from the commutation rule—where we used 9() = [E as computed in Equation (4.5)—
may be used to convert the left basis d'x”, J7x® and ey px* with i, j, m, n, r, s and ¢ = 0 to a cor-

responding right basis x" 0%, x° S 7 and x'em n. Confer also Lemma 4.14 where we gave the concrete
formula for the integro case and its proof from which conversion formulee for the other cases may be
derived.

Lemma 4.22 ([RRM09, Lemma 19]). In A1(9, [) we have for every c € K a decomposition
(8)=Be(n)

where B = (xk‘_Eéj | k,j = 0) and 1 = Ex — cE. Furthermore, a basis for the ideal () <A1(9, [) is given by
the terms x* ['nd/ with i, j and k = 0.
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Proof. Wehave Ex = (x— )Eand [ tx=x " =0(/" =2t =(i-1)[" for i = 1 by the commutation
rule. This implies

S = [ e em = [T ae - [l e f R/ e i fm - o[ R (.

Thus, multiplying by x* from the left and by &/ from the right, we obtain
c 1
xFe; i+ ;xkei_l,j - ;xkﬂei—u 20

for i = 1. This allows to replace terms xkei, ; of the right basis of () by terms with smaller powers of
J plus some term in (). Iterating this, we eventually see that all elements in () may be represented

as linear combinations of terms x*eg ; = x*£/” and some term in ().

Analogously to the e;;, we write n; ; for S inaj where i and j = 0. Furthermore, we denote the
K-space generated by the terms x*n; jasH= (ka, jli,j,k=0). Since H is generated by terms in (1),
it is obviously a subspace of (7). For all i, j and & = 0, we have

-1, ifi=1
Y S and on; ;=
Jnig=Jnis; i {0, ifi=0
as well as
nij-1, ifj=1
i,j0="1i; and i) =
g0 = Mg+l nii {0, if j=0.

using the Equations (4.3) and (4.4) on Page 24 as well as the commutation rule x [ = [x+ [ for
n/ =e(fx+ [% - [¢)=0. Using Lemma 4.14 and the similarly proven equation dx* = x*d + kx*~1, we
see that products of d and [ with 7; ; on either side stay in H. Since we also have nx = (x— [)Ex—c(x—
J)Ex = (x — [)n we see that H is an ideal of A;1(d, [). Thus, since n € H and H < (1) we obtain H = ().

It remains to prove that the sum B + (1) is direct. We have the identity

akn; =k ['ne! = 2* [TExd’ — ke B0 = 2 [T(x— [)Ed —xFc [ ED
=" ['xEd/ —xF [T B — cxt [TEY = 2Pt — i [TTHEY —xF [T EY - cxt [TED
zxkﬂfiE:aj— ixkfi+1E:6j—xkfi+1E6j—cxkfiE:6j =xk+1ei,j—(i + 1)xkei+1,j—cxkei,j

which allows to convert the generating elements x*17) i,j of H into the right basis x*

now that

em,n of (). Assume

Y amaxTeon= Y. Bijrx"mi;
m,n=0 i,j,k=0

for ay, and B; jr € K with only finitely many of them non-zero and where i, j, 2, m and n = 0.
Choosing i maximal such that §; ; » # 0 and converting to the right basis, we see that the terms f; ;
must vanish for all j and & = 0 since the basis elements xkei+1, ; coming from the conversion do not
appear on the left hand side. Since this contradicts the choice of i, we conclude that all coefficients
must be zero thus implying the directness of the sum.

The same argument—repeated with 0 as the left hand side—also proves that the terms xkni, i
with 7, j and £ = 0 are indeed K-linearly independent and thus a basis for (). O

Page 34 of 102



Normal forms of Ore polynomial matrices

With this lemma the connection of A;(9, f) to K[x1[d, [1from Section 4.1 is almost immediate.
Theorem 4.23 ((RRMO09, Theorem 20]). If p is an integral of the standard derivation d/dx on Kl[x],
then we have

A0, ))

(Ex — CcE)
where ¢ = p(1) —x € K is the constant of integration.

= Klxl[o, [1

Proof. By Lemma 4.22 and the direct sum decomposition of A1 (9, ) we obtain

A0, )

o —amy =M@ Ao B

where B is defined in the lemma. As hinted before identifying the right basis elements x’3/ where
i and j = 0 of A1(d), the mid basis elements x™ [x™ where m and n =0 of A;(f) from Corollary 4.16
and the basis elements x°Ed’ where s and ¢ = 0 of B from Lemma 4.22 with the corresponding
basis elements of K[x1[0], K[x][f]1 and K[x][E] from Section 4.1, we establish a K-linear bijection
PA1(0, [MExX - cE) — K[x1[0, [1.

It remains to prove that ¢ is multiplicative as well. By the linearity of ¢, it is sufficient to
verify this for basis elements. First of all note, that A1(d) and K[x][0] are isomorphic as rings since
@(0)p(x) = 0x = x0+ 1 = p(x)p(0) + 1 yields the same commutation rule. Similarly, we can show that
A1(f)f and K[x][f] are isomorphic: We compute for n =0 in A; ()

1 1 1
n n+1 n+1 n+1l n+l n+1 n+1 n n
- [ - + _[= + - _ .
JEA n+1x S n+1fx n+1(x NS fn(x " =pE™) [ - [b")
For the isomorphism between B and K[x][E] we note that by Lemma 3.5 using the commutation

0x=x0+11in A1(0) we can prove

. A A N L
o' xk = Rkt
This yields in (g) for i, 2, m and n =0

i . i k—i o

x"Ed x* B = x"E Zl: l. ki xktimigiggm = ERiTIRGT, Mfizk )
= \J 0, otherwise
Jj-izk

since &'k = 0 for j = 1 which is exactly the formula for multiplication in K[x][E].
The formulee for the multiplication between the other direct summands are proven similarly using
the fact that in K[x][d, [] the identities dx = x0+1, /> =x [ - [x and 8 [ = 1 hold and using the identity

Ex = cE which is enforced by taking the quotient with (Ex — cE) and which yields Ep(x) = p(c)E, that
is, Ep = &(p)E in A1 (9, [)/(Ex — cE) for every p € K[x]. O

The last theorem shows that Ore polynomials are indeed well suited to model integro-differential
operators with polynomial coefficients. They provide new insight and a framework for computation
which might be utilized by implementations of integro-differential operators in computer algebra
systems.

It is interesting, that the integro-differential Weyl algebra is a slightly more general structure
than the integro-differential operators alone. It allows to abstract from a given integral of d/dx to a
general integral which does not fix the constant of integration.
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Row-reduction, column-reduction and
Grobner bases over rings

5.1 General definitions for matrices

In this whole chapter, K will always be a skew field. Let 0: K — K be an automorphism and 9: K — K
a o-derivation. We set R = K[0;0,9]. This section contains definitions and notations for matrices over
R. The set of all s x t-matrices with entries in R will be denoted by *R. If s = 1, then we simply write
LRt = R for the set of row vectors of length ¢. If ¢ = 1, we write SR =R for the set of column vectors
of length s.

A square matrix M € R*® will be called unimodular if it possesses a two-sided inverse M~ ! €
SR®. We will denote the set of unimodular s x s-matrices over R by Gl;(R). We denote the s x s
identity matrix by 15. The s x ¢ zero matrix is written as ;0,. A diagonal matrix will be denoted by
diag(ai,...,a,) € *R! for a1,...,a, € R where n < min{s,t}. We like to point out, that in this thesis
diagonal matrices need not to be square but may be rectangular. The precise size will always be
visible from the context though.

For M € *R?, we denote the i*" row by M, , where 1 <i <s and the j*" column by M, j for 1< j<t.
More general, for a subset I ={iy,...,i,} S{1,...,s} with i1 <... <i, by M . we denote the matrix in
IRt consisting of the rows M;, «,...,M;, . of M. We will use the abbreviations M5 , = M, g\1,+.We
will write just MZ,* if I = {i}. Similar notations will be used for matrices consistingf of columns of M.

We extend the notion of degree to matrices by defining

degM =max{degM;;|1<i<sand 1<j<t}

where M = (M;;) € °R ¢, With this definition we obtain the identity degMN < degM + degN for all
matrices N € 'R%. Let M € SR’ be an arbitrary matrix. We may write M as a formal sum

M=Mpé"+...+ M10+ M,

where My,...,M;, € *K* do not contain 8. If M} # 0, then we call M}, = Iv(M) the leading vector of
M.' If we apply o and 9 to matrices componentwise, then we we obtain the familiar looking rules

1The name was chosen since we apply the function mostly in the case s = 1, that is, to (row) vectors.
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0(MN) = o(M)o(N) and 9(MN) = c(M)I(N) + 9(M)N as well as OM = o(M)d +9(M) for all M € R’
and N € ‘R%. Thus, we can translate the formula for the leading coefficient (3.4) to matrices yielding

IV(MN) = Iv(M) 048 M (1v(N)) (5.1)

unless this product is zero; and Iv(f M) = lc(f) 098/ (Iv(M)) for any non-zero f € R. A possible MAPLE
implementation for the leading vector can be found in Section 9.1 in the appendix.
It is possible to show that
$(K[0;0,01)° = CK®)[0;0,9].

In the latter ring, we can define left and right Euclidean division by any matrix N € *R® whose leading
vector is invertible, that is, where 1v(N) € Gl;(K). Since we can embed every row vector v € R® into
an s x s-matrix by simply adding s — 1 zero rows, we conclude that in this case we may represent
v =N +u where ¢ and u€ R’ and degu < degv. This is a special case of a more general result which
will be explained below in Theorem 5.2. It should not be confused, though, with the division that is
presented in Theorem 6.22.

5.2 Row reduction & Grobner bases over rings

Given a matrix M € SR’ we would like to derive a nice description of its row space R* M. A possible
goal is to look for a set of generators of R°* M of minimal degree. This idea has first been pursued in
[For75] for commutative polynomials under the name of minimal bases. The method to compute such
a minimal basis was later dubbed row-reduction—for example, in [Kai80, Page 385]—and has been
extended to Ore polynomials—see, for example, [BCLO6].

We will present here a naive algorithm for row-reduction that can be deduced from [For75, Main
Theorem] or be found in the proof of [BCL06, Theorem 2.2]. We will, however, change the context
of the method by relating it to a different field of research: Grébner bases over rings as described,
for example, in [Pau07]. This will yield a different view on row-reduction. Towards the end of the
section we will prove that our approach—which we will call row bases in order to distinguish them
from the Grébner bases considered in the next section—and the traditional one do indeed lead to the
same results. See Corollary 5.9.

The main idea is to try to lower the degrees of the rows of M by applying elementary row opera-
tions which may be interpretated as multiplication by unimodular matrices from the left. The degree
of a row in M can be lowered if its leading vector is a linear combination of leading vectors of rows of
lower degree.

For % = 0, we define the k™ leading row coefficient matrix LCfOW(M ) of M row-wise by

. oF-deeMi- (1v(M; ,)), ifk>degM; . >0
LCw(M), , = .
’ 0, otherwise.

(An alternative way of defining LCfOW(M ) following [BCLO06] is: Letting 6; = 0*~9¢8Mi+ if k. > deg M -
0 and &; = 0 otherwise, we obtain LCE (M) = lv(diag(d1,...,6,)M) unless §; = ... = 6, = 0 and
LCE (M) = ,0, otherwise.) We will sometimes use the abbreviation LCyow(M) = LC%‘%M(M ) and
call this just the leading row coefficient matrix of M. Again, an illustrating implementation can be
found in Section 9.1.
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Example 5.1. We consider the field K = Q(x) of rational functions. Let 0: K — K be the automor-
phism that substitutes x by x + 1. Since the zero map 9 =0 is a g-derivation, we may form the Ore
polynomial ring R = Q(x)[&;0,0]. Let

62+x6 1o 1-x8?
M= 6-x2 2x26-1 2 e3R?
x 0 (6]

be given. Then we obtain

0 00 000 1 0 -x
Ll an=fo o of, Lci,an=[1 x 0|, and, LCZ.(M)=[1 x+1 0|
0 00 00 1 0 0 1

We will say that a row-vector v € R’ is reducible by M if and only if v # 0 and there is a vector
u e K® such that
uLCEE® (A1) = Iv(v).

Iffor j=1,...,s we define i€ R® by {i; = ujadegv—deng,* if degv = deg M . and by {i; = 0 otherwise,
then we obtain lv(v) = Iv(iiM) since LCE® (ar) ;. =0 whenever degv < degM; . and thus

deg(vb —{iM) < degbv.

We will say that v reduces to v —{iM in one step. Iterating this as long as possible, we arrive at a
vector of the form v — oM with tv € R® that is not reducible by M any longer. In that case we call
v —toM a remainder of v by reduction with M.

If we—a little sloppily—identify matrices with sets of row vectors, then we can draw an analogy
between the reduction just defined and the reduction used in [Pau07] for Grobner bases of rings. For
this, we will call vectors of the form vd* with v € K* terms. That means, that our coefficient domain
are the vectors in K! in analogy to taking coefficients from a ring as in [Pau07]. This domain al-
lows solving linear equations—the computation of syzygies—just as demanded in [Pau07, Section 2].
There is only one possible term order since we are considering univariate Ore polynomials. This
corresponds to several possible term orders as in [Pau07, Definition 1]. Hence, the degree function
in our case is just the usual degree while the leading coefficient corresponds to our leading vector.
The division algorithm explained in [Pau07, Proposition 2] is then just the reduction which we have
defined above.

Theorem 5.2 ([Pau07, Proposition 2]). Let K be a ring with an automorphism o: K — K and a o-
derivation 9: K — K. Let R = K[0;0,9). Then for all M € R and v € R! exist q € R® and t€ R® such
that

v=qM +¢

where

1. degt<degv,
2. M;j,«=0,q;=00rdegq; +degM; . <degv for j=1,...,s, and
3. v=0or Iv(t) ¢ K LCXE*(M).

Proof. The proof can be easily obtained from the proof of [Pau07, Proposition 2]. O
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Example 5.3. We consider the ring of commutative polynomials over the rational numbers. That is,
with K = Q, 0 =id and 9 = 0 we consider R = Q[X;id,0] = Q[X]. Let

X2 1-X X-Xx2
M=| X -1 1 |[e®R® and ov=(X%+X+3, 2-X, X-1)eR>
X+3 1 X?-1

We have degv =2 and
1
1

0 0 O 0

(=]
=]

000 0 0 0
LC =0 o o|, LCL.am=|1 0 0|, and, LC%, (M)=
0

o oo

[
~o L
N —

Since, for example,
v)=(1, 0, 0)=(0, 1, 0)-LCXE°(n)

we can reduce one step obtaining
p1=0-(0, X, 0)-M=v-(X% -X, X)=(X+3, 2, -1).
Since Iv(v1) € K3LCYE1(31), we are allowed to reduce another step obtaining the remainder
v1-(0, 1, 0)-M=v;-(X, -1, 1)=(3, 3, -2)

which can not be reduced any longer.
If we had instead chosen to explore the relation

Iv(v)= (1, 0, 1)-LCXE°(a),
then the reduction would yield
v—(1, 0, 1)-M=0.
This shows that the result of a reduction is not uniquely determined and that reduction in general
gives no decision about the membership of a vector to the row space of a matrix.

We are now in the position to give a counterpart to [Pau07, Definition 4].

Definition 5.4 (Row basis). Let 9t S R’ be a submodule. For d = 0, we call
LV4(M) = {lv(v) | v € M and degv =d}u {0}

the d* leading vector space of M.

A matrix M € *R! is called a row basis for M, if R*M < 9% and the rows of LCZ (M) generate
LV40M), that is,

LV4(N) = K°LCE (M)

for all d = 0.

Note, that LV;(90) is for any submodule 9t < R? indeed a vector space since scalar multiplication
by non-zero elements from K does not change the degree of vectors of 9t and addition can lower the
degree only if the leading vectors are additive inverses of each other.

Also note that the condition LVg(90) = K* LC (M) for all d = 0 only means, that every non-zero
vector in 91 is reducible by M.
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Example 5.5. In Example 5.3 the matrix M was not a row basis since the leading vector of

is not contained in K3 LCY, (M) = {0}.

Analogously to Grobner bases, row bases can be used to decide the membership problem:

Theorem 5.6 ([Pau07, Proposition 71). Let M € °*R! be a row basis for the submodule 9t < R’. Then,
the remainder of v € R? by division with M is zero if and only if v € .

Proof. If the remainder is zero, then clearly v must be in 1.

Contrarily, assume that v € 91 and let vt = v — qM be the remainder of division by M. Hence, by
Theorem 5.2 we must have t =0 or lv(v) ¢ K° LCSggt(M ) = LVgeg (M) where the last identity holds
since M is a row basis. The second alternative cannot hold since R°*M < 971 by the definition of row
bases implies t € M. Thus, we obtain v =0. O

It is possible to test whether a given matrix is a row basis using a generalised S-polynomial
criterion. The version presented here is taken from [Pau07, Proposition 9]. It should be noted that the
proof also gives kind of a generalised predictable degree property which we will treat in Corollary 5.8.

Theorem 5.7 ([Pau07, Proposition 91). Let M € °Rt. Then the following are equivalent:

1. M is a row basis for R°M.

2. For every subset J ={j1,...,jr} S{1,...,st with j1 <...<j, and all ue By a remainder of

uiadEgMJ’*_degMji’* Mji,*

r
i=1

by division with M is zero where B is a basis of the nullspace of LCyq,,(M g ).

Proof. The proof follows closely the one of [Pau07, Proposition 9]. We may assume without loss of
generality that M does not contain any zero rows as they do not disturb condition 2.

We only have to prove that condition 2 implies condition 1 as the other direction follows from The-
orem 5.6. Let v =tM € R*M and v # 0. By Definition 5.4, we have to show that lv(v) € Ks LCIE° (a1).
Let 6 = max{degy; + degM; . | 1 <i < s}. We may assume that r is chosen in such a way that J is
minimial. Let J ={j1,...,j,} ={1=i=<s|degy; +degM; . =0} with j1 <... < j, be the set of indices of
the summands of maximal degree in tM.

We need to distinguish two cases. If degv = §, then there exists a subset J’ = J such that

IV(U) = Z ;J‘Mj,* .
jed’

Since degM j . = degv and thus K Il LCrow(M ) € K* LCf(?ngn(M ), we immediately obtain lv(v) €
KSLCYE® (M) in this case.

The second case is that § > degv. This can only happen if cancelation occurs in the higher order
terms of tM, that is, if

n- o0 48MIs (LCw(My ) =0,  or, equivalently, — 0%&M7=0(). LC,ow(M ) =0
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where 1y = (le(xj,),...,1e(x;,)) € K™ and where we used the fact that 6 = degr; +degM . for all j € J
and thus

W(x;M; ) = 1)) - 0485 (Iv(M; )

=lo(x))- 0%~ 08M I o glegMue~de8 M (ly(M; ) =le(x) - 007 BMI+ (LCrow(M s ), )
We abbreviate § —deg M s . by p which must be non-negative.

We will now try to construct a representation v = M with f € R® for v such that degf; +degM; . <4
for all 1 <i < s in order to derive a contradication to the minimality of . Let By = (by,...,b,). Since
we have shown above that 07#(1) is in the nullspace of LC,ow(My +), there exist ay,...,a, € K such
that 07#(y) = @1 b1 +... + @, b,. We obtain

v=rM=) t;M;.+) ;M.

jed jed
\4
=) (xJ Z (k(br); 0deg&)M +2 Z o (ap();)0% B I M\ + Y 1M
jed k=1 JjeJ k=1 jed

For j ¢ J we have degr;+degM; . <&. Also, it is degx;— Y _, o¥(ay(bz);) +deg M . <& for j € J since
the leading term of ¢; is cancelled. We thus have to concentrate only on the middle summand. Thus
we may rewrite the middle summand above as

v v

Z Z flk(bk) 6degI1M Z O"M(ak Yok Z (bk)jadegMJ,*—degM',* Mj,*
jedk=1 k=1 jed
v
n Z oH(ap) Z (U” ((bk)j)adegrj — au(bk)jadegMJ,*—degMj,* )Mj,*-

k=1 jed

Since for all j € J we have § = degyj+degM; . =degM . +u and thus degr; = u+degM . —degM; .,
the leading terms in the second summand cancel. Thus, we have to concentrate only on the first
summand. Using condition 2, for each £ =1,...,v we can find 3z € R® such that

Z (bk) adegMJ ,fdegM M — 5kM
jed

Since by, is in the nullspace of LCrow (M7 «), the sum on the left hand side has a degree strictly less
than degM j . = 6 — . This implies by Theorem 5.2 that deg(3.);M; . <degMj.<6—pforall jedJ.
Thus, replacing for all 1 <% < v the sums }_jc s(bg); gdegM.y . —degM;, *M . by the corresponding 3z, we
obtain a representation of v as R-linear combination M of the rows of M with degy; +degM; . <48
for all i, contradicting the minimality of r. Thus, the case degv < § cannot occur. O

Since the second alternative of the case distinction in the proof of the theorem was shown to
never occur, we obtain the following corollary which represents a kind of generalised predictable
degree property. See Lemma 5.11 for the original predictable degree property.

Corollary 5.8. Let M € *R? be a row basis, and let v € RSM. Assume that 1 is given such that tM = v
and such that 6 = max{degy; +degM, . | 1 <i < s} is minimal among all vectors with that property.
Then degbv =4.
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Furthermore, we can identify a class of matrices that are guaranteed to be row bases for their
respective row spaces.

Corollary 5.9. A matrix M € Rt is a row basis for RSM if LC,ow (M) has maximal (left) row-rank.

Proof. The maximality of the rank of LC,,w (M) implies that for every subset J = {j1,...,j-} <{1,...,s}
with ji <... < j, the nullspace of LCyow (M «) is {0}: Assume that uM ;. =0 for u€ K". Define i
entry-wise with the %; entry being {iz, = gdegM—degMy.(11.) and all other entries being zero. Then {i
is in the nullspace of LC,ow(M). This implies ii = 0 since the rank of LC,.w(M) is maximal. Hence,
also u =0 since ¢ is an automorphism. Thus, condition 2 of the previous theorem is trivially fulfilled
and M must be a row basis. O

Matrices whose leading row coefficient matrices have maximal row rank have been studied before
which earned them a special name in the literature.

Definition 5.10 ([BCLO06, Definition 2.1]). A matrix M € *R? is called row-reduced if LCyow(M) has
maximal (left) row rank.

Some authors call row-reduced matrices row-proper, for example, in [Zer07, Section 2.2].

Using the idea from the proof of Theorem 5.7, we can easily prove that the rows of a row-reduced
matrix M € R?! must be R-linearly independent: Otherwise there was a minimal vector 1 \ {0} € R*®
such that rM = 0. Considering again § = max{degy; +degM; . |1<i<s}and theset J={1<i<s|
degy; +degM; . = 0}. Since M does not have zero-rows and ¢ # 0, there must be at least one & € JJ
such that 1z # 0 and such that degM;, ., <6. We obtain

Y ler))o%8% (Iv(M; ) = Y le(x)o® 98 Min (Iv(M; ,)) = Y 1ex j)chow(M)
jed Jjed Jjed

contradicting the independence of the non-zero rows of LCS,,(M). Together with Corollary 5.8 this
gives the proof of the so-called predictable degree property which was first mentioned in [For75,
Main Theorem]. It is interesting that—though the approach of this proof was motivated by row
bases—the proof presented here is almost identical to that of [For75, Main Theorem] and of [BCL06,
Lemma A.1(a)] for the Ore case.

Lemma 5.11 (Predictable degree property). If M € SR! is row-reduced then for all x € R® we have
degrM = max{degr; +degM; . |1 <i<s}.
In particular the rows of M are linearly independent over R.

Although Theorem 5.7 leads to a kind of Buchberger’s algorithm for row bases (with the termi-
nation being easily provable since the considered vector spaces are finite dimensional), Corollary 5.9
hints of an easier way of computing row bases. For this, the following remark is useful.

Remark 5.12. A matrix M € °R! is auto-reduced if M}, . is not reducible by My, foralll1<k=<s
and if none of its rows are zero. A matrix can only be auto-reduced if the row rank of its leading row
coefficient matrix is maximal, or equivalently if it is row-reduced.

This can be proven analogously to [For75, Main Theorem] and [BCL06, Theorem 2.2]: Assume
there was a relation uLCyow(M) = 0 with u € K° such that uz # 0 and M}, , # 0 for some 1 <k <s.
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We may further assume that M , has maximal degree among all those rows M . for which u; # 0.
Then, we obtain

M, .—degM deg My, .
odesMi—degM ) 1,18 "R (M) = 0
. . . . .. . deg My, ,
since o is an automorphism and since those rows that are missing in LCmgv **(M) only correspond
deng,*

to zero entries of u. Noting that 1v(M}, ) is just the k' row of LC,,y, (M), we may rewrite this as

_ _ deg My, .
IV(Mky*) — Udeng’* degM(ukluz)'LCrow s (ME’*)

where uz denotes u with the k'™ entry removed. Thus, we see that M}, . is reducible by M.

The previous paragraph yields a naive algorithm for the row-reduction of a matrix by auto-
reduction which is presented, for example, in the proof of [BCL06, Theorem 2.2]. We list it here
completely because we want to reason about its complexity below.

Algorithm 5.13 (Row-reduction).
Input A matrix M € °R?.

Output A row-reduced matrix N € R? and a unimodular transformation matrix @ € Gl;(R) such
that QM =N.

Procedure
1. Compute LC,ow(M).

2. If there exists u € K* such that uLCyow(M) = 0 and u; # 0 for some j such that M; . # 0 then:

(a) Choose 1<k <s such that u;, #0 and degM}, . is maximal.
(b) Define i€ R® by

; e My . —degM(uj) . 0deg M}, . —deg M . , if0s< degMj,* < deng,*
iij=
J 0, otherwise.

(c) Define P € Gl4(R) by

1 0. ...................... 0
0 ----- 0 ']_. O oo 0

P= |G- v TP i — Bth row
O « - 0 1 0----- 0
(A S '0. 1

which is invertible since ii, = g3e8Me--degM(y, ) + 0. Multiplying this matrix to M from
the left will replace the &t row of M by

s
Z a.deng,* —degM(uj) . adeng,* —deg M . Mj,*
j=1

O<degM; , <degMp, ,

where the highest order terms cancel.
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(d) Apply the algorithm recursively to PM in order to obtain N and Q.
(e) Return N and QP.

3. else return M and 1;.

Of course, the matrix multiplications in the algorithm need not to be carried out as multiplications
but can instead be replaced by elementary row operations.

Though we concentrated on the naive row-reduction algorithm in this chapter, we would like
to point out that there are other and more efficient methods. For instance, in [BCLO06] the authors
present a method for fraction-free row-reduction. Another example is [CL0O7] where modular methods
are discussed.

5.3 Complexity of (naive) row reduction

The main step of the naive row-reduction algorithm is to add a multiple of one row of M € *R? to an-
other row. Let degM; . =m and degM . = n. Assume that f € R has degf = x. Then by remark (3.2)
we need O (¢(xmax{x,n} + max{m,n}))) operations in A in order to compute M; . + f M .. In the case
of row-reduction we will always have n <m and x = m —n. That yields

O (t((m —n)-max{m —n,n}+m))

operations. We claim that the term (m —n)-max{m —n,n} is maximized by n = 0. Indeed, if m—n=n
then we have
m-nl=m?-2mn+n2<m?-2mn+mn=m?-mn<m?

and if m —n < n then (m —n)n = mn — n2 2

elementary row-operation will need

< mn < m” since n < m. Thus, in the worst case, one

O(tm?)

operations.
Solving a s x ¢ linear system needs at most @(s?t) additions and multiplications in K by [KS89,
Bemerkung 2.19 (2)]. That means, that the complete row-reduction process needs at most

0 (sd max{s®t,td?})
operations in K where d = deg M since we need at most most sd iterations of the algorithm.
We state this a a lemma for future reference
Lemma 5.14 (Complexity of naive row-reduction). Algorithm 5.13 applied to M € °R*? needs at most
0(std(max{s,d})?)

operations in K where d = degM. If @ € Gl4(R) and N € °R! are the result, then we have degN < d
and deg® < (s +1)d.

Proof. It remains only to prove the degree bounds. By [BCL06, Theorem 2.2], for each row of @ the
degree is

S
degQi . <v;+ (Z(u,- —v;)-min{u, | 1<k < s}) <(s+1d (5.2)
j=1
where v; = max{degNj; .,0} < u; = max{degM; ,,0} < d. O

Page 47 of 102



Normal forms of Ore polynomial matrices

5.4 Some applications of row-reduction

Parallel to our row basis approach, a motivation for studying row-reduced matrices comes from the
wish to reduce the degrees of the generators of a submodule as low as possible. This was the original
idea in [For75] where row-reduced matrices are labelled minimal bases. Decreasing the degrees
almost automatically leads to auto-reduction as we have described it above. It is possible to show
that the result is indeed minimal in a certain sense. See for example [BCL06, Lemma A.1(d)] where
it is shown that the row-degrees of two row-reduced matrices generating the same row-space coincide
up to row permutation.
This leads to an algorithm for inversion of matrices.

Lemma 5.15. A matrix M € *R?® is unimodular, if and only if row-reduction of M yields a matrix
N €°K?® of maximal rank.

In particular, if for @ € Glz(R) computed by Algorithm 5.13 we have degQM =0, that is, M € °K*®
and the rank of QM is s, then the inverse of M is M~1 = (QM)~'Q. We can compute the inverse of
M—if it exists—using at most @(s2d(max{s,d})2) operations where d = degM. We have degM ™! <
(s+1)degM.

Proof. One direction follows immediately from the minimality: Let M be unimodular. Then R*M =
R?. Since the same space is generated by the identity matrix 15, [BCL06, Lemma A.1(d)] implies
that the row-degrees of a row-reduced form N = QM with @ € Gl;(R) of M must be all 0. Since
N = LC,ow(N) is invertible by the row-reducedness of N, the claim follows.

Contrarily, assume that there exists @ € Gl;(Q) such that N = QM is row-reduced with degN =0
and such that the rank of N is maximal. Since N is invertible, we obtain 1; = (N"1Q)M. That means,
that M is unimodular and M 1=N"1Q = @QM) M.

The complexity of row-reduction is discussed in Lemma 5.14. O

Another application for row-reduction is to compute greatest common divisors. In principle, the
computation is very similar to the Euclidean algorithm with the main difference being that reduction
of a single polynomial may be by several polynomials.

Compare this result also to the computation of matrix greatest common divisors in [BCL06] or
[CLO7]. See also [BLV06, Example 5.4] where a similar method was used to derived degree bounds
on the Bézout cofactors of the extended Euclidean algorithm.

Lemma 5.16. Let v =%(v1,...,v5) € *R. If Qv is row-reduced for @ € Gls(R) then

gerd(vy,...,Us)
0
Qv =
0

A similar statement holds for column-reduction and left divisors.
The computations needs at most O(sd max{s2,d?}) operations in K and the degree of @ and its
inverse—which can be computed in parallel—are at most (s +1)d where d = max{degv;|1=<j=<s}

Proof. If more than two entries of Qv were different from zero, then LC,w(Qv) € K had a non-trivial
left-kernel. Consequently, if Qv is row-reduced, then Qv =%(d,0,...,0) for some d € R. Since the right
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ideal generated by v1,...,vs is by the invertibility of @ just
Rvi+...+Rvs=R°v=R°Qv=Rd

and R is a right principal ideal domain, we conclude that d is indeed a greatest common right divisor
of vy,...,Us.

The complexity analysis is done in Lemma 5.14. Since the computation of the inverse @ ! is done
using the same row-operations with negative sign, we obtain the same degree bound here. O

Page 49 of 102



Normal forms of Ore polynomial matrices

Page 50 of 102



Normal forms of Ore polynomial matrices

Hermite normal form, Popov normal form
and their connection to Grobner bases

6.1 The Popov normal form and the shifted Popov normal form

Just as in the previous chapter let K be again a skew field. Furthermore, assume that we are given
an automorphism o: K — K and a o-derivative 9: K — K. As before, we will abbreviate the Ore
polynomial ring K[0;0,9] by R. We use the notations for matrices that were explained in Section 5.1.

This section introduces normal forms of matrices with respect to row-equivalence. Two matrices
M and N € °R? of same dimensions are row-equivalent if there exists a unimodular matrix @ € Gl;(R)
such that M = QN. Since by Lemma 5.15 matrices may be inverted by row-reduction, that is, by el-
ementary row operations, an equivalent definition of row-equivalence is that N may be transformed
into M using elementary row-operations. It is readily seen, that row-equivalence is indeed an equiv-
alence relation on the set of all s x £ matrices over R.

The first normal form which we introduce here is the Popov normal form. This normal form
is characterised by the fact that it is row-reduced. Actually, it may be regarded as a way to pick
a unique representative among the set of all row-reduced matrices which are row-equivalent to a
given matrix. The Popov normal form is called “polynomial-echelon form” by some authors such as in
[Kai80, Page 481] or [KRTO07].

Definition 6.1 (Popov normal form). A matrix M € R! is in Popov normal form if its leading row
coefficient matrix (see Section 5.2) LCyow(M) is of maximal rank, in row echelon form and the entries
of M corresponding to the pivots of LC,,w(M) are monic and have the largest degree in their column.

Formally, the last condition can expressed as follows: Let for 1 < i < s the pivot of the i*h row of

LCrow(M) be in column j;. Then for all 1 <k <s with k& # i we must have degM; j, > degM}, ;, in
order for M to be in Popov normal form. In this case, we will a little sloppily refer to the entries M; ;.

corresponding to the pivots of LC,qw(M) as the pivots of M.
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Some authors label a matrix whose leading row coefficient matrix is in row echelon form but
which does not necessarily fulfill the other two conditions of the previous definition to be in weak
Popov normal form. See for example [Che03, Definition 2.7].

Example 6.2. We consider Q[X]. Here, the matrix

X 1-X X

M:(l 1 Xx2-1

)ezQ[XF with LCrOW(M):((l) _01 i)ezQ?’

is in Popov normal form, while the matrix

1 0 . 10
B:(1 X)EZQ[X]Z with LCmW(M):(O 1)€2Q2

is not in Popov normal form since degB11 = degBy; violates the degree constraint.

In [KRTO07, Definition 2] a Popov normal form—called polynomial-echelon form there—is defined
in the following way: A matrix M € R’ is in Popov normal form if M is row-reduced (see Defini-
tion 5.10) with the rows sorted with respect to their degrees and for all rows M; . there is a column
index j; (called the pivot index) such that
M; ;, is monic and degM; ;, = degM; .;
degM,-,k <degMi’* if k <ji;
degMy, ;. <degM, . if k #i; and

if degM,; . =degM}, . and i <k, then j; < j; (meaning the pivot indices are increasing).

Ll

We will take a moment to show that this definition is actually the same as ours—except that
we chose to order the rows in a different way. The requirement in [KRT07] that the matrix must
be row-reduced corresponds to the condition that the leading row coefficient matrix has full rank in
our definition. We are now going to argue that the pivot indices of [KRT07] are nothing else than
the column indices of the pivot elements in the leading row coefficient matrix. By point 1 above,
the pivots elements of [KRT07] have maximal degree in their respective rows, while point 2 implies
that they are the left-most entries with this property. That means, that in the ith row of LC,qw(M)
we must have LCrow(M); 1 = ... = LCrow(M); j,—1 = 0 and LCyrow(M); ;, = 1 where the latter equation
follows from the requirement that M; ;, is monic in point 1. We do still have to argue that no two
pivot indices of [KRT07] are equal. Otherwise, if j; and j; were equal, then by point 3 for the ith
row implied that degM}, ;; = degM}, . < degM; , while the same condition for the k™ implied that
degM; . < degM}, .—a contradition. Thus, reordering the rows with respect to their pivot indices we
see that LCy,w (M) must be in row echelon form. Finally, by point 3 the pivots of [KRT07] possess the
largest degree in their respective column. This is just the same requirement as in our definition.

Completely analogously one proves that a matrix which is in Popov normal form according to
Definition 6.1 must be in Popov normal form according to [KRT07].

Just another definition for the Popov normal form is found in [BLLV06, Definition 2.1] for square
matrices of commutative polynomials. Translating their definition of a column Popov normal form to
row Popov normal forms, a matrix A € S K[X]® is said to be in Popov normal form if its leading row
coefficient matrix LC,,w(A) is upper triangular and its leading column coefficient matrix is the unit
matrix. Note that [BLV06] used the alternative way of computing the leading row coefficient matrix
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which we already briefly mentioned in Section 5.2: Let M € *K[X]°. For every row index 1 <i <s, we
set §; = glesM—degM, . jp degM; . =0 and §; = 0 otherwise. With Z = diag(d1,...,05) we then obtain
LCow(M) =1v(ZM). Analogously, the leading column coefficient matrix is computed.

The equivalence of [BLLV06, Definition 2.1] to Definition 6.1 is easily seen: If LC,,w(A) is upper
triangular, then it is in row echelon form where the pivots are exactly the diagonal entries. If the
leading column coefficient matrix of A is 1, then this means just that the diagonal entries, that
is, the pivots are monic and have the largest degree in their column. Again, the other direction is
completely analogous.

The Popov normal form definition in [BLV06, Definition 2.1] is a special case of the more general
definition of a shifted Popov normal form which we take from [BLV99, Definition 2.1] or, similarly,
from [BLVO06, Definition 2.3]. Note, that in the refences the definitions are described for column Popov
normal forms, while we give them for row Popov normal forms. The definition below is not exactly
the definition from these papers, but a characterisation which may be found just below [BLVO06,
Definition 2.3]. The original definition is very similar to [BLVO06, Definition 2.1] which we have
explained above.

Definition 6.3 (Shifted Popov normal form). Let ¢ = (¢1,...,¢;) € IN!. We define max¢ = max{¢y,...,&}
and D = diag(d™*¢~1,...,0max~¢t) ¢ LRY. A matrix M € *R! is said to be é-row reduced if MD; is
row-reduced.

We say that M is in (shifted) {-Popov normal form if MD; is in Popov normal form.

The vector ¢ in the definition allows to weight the columns of the matrix in order to make certain
columns more important than others. If M is in {-Popov normal form, then we will—analogously to
the usual Popov normal form—refer to the pivots of MD; as the ({-) pivots of M. It is obvious that a
0-Popov normal form is just a Popov normal form in the usual sense.

In [BLVO06, Definition 2.3], commutative polynomials in K[X] were treated and the shift ¢ was
applied with negative weight, that is, in the form D~5 = diag(X~¢1,...,X ). This allows negative
powers of X to occur in the entries of Mf)g. Due to the complications of fractions in non-commutative
domains—see Section 3.5—we decided to take a different approach which keeps all terms occuring
in the matrix in R = K[d;0,9].

Example 6.4. Consider a commutative polynomial ring Q[X]. Consider the matrix

3X -3X 21

M=l4ix+2x2 —2-x-2x2 0 1

which is similar to the one in [BLV06, Example 2.4]. Since

3—300)

LCrow(M)=(2 2.0 0

the matrix M is not row-reduced.
Let now ¢ =(2,2,0,0). Then we have max¢ = 2 and D¢ = diag(1,1,X2,X?). Thus, it is
3X -3X 2X2 Xx2
MD¢ = (4+X+2X2 —2-X-2X%2 0 X2)

and hence

LCrow(MDf):(l 1 0 1

We see that M is {-row reduced, but not in ¢-Popov normal form.

0021)
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A Popov normal form may be computed analogously to row-reduction in Algorithm 5.13. First,
the matrix M € *R? is brought into row-reduced form. For simplicity, we assume that no zero-rows
occur here. Then elementary row-operations are used to bring the leading row coefficient matrix into
row echelon form. Here it is important to always choose the pivots in such a way that they are of
lowest possible degree. We emphasize that these operations cannot change the degrees of the rows,
since that would mean that there has been a relation v € K® with v LC,,w(M) = 0. Alternatively, this
follows from [BCL06, Lemma A.1(d)] as well. Now, make the pivots monic. The last step is to ensure
the degree condition. We are now going to prove that this does not disturb the fact that the leading
row coefficient matrix is in row echelon form. Assume that 1 <i <k <s and that M; . has its pivot
in column j; and that that of M, , is in column j;. Since LC,,w(M) is in row echelon form we must
have j; > ji. Assume further that degM; ;, = degM} ;,. Euclidean division yields M; ;, = qMy, j, +r
with q,r € R and degr < degMy, ;,. We claim that M; . — qM}, , still has its pivot in column j;. Since
degM; ;, <degM,; . =degM; j,, we see that degq < degM, . —degMy, ;,. Since degM}, < degMy ;,
for v < j; and thus in particular for v < j;, we have degqM}, , < degM; . for those v. Thus can the
first j; —1 entries of M; . —qM}, . have degree at most degM; . —1 and the pivot in column j; remains
undisturbed. Thus, any matrix can be transformed into Popov normal form.

Transformation to {-Popov normal form can be done similarly by bringing M D; into Popov normal
form. Since R is integral, we may then cancel D; and remain with the {-Popov normal form.

Another way to prove that any matrix can be brought into Popov normal form or ¢{-Popov normal
form for arbitrary ¢ € IN’ will be shown in Corollary 6.31.

In Section 5.3, we have already argued, that an elementary row-operation needs at most G(td?)
operations in K where d = deg M. Bringing the leading row coefficient matrix into row echelon form
needs thus at most G(s2¢d?) operations where we use that s < ¢ since the matrix M was assumed to
have full row-rank. Enforcing the degree condition needs again at most G(s2¢d?) operations since
there are exactly s pivots. These transformations are less expensive than the row-reduction itself.

Confer also [Che03, Section 2.5.1] or [MS03] where similar algorithms are discussed. Another
method may be found in [DCLO8, Theorem 5.5] where computing the Popov normal form of A is
reduced to computing a (left) nullspace. The latter can be carried out, for example, by the method
described in [BCLO6]. The authors do the complexity analysis in terms of the bit complexity.

Since the Popov normal form is in particular row-reduced, by Lemma 5.14 (using again [BCL06,
Lemma A.2(d)] if necessary), we see that the degree of a Popov normal form cannot be higher than
the degree of the original matrix. We label this statement for future reference.

Remark 6.5. Let M € °R! and U € Gl,(R) be given such that UM is in Popov normal form. Then
degM =degUM.

This gives us also a rough degree bound for the ¢-Popov normal form: Let for M € *R? and @ €
Gl;(R) the non-zero rows of @ M D¢ be in Popov normal form. As we have argued above, this implies
that @M is in {-Popov normal form. Since multiplication by D can at most enlarge the degree, we
have degQM < degQMD: < degMD¢ < degM + degD; < degM + max¢ by the previous remark and
by the definition of D¢.

In the case of commutative polynomials, degree bounds can be derived for the degree of the ¢-
Popov normal form which are independent on ¢. See for example [BLV06, Theorem 5.1 (b)] and the
remark in front of [BLV06, Corollary 6.3].

Also for latter use, we state the following lemma.

Page 54 of 102



Normal forms of Ore polynomial matrices

Lemma 6.6. If for { € IN! the matrix M € °R? is in &-Popov normal form, then the rows of M are
R-linearly independent. In particular matrices in Popov normal form have linearly independent rows.

Proof. Let D¢ be the matrix from Definition 6.3. Then M being in ¢-Popov normal form means that
LCrow(MD¢) has maximal rank and is in row echelon form. In other words, MD; is row-reduced. By
the predictable degree property (Lemma 5.11) the rows of MD; are R-linearly independent. Assume
now, that bM =0 for v € R®. Then oMD; =0 and thus v = 0 by the independence of the rows of MD:.
Thus, the rows of M are R-linearly independent as well. O

6.2 The Hermite normal form

The other normal form we want to treat in this chapter it the Hermite normal form. Roughly speak-
ing, this is a kind of reduced row echelon form with some additional restrictions on the degrees of the
entries which serve to make the Hermite normal form uniquely determined. The definition wich we
present here is a simplified version of [KRT07, Definition 2]'. Confer also [GK09, Definition 3.2]. We
will show below just before Remark 6.12 that every matrix can be transformed into a matrix with the
non-zero rows being in Hermite normal form. Another possible way of computation is given through
Grobner bases—see Corollary 6.31.

Definition 6.7 (Hermite normal form). A matrix M € R? is in Hermite normal form if it is in row
echelon form with the pivot entries being monic and of largest degree in their respective columns.

More formally, M € *R? is in Hermite normal form if there exist column indices j; > jo > ... > j
which we call pivot indices such that

1. Mi,k =0ifk <ji;
2. M; j, is monic; and
3. degM; ;, >degMy, ;, for k #1i.

Also for Hermite normal forms, we will refer to the entries M; ;, as the pivots of M. The context
will always make it clear in which sense the word “pivot” is used. Later on, in Remark 6.27, the
similar naming will be justified by the fact that the pivots in both cases translate to the same concept
in Grébner basis theory.

Example 6.8. The matrix
11 x?

Mz(o X x2-1

) € ZQ[X]S

is in Hermite normal form with the pivot indices being 1 and 2. As LC,,w(M) has linearly dependent
rows, this example shows that a matrix in Hermite normal form needs not to be row-reduced.

The first property which we like to point out is the independence of the rows of a Hermite normal
form. For later reference, we state this as a remark.

Remark 6.9. Since a matrix in Hermite normal form is essentially in row echelon form, it follows
immediately that its rows must be R-linearly independent.

1Please note that this reference contains a typo: Row-reducedness (called “row-properness” there) is there required for a
matrix to be in Hermite normal form—which does contradict the other assumptions. The other sources do not mention it.
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The next property concerns the connection between Hermite normal forms and Popov normal
forms: In [BLV06, Lemma 2.6] it has been proved that in the ordinary polynomial case a ¢-Popov
normal form is already in Hermite normal form if ¢ € IN is chosen in a certain way. This translates
easily to the Ore polynomial case.

Lemma 6.10 ((BLV06, Lemma 2.6]). Let ¢ € IN! and assume that M € R is in &-Popov normal form
with the pivot of the it" row being in the j;* column for all 1 <i<s. If & fulfills

$j; —Sr =degM, j,

for all row-indices i and all k < j;, then up to row-permutation M is in Hermite normal form with the
same pivots.

Proof. Let1<i<s. We consider the pivot of M at position (i, j;). Let & < j;. Our goal is to prove that
M; ; = 0. Assume this was not the case. Then (MD¢); ;, has the degree degM; ; + max¢ — ¢, where
D; is the matrix from Definition 6.3. Since the pivot is at position (i, j;) and LC,,w(MDy) is in row
echelon form, we obtain

degM; ;. + max¢ —¢;, >degM; , + max¢ —¢p,

or, equivalently, using the condition on ¢
degMi’ji > degMi,k + Eji —ép = degM,-,k + degMi,ji

which is a contradiction. Thus, M; ; must be zero, and we have shown that the pivots are the left-
most non-zero entries in their respective rows. Furthermore, they are monic by Definition 6.3 and—
since the shift ¢ is applied column-wise—of largest degree in their column. Thus, all conditions of
Definition 6.7 are fulfilled. O

It is easy to see that for all Hermite normal forms there exists a ¢ such that the matrix is also
in ¢-Popov normal form: For this, we use an idea of [BLVO6]. Let MR%t be in Hermite normal form,
and let d = degM. Define ¢ = (O,d,Zd,...,(t - l)d). Then, every non-zero entry in the last column of
MD: has a degree which is less than that of every non-zero entry in any other column. Thus, a pivot
of LCrow(MD¢) can only be in the last column if it corresponds to the first non-zero entry of MD..
Since M is in Hermite normal form, this means that this entry must already be a pivot of M in the
Hermite normal form sense. Similarly, we see that the pivots in the other columns are the same in
the Hermite normal form sense and in the ¢-Popov normal form sense. Thus, M is in é-Popov normal
form.

We give an example for the lemma.

Example 6.11. Consider
1 1 Xx?
0 X X-1

and ¢ = (0,4,8). We have d; = (38,0*,1) in Definition 6.3, and since

M- ( ) 2Q(X)?

Lcrow(MD{)z(l 0 0)

010

we see that M is in {-Popov normal form with pivots in the positions (1,1) and (2,2). Since we do
have {9 —¢1 =4 =degMg o =1, we conclude that M is in Popov normal form. Of course, this could also
easily be seen directly in this case.
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Conversion of a matrix M € R? into Hermite normal form can be done using the Euclidean algo-
rithm in the form of Lemma 5.16. Assume that the first non-zero column of M has index j. Applying
the lemma to it yields @ € Gl;(R) such that

0 ..... 0 g K o-oe e *
) -0

QM = : : . M
0 - 0 0

where M € 5 7"1Rt"1. We can proceed recursively with M obtaining a matrix in row echelon form.
Enforcing the degree constraint can be done exactly as with the Popov normal form. Note that the
row echelon form cannot be disturbed since the entries left of the pivots are all zero.

This algorithm shows that every matrix can be transformed into Hermite normal form. Also we
may conclude that the first pivot is alway a greatest common right divisor of the entries of the first
non-zero column of the original matrix: This is easy to see once we proved the uniqueness of the
Hermite normal form in Corollary 6.31. Another way to see this is to use Lemma 5.16. Since we will
need this fact later, we write it down as remark.

Remark 6.12. Let M € R’ and U € Gl,(R) be given such that UM is in Hermite normal form. Then
the first pivot of UM is always a greatest common right divisor of the entries of the first non-zero
column of M.

We will need a degree bound for the Hermite normal form of a matrix later similar to that we
derived for Popov normal forms in Remark 6.5. For quadratic matrices over commutative fields such
a bound can be found in [GKO09, Corollary 3.4]. It is straightforward to generalise this to our case
which we will do in the remainder of this section. The proofs are essentially the same as in the
reference with the only exception being the integration of the number of columns in appropriate
places.

Theorem 6.13. [GK09, Theorem 3.3] Let M € *R? with degM < d and full row rank. Let UM = H
for a unimodular matrix U € Gl;(R) and H € °R! being in Hermite normal form having no zero rows.
Then there exists a unimodular V € Gl4(R) such that M =V H, UV =1, and degV <d.

Proof. Since U is unimodular, the inverse V trivially exists. Let j; > ... > js be the pivot indices of
H. We prove the claim about the degree of V by induction on the column index i of V. For i = 1 from
Remark 6.12 we obtain that 0 # Hy j, = gerd(M, j,). Thus degH1 j, <d, and from V, 1Hyj, = A, j,
we conclude that degV, 1 <d.

Assume now that i < ¢ and that for 1 <k <i <¢ we know that degV}, . < d. We will now prove
that also degV; . < d. For this we need to distinguish two cases: If degV; . =max{degV; . |k <i}=d
then there is nothing to do. Otherwise, if degV; . > max{degV} . | k < i}, then since by Definition 6.7
degH; j; > max{degH} j, | 1<k <s}, for 1 <v <¢ we obtain degM, j, = degV, H, j, because My j, =

' _1VyuH, j; and all the other terms are of lower degree by our assumptions. Since v was arbitrary,

p=1
we conclude degV; . <d. By induction the claim follows. O

In [GKO09], two corollaries are extracted from this theorem which we state in the following.

Corollary 6.14 ([(GK09, Corollary 3.31). Let M, U and V be as in Theorem 6.13. Then degU <

(s—1)degM.
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Proof. By Lemma 5.15 we know that row-reduction applied to V yields a matrix in Gl;(K). Without
loss of generality, we may assume that the row-reduced form of V is 1;. Moreover, since 1, = UV
using the uniqueness of the inverse we can compute the degree bound on U by [BCL06, Theorem 2.2].
Since—with the notation of [BCL06, Theorem 2.2]—it is v; = deg(1,,); » = 0 for all j, we obtain

S S
degU;j.<v;+ Z(uj—vj)—min{uk lk=1,...,m}< Z,uj—min{,uk l[k=1,...,m}.
k=1 k=1

Now, the bound on d = degV = u; for all j that was obtained in Theorem 6.13 implies degU; . <
(s—1d. O

This corollary immediately yields.
Corollary 6.15 ((GK09, Corollary 3.4]). Let M and H be as in Theorem 6.13. Then degH < sdegM.

Proof. We have degH =deg(UM) < degU +degM = sdeg M by the usual rules for matrix degrees and
the previous corollary. O

6.3 Grobner bases for modules over Ore polynomials

Invented by Bruno Buchberger in his Ph. D. thesis [Buc65], Grobner bases have since then become an
important tool in computer algebra. Their most prominent application is—without doubt—solving
polynomial equations. But they can be used also for a variety of other tasks like checking ideal
equality or computing ideal intersections. They may also be applied to more exotic problems such as
theorem proving (see, for example, [GG03, Section 24.1]), reachability in Petri nets (for example, in
[GGO3, Section 24.2]), graph colouring (for example, in [AL94, Section 2.7]) or integer programming
(see, for example, [AL.94, Section 2.8]).

Grobner bases were originally developed for ideals in rings of commutative and multivariate
polynomials with coefficients coming from a field. Later on, extensions were made. First, Grobner
bases can be defined for modules over such polynomial rings. See, for example, [AL.94, Chapter 3].
Second, extensions to polynomials over more general rings have been made. We mentioned this
already in Section 5.2. Confer, for example, [Pau07] for a possible approach to this. Third, there are
generalisations to differential polynomials (not to be confused with differential operators). Here, we
refer to [CFO7] or [Man91]. Note that in this setting the termination of Buchberger’s algorithm is
usually not given.

Finally, Grobner bases have been ported to non-commutative rings as well. This seems first
to have appeared in [Ber78] for free algebras. In [CS98] so-called Ore algebras were considered—
iterated Ore polynomial rings with the additional condition that the indeterminates commute with
each other. Confer also [LLev05] who treats so called G-algebras.

In this thesis we chose to use the presentation of Grobner bases from [BGTV03] where Grobner
bases are discussed for Poincaré-Birkhoff-Witt rings. Poincaré-Birkhoff-Witt rings are a class of
non-commutative rings with a commutation rule that is slightly more involved than that of Ore
polynomials—see [BGTV03, Definition 2.2.5]. However, Ore polynomials (and more generally even
Ore algebras) are a subset of Poincaré-Birkhoff-Witt rings as proved in [BGTV03, Corollary 2.3.3].
Thus we can utilize the results of [BGTV03] for our purposes. They have a comprehensive chapter on
Grobner bases for free modules which—in the form of row-spaces of matrices—is our main concern.
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In this section, we will briefly summarise the results from [BGTV03, Chapter 5] for the convenience
of the reader and also in order to adapt the notation to our simple case of Ore polynomials.

Let K be again a skew field with automorphism ¢: K — K and o-derivative 9: K — K. As before,
we set R = K[d;0,9]. For some ¢ = 1, we consider the free module R’ of row-vectors of length ¢. Let
¢1,...,¢; denote the canonical basis of R, that is, for 1 <i < ¢ the vector ¢; has all its entries equal
to zero except for the ith one which is just the unit of R. A monomial in R? is then defined to be
an expression of the form 6%; where @ = 0 is a non-negative integer and 1 <i <¢. Just as in the
commutative case we need to order these terms in a sensible way.

Definition 6.16 (Admissible ordering/[BGTV03, Definition 5.3.7]). An admissible term ordering is a
total ordering < on the set of all terms such that

1. 0%; <0%Pe; foralla=0and f=1andall 1<i<t;and

2. 0%¢; < aﬁej implies 0%*7e¢; < 6ﬁ+7ej foralla, fand y=0and all 1<i,j<¢.

The conditions simply mean that < is compatible with the scalar multiplication of monomials
in R to monomials in R!. They are exactly the same as for Grobner bases in free modules over
commutative polynomial rings (see, for example, [A1.94, Definition 3.5.1]); and very similar in spirit
of admissible orderings for Grobner bases of ideals (confer, for example, [Win96, Definition 8.2.1]).

As usual, we will write 0%; < aﬁej for 0%¢; = 0ﬁej or 0%; < Oﬁej, and we write 0%; > Oﬁej for
dPe i <0%; and similarly for “=”.

The only possible admissible ordering on the univariate ring R is to have 8% < 4# if and only if
a < . This makes R into a Poincaré-Birkhoff-Witt ring—confer again [BGTV03, Definition 2.2.5].
There are two standard ways for extending an order from the ground ring to the free module: the
term over position ordering and the position over term ordering. Both can be found in [BGTV03,
Definitions 5.3.8 and 5.3.9], but we will repeat them here for the convenience of the reader. Note,
that the definitions we give are not exactly the same since we chose to order the positions, that is, the
basis vectors e¢1,...,¢; differently. This is done in order to match the Hermite normal form and Popov
normal form definitions as will be explained below in the Theorems 6.30 and 6.28.

We start with the term over position ordering. Here, the degrees of the monomials, the terms,
obtain more attention than the positions.

Definition 6.17 (Term over position ordering/[BGTV03, Definition 5.3.8]). Let @ and =0 and 1 <
i,j <t. Then 0%; is smaller than 8¢ 7 with respect to the term over position ordering if and only if
either a < f or a = § and i > j. In this case, we write 0%; <rop aﬁej.

An equivalent way to define the term over position ordering is to say that 8%¢; <pop 0Pe¢ ; if and
only if (@, —1) <jex (B, —J) Where <j¢x denotes the usual lexicographic ordering. (Confer, for example,
[Win96, Example 8.2.1a] for the lexicographic ordering.) We have to multiply the position indices
with minus one since we chose to order them ascendingly, that is, we have chosen to have ¢; >rop ¢;
if and only if i > j.

Since the degree is considered first, the term over position ordering acts similar to a graded
ordering. (See, for example, [Win96, Example 8.2.1b] for a definition of a graded ordering). We have

(0,...,0,1) <rtop (0,...,0,1,0) <rtop ... <TOP (1,0,,0) <T0P ---
<rop (0,...,0,0) <rop (0,...,0,0,0) <rop (3,0,...,0) <rop ...
<rop (0""’0>62) <toP (0,...,0,62,0) <rop (62)05'-"0) <TOP --+}
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just as one would expect for a graded ordering. This illustrates well that higher degree terms are
always larger than lower degree terms and that terms of equal degree are sorted from right to left,
that is, the term with the left-most position is always the largest.

We will now define the position over term ordering. In contrast to the term over position ordering
defined above, here the position have more weight than the degrees of the terms.

Definition 6.18 (Position over term ordering/[BGTV03, Definition 5.3.9]). Let again @« and =0 and
1<i,j <t Then 0%; is smaller than 8¢ 7 with respect to the position over term ordering if and only
if either i > j or i = j and a < B. This is denoted by 0%¢; <por éﬁej.

Also the position over term ordering can be defined in terms of the lexicographic ordering: We
have 3%¢; <por 0Pe j if and only if (=7, @) <1ex (-7, B). Again, the position indices are negated to obtain
an ascending order. Analogously to the term over position ordering, the position over term order-
ing has a strong connection to an ordering from polynomial algebra. Namely, it acts as a kind of
lexicographic ordering. The sequence of monomials runs as

(0;-"’0’ 1) <por (0:50’6) <por (0,...,0,62) <poT --- <pOT (O""’O; 1’0) <por (0"":050,0)

<por (0,-~-,0,02,O)<P0T ... <por (1,0,...,0) <por (9,0,...,0) <por (02,0,---,0) <pOT - -+

with all 0%¢; being smaller than any 0Pe¢;_1 and so on.

There is another kind of ordering, which we will later link to the {-Popov normal form.

Definition 6.19 (¢-term over position ordering). Let £ € IN? be given. For ¢ and =0and 1<i,j <t,
we say that 0%¢; is smaller than 8°¢ 7 with respect to the ¢-term over position ordering if either a—¢; <
p—¢;ora—¢;=p—¢; and i > j. We will write this as 0%¢; <rpop ¢ O‘Bej.

For ¢ = 0 we obviously obtain just the term over position ordering. Like this, the {-term over
position ordering can be expressed via the lexicographic ordering. We have 0%¢; <rop ¢ dPe ; if and
only if (& - &;,~1) <1ex (6 —¢j,—j). Again, the negative second components are due to our ordering
of the positions. This translation to the lexicographic ordering also immediately implies that the
¢-term over position ordering is admissible: For all @, f and y =0 as well as 1 <i,j <t we have
0%; <tops oPe ; if and only if (a —¢;,—i) <jex (B —¢j,—j) which—since the lexicographic ordering is
admissible—implies (a —¢&; +7v, —1) <iex (B—¢; +7v,—7) which is equivalent to 0%*"e¢; <pop ¢ aﬁ”’ej; and
similarly for the first condition of Definition 6.16.

Another way of interpreting the ¢-term over position ordering is to use the matrix D¢ that was
defined in Definition 6.3. It is easy to check that

aaei <TOP,5 aﬁej — aaein <rtopP a‘BQJDf

for all ¢, p and y =0 and 1 <i,j < ¢. Taking for instance ¢ =4 and ¢ =(2,2,0,0) as in Example 6.4
where we had D¢ = diag(1, 1,02,0%), this is illustrated by the following sequence

(0,1,0,0) <rOP,¢ (1,0,0,0) <rop:¢ (0,0,0,0) <rop,¢ (0,0,0,0) <TO0P,¢ (0,0,0,1) <TOP,¢ (0,0,1,0)
<rop (0,02,0,0) <pop ¢ (3%,0,0,0) <pop ¢ (0,0,0,8) <pop ¢ (0,0,8,0) <pop ¢ (0,0%,0,0)
<popc (02,0,0,0) <pop ¢ (0,0,0,0?) <pop £ (0,0,0%,0) <pop ¢ (0,0,0,8%) <10p ¢ (0,0,02,0)

of all monomials of degree not greater than 3.
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We can use [RR97] to characterise all admissible orderings in R?: The definition of admissible
orderings (Definition 6.16) corresponds to positive rankings in [RR97, Definition 1]. Furthermore,
by [RR97, Theorem 7] (pointing themselves to Caboara & Silvestri), admissible orderings on R? are
Riquier rankings: Let 0%¢; < d%¢;. Then we must have a < b since otherwise d%¢; < d%; by first
condition of Definition 6.16. But then we must have §%; < abe 7, again by the first condition of
Definition 6.16.

Theorem 6.20. All admissible orders < in Rt can be described by a matrix M € SR**1 for some s = 1
with M, 1 21ex 0 such that

0%¢; sabej — M(g) sleXM(eb').
i J

Proof. This is a special case of [RR97, Theorem 6]. O

Note, that we may always choose s < ¢ + 1 because otherwise we would have linear dependend
rows which cannot yield a decision if the previous rows did not.

As an example, for ¢ = 3 the term over position ordering and position over term ordering are
described by the matrices

1 0 0 O 0100
MTOP =10 1 0 O and MPOT =10 0 1 O
0 010 1 000
respectively. The matrix for the {-term over position ordering is

1 ¢ -2 —¢3
Mrope=|0 1 0 o0 |
0 0 1 0

Another way to obtain all monomial orders on R? is given by [RR97, Theorem 29]. The construc-
tion (already adapted to our case) is the following: Choose real numbers M; € R with M; >0 and real
numbers 1; € R.? Let s; j=1if M; = M; and s;; = 0 otherwise. Choose integers u;; satisfying

OSuijSSij, u;; =si; =1, Uij =Uji, and Uuip zmin{uij,ujk}
for all 1 <1i,j,k <n. Choose a permutation o: {1,...,¢} — {1,...,¢} such that
wip >min{u;j,ujpt Ao(@) <o(j) = o(k) <o(j).

Denote by 75 the projection of a real vector to its first s coordinates. Then we can define an admissible
ordering <=<pf,, . M, Ay,... A, u;;),0 o0 all terms by

i (M;a+A;) uij(Mja+A;)

0% <dPe; wipia A o) (A TR

¢; ¢, — ( U(l) lex O’(])

In [RR97, Theorem 29] it is shown that every admissible ordering has such a representation. We
can easily translate the orderings obtained in this way to that in Theorem 6.20: For the upper rows,

2In [RR97], the M, ; are s; x m matrices where 1 <s; <m and where m is the number of variables. But in our case we have

m =1, and thus are the M; just numbers.
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choose an index i and let J ={1<j<n|M; =M; Au;j=1}. Then a row of the matrix has M; in the
first position and A; at the (j + 1)!" position for j € J. Do this for all i. The lower rows correspond to
the matrix of the permutation o.

Since the monomials form a K-basis of the left vector space R?, we may write down every element
of R as a K-linear combination of monomials in a unique way. Let v € R? \ {0} be given and assume
that

b=cimi+...+c,m,

where c1,...,¢, € K\ {0} and my,...,m, are pairwise different monomials. Let now an admissible
ordering < be given, and assume that m; > ... > m,. In this case, we will call m; the leading monomial
of v with respect to < and write m; = Im.(v). The coefficient c; is called the leading coefficient of v
with respect to < which we denote by ¢1 =lc<(v). Furthermore, the leading term of vislt<(v) = c1my =
le<(0)Im(v). If no confusion is possible, we will usually just write Im(v) for Im.(v) and similar for
the leading coefficient and the leading term. The leading monomial, coefficient and term of the zero
vector remain undefined.

At this point, we emphasize the differences to the definitions for row bases in Section 5.2: The
leading coefficient defined here is a single element of K while the leading vector defined in Section 5.2
is a vector in K*. The concept of the leading monomial is roughly equivalent to the use of the degree
in Section 5.2.

The next step is to define reduction. This is the point where the Grobner basis theory deviates
from the row basis theory of Section 5.2—although the names are similar. The latter is of course to
be expected since our row bases theory itself is derived from a version of Grobner basis theory.

Definition 6.21 (Reduction). Let F € R¥\{0}, and let v = cym;+...+¢c,m, € R’ where c1,...,c, € K\{0}
and m; >...>m, are monomials in R’. Then v is said to be reducible by F if there are 1 <i <r, an
element f€ F and y = 0 such that m; = 0" Im(J).

We call v irreducible by F if it is not reducible by F'.

Note that the zero vector is always irreducible.

Just as in the usual Grobner basis theory or just as for row bases, reducibility implies that terms
in a vector may be replaced by terms which are smaller with respect to the admissible ordering
chosen. More precisely, if v € R? is reducible by F € R?\ {0}, that is, if there is a monomial m; occuring
in v with non-zero coefficient ¢; and there is f € F' such that there is a y = 0 with m; = 8" Im(§), then in

v—c; oAt Ha"f

the monomial m; no longer appears. Instead the smaller monomials from 37 are substituted. This
observation yields the Grébner basis division algorithm.

Theorem 6.22 (Division algorithm/[BGTV03, Theorem 5.4.3]). Fix an admissible ordring <. Given
a vector b € R and F = {f1,...,f} S R! \ {0} there exist u1,...,u;, € R and v € R? such that

v=uif1+...+upfp+t

where

1. visirreducible by F;
2. t=0orIm(r) <lm(v); and
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3. for 1<i <k we have either u; =0 or Im(u;f;) < 1m(v).
In this case, we call t the remainder of v by division with F.

The elements u1,...,u; from the previous theorem can be computed; the procedure is explained
in [BGTV03, Algorithm 10]. Note that the algorithm is inherently non-deterministic since reduction
might be possible by several elements of which one is chosen randomly. In [BGTV03, Example 5.4.5]
the reader may find an example for the division algorithm applied to a module over the Weyl algebra.

With the division explained, we are now ready to come to the definition of a Grobner basis. Instead
of taking [BGTV03, Definition 5.4.7] directly, we use a different formulation which is shown to be
equivalent in [BGTV03, Theorem 5.4.9].

Definition 6.23 (Grébner basis). Let 9t < R be a (left R-) submodule of R!. A finite subset G <
M\ {0} is said to be a Grobner basis for 9 if for all v € R? the remainder by division with G is zero if
and only if v € 9.

Just as in the usual Grobner basis theory one obtains the following results.

Lemma 6.24. Every submodule 9 < R has a Gribner basis G, the elements of G generate I and
the result of the division algorithm 6.22 applied to v € Rt and G does not depend on the order of the
elements in G.

Proof. These statements may be found in [BGTV03, Proposition 5.4.8, Corollary 4.10 and Theorem
5.4.9]. O

For a given module the Grébner basis as defined above is not yet unique since, for example, adding
more elements to a Grébner basis cannot destroy the Grobner basis property. Therefore, we need to
introduce additional conditions.

Definition 6.25 (Reduced Grébner basis/[BGTV03, Definition 5.4.17]). A Grobner basis G for 9t < R?
is reduced if for all g € G we have le(g) = 1 and g is irreducible by G \ {g}.

Again just as in the usual Grébner basis theory for ideals of a commutative polynomial ring,
there exists a notion of S-polynomials for elements of R! and a corresponding Buchberger criterion
for Grobner bases in R?. These may be found in [BGTV03, Definition 5.4.11 and Theorem 5.4.13].
They lead to a Buchberger’s algorithm for R! that is described in [BGTV03, Algorithm 11] with the
proof of the correctness in [BGTV03, Theorem 5.4.16]. We do not repeat these result here since they
will not be needed in the following discussion. We do, however, cite a sufficient condition for being a
Grobner basis which can be found in [BGTV03, Corollary 5.4.14] and which will turn out to exactly
fit our needs below in the proofs of the Theorems 6.28, Theorems 6.29 and 6.30.

Theorem 6.26 ((BGTV03, Corollary 5.4.14]). Let G ={g1,...,0,} S R" with leading monomials Im(g;) =
0%e;, for 1<k <r. If j; # jr whenever i # k then G is a Grobner basis for the (left R-) submodule
Rgi1+...+Rgs <R" generated by its elements.
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6.4 Grobner bases and normal forms

We are now going to draw the connection between the normal forms presented earlier in this chapter
and Grobner bases. The link between normal forms and Grébner bases is not difficult to notice:
For linear polynomials the Buchberger algorithm is essenially the same as computing a row echelon
form of the coefficient matrix. See, for example, [ALL94, Exercise 1.6.5]. A correspondence between
Popov normal form, Hermite normal form and Grébner bases seems first to have been described in
[KRTO07] for the case of commutative polynomials. In this section we will generalise their result to
Ore polynomials. Also, besides the usual Popov normal form we will consider é-Popov normal forms
as well.

The main idea in the proofs of the following theorems is to note the parallel between the pivots in
the Definitions 6.1, 6.3 and 6.7 and the leading monomials with respect to the term orderings which
we have defined above.

Remark 6.27. Let a non-zero vector v € R? be given.

1. The leading term of v with respect to the term over position ordering is the term of highest
degree with lowest position index. It corresponds to the left-most non-zero entry of LC,qw(b).

2. For & € IN?, the leading term of v with respect to the é-term over position ordering is the left-
most term whose degree minus the corresponding entry of ¢ is minimal. It corresponds to the
left-most non-zero entry of LCyow(vD¢) where Dy is the matrix from Definition 6.3.

3. The leading term of v with respect to the position over term ordering is the highest degree term
of the left-most non-zero entry of v.

Using this idea about the correspondence between leading monomials and pivot elements, we
are ready to prove that the Popov normal form, é-Popov normal form and Hermite normal form are
reduced Grobner bases for their respective row-spaces.

Althought the Popov normal form is but a special case of the ¢é-Popov normal form—as we have
seen above—we do want to prove separately that it is a Grobner basis. Although the following theo-
rem could be regarded merely as a corollary of Theorem 6.28, we feel that the simpler proof gives a
better intuition.

Theorem 6.28. Let M € R%t. Then up to row-permutation M is in Popov normal form if and only if
its rows form a reduced term over position Grobner basis for R°M.

Proof. As already mentioned above, the key point of this proof is that the pivots in the sense of
Definition 6.1 and the leading monomials with respect to the term over position ordering correspond
to each other as explained in point 1 of Remark 6.27.

Assume first that M is in Popov normal form. Since by Definition 6.1 this means that its leading
row coefficient matrix is in row echelon form, we see that the pivots—which correspond to the pivots
of LC,ow(M)—must be in different columns. This means that the leading terms of the rows are at
different positions. Thus, by Theorem 6.26 the rows of M form a Grébner basis. From Definition 6.1
we see that the pivot elements must be monic. Since the leading terms of the rows are just the
highest degree terms of the pivots—written at the corresponding position—we obtain that the leading
coefficients of the rows are monic. The i*h row M; . can only be reducible by the j* row M; . if the
pivot entry in M . does not have a higher degree than the entry of M; . in the same column. Since by
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Definition 6.1 this is impossible for i # j, we conclude that the rows of M are even a reduced Grébner
basis.

Conversely, let now the rows of M be a reduced Grobner basis for the row-space of M. We first
prove that the leading terms must be at different positions. Assume that was not the case, that is,
that Im(M; ) = 6%¢; and also Im(M}, .) = Oﬁej for some row indices 1 < i,k <s. Then, a < f implies
that My, . is reducible by M; . which can only be if i = & since the rows are a reduced Grébner basis—
and similarly for 8 < a. Since the leading terms correspond to the left-most highest degree entries in
the rows, this means that the leading vector of each row has its left-most non-zero entry at a different
position. Thus, after possibly reordering the rows of M we see that LC,ow(M) is in row echelon form.
The pivot elements of LC,,y(M) are monic since the leading terms of the rows of M are. Analogously
to how we proved that the leading terms are in different positions, we may conclude that—since the
rows of M are a reduced Grébner basis and thus are not reducible by each other—that the pivot
elements have the largest degree in their respective columns. Thus, we have verified all conditions
from Definition 6.1. O

A matrix whose rows are a reduced term over position Grobner basis can be brought into Popov
normal form by sorting its rows ascendingly with respect to the positions of their leading monomials.
This can be easily seen from the proof since we have shown that the pivot elements correspond to the
leading terms.

Theorem 6.29. Let M € SR? and ¢ € N!. Then up to row-permutation M is in &-Popov normal form if
and only if its rows form a reduced &é-term over position Grobner basis for R°M.

Proof. Again, the key insight to this proof will be that the pivots correspond to the leading terms.
Assume first, that M is in é-Popov normal form with the pivot of the i row being in column j; for
1<i=<s. Fix an row index i and consider an entry M, ; for k£ < j;. Since this is left of the pivot, we
obtain

degM; , +max¢ — & = deg(M; 0™ %) = deg(MD¢); 1
<deg(MDy); , = deg(MDy); j, = deg(M; ;,0™*** %) = deg M j, + max¢ — &,

where Dy is the matrix from Definition 6.3. This is equivalent to
degM; — & <degM, j;, —¢j;

meaning that every term of M, . at position & < j; is less than the highest degree term at position
Ji with respect to the é-term over position ordering. Similarly, we can prove that for ¢ > j; we have
degM,; o —¢¢ <degM; ;, —¢;, meaning again that all terms in that positions must be smaller than the
highest degree term in position j;. Thus, the pivots correspond to the leading terms of the rows with
respect to the ¢-term over position ordering.

Since LC,ow(M) being in row echelon form implies that the pivots are in different columns and
thus the leading terms are in different positions, by Theorem 6.26 we see that the rows of M form a
Grobner basis for RSM. The leading terms of the rows must be monic since the pivots are 1. Since
the shift ¢ is applied column-wise, for every 1 <i < s the element M; ;, has a larger degree than all
Mj, j, with & # i. Since the leading term of the ith row is at position j;—or, in mathematical notation
Im(M; ) = 0%eMi~¢; _we see that the i*h is not reducible by the other rows. Thus, by Definition 6.25

the rows of M are even a reduced Grobner basis of the row-space of M.
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Let on the hand now the rows of M form a reduced Grébner basis for R*M. We have to prove
that for every 1 <i < s the left-most non-zero entry of the i*" row of LCyow(MD;) correspond to the
leading monomial of M; .. Let the leading term be at position j; and consider 2 < j;. Then we must
have degM; ; — &, < degM; j, — ¢, since otherwise the leading term was at position k. In fact, since
k < j; we must even have a strict inequality here since the leading term is in the left-most possible
position. As before, this implies that

deg(MDy); r, < deg(MD¢)i,j;.

Analogously, for ¢ > j; we obtain deg(MDy); ;, = deg(MD;); o since degM; ;, —¢;j, = degM; o —&,. To-
gether, these two inequalities imply that the first non-zero entry of the it row of LCyow(MD;) is in
column j;.

Assume now, that for another row index % # i we had j; = j;. Then, Im(M;,) = 0%, and
Im(My, ) = dPe j; meaning that M; . is reducible by M}, . if @ = § or the other way around for § = a.
This contradicts the assumption that the rows of M form a reduced Grébner basis. Thus, the leading
terms are in different positions and hence the first non-zero entries of LC,w(MDy¢) are in different
columns. After possibly rearrangig the rows, we may thus assume that the leading row coefficient
matrix of M D¢ is in row echelon form. In the same way, as above we may conclude that the entries
of MD;¢ corresponding to the pivots of LC,w(MD¢) have maximal degree in their column. Also, they
must be monic since the leading terms are. Thus, M D¢ is in Popov normal form meaning that M is
in ¢{-Popov normal form according to Definition 6.3. O

Also the next theorem could be seen as a corollary of Theorem 6.29 by Lemma 6.10. But again,
we give an alternative proof here.

Theorem 6.30. Let M € °R! have it’s rows being sorted with respect to the position over term ordering.
Then M is in Hermite normal form if and only if its rows form a reduced position over term Grobner
basis for R°M.

Proof. As already twice before, we have primarily to prove that the pivots in the sense of Defini-
tion 6.7 correspond to the leading terms of the rows with respect to the position over term ordering.
Let first M be in Hermite normal form. Consider the ith row of M for some row-index 1 <i < s.
Since the leading term is the highest degree term of the left-most non-zero entry of M, ., we see
that Im(M; .) is in the same column as the pivot. Since all pivots are in different columns, we have a
Grobner basis by Theorem 6.26. The pivots are monic and of largest degree in their columns implying
that M must be a reduced Grébner basis.

Conversely, if the rows of M are a reduced Grobner basis, then no two leading terms can be in
the same column or else on of the corresponding rows would be reducible by the other. Since the
position over term ordering makes the left-most non-zero entry of a vector the leading monomial,
sorting the rows with respect to the position over term ordering brings M into row echelon form.
Again the irreduciblity of the rows by each other implies that the pivots have the highest degree in
their respective columns. Since the rows of M are a reduced Grobner basis, the pivots are monic and
thus M is in Popov normal form. O

The theorems which we have just proven allow us to use Grébner basis theory to reason about
the existence and uniqueness of the various normal forms.
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Corollary 6.31. For a given matrix M € SR and every & € IN!, there exists unique matrices which are
row-equivalent to M and which are in Popov normal form, é-Popov normal form and Hermite normal
form, respecively.

These normal forms all have the same number of rows which is equal to the rank of M in the sense
of [BCLO6, Definition 2.1] and not larger than s.

Proof. Since in the Theorems 6.28, 6.29 and 6.30 we have shown that all these forms are just reduced
Grobner bases with respect to the respective admissible orderings, existence and uniqueness follow
from the existence and uniqueness of the reduced Grobner basis in [BGTV03, Theorem 5.4.18].

Ore polynomial rings are (left and right) Euclidean and thus (left and right) Noetherian. Thus, by
[Coh05, Theorem 4.6.7] they have invariant basis number. Since the different normal forms have all
linearly independent rows by Lemma 6.6 and Remark 6.9, this implies that R°M is (isomorphic to) a
free module with the rows of the normal forms being bases. This implies that all normal forms must
have the same number of rows. Since the Popov normal form is row-reduced, [BCLO06, Theorem A.2]
implies that the number of its rows equals the rank of M which cannot be larger than s. O

6.5 FGLM

This section does present a kind of an application for the interpretation of normal forms as Grébner
bases: Namely, we will rediscover [Vil96a, Algorithm 2]—that is used to convert column Popov nor-
mal forms of square matrices over commutative polynomials to column Hermite normal forms—as
an instance of the famous FGLM-algorithm. Since we formulated the Grobner basis theory in the
previous sections for Ore polynomials, we can prove that the algorithm in [Vil96a] does work for this
case as well. Moreover, we will introduce some additional modifications to that algorithm, though,
to be able to deal with non-square matrices, too. Another difference is, that in our formulation the
algorithm can be used to change between various normal forms while [Vil96a] considers only the case
of conversion from Popov normal form to Hermite normal form. The latter case is arguably the most
important one, though, as it is analogous to going from a degree ordering to an elimination ordering
in the theory of Grobner basis for commutative polynomial rings.

Note, that the proof here seems to be completely new, in [Vil96a] the algorithm is explained from
a system-theoretical point of view.

Since computation of Grébner bases does have exponential complexity—as was first reported in
[MM82]—various strategies have been proposed to speed up this process. One method uses the fact
that Grobner bases for some admissible ordering usually compute faster than for other admissible
orderings. The FGLM algorithm which is named after the initials of its inventors—Faugere, Gianni,
Lazard and Mora—and which was presented in [FGLM93] allows to exploit this differences in the
computation speed by giving an efficient method to compute a Grobner basis of an ideal from another
already known Groébner basis. This means that if one seeks a basis for a slow admissible ordering,
one may first compute a basis for a faster ordering and then use the FGLM-algorithm to change it to
the desired ordering.

The original paper [FGLM93] addresses Grobner bases for ideals of (multivariate) commutative
polynomial rings. Although the computation itself does not in particular rely on the commutativity,
there seem to be no generalisations of the FGLM-algorithm to non-commutative domains or to ideals
yet. The only source known to the author is a short note in [Kou09].

The FGLM-algorithm achieves its efficiency by translating the problem of Grébner basis conver-
sion to a linear algebra problem. Instead of computing with polynomials, all computations are done
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in the quotient of the ideal in question. Thus, a major restriction of the original FGLM-algorithm
is that it can be applied only to zero-dimensional ideals, that is, ideals whose quotient is a finite
dimensional vector space. There are also approaches for arbitrary ideals which exploit for instance
the Hilbert polynomial. See [Tra97] for such an approach.

In this section we will translate the FGLM-algorithms to Grobner bases in R! where as before
R = K[0;0,9] is the Ore polynomial ring over the skew field K with respect to the automorphism
0: K — K and the o-derivative 9: K — K. This will allow us to convert Popov normal forms, ¢-Popov
normal forms and Hermite normal forms of matrices—which we have shown to be Grobner bases in
the Theorems 6.28, 6.29 and 6.30—into each other. In our simple, univariate case we will be able
to remove the restriction from [FGLM93] about the zero-dimensionality by taking advantage of the
degree bounds in Remark 6.5 and Corollary 6.15.

We will start this section by first exploring the quotient modules of the free module R?. Then, we
will identify finite dimensional subspaces in which we can carry out our computations. The last point
is translating the FGLM-algorithm to this situation.

Let the rows of M € R form a Grobner bases for its row-space RS M. Later, M will be in (¢-) Popov
normal form or Hermite normal form; but in the moment any Grébner basis will be fine. The quotient
module RY/R® M naturally is a left R-module and thus also a K-vector space. The multiplication with
0 acts on R!/R* M as a K-pseudo-linear transformation in the sense of [Jac37] or [BP96]: There, for
a K-space V an endomorphism ¢ of V is called K-pseudo-linear if for all vectors v and w € V and all
scalars a € K the identities

pv+w)=p)+ew) and  @lav)=oc(a)p@®)+Na)v

hold. This is easily seen to be the case for the left multiplication with d in R*/R* M since for v € R?
and a € K denoting the residue class of v in RY/R° M by v we have

dab = dav = o(a)dv +Ia)v = d(a)db + Ia)o
by the commutation rule (Equation (3.1)) and the R-linearity of the canonical projection from R’ to
RYRSM.
Assume for a moment that RY/R* M has a finite K-dimension. Fixing a basis B = (e1,...,eq) we

may express the action of 0 in the following way: Define the matrix A = (a;;) € 4K by taking the
coefficients of the representation of the images of the basis vectors

d
aei = Zaijej
i=1
for 1< i <d. Then for all v € R? we have

(00)3 = o(v3)A +9(vy)

where vg; denotes the coordinate vector of v with respect to 23 and where o and 9 are applied
coordinate-wise. The matrix A is called a defining B-matrix or a B-connection in [CK02]. See also
[Jac37, Section 2] or [BP96, Page 4]. If € is another basis of R!/R® M, then the defining ¢-matrix B
can be computed from A by a gauge transformation from the following identity

BP =9(P)+o(P)A
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where P € Gly(K) is the change of basis matrix from € to 8. Also, one may prove that using the
identity (9v)gs = o(be3)C + I(vs3) as a definition for the action of @ every matrix C € K¢ defines an
R-linear structure on K<¢. For both points we refer the reader once more to [Jac37].

Let now M be arbitrary again, that is, we no longer assume that the quotient had finite dimension.
We cite the following result on bases of the quotient R*/R* M.

Lemma 6.32. Let the rows of M € °R! form a Grébner basis with the leading term of the it" row being
at position j; for 1 <i <s. Then a basis of R{/R® M is given by all residue classes of all monomials
which are irreducible with respect to the rows of M. More precisely, the irreducible monomials are all
monomials 0%¢;, for « <degM; ;, and 1 <i < s and all monomials 0Pey, where k ¢ {J1,...,jstand p=0.
If M is in Popov normal form or Hermite normal form, then the j; are just the pivot indices.

Moreover, assigning a vector its remainder by Grobner basis division with the rows of M is a
K-linear map.

Proof. This follows immediately from [BGTV03, Proposition 5.6.2 and Proposition 5.6.3] and the
correspondence of the pivot indices and the leading monomials. O

We will call the basis from the previous lemma the canonical basis of R/R® M and denote it by
3. We emphasize that it depends on the admissible ordering with respect to which M is a Grébner
basis: For different orderings the same space will most likely have different canonical bases. Also,
the canonical basis will in general be an infinite set of vectors. Thus, we cannot describe the multi-
plication by 8 by a (finite) matrix here. Yet we can easily read off the result from the Grobner basis
M itself: Taking any element d%¢;, of the canonical basis multiplication with d will yield

* if M has a leading term in the £*" column in position (i,k) and a = deg M; , — 1—that is, if there
is a row-index i such that Im(M; ) = 6“+lek—, then 80%¢;, = 0%+ 1le;, — M; ., and

* otherwise we simply have 80%¢;, = 8%*1¢;,.

In the first case the representation of Im(M; .) — M; . can be easily read off from M if its rows are a
reduced Grobner basis since the property that the rows are irreducible by each other means that no
monomial in Im(M; .)—M; . can be reduced by the rows of M. Thus, the residue classes of these mono-
mials will be canonical basis vectors and by linearity of the residue class mapping, the coefficients
are just the coefficients of the monomials in Im(M; .) — M; ..

For our version of the FGLM-algorithm, it will be sufficient to work in certain subspaces of
R!/R® M. Given a degree bound d = 0, for any set & of monomials, we define G4 = {s € & | degs < d}.
Abusing this notation, if T is the set of residue classes of the elements of G then we denote by T, the
residue classes of G4. If all elements in & are irreducible, then T-; will be a subset of the canonical
basis B of R{/R* M.

Using this notation, for a degree bound d = 0 we define the truncated (canonical) basis B4 with
respect to d. Of course, it depends again on the admissible ordering that was chosen. The truncated
canonical bases will span the subspaces of R/R° M in which we will compute our FGLM-algorithm.
We order the elements of B, ascendingly with respect to the position over term ordering. That
means if for 1 <% <t we define

{min{a -1,d}, if Im(M; .)= 0% for some row-index 7, and
T =

d, otherwise
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then the truncated basis B4 is just
e,...,0%te,  €4_1,...,07t"1e;1, ..., €1,...,07leq.

For a given d we restrict the multiplication of d to the truncated canonical basis by projecting on
the K-span (B.4) of B.4. This is again a pseudo-linear map since for every v € (5.4) and every
a € K we have

7(0av) = 7(0(a)dn(v) + Na)n(v)) = o(a)n(dv) + Na)n(v) = o(a)w(dv) + Ia)v

using v = 7(v) which follows from v € ({B.4). The defining B ;-matrix T of this map can be computed
completely analogously to the B-case. We would like to give more details in here, though, since the
finite dimensional case is important for the following tasks. For this, we remark that for an element
00%¢;, of 3B~y Grobner basis division to find its coordinate vector is not necessary if there is either
no leading term in the &% column or if M; . has a leading term at postion % but a +1 < degM; ;.
This will be the case if a < 7;,. Then the coordinate vector is just the next basis vector or 0 if « =d.
Otherwise, we need to do reduction which—as explained above—does not need actual computation
in the case of a reduced Grébner basis.

We can distinguish these cases using the indices of the basis vectors and 71,...,7;. The (represen-
tatives of the) basis vectors by, ...,b,+1 have their non-zero entry in the tth position, br,42,.., 00,47, 142
have it in position ¢ — 1, and so on. Thus, b; is of the form d%¢}, if

The1+...+T+(E—-R)<i<Tp+...+7:;+(Q+t—k)

where we will then have just a =i —713,1—...— 7 —(t— k) — 1. We summarize this in the following
remark.

Remark 6.33. Let d = 0 be a degree bound. Taking the i*h basis vector b; of the truncated basis B4,
the jth coordinate of b; will be either

1. 0,ifO<i—14—...—Tpy1—(t—k)<Tp+1forsomek and 2 #i+1, or
2. 1,if0<i—-74—...—Tp41—(t—k) <1+ 1 for some k and k=i+1, or
3. —coeff(u—1,M; ), if i =1;+...+ 7, +(1+¢—Fk) for some k£ and where p=j—7;—...— 7,41 —(t-2)

for some z such that O<pu<7,+1.

We will refer to the defining B.;-matrix T as the truncated multiplication matrix. We emphasize
that by the remark T can be computed from M using just “copy& paste”.

We can find (the transpose of) this matrix also at the beginning of [Vil96a, Section 4] as matrix
A, where the basis elements are ordered in a probably different way than in our presentation. The
definition of the matrix is motivated differently from our case by being part of a minimal realisation—
see [Vil96a, Definition 1]—of the Hermite normal form which we seek to compute.

Example 6.34. We consider R = Q(X)[08;id,d/dX]. Let

_(®+X X-1 0-X

2p3
=“lx+1 o9+1 o-x)€ B

M

Since Im,, (M1,.) = 8%¢; and lm<, (M3 ,) = Oes we see—using Theorem 6.26—that M is a Grobner
basis with respect to the term over position ordering. Since M is reduced, it is thus—by Theo-
rem 6.28—in Popov normal form. The irreducible monomials with respect to M and <yop are

2 3 4
¢1,0e1, ¢g, ¢3,0¢3,07¢3,0"¢3,0"¢3...
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and the canonical basis of R3/R2 M consists of their residue classes.
Set now d = 4. Then the truncated basis B is

e3,0e3,0%¢3,0%¢e3,0%e3, eg, e1,0¢1

sorting it in the way we agreed upon. This yields the truncated matrix T which is just

t3 Oez 0%eg 03e3 Otes ) 1 Oeq
[} 0 1 0 0 0 0 0 0
de3 [0 0 1 0 0 0 0 0
%3 |0 0 0 1 0 0 0 0
Beg |0 0 0 0 1 0 0 0 |c8qux)®
MBes [0 0 0 0 0 0 0 0
w |[x -1 o0 0 0 -1 -X-1 0
33 0 0 0 0 0 0 0 1
de; \X -1 0 0 0 1-X -X 0

using Remark 6.33 where 71 =2, 79 = 1 and 73 = 4. We can check that indeed, for example,

(0%, = o, T = (XT3 —0e3 — & — (X + 1)e1) o5 _ -

Remark 6.35. We will also need to represent the residue classes of the canonical basis vectors
¢1,...,¢; of Rt. Their representation can be computed from 71,...,7; as well: If 7; = 0 for some
1=<i<t, then ¢; is irreducible by M and its residue class is just b, where u=7;+...+7;,1 +(1+¢-1).
Otherwise, ¢; is reducible by M and as above the jt* coordinate will be —coeff(d*~1, M k.z), Where
I1=T¢+...+Tp +(1+t—Fk) for some 2 and where u=j—1;—... - 7,41 — (¢t — 2) for some z such that
O<pust,+1.

Also the coordinate vectors of the residue classes of the basis vectors can be found in [Vil96a,
Section 4] as columns of the matrix B. Again, they are sorted in a way different from our conventions
here.

Finally, we need to reason about how big the truncated spaces in which we will work need to be.

Remark 6.36. Let the rows of M € SR’ be a reduced Grébner basis. Let d = 0. The residue classes
of the monomials of degree not larger than d span a subspace in R!/R® M of dimension at most ¢d.
Therefore, this subspace is included in (B;4).

Example 6.41 shows that this bound is sharp.

Again, we can relate this to [Vil96a, Section 4]: Since M in that paper is square, there is a pivot,
that is, a leading monomial in every column of M. This is obvious if M is in Hermite normal form
or in Popov normal form, but does also hold for every other reduced Grébner basis since otherwise
the rows were reducible by each other. Thus, the number of truncated basis elements that need to
be considered does never exceed s(degM). In [Vil96a, Equation (13)], the coordinates with respect to
the canoncial basis are calculated in the columns of the block Krylov matrix M(A,B,v)—since there
the multiplication matrix is defined as the transpose of ours, the action of the indeterminate x is
expressed by left multiplication of A and not right multiplication as in our approach. Also, since

o =1id in [Vil96a], it suffices to multiply by A.
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We will now assume that the rows of M € SR are a reduced Grobner basis with respect to an
admissible ordering <; and that we know a bound d = 0 on the degrees of a reduced Grobner basis of
R3M with respect to an ordering <g. This is for example the case if M is in Popov normal form—that
is, if we have <j=<pgp—and we are considering <¢=<por—see the degree bound in Corollary 6.15.

We will state the algorithm first and proof its correctness later in Theorem 6.38. In the algorithm
all computations can be done using linear algebra. This is detailed in Remark 6.40.

Algorithm 6.37 (FGLM for normal form conversion).
Input Two admissible orderings <1 and <, a matrix M € SR’ such that the rows form a reduced
Grobner basis with respect to <; and a degree bound d for the reduced Grébner basis of
R*M with respect to <s.
Output A matrix N € *R? such that the rows are a reduced Grébner basis of R°M with respect to
the ordering <s.

Procedure

1. Compute the set of lnonomials 81 such that the truncated basis of RY/R* M with respect to
<y and td is B ={b | b € B1} as well as the correspondending multiplication matrix 7. See
Remark 6.33 for how to do this.

Compute also the coordinates of the canonical basis vectors ¢, ...,¢; of R? with respect to to %Tl
See Remark 6.35.

2. Initialise C — @, Bo — @ and Gg — @.
Below elements will be added to By and C only simultaneously, therefore we consider the
elements of By to be indexed with respect to to the elements of C.

When the algorithm terminates, G2 will contain a Grébner basis for R*M, By will contain
representatives for the truncated basis of E/Rs M with respect to d and <9 and C; will be the
coordinate vector of (83); with respect to B1.

3. If there are monomials of degree less than d + 1 that are not divisible by G, then:

(a) Choose the smallest such monomial m with respect to <g and compute its coordinate vector
w with respect to 3.

If, for example, <1=<por and <g=<rgp, this can be done efficiently using the multiplication
matrix T'. See Remark 6.39.

(b) If {w}uC is linearly independent, then set C — {w}u C and B9y — {m} UBs.
(c) Else, there are a. € K for all ¢ € C such that w =) .ccac.c. Set

Gy —Gou{m-— Z a.(B9).}.
ceC

(d) Goto step 3.
4. Else, stop and return the matrix N containing the elements of Gy as rows.

In [Vil96a, Algorithm 2] a slightly different approach is chosen: As explained above, the coordi-
nates of all elements in the truncated basis are computed first and stored into the Krylov matrix
M(A,B,v). From this matrix then the first linearly independent columns are selected where the
sorting is done with respect to lexicographic ordering. In Algorithm 6.37 above these steps are inter-
mingled following the classical formulation of the FGLM algorithm.

Page 72 of 102



Normal forms of Ore polynomial matrices

Theorem 6.38. Algorithm 6.37 is correct and terminates.

Proof. Termination is obvious since in the loop in step 3 only a finite number of monomials are
considered at all.

It remains to prove the correctness. For this we first note the invariant, that the elements of C
are always K-linearly independent. This is clear since only those vectors are added to C in step 3 (b)
that do not destroy this property. Consequently, also the residue classes of the elements of B2 are
K-linearly independent since the coordinate vectors of their projections are linearly independent and
the coordinate map and the projection are linear maps.

Letin step 3(c) g=m—Y ccca.(B2).. Since the monomials are considered in ascending order with
respect to <g, we must have Im.,(g) = m because the monomials in B2 have been added before and
are thus smaller. This also shows that the leading monomials of the elements of Gg are not in Bs.
Also multiples of the leading monomials of the elements in G2 cannot be in B2 since they are larger
than the leading monomials by the second property of admissible orderings in Definition 6.16 and can
thus not have been considered before the leading monomial. Since upon termination of the algorithm
every monomial of degree lower than d has been considered and identified either as element in Bg
or as leading monomial in G9 or a multiple thereof, we obtain

LM(G2)<qUDB2 =%y

where T denotes the set of all monomials and where LM(G32) = {0 1m(g) | g € G2 and a = 0}.

Consider again an element g = m— Y .ccac(B2). € Go. We need to prove that g € REM. Let
v =g—uM be the remainder of g by division with M according to Theorem 6.22. Thent=g-uM =g
and the basis representation yields (g)5, = w — Y cec @c(B2). = 0. Since ¢ is irreducible this implies
t=0and thus ge R°M.

Let now G be a Grobner basis of R°M with respect to <o and let B denote the corresponding
truncated basis with respect to d. Then since G9 € R°M, we must have B < By. We want to prove
now that Im(g) € LM(G2) for any g € G. We know that degg < d. Thus, we have Im(g) € LM(G>5) or
Im(g) € By. Assume that Im(g) was in By. Then an element of B2 was reducible by G to a linear
combination of elements in B < By which is a contradiction to linearly independence of By. This
implies that Im(g) € LM(Gg). Thus is every vector which is reducible by G also is reducible by Gz
meaning that by Definition 6.23 G2 is a Grébner basis.

Since for every element g € G2 the leading monomial is not divisible by leading monomials of
the other elements of Go— it can not be divisible by an element added to G earlier because of the
condition in step 3, but also not by those chosen later since by the second property of Definition 6.16
monomials can only be divided by smaller ones—and since g —Im(g) is a linear combination of mono-
mials irreducible by G, we see that g is irreducible by G2 \ {g}. Also, the elements of G2 are monic.

Thus, G2 must be even a reduced Grobner basis according to Definition 6.25. O

We remark that the computation of the smallest monomials can be speeded up using the trun-
cated multiplication matrices discussed earlier. We concentrate here on the conversion of a matrix to
Hermite normal form.

Remark 6.39. If <o=<pg7, that is, if we want to compute a Hermite normal form, then we first have
to consider all monomials of the form 0%¢; for 0 < a < d, then those of the form 0%¢;_1 and so on.
We can realise this using the truncated multiplication matrix as follows: In step 3 of Algorithm 6.37
introduce and initialise the new variables £ — ¢ and a — 0. Also set m — 8%, and w — mg,—the
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latter being not a real computation by Remark 6.35. Execute steps 3 (b) and 3 (c). In step 3(d), if
a =d or if {w} U C is linearly dependent, set £ — k-1, a — 0 and m — 8%, and w — mgs,. Otherwise
seta —a+1,and v — 0v and w =wT. Iterate until 2 =0.

Next, we reason about the complexity of the Algorithm 6.37. Again, we will consider only the
conversion from Popov normal form to Hermite normal form. Let M € *R? be in Popov normal form.
In the first two steps 1 and 2 there is not much to do, since the computation of 7" and the representa-
tions of the basis vectors do only involve copying coefficients from M as shown in the Remarks 6.33
and 6.35.

Step 3 is the only step where a real computation takes place. We use the simplifications outlined
in Remark 6.39. Let d = degM. By Corollary 6.15 the degree bound in this case is md. The number
of monomials that need to be considered is thus at most mdt and the size of B; is md? since
we have ¢ columns. To generate a monomial we either look it up from a list containing the unit
vectors and their coordinates using Remark 6.35 or compute it as a product with 7" and the previous
monomial. In the latter case to compute the coordinates we need G(md¢2) applications of ¢ and 9
and G(m2d?t*) multiplications and additions in K for the multiplication by 7. The most expensive
step is to solve the @(mdt?) variables system in step 3 (b) which needs G(m3d?3t%) operations in K by
[KS89, Bemerkung 2.19(2)]. The computation of m -3 ..ca.(2B2). is again just copying coefficients
since B9 contains only (different) monomials and m ¢ Bs.

The estimate becomes much lower if M happens to be a square matrix. Then, the degree bound
is never needed because there will be a pivot in every row of M implying that R!/R® M is finite. This
corresponds to the case of zero-dimensional ideals in the theory of commutative polynomials. We need
to consider at most G(¢td) monomials. This bound can even be tightened more using the index of M
which is indM = }:ls.:ldegM i« as introduced in [For75] if M is in Popov normal form. This yields a
total complexity of @ ((ind M )4)—almost the same complexity as in [Vil96a, Proposition 3].

Remark 6.40. Computation of a Popov normal form of M € *R? where the rows of M are a reduced
Grébner basis and degM = d needs at most G(m3d>¢%) operations in K. If s = ¢ and M is in Popov
normal form, then dim RS/R° M < s(deg M) and this bound can be lowered to & ((indM )4).

Example 6.41. We consider
M=(1 X?)eQIX].

This matrix is in Hermite normal form with leading monomial being ¢;. We want to compute a
Grobner basis for a position over term ordering <9 with ¢; <9 ¢g. (This is not the ordering from
Definition 6.18, but a mirrored version). Of course, this Grobner basis must be M itself since it
consists only of a single row. The degree bound for the Grébner basis is thus d = 2.

The monomials of degree less than d are e; <g 0e1 <9 0%¢1 <g ¢a < de; <9 0%¢9. The representations
in the canonical basis of R2/R' M are

1= —x2¢g9, xe1 = —x3¢9, x2e1 = —xdeg, ¢g = ¢, X3 = x¢3, and x2¢g = x2eg.

Iterating, we find thus that the first five monomials are linearly independent modulo M. Only for

X2y do we find the relation ¢; + X2e9 = 0 which yields the desired Grébner basis.
This shows that the truncated basis with respect to d would have been too small for this compu-
tation since there already the second vector would have reduced to zero.

Example 6.42. Let R = Q[X]. We consider
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The leading monomials with respect to term over position ordering are (0,X,0) and (0,0,X) making
M a Grobner basis by Theorem 6.26. The degree bound for the Hermite form in 2degM = 2 by
Corollary 6.15. The truncated canonical basis needs thus to be computed with a bound of 3-2 =6. It
is

B =7, Xog, X e, X o0, X e, X e, X O, 1,

and the multiplication matrix is

X% X% X'u X°n XSq

P
2

33
Xey
X2
X3q
T= X%
X5%
X%e1
e
w3

coocoocoo g

|
[y

[
b_”_‘ooooooom
cooococoocookRr
cooococoocor O
cocoocoococooroO
cCcoocoocooHOOO
coooroOOCO
cooroOOCOCOO
coocococoo oo g

=]

since Xeg = —¢1 —¢g (mod R2M) and Xe3 = —¢; (mod RZM).
The first monomial with respect to position over term ordering is ¢s having the coordinates
(0,0,0,0,1). This is unequal to zero. The next monomials are Xe¢3 and X 2¢4 with coordinates

(0,0,0,0,0,0,0,0,1)T"' = (-1,0,0,0,0,0,0,0,0)

and
(-1,0,0,0,0,0,0,0,0)T =(0,-1,0,0,0,0,0,0,0).

All three coordinate vectors are linearly independent. This obviously doesn’t change if we add the
coordinate vectors of X3es, X%e3, X%¢3 and XO¢3. Since we have reached the degree bound, the
next monomial to consider is ¢ with coordinates (0,0,0,0,0,0,0,1,0). The coordinate vectors are still
linearly independent. But for Xe¢s with coordinates

(O,O’ 0’0707 0’ 05 l’O)T = (_1; 0507 07 05 OyO’ 07 _1)

we obtain
0 0 0 0 0 0 0 0 1
-1 0 0 0 0 0 0 0 O
0O -1 0 0 0 0 0 0 O
0 0 -1 0 0 0 0 0 O
(-1,0,0,0,0,0,0,0,-1)=(-1,1,0,0,0,0,0,0) 0 0 0 -1 0 0 0 0 0
0 0 0 0 -1 0 0 0 O
0 0 0 0 0O -1 0 0 O
0 0 0 1 0 0 0 0 O

and hence the last row of the Hermite form must be

X82+83+X63=(0,X,X+1).
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The next monomial we must consider is ¢; with coordinates (1,0,0,0,0,0,0,0,0). Again we have a
linear dependency

o o0 o0 O o0 0 o001
-1 0 0 O O 0 00O
o -1 0 0 O O O0OUO
o 0 -1 0 O O O0O0UO
(1,0,0,0,0,0,0,0,0)=(0,-1,0,0,0,0,0,0) 0 0 0 -1.0 0 00 0
o o0 o0 o0 -1 0 0O0O
o o0 o0 O O -1 000
o o0 o0 1 0 0 0O0O0

and hence the next row of the Hermite form is
e1+Xe3=(1,0,X).
Since there are no more monomials to be considered, we have the Hermite form

A

0 X 1-X

which is confirmed by MAPLE’s built-in procedure.
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Jacobson normal form

7.1 Definition

In this chapter, we consider a ring R = K[d;id, 9] of differential operators over a (commutative) differ-
ential field (K,9). We will be using the same notations for matrices as introduced in Section 5.1. In
this chapter we will treat a two-sided normal form by which we mean a normal form with respect to
simultanuous row- and column-operations. Expressed differently, we are looking for canonical repre-
sentatives with respect to to equivalence where two matrices M and N € °R? are called equivalent if
there are unimodular matrices S € Gl;(R) and T € Gl4(R) such that SMT = N.

We will be looking for normal forms which are diagonal matrices. The existence of strong diag-
onal forms (which will later be called Jacobson normal form) for matrices over rings goes back to
Henry John Steven Smith who studied this concept for the integers. Therefore, over the integers the
Jacobson normal form usually bears his name, the Smith form. Later on, generalisations to other
kinds of rings were explored by Nathan Jacobson and Oswald Teichmiiller. A statement about the
uniqueness (up to similarity) was given by Tadashi Nakayama. For further historical remarks we
refer the reader to [Coh85, Notes and comments for chapter 8].

The normal form we will be looking for is the following.

Definition 7.1. A matrix M € ™R" is said to be in Jacobson normal form if M = diag(1,...,1,f,0,...,0)
where f €R.

This is actually a simplified definition of the Jacobson form. The general definition which may, for
example, be found (though not bearing a name) in [Coh85, Theorem 8.1.1] is the following: A matrix
M = (m;;) € ™D", where D is any principal ideal domain, is in this general Jacobson normal form if
and only if m;; =0for i # j and Dm;,1;+1D SDm;;nm;;D for alli =1,...,max{m,n} - 1.

Since D1n 1D =D and DOD = 0, our definition of Jacobson form emerges as a special case of the
general definition. In fact, one can show that the general definition always reduces to our definition
if the ring D is simple—confer [Coh85, Cor. 8.1.2]. Simplicity is given for all fields of characteristic
zero as we shall see below. Note, however, that we do not restrict ourselves to this case here. Instead
we will give sufficient conditions—depending on the degree and size of the matrix—when a Jacobson
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normal form as in Definition 7.1 can be computed even in positive characteristic. See Corollary 7.11
for the details.

The entry f in Definition 7.1 is not completely unique: It can be shown—confer, for example,
[Coh85, Theorem 8.2.4]—that two matrices diag(l,...,1,1,0,...,0) and diag(1,...,1,g,0,...,0) in Ja-
cobson normal form with f and g € R are equivalent if and only the number of non-zero diagonal
entries is equal for both and we have P P

Rf - Re
Two elements f and g € R which fulfil the latter relation are said to be similar.
Thus, the Jacobson normal form is not a real normal form. Nevertheless, it is usually treated like
that in the literature—and we follow this custom by keeping the “normal” in its name.

The algorithm which we present below seems to be the first Jacobson normal form algorithm
for differential operators that is proven to compute in polynomial time. Up to now, this was only
known for commutative polynomials—see [Vil96b, Corollary 6.1]—but for differential operators no
such analysis has been done.

7.2 Naive method

A proof that every matrix may be brought into (the general) Jacobson normal form may be found
in [Coh85, Chapter 8]. There, elementary row and column operations akin to the Euclidean algo-
rithm are used to reduce a given matrix M € R first to a matrix of the form diag(a;,M) where
a1 € R and M € "'R?*"1. Then induction is used to get a (weak) diagonal form diag(as,...,@min(ss)
with a1,...,@min(s,s) € B. This is completely constructive and has been implemented, for example, in
[CQO5]—although the complexity appears to be high in the worst case with respect to operations in
the ground field K, since the reduction of one position may blow up the degrees of the entries in the
yet untreated sub-matrices. There seems, however, to be no rigid complexity analysis of this approach
in the literature.

Another way of obtaining a weak diagonal form is to use alternating row and column Hermite
normal form computations. See [Sch10, Algorithm 2] where the Hermite normal form is replaced by
more general Grébner basis computations.

When the matrix is in (weak) diagonal form, one has to apply further computations on each
consecutive pair of diagonal entries to get the desired Jacobson normal form. Assume thus, without
loss of generality, M = diag(a1,a2) where ai,as € R \ {0}. Cohn’s approach (as given in the proof of
[Coh85, Theorem 8.1.1]) for further reduction is to transform M by

1 d ail 0 _ (a1 dag
(0 1)(0 ag)_(O az)
where d € R is chosen in a way that a1 is not a left factor of das. Then, we can again reduce the
result to a (weak) diagonal form where the degree of a1 strictly decreases. If no such d may be found,
then one can argue—at least in the case where R is simple—, that a; is already a unit.
A problem remains to find such a d or to prove the non-existence. The latter is easy since—in the
simple case—this happens precisely when a; is a unit. The first problem is harder, but for ground

fields of characteristic zero, one may use a result by Kossivi Adjamagbo in order to determine a
suitable d.
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Lemma 7.2 ([Adj88, Lemme 6]). Let f,g € R\K and let c € K such that pc—cp #0 for all pe R\ K.
Then there exists 0 < k < max{degg —degf + 1,0} such that [ is not a right divisor of ¢ *gc*. An
analogous statement holds for left division.

If charK =0, then any c with 9(c) # 0 will fulfil the condition pc—cp #0 for all pe R\ K.

Proof. We give a detailed proof as the source does not provide one, and as we need it for establishing
the bound. We prove only the case of right division. It is an immediate consequence of the commuta-
tion rule that deg(gc — cg) < degg — 1. We use this fact to do an induction over the difference of the
degrees of f and g. If degf > degg then the statement holds for £ = 0. Let degg —degf =n =0 and
suppose the claim holds for gc —cg # 0, that is, suppose for 0 <% < deg(gc—cg)—degf +1orfor k=0
that f is not a right divisor of ¢ *(gc — cg)c*. Now, if we had ¢ *gc* =af and ¢ * 1gck*l = bf for
a,b € R then
clfkgck =caf and cfkgckJr1 =cbf
which implies
cFge—cg)ct =c gkt — el hget = c(b - a)f

k—

contradicting our assumption. Hence f does not divide ¢ *gc* or ¢ * 1gc**1. Since deg(gc —cg) <

degg we also have &,k + 1 <degg —degf +1.

If charK = 0 and 9(c) # 0, we may consider the K-linear map a = — ¢ 1hc. We have for all £ = 0
a(@®) = c ok c = 0% + ke 71 9(c)d" ! + lower degree terms.

Hence, if we restrict @ to R<, = {h € R | degh < n} where n = degg, letting y = ¢ 19(c) # 0, the matrix
for @|R <, with respect to the K-basis d",...,0,1 is

1 O ................. 0
ny 1.
* (n—-1)y T :
Ko * Ty 1

which has only 1 as eigenvalue and K -1 as only eigenspace, since k¢~ 19(c) # 0 for all 2 = 1. Hence
for p € R\ K we will always have pc—cp #0. O

The bound on % in the lemma is not found in Adjamagbo’s original paper. But it is important here
in order to make the computation finite: In the above problem of treating the matrix diag(ai,a2), we
just need to test divide the elements as,c lagel,...c lage! for ¢ = degag —degai +1 by a1; and by

the lemma must find a non divisible element in that way.

We end this section with the remark, that this lemma does not hold for arbitrary characteristic.
Consider for example the differential field (IF(x,y),d/dx) where d/dx is the usual derivative with
respect to x. Let f = g =02 € R = Fa(x, y)[0;id,d/dx]. We have (d/dx)x =1 # 0, but

gx=0%-x=x0°>+20=x0>=xg (mod 2).
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Thus, obviously, f is a right divisor of x *gx* = g for every k = 0. In fact, for all p € Fo(x) we have al-
ways gp = pd2+2(d/dx[pl)d+(d?p/dx?) = pg (mod 2))." This additionally proves that Fa(x, y)[0;id,d/dx]
is not simple, since g commutes with d and y, too.

Remark 7.3. On the other hand, the additional statement of Lemma 7.2—that for charK = 0 every
¢ ¢ Const(K) will satisfy pc—cp # 0 and deg(pc — cp) < degp for all p € R\ K—can be used to prove
that for char K =0 and 9 # 0 the ring R must be simple: Assume we are given a two-sided ideal I <R
which is neither {0} nor R. Then I is generated by a non-zero element p € I of minimal degree. Using
the lemma we can construct an element pc —cp € I \ {0} of strictly lower degree—a contradiction.
Whence, non-trivial two-sided ideals cannot exist.

7.3 Preparing the matrix

We start this section with a simple yet very useful lemma which follows immediately from the homo-
morphism theorem. We will use it in the proof of Theorem 7.10 below. It yields also the motivation
for the whole method.

Lemma 7.4. Let A €°R?, and let P € Gl4(R) and € Gl,(R) be unimodular. Then
t ¢
RIEA - RS(I;AQ)’ Hat
is an isomorphism of left R-modules.
Proof. We consider the epimorphism ¢: R®* — RY/R* PAQ which is defined as v — vQ. We have
kerp={ve R° |v@Q e R°’PAQ}=R°PA =R*°A,

and thus RY/R* A = R!/R* (PAQ) by the first isomorphism theorem—see, for example, [Coh00, Theo-
rem 1.17]. g

The lemma allows to transform quotient spaces of row spaces of matrices into nicer forms using
elementary transformations on the matrix. Below, we will see that column- and row-reduction—see
Section 5.2— can be used to obtain a particularly easy shape.

Lemma 7.5. Let A € °R! be such that the submatrix of the non-zero columns is column-reduced,
and assume that for P € Gl;(R) the non-zero rows of PA form a row-reduced submatrix. Then PA =
diag(M, _,0,_,) where k <min{s,t} and M € kR* is square and row-reduced.

Proof. By [BCLO06, Theorem A.2] the number of non-zero rows of PA equals the (left) row-rank of
A which is defined as the maximal number of (left) R-linearly independent rows in R°A in [BCLO06,
Definition 2.1] and similarly in [Coh85, Section 5.4]. Analogously, the (right) column-rank of A be-
ing the maximal number of (right) R-linearly independent columns equals the number of non-zero
columns of A. Since the multiplication by P from the left is an isomorphism of right R-modules
due to the unimodularity of P, the number of non-zero columns and the column-rank of A and PA
must coincide. Since by [Coh85, Proposition 5.4.2] column- and row-rank of PA have the same value,
we obtain that the number of non-zero rows and that of non-zero columns of PA must be equal.
Thus, PA = diag(M, _ 20, k) for some square matrix M € kR* where k < min({s,¢}. Furthermore, the
sumbatrix M must be row-reduced since it consists of rows of the row-reduced matrix PA. O

LIf we differentiate a polynomial p € [Fo[x] once then all even powers of x vanish and all odd powers become even. So
d2 p/dx2 becomes 0. Using the quotient rule this expands to [F'g(x) as well.
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We remark that row-reduction applied to a column-reduced matrix may yield a matrix which is
not column-reduced any longer. For example has the matrix

#2 4 1
A=|l6 1 o0]|e?R®
% 9% 0

the leading row coefficient matrix and leading column coefficient matrix

100 101
LCrow(A)=[1 0 0 and  LCq(A)=[0 0 of,
110 110

and is thus column-reduced but not row-reduced. On the other hand, row-reduction leads to

1 -9 0 0 0 1
B=(0 1 ola=]8 1 o0
0 0 1 ? 42 0

with leading row coefficient matrix and leading column coefficient matrix

0 01 0 0 1
LCrowB)=|1 0 0 and LC.qi(B)=]0 0 O
1 10 1 1 0

which is row-reduced but not column-reduced. Note, however, that the number of non-zero columns
remains the same as predicted in the lemma.

The lemma may be interpreted in terms of quotient spaces as the following decomposition.

Corollary 7.6. Let A € *R’. Then there is a square matrix M € *R* with k <min{s, ¢} such that

~

RSA RIM

Rt Rk @Rtik

and such that R*/R* M has finite K-dimension.

Proof. By the previous lemma, applying row- and column-reduction to A yields a decomposition
PAQ =diag(M,,_,0, ,) where P € Gl;(R) and @ € Gl;(R). We may assume that M is in Popov normal
form. Then, since M is a Grébner basis by Theorem 6.28, Lemma 6.32 imples that the residue classes
of the irreducible monomials form a K-basis of R*/R* M. Since M is square and must therefor have a
pivot, that is, a leading term in every column, there can be only finitely many irreducible monomials.
Thus, we obtain dimg R*/R* M < co. O

7.4 Cyclic vectors

As already mentioned in the overview, our Jacobson normal form algorithm is based on so-called
cyclic vectors. In this whole section let K be a commutative field with (id-) derivation 9: K — K such
that 9 # 0, and that we have set R = K[d;id, 9]. Let A € *R’. As we have seen above in Corollary 7.6,
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we may assume that A is decomposed into A = diag(M,__,0,_,) where M € kR* is square and which
leads to a decomposition of the factor module into a torsion and a free part.

We will concern ourself only with the torsion part. That means, in this whole section we will
consider only the finite K-dimensional space R*/R* M. This space retains a R-module structure. In
particular, an action of 0 on its elements is defined which yields a so-called pseudo-linear transfor-
mation as studied, for example, in [Jac37] or [BP96]—see also Section 6.5. Under mild assumptions
which are explained below R*/R* M is a cyclic module, that is, a module that is generated by a single
vector.

The motivation for this section comes from Lemma 7.4: The finite dimension of R*/R* M implies
already that a Jacobson normal form of M must have full rank since otherwise a contradiction to
Lemma 7.4 would arise. Suppose for the moment, that R is a simple ring. That means, any Jacobson
normal form of M must be of the form diag(l,...,1,f) for some f € R\ {0}. Assume that S and
T € Gl (R) are such that SMT = diag(1,...,1,f). Then Lemma 7.4 yields

R* R* R* R R R _R

~

= = ZE—9... 00— —=—.
RtM  RF(SMT) RkdiagQ,...,1,f) R1 R1 Rf Rf

More precisely, if g € kR denotes the last column T, of T, then the isomorphism above may by the
lemma be represented as
R* R'  _
f——— ——, 0—D
REM  Rf g
since the first £ — 1 entries of T can be ignored. This isomorphism actually shows two points: First,
for simple rings R the module R kIR M must always be cyclic, and, second, the last column of trans-

formation matrix T' is—in sense which we be made more precise below—the most important part of
SandT.

¢

Below we will change our point of view. We will assume that any isomorphism ¢ from R*/R* M
to a cyclic module is given, and will then try to obtain corresponding transformation matrices. This
question is treated in Section 7.5—while in the remainder of this section we will concentrate on the
question when R*/R* M is isomorphic to a cyclic module even if R is not simple. We will present a
result from [CK02] answering the question, and modify it a little bit in order to fit with our main
result, Corollary 7.11, below.

The first definition that we need in this section is that of a cyclic vector. Although it is usually
stated in a more general way—see, for example, [CK02, Introduction]—, we will be content with a
simplified version that is exactly tailored towards our needs.

Definition 7.7 (Cyclic vector). Let M € *R* such that dimg R*/R* M < co. A vector v € R*/R* M is
called a cyclic vector if Rv = R*/R* M.

A more general definition can be found in [CK02]. The source also contains a broad historic
overview about the computation of cyclic vectors. The algorithm that is proposed in [CKO02] itself is
based on the following theorem which we cite in full but already adapted to our notation.

Theorem 7.8 ([CK02, Proposition 3.8]). Let (K,9) be a (commutative) differential field, let R =
K[0;id, 9], and let M € *R* be such that M = R*/R* M has the finite dimension d over K. Assume
there exist Sy < Const(K)\ {0} and S € K such that |So| = d = |S| and such that the elements of S are
linearly independent over Const(K).
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Let veIMN. If there exists u € M\ Rv then there are Ag € Sg and A € S such that
dimg R(v + AAgu) > dimg Rv.

The theorem immediately suggests an iterative way of computing a cyclic vector: Simply start
with a random vector, and if it is not alreay cyclic then there is a finite set of canditates for a vector
spanning a strictly larger space. Since the dimension of R*/R* M is finite, this must yield a cyclic vec-
tor after a finite number of steps. This method is described in more depth in [CK02, Algorithm 4.1],
while the appendix of [CK02] contains a MAPLE implementation.

For our Jacobson normal form algorithm below we will need a more special kind of cyclic vector
than that which is computed by the general algorithm. More precisely, we will need to compute
a cyclic vector v that has a representative v € K* of degree 0. It turns out that only a minimal
modification to the algorithm proposed by [CK02] is needed for that which concerns the choice of the
vector u from Theorem 7.8. This modification is explained in the following corollary to Theorem 7.8.

Corollary 7.9. Let M € R*/R* R be in Popov normal form, and let d = degM. If kd < [K : Const(K)],
then we may compute a vector v € K* such that Rv = R*/R* M using at most ©(d°k®) operations in K.
If the characteristic of K is zero, then the only condition for the existence of a cyclic vector is 9 # 0.

Proof. In the algorithm of [CKO02] which is based on Theorem 7.8 the choices of v and u are arbitrary.
So we may start with v = b where v € K*. Assume the classes of all unit vectors e1,...,¢, of R* are
already in Rv, say ¢; = ;v where A € R, then for an arbitrary u=(uq,...,u,) € R* we have

u= kzz:l BCE = (gukhk)v

and hence u € Rv, that is, v is cyclic.
By contraposition, if v is not cyclic, then we can find a unit vector ¢; such that ¢; ¢ Rv. Since in
the algorithm Ag and A are chosen from K, we see that v + AgA¢j = b+ AgA¢; has a representative in

K*. So in each iteration of the algorithm the candidate for a cyclic vector is in K*.

The complexity analysis can be found in [CK02, Section 4] where we have to remember that by
Lemma 6.32 we have dimg R*/R* M < kd. Finally, the hypothesis kd < [K : Const(K)]—or 9 # 0 in the
characteristic zero case—ensures the existence of the sets S and Sy from Theorem 7.8 as explained
in [CK02, Section 3] and [CK02, Section 5]. O

Assume that we have a cyclic vector b for R k/R* M. Since dimg R*/R* M = d is finite, the products
,00,...,0% must be linearly independent while by the cyclicity of b there can be no non-trivial rela-
tions between b,dv,...,0% 1v. That means the annihilator of v—being a left ideal of R—is generated
by an Ore polynomial of degree d + 1. We denote the annihilator of b in R by Anng bt where we will
sometimes ommit the subscript if no confusion may arise.

As above in Section 6.5, we may use defining matrices to do the computations in R*/R* M. Com-
puting the coordinates of the scalar multiples of b in such a way needs at most G(d?) derivations and
0(d?) additions and multiplications in K. Solving the resulting linear system needs another @(d?)
operations. This means that we may compute a generator of Anng v using G(d®) operations in K.
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7.5 Computing Jacobson normal forms

Let as before R = K[09;id, 9] for a commutative differential field (K, ). Again, we assume that we are
given M € *R* such that R*/R* M has finite dimension over K.

Let now a vector v € K¥—that is, a vector with degv = 0—be given such that v is cyclic. Let f € R
be such that Anng v = Rf. The result that we want to prove in this section is that M is similar to a
matrix diag(l,...,1,f) in Jacobson normal form where we can compute the transformation matrices
from f in polynomial time.

The idea for the algorithm comes from the motivation in the previous section: The cyclic vector b
yields an isomorphism
R* R!
"REM  RLf

@

that is defined by b — 1. We have already explained that this isomorphism is connected to the last
column g =T, ; of the transformation matrix T € Gl,(R)—provided that such a T exists.

Assume now that this T exists. Then ¢(iv) = g for all w € R¥ by Lemma 7.4. In particular,
substituting the unit vectors ¢1,...,e; of R for w yields

g =)

for all 1 < j < k. In the proof of the theorem below, we will use that relation as definition of g. The
question remains whether this is reasonable, that is, whether such a g is indeed the last column of
a unimodular matrix 7' and whether—in the affirmative case—for each such column transformation
matrix T there exists a unimodular matrix S € Gl;(R) that brings the product MT into Jacobson
normal form.

Theorem 7.10. Let (K,9) be a commutative differential field, and let R = K[0;id,9]. Assume that we
are given M € *R* in Popov normal form and v € R* such that degv = 0 and Rv = R*/R* M.

Then we can compute S and T € Glp(R) such that SMT = diag(1,...,1,f) where f € R using at
most O (k8(deg M)3) operations in K.

Proof. By Remark 6.40, we know already that d = dimg R*/R* M < k(degM) is finite, and that we
can compute the canonical basis € = (eq,...,eq) of R*/R* M as well as the defining ¢-matrix from M
by copy&paste—see the Remarks 6.33 and 6.35. We may assume here, that d > 0 since otherwise M
is unimodular and the theorem can trivially be fulfilled using the inverse of M as transformation.
The matrix of change of basis from € to the cyclic basis § = (0,00, ...,0¢"10) is just

(0)¢
(00)¢
P = . € Gld (K)

(0% 1)

where—as before—the subscript denotes the coordinate vector with respect to the given basis. Using
the defining &-matrix, P can be computed from the coordinates of b using no more than ¢(d?) deriva-
tions and @(d®) multiplications in K. Using P! to represent 6%v in the cyclic basis §, we obtain
f € R with degf =d and Anng v = Rf as explained already in the end of the last section.
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As already announced in the motivation, we now define g € *R such that g; = ¢(¢;). The R-
isomorphism ¢: R*/R* M — RY/R' f that sends v to 1 can be computed using again the matrix P:
Namely, if o € R* then

SN

(p(E) = EGP
gd-1

since the last matrix maps F to the cyclic basis 1,0,...,09-1 of RY/R'f. That is, we can set gj to

be the row of P(ﬁ‘ ) -0 ! that corresponds to ¢; if ¢; is part of €; and we set g; to 0 otherwise. 2

Note, that this definition implies degg < degf. We may use g to compute the image under ¢ for any
u= (ul,...,uk)eRk as

k
P =) upe(e;)=ug.
J=1

Since ¢(v) = 1 we must obtain 1 —vg e Rf, that is,
k
1=) vjg;
=

since by degv = 0 and degg < degf the summands on the right hand side have a degree strictly
smaller than that of f. This yields gerd(gy,...,gz) = 1.

Using Lemma 5.16, we may compute a matrix T' € Gl,(R) such that 7~'g = ‘¢;, where ¢}, is the kth
unit vector of R* using at most G(kd max{k2,d?}) operations in K with degT and degT ! < (& + 1)d.
Multiplication by T yields g = T'’¢;, that is, g is the last column 7', ; of 7. We will prove in the
following that this T is already the sought transformation matrix.

For this, first we show that the last column of MT is a (right) multiple of /. Indeed, since the
rows of M vanish in R*/R* M we obtain for every 1< j<Fk

GZ(P(MJ,*)ZMJ,*E

and thus M; .g € Rf. That means, using the Euclidean algorithm (or Lemma 5.16), we can compute

@ € Gl (R) such that
0

our=| ¥

0
sk Af

where A€ R, M € *"1R*~1 and the *’s denote arbitrary elements from R.

We are next going to prove that A is a unit. Let & € R be such that Ac, = 0 in R¥/R*¥(QMT).
That means that there exists tv € R* such that ke, = wQMT, and comparing the k' entry shows
that 2 must be a left multiple of Af. This implies that Anng ¢, S RAf. Applying the homomorphism
theorem for modules—see, for example, [Coh00, Corollary 1.16]—to this inclusion we obtain now

using Lemma 7.4
R' _ RF RF* _ R R!

2D Rep, — —»

Rf RkM Rk(QMT) Anng e, RUAf

n

2The equation g; = 0 means that the pivot in the jth row of M has degree 0. Thus ¢; vanishes in Rk/RE M.
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where “—” denotes a surjection. Comparing the K-dimensions, these homomorphisms lead to
1 1
degf =dim If%f > dimR¢;, = dim le—ﬂtf
This inequality implies that A # 0 since otherwise RY/R! Af would have infinite dimension. Further-
more, from this we obtain degf = dimRY/R'Af = degA+degf and thus degA = 0. Thus, A is a unit in
R and we may without loss of generality assume that @ was chosen in such a way, that 1 = 1.

Finally, the dimensions computed above yield deg f = dimR¢;, = deg f. This implies that ¢, must
be a cyclic vector for R*/R* (QMT). In particular exist A j€R withdegh; <degf for 1< j<k—1such
that ¢; = hje; in R*/R*(@MT), that is, such that ¢j—hjep =twQMT for some tv € R%. Comparing
again the k! entries on both sides we see that 2; € Rf and thus ;= 0 because of the degree. This
means that also tv;, must be zero, that is, that the last row of @ M T is not used. Hence, ¢; is for all
1< j<k-1 already in the row space of (M ,;,07) meaning that M is invertible. This allows us to
tranform QM T to N =diag(l,...,1,f) using elementary row operations Z € Gl;(R).

Since the last column of MT is in *R f, we can write MT as XN for some X € *R*. We obtain N =
ZQXN which implies (Z@Q)X = 1; since N—that only multiplies the last column of a matrix by f #
0—cannot be a zero divisor. Consequently, X is unimodular, and we can compute the transformation
matrix S = Z@Q € Gl (R) that fulfills SMT = N by inverting X. We know that the degree of MT is
at most (k + 1)d + degM < (k + 1k(deg M) + deg M, that is, the degree is in G(k%degM). Hence, by
Lemma 5.15 we need at most @(k2 - k%(deg M) max{k?, (k2 deg M)?}) = G (k8 - (deg M)?) operations in K
in order to compute S. This is the most expensive step in the algorithm. O

Below, in Algorithm 7.12, we give an overview over the method that was presented in the proof
of Theorem 7.10. Combining the theorem with the results from Section 7.3, we obtain the following
corollary.

Corollary 7.11 (Main result). Let (K,9) be a (commutative) differential field, let R = K[0;id, 0] and
let A€SR'. Let k =min({s,t} and d = degA. If

kd <[K : Const(K)]

or if the characteristic of K is zero and 9 # 0, then we can compute f € R and unimodular matrices
S e Gl;(R) and T € Gl;(R) such that

SAT =diag(l,...,1,f,0,...,0)

is in Jacobson normal form.
Computation of a Jacobson normal form needs at most O (std max{s?,d?} + k5d5) operations in K,
while the transformation matrices may be computed needing no more than O [k8d3) operations.

Proof. By Lemma 7.5, there are matrices P € Gl;(R) and € Gl;(R) such that PAQ = diag(M,__,0,_,)
where M € ‘R’ with ¢ <k and M is row-reduced. Computing P and @ is done by applying first
colmmn- and then row-reduction which each needs at most 0(std max{sz,dz}) operations in K by
Lemma 5.14. Furthermore, the lemma also states that degM < d. Converting M to Popov normal
form using the naive methods needs &(std max{s?t,¢d?}) operations according to Lemma 5.14 and
the considerations before Remark 6.5.

We have dimR*/R* M < ¢degM and ¢degM < kd < [K : Const(K)] or charK =0 and 9 # 0 by as-
sumption, and can thus compute a cyclic vector using Corollary 7.9 using at most G(k®d®) operations
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in K. As mentioned in the end of Section 7.4, computing the annihilator R f of this vector needs only
G (k3d?) operations.
By Theorem 7.10, we may now compute S and T € Gl (R) such that SMT = diag(1,...,1,f). This
implies that
diag(S,15_z)P-M -Q diag(T,1;_;) = diag(1,...,1,£,0,...,0)

is in Jacobson normal form. Computation of T needs computation of the greatest common right
divisor of £ elements of degree being less than kd, which can be done by Lemma 5.16 using at most
0(k?2d min{k?,k2d?}) = 0(k*d?) operations in K with the result having degT < (% + 1)kd € O(k%d).
The S is computed by inverting the product MT with f divided out of the last column. The degree
of MT is at most G(k*d + d) = @(k2d). Thus, using Lemma 5.15, S can be computed using at most
0(k*d min{k?,k*d?}) = G(k8d?) operations in K. O

Algorithm 7.12 (Jacobson normal form).

Input A matrix A € SR? of Ore polynomials R = K[0;id, 9] over a commutative differential field
(K,9) with 9 # 0 where charK =0 or kdegA <[K: Const(K)] for £ = min{s, }.

Output A triple (f,S,T) of a polynomial f € R and unimodular matrices S € Gl3(R) and T € Gl14(R)
such that
SAT =diag(1,...,1,f,0,...,0).

Procedure

1. Apply column-reduction (analogously to Algorithm 5.13) to A obtaining @ € Gl;(R) such that
the non-zero columns of AQ form a column-reduced submatrix.

2. Compute the Popov normal form of AQ obtaining P € Gls(R) such that

M0

t—k
ok s—k Ot—k

PAQ =
s—k

with £ < min{s, ¢} and M € *R* in Popov normal form.

3. Let d = dimg R*/R* M. Compute the canonical basis ¢ and the defining ¢-matrix using Re-
marks 6.33 and 6.35.

4. Compute a vector v € K* such that v is cyclic for R*/R* M as explained in Corollary 7.9.

5. Compute the matrix of change from € to the cyclic basis as

(OF3

(0v)¢
. g,

P= €

(0% 10)¢

Here, the defining ¢-matrix can be used to compute the rows of P.

6. Set
(cos...rcq-1) = (0%0)e P

andset f=0%—¢g_109"1—...—c10—-co€R.
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7. Compute
_ 1
(el)@ a
g= [P . |e’R.

(er)e 5d-1
(The first matrix only selects rows from P~1(8/ )7;01 )

8. Use Lemma 5.16 (or the Euclidean algorithm) to compute T' € Gl (R) such that T 1g =e;.
9. Compute MT and divide the last column by f from the right obtaining X € *R*.
10. Compute S = X! using Lemma 5.15.

11. Return
(F, diag(S,1,-)P, Q diag(T 1, 4)).

An actual implementation of the algorithm could further decrease the running time of the com-
putation. For example, if M has pivots of degree zero, then these could be brought to the top-left of
M using row- and column-permutations. By Definition 6.1, the other entries below or above these
entries must vanish and hence, we have a decomposition of M as

el 3
. qu M
where B € IR*~9 denotes a matrix of arbitrary elements. (The identity matrix appears since pivot
elements are monic.) Elementary column-operations can now be used to eliminate B. The modular
computation must then only consider M meaning that we have to consider a space of smaller dimen-
sion. This additional reduction might even make finding a cyclic vector possible at all, in case that the
bound on the dimension derived from the degree and number of rows of M has been to pessimistic.
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Part IV

Application in control theory
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Flat outputs of control systems

8.1 Control theory

In this chapter we are going to present an example for the application of normal form computations
in the field of linear control theory which is joint work with Dr. Felix Antritter over the course of the
last year. We presented preliminary results in [AM10].

Linear control theory is concerned with the study of linear systems of equations involving various
kinds of operators—most prominently derivations—which arise from models of real world problems
from engineering, physics or biology. The connecting idea is that the equations are usually not solved
directly but analysed for their properties.

In this first section we will strive to give a short and concise introduction to this vast field. Natu-
rally, we cannot explain everything in detail here. Instead we focus on that excerpt of control theory
in which our application does reside. For a more general overview we refer the interested reader to
[Zer06al], [T1c05], [IMO05] and [Sch10, Chapter 1]. It is mainly these sources that we base this section
on. Also [Zer06b] is a good starting point.

Let R be an arbitrary ring and let .# be a left R-module. We will think of R as operators acting on
a set of signals. For instance, R could be a ring of differential operators as in Section 3.2 and .% could
be smooth functions. See also Example 8.1 below where we will define the operators and signals we
will be dealing with. Other pairs of operator rings with matching signal spaces can be found, for
example, in [Zer08].

Matrices of operators act naturally on vectors of signals: Using the notations from Section 5.1, let
such a matrix A = (a;;);; € *R" and a vector w =*(w1,...,w;) € *.# be given. Then we define

t
ain coan) (wi 250 @1kWE
Aew = : el = : €S F

t
as1 o as) \wy 2 _0Qsk Wk

where the bullet denotes the module action. Using the R-module properties of .% it is easy to prove
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that 1;ow =w as well as (A +C)sw = Aew + Cow and (BA)ew = Be(Asw) where B€ R® and C € °R!
are additional matrices of operators. We will sometimes omitt the bullet if no confusion can arise.
A (linear) system in this context is a set of equations which we write as a single matrix equation

Lw=0

where L € R? are the system laws while w is sometimes referred to as the system variables. Confer
also [Zer08, Section 3], [IMO05, Section 1.1], [ZL.06, Section 1] or [Sch10, Section 1.2]. The intuition is
that the signals w represent, for example, physical entities such as mass or velocity and the system
laws describe their interaction. Closely connected to the system is the behaviour

B={welS|Lw=0}.

Confer again [ZerO6a]. The matrix L in this context is also called a representation of %8. It is not
uniquely determined by 28 but may be modified, for example, by multiplication with unimodular
matrices from the left.

Often, linear systems will be denoted in a slightly different fashion as

Ax=Bu

where A € "R™ and B € "R™. The signals x are called the state of the system while u is called the
input. This implies that the model has already been partitioned into entities that may be influenced
directly and others which can only be controlled only indirectly through the interaction of the system
variables via the system laws. In this context, the problem whether a system can be forced to reach
any given state by only manipulating the inputs is known as controllability. Every system of the
form Ax = Bu may be regarded as a system in the previous sense by writing it as

(A,-B) (x) =0.
u
For the converse see [Zer06b, Section 3.2].

Example 8.1 ([AM11]). Let .#(U,C) be the field of meromorphic functions over Q < C. An example
of a linear system is given by

%1(t) — s(8) (ot — 1) — 29(t — 27)) = 0
x2(t)=u(t-1)

where x1 and x9 are the state, u is the input and s € #(U,C) is a parameter. Here, the dot means
derivation. If we denote the standard derivation operator by d/dt and the 7-shift by s which acts on
a function as sa(¢) = a(¢ — 1), then we can define the iterated Ore polynomial ring

R =.4(U,C)[6;id, £116;5,0]
which allows us to write the system as a matrix equation
(% 362—36) (xl) _ (0) "
d - .
0 I X2 0
— ~~
—Ae2R? =Be2R!?

(We omitt the variable ¢ from the notation if no confusion can arise.) The ring R is called the ring of
differential time-delay operators. We will see it again below.
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Real world system are in general not linear. They can, however, often be linearised. See [Sch10,
Section 1.1] for an example of simple non-linear system and its linearisation. We will treat only
linear systems here.

8.2 Differential flatness

The properties we will concentrate on in this thesis are differential flatness and the connected concept
of n-flatness—see Definitions 8.2 and 8.7. First discussed in [Mar92] and [FLMR95], flatness has
become an important tool for applied control theory. Confer for example to [L.év09], [MMR97] or
[SRA04] for some examples of applications. Extensions to time-delay systems have been proposed in
[Mou95], [Pet00], [MCL10] and others; yet other approaches may be found in [RW97] or [CQRO5].

We consider in this section an Ore polynomial ring R = K[0;id, 9] over a differential skew field K
with derivation 9: K — K. The exact field we use will be specified later. Our definition of flatness is
similar to that of [CQRO05, Definition 14].

Definition 8.2 (Flatness). A system Ax =Bu with A €"R" and B € "R™ is flat if there exist matrices
Pe™R", Q€™R™ and T € "R™ such that

(?’) S =B and PR=1,

where % ={(}) € "*"# | Ax = Bu} is the behaviour and .# the signal space.

In order to see the similarity with [CQRO05, Definition 14], one has to replace the matrix R in that
definition by (A,-B), @ by (g) and T by (P,,,0,,). Another way of characterising flatness is to say
that Ax = Bu is flat if and only if there are matrices P € "R", @ € "R™ and T € "R™ such that

1. for all x € *% and u € ™. satisfying Ax = Bu there exists exactly one y € ™% such that x =Qy
andu="Ty,

2. AQy =BTy forall ye ™, and
3. for all y e ™.¥ exist x € " and u € ™. satisfying Ax = Bu such that y = Px.

(Compare this way of explaining flatness also to [MCL10, Definition 2].) The equivalence to Defi-
nition 8.2 is easy to see: The second point follows from the first condition (g)my = % since this

just means that for y € ™% we have (%’) € A, that is, AQy = BTy. Because of the equality in the

first condition of the definition there must be at least one y for every () € 4 such that @y = x and
Ty =u. Since Qy = x = Q¥ for a second ¥ implies y = PQy = PQY = j using the second condition of
Definition 8.2, there can only be one such y, that is, the uniqueness of the first point is proven. Last,
the third point follows since

Q

mg-PQmF=(P, ,0,) (T

)my =(P, ,0,)%,

that is, ™. equals the set of all Px where there is u such that (Z) € 9, that is, such that Ax = Bu.
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Another characterisation for flatness is given in [CQR05, Theorem 3 6]: Assuming that . is an
injective cogenerator—see [CQRO05, Definition 13]—, a system Ax = Bu is flat if and only if the system

module
Rm+n

R"(A,-B)
is a free R-module. The later fact can be checked by computing the extension module. See [CQR05]

for methods to do so and statements about which additional requirements on R have to be imposed.
The actual computations in [CQR05] are done using Grobner bases.

We will base our approach for checking flatness here on [MCL10]. There, flatness is computed
using the concept of hyper-regular matrices.

Definition 8.3 ((MCL10, Definition 1]). A matrix M € "R™ is hyper-regular if its Jacobson normal
form—see Definition 7.1—is diag(1,...,1).

We recall that the diagonal matrix notation does not imply a square matrix. That is, the matrix
diag(l,...,1) in the definition could be of the shape

1
( '") forn=m, or (,,,_.,0,) forn=m.
n—mo

Our main contribution is to get rid of the Jacobson normal form in the definition. This will lead
to an algorithm with decreased theoretical complexity. Assume first that n = m. Then M € "R™ is
hyper-regular if and only if there are matrices S € G1,(R) and T € Gl,,(R) such that

wr-{_1)

n*mom
Multiplying by T~ from the right, this is equivalent to

o)

-

n-m
This in turn is equivalent to

. 1
(diag(T, - Op—) SHM = ( 0'”)
N —6 4 n-mvm

where @ € Gl,(R). Considering only the first m rows of @ we obtain a matrix @ € ™R" such that
QM =1,,. Thus, we have shown that hyper-regularity of M in the case n = m implies the existence
of a left inverse of M.

Conversely, if there is a left inverse Y € "R"™ of M, then this implies that all unit vectors are in
the row space of M. This means, that row-reduction—see Algorithm 5.13—applied to M must yield
a unimodular matrix Y € Gl,,(R) such that

F
YM-= ( : )

n—-m-m

with F € K™ being of full rank by [BCL06, Lemma A.1(d)l—compare this also to the proof of
Lemma 5.15. Thus, taking S = diag(F~1,1,_,,)Y € Gl,(R) and T = 1,, we see that M is hyper-regular.

In the case n < m, the analogous considerations yield that M is hyper-regular if and only if it
possesses a right inverse. We formulate this as a lemma.
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Lemma 8.4. A matrix M € "R™ is hyper-regular if and only if n = m and M has a left inverse or
n<m and M has a right inverse.
Moreover, we may use row- or column-reduction to check for hyper-regularity.

In [MCL10], hyper-regularity is shown to be a useful tool for checking a system for flatness. We
quote their main theorem.

Theorem 8.5 ([MCL10, Theorem 2]). A system Ax = Bu with A€"R", B€"R™, n=m and (A,—B)
having maximal rank is flat if and only if B and the matrix

F=(,_ 0, Ln_m)MA
are hyper-regular where M € Gl,,(R) fulfils
- 1
MB = ( m)
nfmom

We note that the assumptions are natural: The independence of the rows of (A,—B) means that
there are no superfluous equations—while the hyper-regularity of B means that the inputs are inde-
pendent of each other. The matrix F' in the theorem gives rise to a system Fx = 0 which is shown to be
equivalent to Ax = Bu in [MCL10, Proposition 1]. There, Fx =0 is called the implicit representation
while Ax = Bu is the explicit representation.

In [MCL10, Theorem 2], there are also formule for computing the matrices from Definition 8.2
from the transformation matrices of the Jacobson normal forms of B and F. Reformulating this to
the transformation matrices obtained by row-reduction of B and column-reduction of F, we derive
the following algorithm for checking a system for flatness.

Algorithm 8.6 (Flatness).
Input Matrices A € "R™ and B € "R™ with n > m, (A,—B) having R-linearly independent rows
and B being hyper-regular.

Output If the system is flat, then matrices P € "R"™, @ € "R™ and T € " R™ fulfilling the identities
in Definition 8.2; else, L.!

Procedure
1. Apply row-reduction—see Algorithm 5.13—to B obtaining M € Gl,,(R) such that
~ 1
MIB = ( m) .
n—mOm

2. Compute the matrix F = (,,_,,0,,, 1,-m)MA € " "R,
3. Apply column-reduction to F: If there is a matrix @ € Gl,(R) such that FQ = (1,1, ,_n0,,),
then
(a) Compute @ L.

This can be done in parallel to computing @ by recording the inverse transformations
during column-reduction.

1We use L as a symbol to represent a failed computation.
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(b) Let @ be the last m rows of @, that is,
Q — Q n—mom € an
1, ’

(c) Set P to the last m rows of @ 1, that is, P =(,,0,,_,,,, 1,,)@ 1 € "R".
(d) Set T'=1,,, ,0,_,,)MAQ € ™R™.
(e) Return @, P and T

4. Else, return L.

The algorithm is almost the same as [MCL10, Theorem 2] except that row- and column-reduction
are used instead of Jacobson normal form computations. We note, that we have—using the definitions
from the algorithm—the identity

PQ= (0, s 1)@ @7 =0, 1) ") <1,

from Definition 8.2. Moreover, for y € ™. the equation
AQy=BTy
is upon left multiplication by M equivalent to

1,
o7

since M is unimodular. Using the definition of T' from the algorithm this becomes

34y~

n-m

1 ~ 1 0 _
Om) (lm, mon_m)MAQy = ( Om mon—m)MAQy

n-m-m n-m-m n-m-n—-m

MAQy = (
Since F consists just of the lower n — m rows of M A, we can rewrite the right hand side obtaining

L om0 )MA Lins pom 0, MA
I S I R

n-m

which holds if and only if
FQRy=0.

Since by the definition of @ we have

) _,0

where we used FQ = (1,,_p,, n—m0,,), this last identity holds for all y € ™. In total, we have proven
that

(?’) "Fc{(y)e™™F | Ax =Bu} = B.
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The other inclusion is obtained as follows: Let Ax = Bu for x €% and u € . Then, y=Pxe™#,
Qy=QPyx =x and thus BQy = AQy = Ax = Bu. Multiplying the last equation with M from the left,
we obtain @ y = u. Thus, we have the other inclusion and all conditions of Definition 8.2 are fulfilled.

Finally, to see that Algorithm 8.6 is correct, it just remains to use Theorem 8.5 to conclude that
the else-branch is reached and L is returned if and only if the system is not flat.

In practice, it turns out that flatness alone is too strong—confer, for example, [MCL10]. Therefore,
flatness is replaced with the weaker notation of 7z-flatness. We give a definition that corresponds to
[MCL10, Definition 2].

Definition 8.7 (n-flatness). Let K be a field with derivation 9: K — K and automorphism a: K — K
such that a o9 =90 a. We consider the iterated Ore polynomial ring R = K[§;a,0][0;id,I].

Let m € K[6;a,0]1\ {0} be given. A system Ax = Bu with A €"R"™ and B € "R™ is n-flat if there exist
matrices P e "R", @ €e"R™ and T € "R™ such that

nl (?,) Mo = 9B and alPalQ =1,

The operator 771 is called a prediction operator since it can be interpreted as to allow to consider

the “future” of a signal. The iterated Ore polynomial ring is formed by extending 9 to K[§;a,0] by
coefficient-wise application. Since @ and 9 commute, one may show that this yields again a derivation
which we also denote by 9 and which allows the construction of R.

A slightly different definition of n-flatness is given in [CQRO05, Definition 14] under the name
n-freeness but only for domains with constant coefficients, that is, for the case a(K) = 9(K) = {0}. This
means that R will be a commutative polynomial ring where @ and 9 only play a rdle if an element of
R is applied to a signal. See also [CQRO05, Section 8] for computations and characterisations.

Algorithm 8.6 works for n-flat systems as well: We simply need to do the computations with
K(5;a,0) as coefficient domain using the construction of Section 3.5. Note, that B = K(5;a,0)[d;id, 9]
is well-defined since the derivation 9 can be extended to fractions in K(;a,0). Note also, that it may
in general not be possible to localise K[§;a,0] by a smaller set—see Example 3.9.

Applying the flatness algorithm in R will yield either L or the matrices P, @ and T from Def-
inition 8.7. Using [Coh00, Proposition 5.3], we may bring their entries to a common denominator
7€ K[6;a,0]\{0}.

Using [MCL10, Theorem 2], we can again show that the algorithm is correct, that is, that the
computation succeeds if and only if the system is n-flat.

We would like to note that Algorithm 8.6 has for the case of K(§;a,0)[0;id, 9] been implemented
in MAPLE. The package is available online at [Ant11].

We give now an example of a signal set for K(§;a,0)[0;id,?]. This is a subset of a signal space
which was introduced in [Zer06a, Section 3] or [Zer07, Section 3].

Example 8.8. Let 7 >0 and consider the ring
R = #(C);s,0)[0;id,d/dt]

of differential and time-delay operators with meromorphic coefficients where sa(¢) = a(¢ — 7). This is
well defined since by the chain rule we have (d/dt)(sf)(t) = d/dtf(t—1) = s(df/dt)(t) for all f € 4 (C).
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We consider the following set of functions with support only in a (affine) half-plane
& ={feC®(C\Ef)|Ef cC discrete, and It e RVt € C: Ret <ty = f(t)=0}.
We let 6 and d/dt act normally on .#. For n € R we define
(@ lef)t)= Y aj® F(&) =Y a;Of(t - jT)

Jj=Jjo Jzjo
77 1(Re t—tf)zj

where 77 1=Y izjo @ jéj with a; € #(C) for j = jo is the series expansion of 7L, Please note, that this
sum is always finite. This definition makes . into a left R-module.
We would like to conclude the section with an example of how Algorithm 8.6 computes.
Example 8.9. Consider the ring R from the previous example and the system
8 s62-s6\(x1) _ (O "
0 0 x9)  \&
—
=Ac?R? =Be2R!
from Example 8.1. The matrix B is hyper-regular with
0 ot 1
[t % )2=lo)
———
=MeGly(R)

Using M, we define
F =(0,)MA = (0, s6% - s6).
Also F is hyper-regular, as the calculation
0 1
F ((352 —s6) Tt —(s02 - ss)—la) =(1,0

~ )

=Q€E;12(R)

shows. The inverse of @ is

This leads to the matrices

Q:Q(g):(_(séz_lso,)_la) and  P=(0,DQ"=(1,0)

as well as

-6719(s6%2-3s6)"10

T:(l,O)MAQ:(l,O)( 0

) = (s(5)83 — 5(s)62)0 — (s(5)?6° —5(8)252)_13’
where we used the fact that
d
0507 - 50)™ = (502 ~ 0 10+ (507 - 50)} = (50~ 0) 10— (207 %) 15
x

A common denominator is 77! = (62 —§)71.
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Part 'V

Conclusion
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Conclusion and future work

In this thesis we have considered non-commutative polynomials, Ore polynomials. We have used
these polynomials to model differential and integral operators. We have looked at matrices containing
such polynomials as entries and their one- and two-sided normal forms. We have considered different
notions of Grobner bases over free modules over such polynomial rings and have connected them
to the one-sided normal forms. As an application of this connection we have adapted the FGLM
algorithm for converting normal forms into each other. Finally, we have utilised normal forms to
solve a problem from control theory.

Integro-differential operators provide an interesting example of how Ore polynomials may be
used to model operators from calculus. This has applications for the representation and the solving of
initial or boundary value problems. A natural extension here—which would fit well with the overall
theme of this thesis—is the generalisation to systems of boundary value problems. Also solving
systems of differential equations could be done using row- and column-transformation which involve
integral operators. Just as with differential operators, matrices of integro-differential operators and
their normal forms can be expected to be useful in this context.

Other possibilities for future research would not use matrices but instead explore multivariate
integro-differential operators: What if more than one derivation is considered? How about different
integrals? And can, for example, difference operators be squeezed into this theory, either as addition
to the derivation or with a summation operator as inverse in the form of a stand-alone difference-
summation Weyl algebra?

In the part on one-sided normal forms, we have considered the Hermite normal form, the Popov
normal form and shifted Popov normal forms. We have shown that all of them are reduced Grobner
bases with respect to particular monomial orderings. Then, we have identified a method of converting
Popov normal forms to Hermite normal forms in the literature as an instance of the famous FGLM
algorithm.

This work can of course be extended in various ways. Considering the connection of normal
forms and Grobner bases, an interesting question is how other Grébner basis related methods and
algorithms besides the FGLM algorithm translate to normal forms. For instance, another algorithm
to compute a Grobner basis from a given one with a different term ordering is the so-called Grébner
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walk. Future research might try to translate it to normal forms; or to identify a known method in
the literature which is already using a Grobner walk without the connection being known. For this,
we expect the shifted Popov normal forms to play a prominent role as they allow one to represent a
great variety of admissible orderings.

Also the other direction might be interesting to explore: Take any method or algorithm applied
to normal forms and translate it to general Grébner bases. This will most probably yield a way
to translate applications of normal forms from the univariate case to the multivariate case where
normal forms in the classical sense might not exist or might not be powerful enough. Grobner bases,
on the other hand, can easily be defined and computed for more than one variable.

The Jacobson normal form has been considered only for differential operators in this thesis and
only for the case that the torsion module was cyclic. This allowed us to obtain a Jacobson normal form
from the annihilator of the cyclic vector where the transformation matrices could be computed using
basic methods. In general, for positive characteric or for other Ore polynomials than differential
operators the torsion module will not be cyclic. A goal for future research would be to try to extend
the algorithm also to these cases. At least the computation of the transformation matrices from a
known decomposition of the torsion module into cyclic subparts seems to be within reach.

Experiments with the Jacobson normal form algorithm have shown that a wrong choice of the
cyclic vector can lead to matrices with large coefficients. This is a problem which has also been noticed
before—see, for example, [Bar99]—and refrains applied researchers from the use of the Jacobson
normal form. It has almost always been possible, though, to also find a cyclic vector which yielded a
matrix with comparatively low coefficients. It would be interesting to study, how a good choice for the
cyclic vector can be made or whether there are methods to transform a bad cyclic vector to a better
one.

We have shown how normal form computations may be applied to solve problems in control the-
ory. In this thesis we just scratch the surface of this vast field. Our presentation here yields two
immediate questions: First, using the connection between normal forms and Grobner bases, how
might Grobner bases help to generalise univariate control theory algorithms to several variables?
And, second, since certain normal forms have additional properties—such as the Popov normal form
yielding a minimal degree representation of the row space—could this be exploited in order to obtain
“nice” solutions to control theory problems? For instance, can the transformation matrices in the
definition of flatness be chosen in a canonical way?
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Maple code

9.1 leading row coefficient matrices

A possible implementation for the leading vector defined in Section 5.1 in MAPLE is given by the
following code. As it relies on the standard functions for coefficients and the degree of expressions,
it is not applicable for Ore polynomial representations using the Oreilgebra package. Optional ar-
guments denote the main variable of the expressions and a degree bound that is included for use in
later functions.

1 lvector := proc(v::Vector, {deg::nonnegative := oo, var::symbol := ’X’})::Vector;
2 local 4d;

s description "Compute the leading vector of a vector.";

4 d := max (map(degree, v, var));

5 if d < deg then return map(coeff, v, var, d)
6 else return map(0, v)

7 end if

s end proc:

Note that one has to make sure that the entries of the input vector are simplified since otherwise the
degree function may give wrong results.

We want to illustrate the computation of the leading row coefficient matrix from Section 5.2 by
the corresponding MAPLE code. First, we define an auxilliary function that maps a given function to
each row of a matrix similar to what the built-in MAPLE function map does.

1 mapRows := proc(M::Matrix, f::procedure)::Matrix;
2 local s, t, N, i;
s description "Map a function to all rows of a matrix.";

4 s, t := LinearAlgebra:-Dimension(M) ;
5 return <seq(f(M[i, 1 .. t]), i =1 .. s)>
¢ end proc:

Now, using the leading vector function defined earlier, a possible implementation for the leading row
coefficient matrix can be given as follows. Note, that by the use of the _rest variable we can pass
optional arguments to lvector.

1 LC := proc(M: :Matrix) : :Matrix;
2 local v, params;
3 params := _rest:
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4 return mapRows(M, v — lvector(v, params))
5 end proc:

9.2 Popov normal form to Hermite normal form

We shortly give an implementation of these definitions in the computer algebra system MAPLE. Since
MAPLE forces us to distinguish between vectors and matrices we will start with a procedure for the
degree degv of a (row) vector v. It expects as parameters a symbol @ that will denote how the
variable 3 is represented in MAPLE.! The second argument is the vector. The procedure may produce
erroneous output if the entries of v are not expanded.

1 VectorDegree := proc(Q::symbol, v::Vector) :: extended_numeric:
2 description "Computes the degree of v w.r.t. the variable Q.":

3 return max(map(p — degree(p,Q), v)):

+ end proc:

The definition of vector degrees can be expanded easily to matrices by first computing all row degrees
and then selecting the maximum value. The parameters of this procedure are similar to the preceding

one.

1 MatrixDegree := proc(Q::symbol, M::Matrix) :: extended_numeric:
2 description "Computes the degree of M w.r.t. the variable Q.":

3 local m,n:

4 m,n := LinearAlgebra:-Dimension (M) :

5 return max (seq(RowDegree(Q,j,M),j=1..m)):

¢ end proc:

Specialising the above code a little bit, we may also compute the j*" row degree degM; . of a matrix
M using the following procedure. The parameters are analogous to the former two procedures. The
ASSERT statement will check the validity of its input if the assertlevel in the MAPLE kernelopts is
set to 1 or more.

1 RowDegree := proc(Q::symbol, j::posint, M::Matrix) :: extended_numeric:
2 description "Computes the j-th row degree of M w.r.t. the variable Q.":
s local m,n:

4 m,n := LinearAlgebra:-Dimension(M):

5 ASSERT(j = m):

6 return VectorDegree(Q,M[j,1..n]):

7 end proc:

The next procedure computes the leading monomial of the non-zero vector v with respect to posi-
tion over term ordering where the first argument @ tells us how the variable 0 is denoted in MAPLE.
The procedure does not return a vector but a pair i,d such that Im(v) = %¢;. If the elements of v are
not expanded then the output might not be correctly computed.

1 POTlmonom := proc(Q::symbol, v::Vector) :: list(nonnegint):

2 description "POT leading monomial of v as pair of position and degree.":
3 local p,i:

4 p := LinearAlgebra:-Dimension(v):

1We would have liked to call the parameter D—but this causes trouble as D is a built-in function in MAPLE.
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5 for i to p do

6 if v[il # O then return i, degree(v[il,Q) fi:
7 od:

8 error "Leading term of zero is undefined!":

9 end proc:

Analogously, the next procedure computes the leading monomial of the non-zero vector v with respect
to term over position ordering. Parameters and output are as above. In fact, we use the trick that
Im(v) with respect to term over position ordering equals 3987 Im(Iv(v)) where the last leading term is
taken with respect to position over term ordering.

1 TOP1monom := proc(Q::symbol, v::Vector) :: list(nonnegint):

2 description "TOP leading monomial of v as pair of position and degree.":
s local d,p:

4 d := VectorDegree(Q,v):

5 assert(d = 0):
6 POT1monom(Q, map(p — coeff(p,Q,d)-Q°d, v)):
7 end proc:

We will now implement the computation of the truncated basis and multiplication matrix as
in Remarks 6.35 and 6.33. The procedure expects as input a symbol @ that tells MAPLE how the
variable 0 is represented, a degree bound d, a procedure /¢ computing the leading term of a vector
and finally the matrix M € ™ R" itself which must be a Grébner basis for the ordering that is used in /2.
The procedure returns the truncated multiplication matrix with respect to d, the coordinate vectors
of the residue classes of the canonical basis vectors ¢1,...,¢, of R” and the dimension of truncated
space. Note, that for an easier implementation we chose to order the vectors in the canonical basis
differently than in the definition: Here, they are sorted with respect to to position in ascending order.

1 ModularSpace := proc(Q::symbol, d::posint, 1lt::procedure, M::Matrix)

2 :: list:

s description "Compute the truncated modular structure of R°n/R°m M.":

We start by computing the positions and degrees of the pivot elements in M: The meaning of a tuple
(i,7,k) in the list p is that there is a pivot at position (i, j) in M with degree degM; ; = k. The list o
will contain information about the columns of M. If o; = co then there is no pivot in the j*h column
of M. Else, if 0 = (k,i) then there is a pivot of degree k& in the ih row. The list 7 contains information
about the elements of the truncated basis: These are precisely the vectors d%¢ 7 where k < 7;. Finally,
e contains the dimension of the truncated space.

s local p,0 ,m,n,e,a,T,7,j,z,r,c,i,E,k:

5 m,n := LinearAlgebra:-Dimension(M):

6 p:= [seq([j,1tM[j,1..n1)], j=1..m)]:

7 0:= [oco $n]:

8 for j in pdo

9 o [j[211 := [j3], j[111:

10 od:

1 7:= map(a — if a = cothen d else min(a[1],d) fi, 0):
12 e := add(a, a in 71):

Initially, the truncated multiplication matrix T is just the zero matrix. We will fill in its entries later
in the procedure. Also the list of coordinate vectors of the canonical basis elements is initially set to
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just empty entries. The variable r will contain the sum ) ;75 with j being the control variable of
the outmost loop. This will be used to handle Remark 6.33. Initially, r is of course zero.

13 T := Matrix(e,e,0):
14 E := [empty$n]:

15 T:=N0:

16 for j to n do

For the jt® column of M we have to check whether it contains a pivot of degree zero. This is the case if
7; = 0. That means that ¢; is reducible by M and we have to compute its coordinates as described in
Remark 6.35. We start with a zero vector filling in the corresponding entries in a loop. The variable
c corresponds to the sum Y ;.; 7z in the remark and i is y. Furthermore, o2 corresponds to i in

Remark 6.35.

17 if T[J] = 0 then

18 z := Vector[row] (e,0):

19 c := 0:

20 for k to n do

21 for i from 0 to 7[k]-1 do
22 z[c+it+l] := -coeff(M[o [j1[2],k],Q,1):
23 od:

24 @ = errlikls

25 od:

26 E[J] 0= 79

If the jt* column does not contain a pivot of degree zero then the representation of ¢; is just the (r+1)th
unit vector according to Remark 6.35. Additionally, we have to treat the r*t through (r + 7; — 1)*h row
of the truncated multiplication matrix corresponding to the truncated basis elements ¢; through

% 2e j. We first fill in the ones on the upper secondary diagonal according to Remark 6.33. If the
row does not contain a pivot then we are already done. Otherwise, we treat (r + 1) row analogously
to the computation of the coordinates in the case of a zero-degree pivot.

27 else

28 E[j1 := Vector[row] (e, shape=unit[r+1]):
29 #

30 for r from r+1 to r+r[j1-1 do

31 Tlr,r+1] = 1:

32 od:

33 if o [J] # oo then

34 © = 03

35 for k¥ to n do

36 for i from 0 to 7[k]-1 do

37 Tlr,c+i+1] := -coeff(M[o [jI1[2],k],Q,1):
38 od:

39 G = errllikls

40 od:

4 fi:

12 #

43 fi:

44 od:

5 return T,E,e:

4 end proc:
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Finally, we would like to present a MAPLE procedure implementing the conversion algorithm for
the special case of converting a matrix M € "R™ in Popov form into a matrix H in Hermite form. The
input parameters are @ denoting how the variable 0 is represented in MAPLE, the automorphism o
as map of vectors, the derivation 9 as map of vectors and the matrix M which must be in Popov form.
The output will be the Hermite form of M.

1 Convert := proc(Q::symbol, o ::appliable, J::appliable, M::Matrix)
2 :: Matrix:
s description "Convert M in Popov form into Hermite form.":

The procedure starts by setting some constants: As usual, with m and n we denote the dimensions
of the matrix, d — 1 is the bound for the degrees in H. We use the procedure ModularSpace defined
on page v to compute the truncated multiplication matrix 7' and a list E containing the coordinate
vectors of the residue classes of the canonical basis vectors ¢1,...,¢, of R" in the truncated basis.
The variable B is just *Bg from Algorithm 6.37, H is G2 and C will hold the coordinate vectors of the
entries in B. The variable r contains the number of linear independent elements in B.

4 local T,m,n,d,H,C,B,j,w,k,v,S,E,F,e:

5 m,n := LinearAlgebra:-Dimension(M):

6 d := mn-MatrixDegree(Q,M)+1:

7 T,E,e := ModularSpace(Q,d,v — TOPlmonom(Q,v),M):

= [ll7

= [g

= [7

Now, we iterate over the monomials in R™. Since we are using a fixed term ordering—namely the
position over term ordering—we have the procedure already specialised for this. The outer loop
iterates over all column indices j and inner loop iterates over the exponents & from 0 through d. All
the time, we have w = d%¢ ;7 and v =wsg,. If v is linear independent of the previous coordinate vectors
that have been stored in C then we add v to C and w to B and continue the loop with dw. Else do we
compute a linear combination S such that v =S7C.? Then we add w — ST B to H and break the inner
loop continuing with the next column index. We are adding w — ST B to the top of H since the rows of
the result should be sorted in descending order by Theorem 6.30.

m W Q

10

u for j from n by -1 to 1 do

12 w := Vector[row] (n, shape=unit[j]):

13 v o= E[J] g

14 for k to d do

15 if nops(C) < LinearAlgebra:-Rank(<op(C),v>) then
16 C := [op(C),v]:

17 B := [op(B),w]:

18 vi=o0(().T + 9(v):

19 w o= Qw:

2 else

21 F := LinearAlgebra:-Transpose (<op(C),v>):

22 S := LinearAlgebra:-LinearSolve(F):

23 H := [w - LinearAlgebra:-Transpose(S).<op(B)>, op(H)]:
24 break:

2 fi:

26 od: # Inner loop

2We have to transpose C since MAPLE’s LinearAlgebra:-LinearSolve expects this.
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27 od: # Outer loop
28 return <op (H)>:
20 end proc:

We give an example of a MAPLE session for a computation in Q[x] using the procedures just
defined. In order to work with commutative polynomials we set o0 =id and 9 to be the zero map. The
variable is denoted by x.

1Q :=°x°: 0:=v — v: 9= v — map(0,v):
We consider the following example

2 M = <<1]x|1>,<1]0]x>>;

1 x 1
M .=

1 0 x
The Hermite form is computed by our procedure using

s H := Convert(Q,o ,9,M);

1 0 X
H:=
0 x 1-x

We may check this result using MAPLE’s built-in procedure for Hermite form computation:

s+ H = LinearAlgebra:-HermiteForm(M) ;

1 0 «x 1 0 «x

0 x 1-«x 0 x 1-x

9.3 Code extraction

The MAPLE code in this thesis is inserted using the listings package. This very useful IXTEX package
allows the code to be included just as normal text with no need for the author to add special annota-
tions. The package itself will take care for all formatting. The big advantage of this approach is that
the code can just be copied and pasted from the IATEX source file directly into MAPLE.

Of course, it is also possible to collect the functions presented here in a MAPLE source file
that can then be used separately. The following Awk script extracts everything which is between
\begin{lstlisting} and \end{1lstlisting} in a IXTEX file. Applied to this thesis’ source file it will
thus yield the complete code included here.

1 BEGIN { CODE = 0 }

2 $0~/~\\end{1lstlisting}/ { print "\n\n"; CODE = 0 }
s { if(CODE == 1) print $0 }

4 $0~/~\\begin{lstlisting}[~[]1/ { CODE = 1 }
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Nomenclature

Aq(0) first Weyl algebra, 11

A1, [) integro-differential Weyl algebra, 27

Al0;0,9] ring of Ore polynomials over A with respect to o and 9, 10
A() integro Weyl algebra, 28

Ai(f)f  two-sided ideal generated by [ in A;()), 31

C*(R) smooth functions over R, 20

coeff(d®, f) coefficient of 3° in f, 9

0 Ore indeterminate, 9

degf degree of [, 9

{7} diffnomial for m and k&, 12

E boundary operator, 23

ej boundary operator, 23

€ evaluation map, 20

F0] differential operators (only in Chapter 4), 21

Z10,/1 integro-differential operators, 21

ZE] boundary operators, 21
ZF1[1 integral operators, 21
le(v) leading coefficient of v with respect to <, 62

a<lex B aisless than § with respect to to the lexicographic ordering, 59

Im(v) leading monomial of v with respect to <, 62
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1t(v) leading term of v with respect to <, 62
v <portv v is smaller than to with respect to the position over term ordering, 60
v <pop¢ 10 b is smaller than to with respect to the ¢-term over position ordering, 60

b <poptv v is smaller than to with respect to the term over position ordering, 59

b integral map, 19
0 differential indeterminate in the integro-differential Weyl algebra, 23
S integral indeterminate in the integro-differential Weyl algebra, 23

K@, integro-differential operators with constant coefficients, 23

K(0;0,9) full ring of fractions of K[0;0,9], 17

le(f) leading coefficient of f, 9
s0; s x t zero matrix, 39
1 s x s identity matrix, 39

degM degree of the matrix M, 39

diag(ai,...,a,) diagonal matrix having the diagonal entries a1,...,a,, 39

Gls(R) unimodular s x s matrices with entries in R, 39

Iv(v) leading vector of v, 39

M; . ith row of the matrix M, 39

My, . i« matrix consisting of the rows M;, ., ..., M;, . of the matrix M, 39
M{il,...,ir},* equal to M1, s)\(iy,....i,},%> 39

M, ; J% column of the matrix M, 39

M., j,...;,) matrix consisting of the columns M, j,, ..., M. j, of the matrix M, 39
M, Gy equal to My 1, si\(iy,...i) 39

[ residue class of v, 68

R! row vectors of length ¢ with entries in R, 39

RM row space of the matrix M, 40
R column vectors of length s with entries in R, 39
SR? s x t matrices with entries in R, 39

Anngp v annihilator of v in R, 83
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Aev A actson v, 91

R real numbers, 20

LCE (M) k™ leading row coefficient matrix of the matrix M, 40
LC,ow(M) leading row coefficient matrix of the matrix M, 40
LVi(d)I9 d leading vector space of the module 91, 42

S71A left localisation of A by S, 17

L failed computation, 95

A (U,C) field of meromorphic functions over Q < C, 92
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Index

admissible term ordering, 59 boundary operators, 21
algebra boundary value problems, 19
integro-differential, 19, 20 Bruno Buchberger, 58
Rota-Baxter, 28 Buchberger, 58
with one-sided inverses, 23 Buchberger criterion, 63
algorithm Buchberger’s algorithm, 63
Buchberger’s algorithm, 63 Buchberger’s algorithm for row bases, 45
Buchberger’s algorithm for row bases, 45
Euclidean, 14, 48, 57 canonical basis, 59
Euclidean algorithm, 78 of a quotient module, 69
FGLM algorithm, 67 Cauchy formula, 29
FGLM-algorithm, 72 character, 20

coefficient, 9

leading coefficient, 9, 40

leading coefficient for Grobner bases, 62
column vectors, 39
column weight, 53
column-reduction, 80
common divisor

greatest, 48
commutation rule, 9, 22, 40
complexity

of row-reduction, 47

fraction-free row-reduction algorithm, 47
modular row-reduction algorithm, 47
row-reduction algorithm, 46

annihilator, 83

Artinian, 23, 28

auto-reduced matrix, 45

basis
canonical, 59
canonical basis of a quotient module, 69

left, 29,33 connection, 68
m%d,' 29 constant of integration, 35
minimal, 40, 48 controllability, 92

right, 29, 33 ' _ cyclic module, 82
truncated (canonical) basis, 69 cyclic vector, 82

Baxter axiom

differential, 19, 23 decomposition

pue, 22 of integro-differential operators with constant
Baxter axion coefficients, 25

pure, 20 of quotient spaces, 81
behaviour, 92 of the integro-differential Weyl algebra, 33
Bézout cofactor, 48 defining matrix, 68, 83
block Krylov matrix, 71 degree, 9
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of a matrix, 39
degree bound, 54
delay operators, 11
derivation, 10, 19
o-derivation, 10
for integro-differential operators, 23
formal, 20
inner, 28
standard, 11, 22
diagonal matrix, 39, 77, 94
difference operators, 11
differential Baxter axiom, 19, 23
differential ideal, 23
differential operators, 10, 19, 21, 77, 91
differential polynomials, 58
differential time-delay operators, 92, 97
differential Weyl algebra, 28
diffnomial, 12
division
(Euclidean) left, 14, 40
(Euclidean) right, 14, 40
for Grobner bases, 62
for row bases, 41

elementary row operation, 40, 51
equivalence, 77
equivalent matrices, 77
Euclidean algorithm, 14
Euclidean algorithm, 48, 57, 78
Euclidean division

left, 14, 40

right, 14, 40
evaluation, 20, 24
evaluation ideal, 22, 25
explicit representation, 95

FGLM algorithm, 67
FGLM-algorithm, 72
n-flatness, 97
flatness, 93, 95
fraction, 16
full ring of fractions, 17
left-fraction, 16
right-fraction, 16
fraction-free row-reduction, 47
free part, 82
full ring of fractions, 17
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functions
smooth, 20, 91

G-algebra, 58
gauge transformation, 68
grading, 28
graph colouring, 58
greatest common divisor, 48, 57
Grobner

Groébner basis, 63, 78
Grébner basis, 58, 72

reduced, 63—-66, 72
Grobner basis over a ring, 40

Hermite

Hermite normal form, 78
Hermite normal form, 55, 66, 73
homomorphism theorem, 80
hyper-regularity, 94

ideal
o-0-ideal, 15
O-ideal, 15, 26, 31
evaluation, 22
zero-dimensional, 68, 74
ideal equality, 58
ideal intersection, 58
ideal quotient, 68
ideal structure
of integro-differential operators with constant
coefficients, 27
of the integro-differential Weyl algebra, 28
implicit representation, 95
independence
linear, 55
initial value problems, 20
inner derivation, 28
input
of a system, 92
integer programming, 58
integral, 19, 22
integral operators, 21, 28, 32
integration by parts, 20
integration constant, 35
integro Weyl algebra, 28
integro-differential algebra, 19, 20
integro-differential operators, 19, 21, 21, 32
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with constant coefficients, 23 diagonal, 39, 77, 94
integro-differential Weyl algebra, 23, 27, 32 equivalent, 77
inverse hyper-regular, 94

left, 94 inversion, 48

one-sided, 23, 32 Krylov matrix, 71

two-sided, 26 row-proper, 45
inversion row-reduced, 45

of matrices, 48 square, 74
irreducible, 62 truncated multiplication matrix, 70

unimodular, 39, 77
Jacobson normal form, 77, 84, 87, 94 matrix units, 24
general, 77 mid basis, 29, 31
minimal basis, 40, 48
Kronecker symbol, 24 minimal realisation, 70
Krylov matrix, 71 modular row-reduction, 47
module

Laurent polynomials, 26, 33
leading row coefficient matrix, 40
leading coefficient, 9
leading coefficient, 40

for Grobner bases, 62
leading monomial, 62
leading row coefficient matrix, 51
leading term, 62, 64

cyclic, 82

system module, 94
module action, 91
monomial, 59

leading monomial, 62
multiplication matrix, 70
multiplication rules, 22

leading vector, 39, 62 Noetherian, 23, 28

leading vector space, 42 normal form

left basis, 29, 33 with respect to to row-equivalence, 51
left division two-sided, 77

Euclidean, 14

left inverse, 94

one-sided inverse, 23, 32

left Ore set, 16 operator
left-fraction, 16 prediction, 97
Leibniz rule, 10, 23 operators
o-Leibniz rule, 10 boundary, 21
general, 13 delay, 11
lexicographic ordering, 59 difference, 11
linear independence, 55 differential, 10, 19, 21, 77, 91
linear system, 92 differential time-delay, 92, 97
linearisation in control theory, 91
of a system, 93 integral, 21, 28, 32
localisation, 16 integro-differential, 19, 21, 21, 32
integro-differential with constant coefficients,
Maple, 40 23
MAPLE, 21, 83, 97 shift, 11
matrix, 39 ordering
auto-reduced, 45 ¢-term over position ordering, 60, 65
defining matrix, 68, 83 position over term ordering, 60, 66
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term over position ordering, 59, 64 row echelon form, 55
lexicographic, 59 reduced Grébner basis, 63—66, 72
Ore reducible, 62
algebra, 10 for row bases, 41
polynomials, 10 reduction
Ore algebra, 58 for row bases, 41
Ore polynomials remainder
universal property, 15 for Grobner bases, 63
Ore set, 16 for row bases, 41, 43
left, 16 representation, 92
@ystein Ore, 9 explicit, 95
implicit, 95
Petri net, 58 rewrite system, 21
n-flatness, 97 right basis, 29, 33
pivot, 64 right division
for Hermite normal forms, 55 Euclidean, 14

for Popov normal forms, 51, 88
pivot index ring

of Hermite normal forms, 55 full ring of fractions, 17

of Popov normal forms, 52 simple, 77, 80
Poincaré-Birkhoff-Witt ring, 10 Rota Baxter algebrab, 28
Poincaré-Birkhoff-Witt rings, 58 row basis, 62

right-fraction, 16

polynom%al-echelon form, 52 row basis, 40, 42

polynomials . row echelon form, 64
commutative, 10 row echelon form, 51
Laurent, 26 row operation
Skr:w;v,l;)O, 11 elementary, 40, 51

row space, 40
row vectors, 39
row-equivalence, 51
row-proper matrix, 45
row-reduced matrix, 45
row-reduction, 40, 51, 80, 94
row-reduction algorithm, 46
fraction-free, 47
modular, 47

Popov normal form, 51, 64, 74, 84
&-Popov normal form, 53, 56, 65
shifted Popov normal form, 53
weak Popov normal form, 52

position, 59

position over term ordering, 60, 66, 73

predictable degree property, 43, 44, 45

prediction operator, 97

projector, 20

property
universal, 15

pseudo-linear map, 70

pseudo-linear transformation, 68, 82

pure Baxter axiom, 20, 22

S-polynomial, 63
for row bases, 43
section, 20
shift operators, 11
shifted Popov normal form, 53

quotient module, 68 o-derivation, 10
o-Leibniz rule, 10
realisation o-9-ideal, 15
minimal, 70 signal set, 91
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similarity, 78
simple ring, 77, 80
skew polynomials, 10, 11
Smith form, 77
smooth functions, 20, 91
square matrix, 74
standard derivation, 22
state

of a system, 92
system

n-flat, 97

flat, 93

input, 92

linear control system, 92

state, 92
linear control system, 92
system laws, 92
system module, 94
system variables, 92

syzygy, 41

term
for row bases, 41
leading term, 62, 64

term order, 41

term ordering
admissible, 59

vector

cyclic, 82

leading vectors, 39, 62
vector space

leading vector space, 42
vectors

column vectors, 39

row vectors, 39

weak Popov normal form, 52
weight, 28

of columns, 53
Weyl algebra

differential, 28

first, 11, 22, 23

integro, 28

integro-differential, 23, 27, 32

¢-Popov normal form, 53, 56
¢Popov normal form, 65

¢-position over term ordering, 60
¢-term over position ordering, 65

zero divisor, 24
zero-dimensional ideal, 68, 74

¢-term over position ordering, 65
term over position ordering, 59, 64
¢-position over term ordering, 60
theorem proving, 58
THHOREMY, 21
theta-ideal
9-ideal, 26
d-ideal, 15, 31
torsion submodule, 82
transformation
gauge transformation, 68
pseudo-linear, 68, 82
truncated (canonical) basis, 69
truncated multiplication matrix, 70
two-sided inverse, 26
two-sided normal form, 77

unimodular matrix, 39, 77
universal property, 15
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