Using Theorema in the Formalization of Theoretical Economics

Manfred Kerber1Colin Rowat2Wolfgang Windsteiger3University of BirminghamUniversität LinzComputer ScienceEconomicsRISC Hagenberg

¹www.cs.bham.ac.uk/~mmk ²www.socscistaff.bham.ac.uk/rowat ³www.risc.jku.at/home/wwindste

Overview

Motivation:

- Proofs in economics use typically undergraduate level proofs
- Proofs in economics are error prone (just as in other theoretical fields)
- Formalization should be achievable
- Automation (or minimization of user interactions) as goal

Overview

Motivation:

- Proofs in economics use typically undergraduate level proofs
- Proofs in economics are error prone (just as in other theoretical fields)
- Formalization should be achievable
- Automation (or minimization of user interactions) as goal

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ = ● ● ●

Outline

- Basic Theory
- Pseudo Algorithm
- Examples
- Two Lemmas and Theorema
- Summary

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}$, the following axioms can be defined. A power function π satisfies

WC if $C \subset C' \subseteq I$ then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X};$

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}$, the following axioms can be defined. A power function π satisfies

- WC if $C \subset C' \subseteq I$ then $\pi(C, \mathbf{x}) \leq \pi(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X};$
- WR if $y_i \ge x_i \forall i \in C \subseteq I$ then $\pi(C, \mathbf{y}) \ge \pi(C, \mathbf{x})$;

Power Function

 $X \equiv \{\{x_i\}_{i \in I} | x_i \ge 0, \sum_{i \in I} x_i = 1\}$, the following axioms can be defined. A power function π satisfies

WC	if $C \subset C' \subseteq I$ then π	$(C, \mathbf{x}) \leq \pi$	$(C', \mathbf{x}) \forall \mathbf{x} \in \mathcal{X};$
----	--	----------------------------	--

- WR if $y_i \ge x_i \forall i \in C \subseteq I$ then $\pi(C, \mathbf{y}) \ge \pi(C, \mathbf{x})$; and
- **SR** if $\emptyset \neq C \subseteq I$ and $y_i > x_i \forall i \in C$ then $\pi(C, y) > \pi(C, x)$.

Properties

Other important properties that power functions may have:

- AN if $\sigma : I \to I$ is a 1:1 onto function permuting the agent set, $i \in C \Leftrightarrow \sigma(i) \in C'$, and $x_i = x'_{\sigma(i)}$ then $\pi(C, \mathbf{x}) = \pi(C', \mathbf{x}')$.
- **CX** $\pi(C, \mathbf{x})$ is continuous in \mathbf{x} .
- **RE** if $i \notin C$ and $\pi(\{i\}, \mathbf{x}) > 0$ then $\pi(C \cup \{i\}, \mathbf{x}) > \pi(C, \mathbf{x})$.

Domination

Def_E An allocation y dominates an allocation x, written $y \in x$, iff $\pi(W, x) > \pi(L, x)$; where $W \equiv \{i | y_i > x_i\}$ and $L \equiv \{i | x_i > y_i\}$. W = win set & L lose set.

Def_D For $\mathcal{Y} \subset \mathcal{X}$, let $D(\mathcal{Y}) \equiv \{ \mathbf{x} \in \mathcal{X} | \exists \mathbf{y} \in \mathcal{Y} \text{ s.t. } \mathbf{y} \in \mathbf{x} \}$ be the dominion of \mathcal{Y} . $U(\mathcal{Y}) = \mathcal{X} \setminus D(\mathcal{Y})$, the set of allocations undominated by any allocation in \mathcal{Y} .

Core and stable set

- $\mathsf{Def}_{\mathcal{K}}$ The core, \mathcal{K} , is the set of undominated allocations, $U(\mathcal{X})$.
- $\mathsf{Def}_{\mathcal{S}}$ A set of allocations, $\mathcal{S} \subseteq \mathcal{X}$, is a stable set iff it satisfies
 - internal stability, $S \cap D(S) = \emptyset$ (IS)external stability, $S \cup D(S) = X$ (ES)

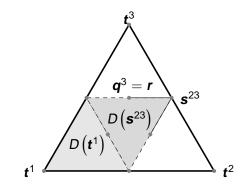
The conditions combine to yield $S = X \setminus D(S)$. The core necessarily belongs to any existing stable set.

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i\in C} x_i$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへぐ

Wealth Is Power



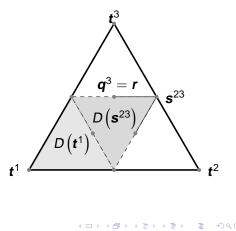
$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Stable Set:
$$S =$$

$$\begin{cases}
(0, 0, 1), (0, 1, 0), (1, 0, 0), \\
(0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0), \\
(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}), (\frac{1}{4}, \frac{1}{2}, \frac{1}{4}), (\frac{1}{2}, \frac{1}{4}, \frac{1}{4}),
\end{cases}$$



The stable set in n = 3 with AN, CX, and RE

```
if \pi(\{i\}, \mathbf{t}^i) \ge \pi(\{j, k\}, \mathbf{t}^i)
                                                        then
 1:
 2:
              S_0 = \mathcal{D}_0
 3:
              if M^i = \emptyset then
 4:
5:
                  return "no stable set exists"
              else
 6:
                  \mathcal{S}_1 = \mathcal{U}^2\left(\mathcal{S}_0\right) = \mathcal{S}_0 \cup \bigcup_{i=1}^3 \mathcal{S}^i
                  if S_1 \cup D(S_1) \neq X then

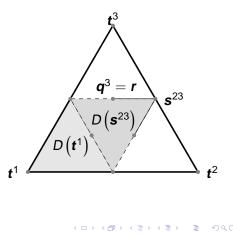
S = S_2 = U^2(S_1) = S_1 \cup P
 7:
 8:
 9:
                  else
10:
                      S = S_1
11:
                  end if
12:
              end if
13:
         else
14:
         \mathcal{S} = \mathcal{D}_1 \setminus \mathcal{D}_0
15:
         end if
16:
         return S
                                                                            イロト 不同 トイヨト イヨト
```

3

Wealth Is Power

$$\mathsf{WIP}\pi[C,x] := \sum_{i \in C} x_i$$

Stable Set: S = $\begin{cases}
(0,0,1), (0,1,0), (1,0,0), \\
(0,\frac{1}{2},\frac{1}{2}), (\frac{1}{2},0,\frac{1}{2}), (\frac{1}{2},\frac{1}{2},0), \\
(\frac{1}{4},\frac{1}{4},\frac{1}{2}), (\frac{1}{4},\frac{1}{2},\frac{1}{4}), (\frac{1}{2},\frac{1}{4},\frac{1}{4}),
\end{cases}$



Strength In Numbers with $\nu > 1$

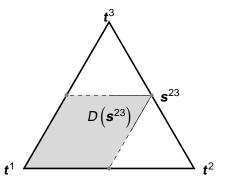
$$\mathsf{SIN}\pi_{v}[\boldsymbol{C},\boldsymbol{x}]:=\sum_{i\in \boldsymbol{C}}\left(x_{i}+v
ight)$$

with v > 1

Strength In Numbers with $\nu > 1$

$$\mathsf{SIN}\pi_{\nu}[C,x] := \sum_{i \in C} (x_i + \nu)$$

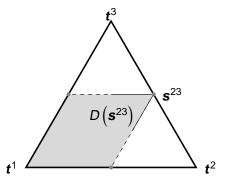
with v > 1



Strength In Numbers with $\nu > 1$

$$\mathsf{SIN}\pi_{\nu}[C,x] := \sum_{i \in C} (x_i + \nu)$$

with $\nu > 1$ Stable Set: $S = \{(0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0)\}$

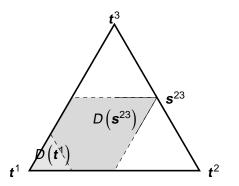


Strength In Numbers with $0 < \nu < 1$

$$SIN\pi_{\nu}[C, x] := \sum_{i \in C} (x_i + \nu)$$

with 0 < ν < 1

no stable set exists



Proof of a Lemma

(One Lemma of 14 lemmas, 12 theorems, and 4 corollaries)

Lemma When n = 3: 1. $\mathcal{K} = \emptyset$ implies $\mathbf{t}^i \in D(\mathbf{s}^{jk})$ for distinct $i, j, k \in I$. Proof.

As K = Ø, no agent can defend its holdings against both others, so that π({i}, tⁱ) < π({j, k}, tⁱ) for distinct i, j and k. As {j, k} prefers s^{jk} to tⁱ, this ensures that s^{jk} ⊱ tⁱ.

Summary (Part I)

The pseudo algorithm:

- Non-computational in several aspects
- Evaluation by a mixture of reasoning and computing. Can compute the stable set of WIP, SIN, assumed the corresponding lemmas are available.
- Plan: Extend the computational part, e.g., represent infinite set in a finite way. Use underlying Mathematica to compute solutions of equations.

Summary (Part II)

- Axiomatic approach in theoretical economics valuable (eliminate errors, even without full proof)
- Good field with non-trivial but not very deep mathematics.
- Formalisation in Theorema is easy and fast even for beginners.
- Automation at least partially possible. Reasoning requires more expert knowledge and work.
- Theorema offers mixture of reasoning and computation. Very useful for determining stable sets.