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Abstract

We study the lattice Green’s functions of the face-centered cubic lattice
(fcc) in up to six dimensions. We give computer algebra proofs of results
that were conjectured by Guttmann and Broadhurst for the four- and five-
dimensional fcc lattices. Additionally we derive a differential equation for
the lattice Green’s function of the six-dimensional fcc lattice, a result that
was not believed to be achievable with current computer hardware.

1 Introduction

1.1 Bravais Lattices and their Applications

We consider lattices in R? that are given as infinite sets of points

d
{Zniai:nl,...,ndEZ} Q]Rd
i=1

for some linearly independent vectors ar, ..., aq € R?® (throughout this paper,
vectors are denoted by bold letters). In three dimensions such lattices are called
Bravais lattices. The simplest instance of such a lattice is obtained by choosing
a; = e;, the i-th unit vector; the result is the integer lattice Z% which is also
called the square lattice (for d = 2), or the cubic lattice (for d = 3), or the
hypercubic lattice (for d > 4).

The face-centered (hyper-) cubic lattice (fcc lattice) is obtained from the
(hyper-) cubic lattice by adding the center point of each (two-dimensional) face
to the set of lattice points. In two dimensions this operation is trivial: the
faces of the square lattice Z? are all unit squares with corners (m,n), (m +
1,n),(m+1,n+1),(m,n + 1) for integers m,n € Z. Their center points are
72 + (%, %) which together with Z? again yields a square lattice, more precisely
a copy of Z? which is rotated by 45 degrees and shrunk by a factor of v/2. The
situation becomes more interesting in higher dimensions. For example, in three
dimensions there are 6 faces of the unit cube, and their center points together

*supported by the Austrian Science Fund (FWF): P20162-N18.



with all integral translates have to be included. It is not difficult to see that the
three-dimensional fcc lattice consists of four copies of Z3, namely

22U (274 (5:3:0)) U (27 + (5,0,5)) U (27 + (0.5, 3)) -

Similarly the fcc lattice in four dimensions consists of 7 copies of Z*, and in
general the d-dimensional fcc lattice is composed of 1+ (g) translated copies of
ze.

The study of Bravais lattices was inspired by crystallography in as much as
the atomic structure of crystals forms such regular lattices. While the cubic
lattice is quite rarely found in nature (e.g., in polonium) due to its small atomic
packing factor (the proportion of space that is filled when a sphere of maximal
radius is put on each lattice point, in a way that these spheres do not overlap),
the fcc lattice is more often encountered, for example, in aluminium, copper, sil-
ver, and gold. The atomic packing factor of the fcc lattice is v/27/6, the highest
possible value as was shown by Hales in his famous proof of the Kepler conjec-
ture [5]. Further applications, in particular in connection with random walks
(see the next section) appear in physics, chemistry, ecology, economics, and
computer science when lattice vibration problems (phonons), diffusion models,
luminescence, Markov processes and other random processes are studied.

1.2 Random Walks

For sake of simplicity, the fcc lattice as introduced in the previous section, is
stretched by a factor of 2 in all coordinate directions so that all lattice points
have integral coordinates. This convention is kept throughout the paper as it
does not change the relevant quantities that we are interested in (e.g., the return
probability, see below).

The aim of this paper is to study random walks on the fcc lattice in several
dimensions. We consider walks that allow only steps to the nearest neighbors of
a point (with respect to the Euclidean metric). Furthermore it is assumed that
all steps are taken with the same probability. For example, consider a point
(k,m,n) in the three-dimensional cubic lattice (2Z)3. It is the common corner
point of 8 cubes. The nearest neighbors in the 3D fcc lattice are then the center
points of some of those faces which have (k,m,n) as a corner point. Note that
they all have distance v/2 whereas the other corner and face-center points are
farther away (their distance is > 2) and hence not reachable in a single step.
Thus the number of possible steps is 8 - 3/2 = 12 (number of adjacent cubes
times the number of adjacent faces per cube, divided by two since each face
belongs to two cubes). The same situation is encountered at the center point
of some face and hence every point in the 3D fcc lattice has exactly 12 nearest
neighbors; this number is called the coordination number of the lattice.

The above considerations can be generalized to arbitrary dimensions in a
straight-forward manner; one finds that the set of permitted steps in the d-
dimensional fcc lattice is given by

{(81,...,Sd)€{0,—1,1}d3|81|+"'+|8d|:2} (1)

and thus its coordination number is 4(;).



1.3 Lattice Green’s Function

Let p,(x) denote the probability that a random walk which started at the
origin 0 ends at point  after n steps. Note that in our setting of unrestricted
walks, ¢"p,(x) is an integer and gives the total number of walks that end at
location x after n steps, where c is the coordination number of the lattice.

In order to achieve information about random walks on the fcc lattice, the
following multivariate generating function is introduced:

)= pal@)z". @)
n=0

This function is called the lattice Green’s function (LGF). By defining the struc-
ture function \(k) = A(k1,...,kq) of a lattice to be the discrete Fourier trans-

form
Ak) = Z pi(x)e™®k

zeR4

of the single-step probability function p;(x), the generating function can be
expressed as the d-dimensional integral

ka:
P(x; z) 7Td/ / 17/2)\ dkq ... dkg.

We shall be interested in walks which return to the origin and which we therefore
call excursions. The LGF for excursions is given by

z>§pn<o e Q

In the following, we will only refer to this special instance when talking about
lattice Green’s functions. This function allows one to calculate the return prob-
ability R, sometimes also referred to as the Pdlya number, of the lattice. It
signifies the probability that a random walk that started at the origin will even-
tually return to the origin. It can be computed via the formula
1 1
=1 ! > omzoPn(0) @

Example 1. Consider the square lattice Z? which admits the steps (—1,0),
(1,0), (0,—1), and (0,1). Tts structure function is

)\(kl,k’g) _ 1 (e—zkl + ezkl + e—zkz + ezkz) = 5 (Coskjl + cos k2) .
and therefore its LGF is (see, e.g., [4])
dky dks 2
P(0,0; =-K
?) 2 / / (cosky + cosks) = (%)

where K(2) is the complete elliptic integral of the first kind. The fact the the
above integral diverges for z = 1 immediately implies that the return probability
R = 1; in other words that every random walk will eventually return to the
origin, a result that was already proven in 1921 by Pdlya [12]. O



Example 2. We have already remarked that the two-dimensional fcc lattice is
nothing else but a rotated and stretched version of the square lattice. Neverthe-
less let’s have a look at the LGF when the step set {(—1,—1),(-1,1), (1,-1),(1,1)}
is taken. Its structure function is

1/ . . . o
)\(k,17k2) — Z(e_z(k1+k2) + e—l(kl—kg) + el(kl—kg) + el(k]-‘rkg))
1
= i(cos(kl + ko) + cos(ky — k‘g)) = cos ky cos ks,

using the well-known angle-sum identity cos(z + y) = cosz cosy F sin z sin y.
Although the structure function differs quite a lot from that in Example
the LGF is the same:

1™ dkdk 2
P(0,0,2) = — e 5
(0,0,2) 7r2/0 /0 1—zcoskjcosks (%) (5)

as shown in Equation (6) of [4]. Note also that the different distances between
nearest-neighboring lattice points—1 in Example and v/2 in Example Carry
no weight since only excursions (and not walks with arbitrary end points) are
investigated. O

It is now an easy exercise to compute the structure function A(k) for the
d-dimensional fcc lattice:

AL d
/\(k):(2> Z Z cos kyy, cos ky,.

m=1n=m+1

The LGF is then given as the d-fold integral and the return probability can
be computed by integrating over 1/(1 — A(k))

1.4 The Differential Equation Detour

The return probability in the fcc lattice in three dimensions was first computed
by Watson [13] as one of the three integrals which were later named after him,
and which give the return probabilities in different three-dimensional lattices.
These probabilities can be expressed in terms of algebraic numbers, 7, and values
of the Gamma function at rational numbers. For example, the probability of
returning to the origin in the 3D fcc lattice is given by

16474
9(I(4)°*

For the three-dimensional fcc lattice, Joyce [6] expressed the lattice Green’s
function in terms of complete elliptic integrals, too, but the expression is fairly
complicated and for the higher-dimensionsal fcc lattices no such evaluation is
known at all. Similarly we don’t know of any closed-form representation of the
return probabilities in higher dimensions.

Instead we will derive differential equations for the corresponding LGFs.
Although less explicit than the previously mentioned closed-form results, such
an implicit representation of the LGF provides considerable insight. It allows
one to efficiently compute the number of excursions for any fixed number of



steps, as well as the return probability with very high precision (see Section .
But also the differential equations themselves reveal very interesting properties
that are worth investigation.

To motivate our approach and to illuminate the origin of Equation , con-
sider an arbitrary lattice in Z¢ with some finite set S C Z? of permitted steps.
Then clearly the probability function p, (x) satisfies the constant-coefficient re-

currence

Let F(y;z) denote the multivariate generating function
o0
F(y;z2) =Y > pal@)y®z"
n=0gxecZ?

Multiplying both sides of @ by y®z" and summing with respect to n and x
gives

S Y pea(@ye = %z S pale - s)y

n=0gxczd n= OmeZd ses
1
x_n _ m+s n
22 D m@yt = ZZ > (@)
n=1gczd sESn 0xezd
1
- (F(y;2)—1) = gzysF(y;z)
z | | ses
Thus we obtain 1

Fly;2) = ——————
(¥i2) = 7= S ST
and the lattice Green’s function P(0;z) is nothing else but the constant term
(y°)F(y;2). A differential equation for this expression can be derived from an
operator
A(z,D.)+ D, B1+---+ D,,Bq (7)
that annihilates the expression F(y;z)/(y1---ya4). Here the symbol D, denotes
the partial derivative w.r.t. x and the B; are differential operators that may
involve y1,...,yq4,2 as well as D, .. Dyd, D,. The fact that A may only depend
on z and D, is crucial and therefore explicitly indicated. In Section [3] we will
discuss how to find such an operator. From

_ F(y;
o)A D) +Z<y1 Dy By P

and the fact that the coefficient of y ! in an expression of the form D, > >° _ a,y"

is always zero, it follows that A((y°)F(y;z)) = A(P(0;z)) = 0. Also in Sec-
tion [3| we will see that finding the operator ([7)) is part of computing the d-fold
integral w.r.t. y1,...,yq. The integral

/“./(yl"'yd)(lﬁy@Zsesys):/“./1_(1;;(1‘7)

is transformed to by means of the substitution y; — etki




2 An Experimental Mathematics Approach

This section presents some results that were obtained in a non-rigorous way
using the method of guessing. That is, for finding a linear differential equation

Cm (@) f (@) + - e (@) f(x) + eo() f(x) = 0

for a certain function f(x), one computes the first terms of the Taylor expan-
sion of f(z) and then makes an ansatz with undetermined polynomial coeffi-
cients ¢;j(z). If the resulting linear system is overdetermined (i.e., if sufficiently
many Taylor coefficients were used) but still admits a nontrivial solution, then
the detected ODE is very likely to be correct. Another strategy to gain confi-
dence in the result, is to test it with further Taylor coefficients, that were not
used in the computation. However, this method can never produce a rigorous
proof of the result and there is always a (very small) probability that the guess
is indeed wrong.

2.1 Starting from the Integral Representation

In this section we briefly recapitulate some previous work done by Broadhurst
and Guttmann, who used the integral representation of the LGF as a starting
point.

A differential equation for the LGF of the four-dimensional fcc lattice was
computed by Guttmann [2] (see also Theorem: for this purpose, the four-fold
integral was rewritten as a double integral whose integrand was expanded as a
power series. Term-by-term integration yielded a truncated Taylor expansion of
the LGF which allowed him to apply the method of guessing.

Very recently, Guttmann [3] reported that David Broadhurst had obtained
an ODE for the LGF of the five-dimensional fcc lattice (see also Theorem [3),
a result that required several days of PARI calculations. Broadhurst’s strategy
consisted in expanding the integrand in (3] as a geometric series Y~ A(k)™z"
and in expanding A(k)™ using the multinomial theorem (which gives a (m — 1)-
fold sum if m is the number of summands in A(k)). The inner terms can now
be integrated using Wallis’ formula

/ cos(z)?" dz = T (2n>
0 4n\ n

The structure function of the 5D fcc lattice consists of 10 summands. Thus the
computation of the n-th Taylor coefficient of P(0;z) requires the evaluation of
a 9-fold sum, or in other words, has complexity O(n?).

2.2 Counting the walks

A different way to crank out as many Taylor coefficients of the LGF as necessary
is to explicitly count all possible excursions with a certain number of steps. Let
an(x) be the number of walks from 0 to x with n steps and let ¢ denote the
coordination number of the lattice, then the lattice Green’s function P(0;z) =
oo o an(0)(z/c)™, as we have already remarked earlier. The values of the
(d+ 1)-dimensional sequence (d again denotes the dimensionality of the lattice)
can be computed with the recurrence @ To obtain the first n Taylor coefficients



hence requires one to fill the (d + 1)-dimensional array (am(w)>0<m,x1,...,xd<n
with values (by symmetry it suffices to consider the first octant only, which again
by symmetry can be restricted to the wedge z1 > x9 > ... > x4). Still, this has
complexity O(n4t1). Further optimizations consist in cutting off the regions
where the sequence can be predicted to be zero (e.g. when z; > n), and to
truncate the xj-coordinates at n/2 (since we are interested in excursions, values
too far from the origin 0 are not relevant). Although the complexity is better
than before, computing the full array of values can be quite an effort. Again, in
the example of the 5D fcc lattice, about 115 Taylor coefficients are necessary to
recover the recurrence for a,,(0) (which then gives rise to the differential equation
of P(0;2)), and hence the full array contains about 115-58° /5! ~ 6.3-108 values!

Fortunately we can do better.

2.3 Multi-Step guessing

How can the recurrence for a,(0) be computed without calculating all the values
of the multivariate sequence a,(x) in the box [0,n]9"! (or some slightly opti-
mized version of it)? In the previous section, we first computed lots of data, then
threw away most of it, and did a single guessing step. But the guessing can be
done in several steps which we call multi-step guessing. The method is illustrated
on the 5D fcc example. As before, we start with the recurrence @ to crank out
a moderate number of values for the six-dimensional sequence a,(z1,...,Zs),
namely in the box [0,15], which takes about 30 seconds only. From this ar-
ray we pick the values of a,, (21, z2,x3,0,0) which constitute a four-dimensional
sequence that we denote with b, (z1,22,23). The data is now used to guess
recurrences for this new function . One of these recurrences is

(n+1)bp(z1, 22+ 3,23+ 1) — (n+ )by (21,22 + 1,23 + 3)+

(n+1)bp(z1 4+ 1, 22,23+ 3) — (n+ )by (21 + 1,22 + 3, 23)+
(n+1bp(z1+L,za+3,23+4) — (n+ Dbp(x1 + 1,20 + 4,25 + 3)—
(n+1)bp(z1 4+ 3, 29,23+ 1) + (n+ 1)bn (21 + 3,22 + 1, 23)—

(n+1Dby(z1 +3,2z2 + 1,23 +4) + (n+ )by (x1 + 3,22 + 4, 3+ 1)+
(n+1)bp(z1 +4, 22+ 1,23+ 3) — (n+ Dby(x1 + 4,22 + 3,25 + 1)+

(CL’Q + 2)bn+1($1 + 1,1’2 + 2,$3 + 3) - (1'3 + 2)bn+1($1 + 1,1’2 + 3,.’E3 + 2)—
(z1 + 2)bn+1($1 + 2,204+ 1,23+ 3) + (x1 + 2)bn+1($1 + 2,29+ 3,23+ 1)+
(z3 + 2)bn+1($1 +3,z0+ 1,23 + 2) — (w2 + 2)bn+1($1 + 3,20+ 2,23 + 1) =0

which has the disadvantage that it does not allow us to compute the values
b,,(0,0,0) since the leading coefficient vanishes; unfortunately this phenomenon
occurs frequently in this context. An additional recurrence that does not suffer
from this handicap is much larger and therefore not reproduced here. Anyway,
guessing these recurrences can be done in less than a minute.

Now these recurrences can be used to compute more values for the se-
quence by (z1,%2,z3) (in 30 seconds one can now go up to n = 30) which in
turn are used to guess recurrences for b,(z1,x2,0). These latter recurrences
allow to compute a,(0) = b,(0,0,0) for 0 < n < 115 in about 2.5 minutes.
Voila! The whole computation takes less than 5 minutes on a modest laptop.



3 A Computer Algebra Approach

Again, we want to emphasize that the results presented in the previous section
are certainly nice, but lack mathematical rigor. To achieve ultimate confidence
in their correctness we have to apply a different method. Omne possible such
method is called creative telescoping, a short introduction of which is given in
the following section. After that we are able to state our results in the form of
theorems.

3.1 Creative Telescoping

This method has been popularized by Zeilberger in his seminal paper [I5]. Since
then it has been applied to innumerable identities involving hypergeometric
summations, multisums, integrals of special functions, and various other kinds
of problems. The basic idea is very simple and we illustrate it on the example of
a definite integral F'(z) = fab f(z,z) dz. The main step in the algorithm consists
in finding a partial differential equation for f(x,z) that can be written in the
form

(A(2,D.) + D,B(z, 2, Dy, D.)) (f(z,2)) =0 (8)

where the principal part A € C(z)(D,) and the delta part B € C(x, z)(D,, D,)
are differential operators, with the previously introduced notation of D, being
the partial derivative w.r.t. . By C(z)(D,) we denote the non-commutative
Ore algebra that can be viewed as a polynomial ring in the “variable” D, with
rational function coefficients. The result of the algorithm is a (possibly) in-
homogeneous linear ODE for the integral F'(z) that is obtained by integrating

Equation : .
A(F(z)) + [B(f(x,z))}x:a

In applications one frequently encounters the situation that the second part van-
ishes, yielding a homogeneous ODE. This is because many integrals that occur
in practice, have natural boundaries. With our study of LGF's, we are in a sim-
ilar situation: in Section it was shown that the principal part automatically
annihilates the LGF. Nevertheless, in some of the present cases we did do the
additional (but superfluous) check that the differential equation is indeed ho-
mogeneous by plugging in the boundaries of the integral, and got confirmation.

If this method is applied to a one-dimensional integral with hyperexponential
integrand (i.e., its logarithmic derivative is a rational function), then it is called
the Almkvist-Zeilberger algorithm. Its summation counterpart is the celebrated
Zeilberger algorithm for hypergeometric summation. For our purposes we have
to generalize the input class for the integrand to the so-called 0-finite holonomic
functions: a function f(x1,...,xz4) is called O-finite if for each x; there exists a
linear ODE for f with respect to z;. If in addition f is holonomic (the definition
of this notion is somewhat technical and is omitted here) then the existence of
creative telescoping operators like ([7]) or is guaranteed.

The first algorithm to compute (8)) for general J-finite functions (our exam-
ples fall into this class, too) was proposed by Chyzak [I]. It can deal with single
integrations only and thus has to be applied iteratively for multiple integrals.
Its main drawback is its complexity that makes it impossible to apply it to the
problems discussed in this paper. In [9] we have developed a different approach



to compute which is much better suited for large examples involving multidi-
mensional integrals. In addition, it can directly deal with multiple integrals by
computing operators of the form , but in the present context it turned out to
be more efficient to do the integrations step by step. Both algorithms are imple-
mented in our Mathematica package HolonomicFunctions [I0], and a detailed
introduction into the topic is given in [8]. The following example demonstrates
how this method is applied to the previously discussed two-dimensional lattice.

Example 3. Looking at the integrand of Equation one realizes that it is not
O-finite since no linear ODE with respect to k; can be found (and analogously
for k9). But by means of the simple substitutions cosk; — x1 and cos ks — o
we can overcome this trouble: the integral now reads

P(z)l/l /1 dzy dz, )
el S (1—zx1x2)\/1—x%\/1—x§'

Let f(z1,x2, z) denote the above integrand; it is easily verified that it is a J-finite
function. The three ODEs w.r.t. x1, 2, and z are given by the operators

G1 = (ziz9z —1)D, + z120,
Gy = (:c% — 1) (z1292 — 1)D,, + (2x1x§z — 1z — Ta),
Gz = (21— 1) (z1m22 — 1)Dy, + (223202 — 21 — 122),

so that G; (f(xl, To, z)) =0 for s = 1,2, 3. In this example it is an easy exercise
to check that the creative telescoping operator

_ p2 _ 3
2(22 = 1)D? 4+ (322 = 1)D. + 2z + D, T2 7 T2 T2z — Tp%

—_ 10
T1Toz — 1 "2 pimez — 1 (10)

annihilates the integrand f. Indeed, it can be written as a linear combination

(z(z2 —1) D+ r1r22(2% +1) — 322 + 1) B To
(

T1Loz — 1 ° (x1202 — 1)

)2 (ZGQ + Gg,)

T1x22 — 1

of the previously computed operators. It follows that the double integral @D
satisfies the ODE

2(22 = 1)P"(2) + (322 = 1)P'(2) + 2P(2) = 0

whose solution is the elliptic integral K(z?2).

Alternatively, the two integrations can be performed in two steps (the strat-
egy that will be applied to the higher-dimensional fcc lattices). In the first
step (integration w.r.t. z1) the following two creative telescoping operators are
found:

(222 —1)D, + 232 + Dy, (22 — 1)y
(xg - 1)(:5322 - 1D, + IEQ(QZE%ZQ — 22— 1) + Dzl(x% - 1)(x§ —1)z.

They certify that the integral f_ll f(z1, 2, z) dx; is annihilated by the operators
(2222 —1)D, + 232 and (22 — 1)(222%2 — 1) D,, + 22(2032% — 22 — 1). Next the
operator

xoz(23 — 1)

(232% — 1)

which is a linear combination of the previous ones, again reveals the same ODE
for the double integral. O

2(22 = 1)D? + (322 = 1)D, + 2z — D,



3.2 Results

Using the above methodology and software, we have computed differential equa-
tions for the LGF's of the fcc lattices in four, five, and six dimensions, and rig-
orously proved their correctness. Additionally, this allows the computation of
the return probabilities in the respective lattices up to very high precision.

Theorem 1. The lattice Green’s function of the four-dimensional face-centered
cubic lattice

p(z)fi/ﬂ/ﬂ/ﬂ/ﬂ dkq dko dks dky
oot o Jo Jo Jo 1—%(cosklcoskg+cosk1cosk3—|—-~-—|—coskgcosk4)

satisfies the differential equation

(2 = 1)(2 +2)(2 +3) (2 + 6) (2 + 8)(32 + 4)*2° P (2)+

2(32 4 4)(2125 + 3562° + 20792% + 492023 + 367622 — 23042 — 3456)22P3) (2)+
6(8127 4 128620 + 74322° 4 198982* 4 252862 4 1108022 — 52482 — 5376)2P" (2)+
12(4527 + 60425 + 293925 + 67342* + 76332 + 371622 + 2242 — 384) P/ (2)+

12(92° + 982% + 38223 + 70222 + 6322 + 256)2P(2) = 0.

Proof. Here we give only an outline of the proof. The calculations in extenso
are provided as a Mathematica notebook in the electronic supplementary mate-
rial [IT] (to be downloaded from http: //www.risc.jku.at/people/ckoutsch/fcc/).

The substitutions cos k; — x; transform the integrand of the four-fold inte-
gral to

flxe,...,24,2) = 1 . (11)

(1= 2(z1m2 + 2123 + -+ - + T374)) - H?Zl 1—a?

This expression is O-finite and thus a Grobner basis of the zero-dimensional
annihilating left ideal can be computed (ann0 in the notebook). Next, some op-
erators A;(x2, €3, %4, 2, Dyy, Doy, Diy, D;) and Bj(z1, ..., 24,2, Dy ..., Doy, Dy)
for 1 < j < 4 are computed, such that A; + D, B; is an element in the left
ideal generated by ann0. This fact can be easily tested by reducing it with the
Grobner basis: the remainder being 0 answers the membership question in an
affirmative way. In the notebook, the A;’s are collected in the variable annO,
and the Bj’s in the variable deltal. We conclude that A;, A, A3, and Ay
generate an annihilating left ideal for the integral foﬂ flx1, 20,23, 24, 2)dx;. In
a similar fashion, the integrations with respect to x2, x3, and z4 are performed,
yielding a single ODE in z that annihilates P(z). O

Note that this theorem confirms the result given in [2]. Guttmann also ob-
served that the differential equation given in Theorem (1| has maximal unipotent
monodromy (MUM), i.e., its indicial equation is of the form A" and hence has
only 0 as a root, and additionally satisfies the Calabi-Yau condition. Many
LGFs of other lattices fall into this class, too, and therefore this fact may not
seem too surprising.

In order to receive the return probability in the four-dimensional fcc lattice,
holonomic closure properties are applied to compute a differential equation for

o)
=0

Pl 5 (zpkm))
n k=0

10



which in turn gives a recurrence for f(n) = >, _, pr(0):

(n+2)(n + 3)%(n + 4)(35n? + 420n + 1252) f(n)+

(n + 3)(n + 4)(595n* + 1137503 + 79874n? + 244384n + 276024) f(n + 1)+

3(n + 4)(1015n° 4 24780n* + 240253n> + 11569761%+
2769392n + 2638272) f(n + 2)+

(3325n° + 107100n° + 14276951 + 1008060013 + 3976741612+
83134488n + 71984160) f(n + 3)—

4(2065n° 4 62580n° + 788848n* + 52956151 + 199730860+
40139838n + 33590844) f (n + 4)—

12(735n° + 25200n° + 359282n* + 2725632n3 + 1160109102+
26259960n + 24690708) f(n + 5)+

288(35n2 + 350n + 867)(n + 6)* f(n +6) = 0.

The initial values
25 19 1637 549

are easily (of course, not by hand!) computed by counting the number of ex-
cursions of length up to 5. For the return probability

R=1- ( lim f(n))il

n— oo

we need to evaluate the limit of the sequence f(n). This can be done very
accurately when knowing the asymptotics of the sequence. We apply the method
of Wimp and Zeilberger [14], which has been implemented in Mathematica by
Kauers [7], and obtain the following basis of asymptotic solutions:

1 n\" 5 67 1459 1

sln) = 05 <_> (1 “on "otz T T4 +O(n4)) ’
51 143 1

s2(n) = n? < > ( 8n2 © 8n3 +O(n4)> ’

1/ 1 4633 112407 1
) = o5 ( 6) ( 14n " 39202 T 5agsa’ +O<n4)>

o = L 1" 812 45820

= T o T 2z T

1 T 1
) = 2 (1‘ AT +0(n4)>v
s¢(n) = L

Obviously, the first four solutions do not significantly contribute as they tend
to 0 very rapidly. Thus by taking into account s5(n) and sg(n) only, and com-
puting the asymptotic expansion to a higher order (e.g., 30), allows us to obtain
(at least) 100 correct digits of the limit.

Corollary 2. The LGF of the four-dimensional fcc lattice, evaluated at z = 1
18
P(1) = 1.10584379792120476018299547088585107443954623663875285836499,

and therefore the return probability is

R ~ 0.09571315417256289673531676490121018570070881963801735768774.
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Theorem 3. The lattice Green’s function of the five-dimensional face-centered
cubic lattice

P(Z)_i /” /” dky dky dk dky dks
-~ Jo o 1— % (coskycosks + cosky cosks + - -+ + cos ky cos ks)

satisfies the differential equation

16(z —5)(z — 1)(z + 5)%(2 + 10)(z + 15)(32 + 5)(156782° + 1447762°+
4497352* + 9336502% — 105337522 + 3465000z — 675000)2* P©) (2)+

8(z + 5)(30572102'2 + 974717342"" + 10485602852 + 39396637052 —
487814697528 — 8726547987527 — 3046238306252° — 2666279031255+
2548765156252% — 1289447109375z — 5035500000002+

1774828125000z — 354375000000) 23 P®) (2)+

10(272797202'3 + 923795772212 + 1172527684221 + 6843992154020+
1483137571252° — 3821343357752% — 335112577050027 — 7801785421250 —
37790113218752° — 77162987343752* — 3970234875000023+
339364687500022 + 23905125000000z — 5568750000000) 2% P4 (2)+
5(2558649602"% 4 789206054422 4 9274499563821 + 5248579860600+
13500590723252° — 4654405551002° — 1354552475650027 — 269182933200002° —
36499150593752° — 774980596250002* — 1901769600000002° +-
4053037500000022 + 45343125000000z — 13162500000000)2P3) (2)+
5(496679040213 4 1381998124822 + 1491866849342 + 810956145330210+
22873688234752% 4 16462260600752% — 828251545637527 — 619922876562520+
133678067437502° — 1109257364375002* — 13382505375000023+
4445786250000022 + 5055750000000z — 3240000000000) P (2)+
10(1670647682'% + 41438534402 + 406781305022 + 2096731191602+
6070213048258 4 6896432866507 — 1356617282502° + 371161748125025+
26644783218752* — 2121043081250023 — 726832687500022+
4816462500000z — 189000000000) P’ (z)+

30(75254402" + 163913184210 + 14435447102° + 692573931025+
1912338857527 + 2133623062525 + 364770068752° + 1879231656252 —
5556700000023 — 3468656250002 + 84037500000z + 27000000000) P( )

Proof. The proof is very analogous to that of Theorem [l| and is given in detail
in the supplementary material [11]. O

Remarkably enough, the indicial equation of the differential equation pre-
sented in Theorem is A5(A —1) and hence the ODE lacks MUM. For the same
reason it is not a Calabi-Yau differential equation.

Corollary 4. The LGF of the five-dimensional fec lattice, evaluated at z = 1
18

P(1) = 1.04885235135491485162956376369999275945402550465206640313845,
and therefore the return probability is
R ~ 0.04657695746384802419337442059480329107640239774632112930532.

Theorem 5. The lattice Green’s function of the six-dimensional face-centered
cubic lattice

P(2) 1 /7r /7r dky dko dks dks dks dkg
zZ) = — PN
7 /s o 1— 1%((:05/4:1 cos ko + cos kq cosk3+~~+cosk5cosk'6)
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satisfies a differential equation of order 8 and with polynomials coefficients of
degree 43. Its leading coefficient is

2%(2=3)(z = 1)(z+4)(z +5) (2 + 9)(z + 15)%(z + 24) (22 + 3)(22 + 15)
x(4z + 15)(7z + 60) poly(z)

where poly(z) stands for a certain irreducible polynomial of degree 25, and its
indicial equation is \(\ — 1)2. The full equation is too long to be printed here,
but can be found in [11).

Proof. The proof is very analogous to that of Theorem [l| and is given in detail
in the supplementary material [I1]. O

As in the five-dimensional fcc lattice, the differential equation of Theorem
lacks MUM and therefore is not Calabi-Yau.

Corollary 6. The LGF of the siz-dimensional fcc lattice, evaluated at z =1 is
P(1) = 1.02774910062749883985936367927396850209243990900114872425172,
and therefore the return probability is

R =~ 0.02699987828795612426936417542619638021612262676239501413843.

4 Outlook and Acknowledgements

While the calculations for Theorem [ and Theorem Bl are done in a few min-
utes respectively hours, it was a major effort of several days to compute the
certificates that prove Theorem [5} they are several hundred MegaBytes in size.
With the methods described in this paper and with the current hardware, it is
completely out of the question to attack the fcc lattice in seven dimensions. An
interesting question is whether the pattern that showed up in dimensions four
to six continues. This would suggest a differential equation of order 10 with
indicial equation A7(A — 1)3. But who knows?

For the three corollaries we computed the approximations for the return
probabilities with more than one hundred valid digits. But we have no clue
what their exact values are. Cyril Banderier evaluated these numbers up to
several thousand digits, but also he was unable to identify the closed forms. So
we leave these questions open, as a challenge for future research.

Anthony Guttmann aroused my interest in computing LGF's during his talk
at the 65th Séminaire Lotharingien de Combinatoire in Strobl, Austria. I would
like to thank him for his encouragement and advice. I am grateful to my col-
league Manuel Kauers for interesting discussions and for pointing me to the
trick of multi-step guessing.
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