
Submitted to:
THedu’11

c© Wolfgang Schreiner
This work is licensed under the
Creative Commons Attribution License.

Computer-Assisted Program Reasoning Based on a
Relational Semantics of Programs∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University
Linz, Austria

Wolfgang.Schreiner@risc.jku.at

Extended Abstract

Most systems for program reasoning are based on calculi such as the Hoare Calculus or Dynamic
Logic [1] where we generate from a program specification and a program implementation (which is
annotated with additional meta-information such as loop invariants and termination terms) those condi-
tions whose verification implies that the implementation indeed meets the specification. The problem
is that by such an approach we gain little insight into the program before respectively independently of
the verification process. In particular, if the verification attempt is a priori doomed to fail because of er-
rors, inconsistencies, or weaknesses in the program’s specification, implementation, or meta-information
(which is initially the case in virtually all verification attempts), we will learn so only by unsuccessfully
struggling with the verification until some mental “click” occurs. This click occurs frequently very late,
because, in the heat of the struggle, it is usually hard to see whether the inability to perform a correctness
proof is due to an inadequate proving strategy or due to errors or inconsistencies in the program. Actu-
ally, it is usually the second factor that contributes most to the time spent and frustration experienced;
once we get the specification/implementation/meta-information correct, the verification is a compara-
tively small problem. We have frequently observed this fact in our own verification attempts as well as
in those performed by students of computer science and mathematics in courses on formal methods.

We therefore advocate an alternative approach where we insert between a program and its verification
conditions an additional layer, the denotation of the program [4] expressed in a declarative form. The
program (annotated with its meta-information) is translated into its denotation from which subsequently
the verification conditions are generated. However, even before (and independently of) any verification
attempt, one may investigate the denotation itself to get insight into the “semantic essence” of the pro-
gram, in particular to see whether the denotation indeed gives reason to believe that the program has the
expected behavior. Errors in the program and in the meta-information may thus be detected and fixed
prior to actually performing the formal verification.

More concretely, following the relational approach to program semantics [2], we model the effect of
a program (command) c as a binary relation [c] on program states which describes the possible pairs of
pre- and post-states of c. Such a relation can be also described in a declarative form by a logic formula fr

with denotation [fr]. Thus a formal calculus is devised to derive from a program c a judgment c : fr such
that [c]⊆ [fr]. For instance, we can derive

x=x+1 : var x = old x+1

∗Sponsored by the Austrian Science Fund (FWF) in the frame of the DK “Computational Mathematics” (W1214).

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

Figure 1: The RISC ProgramExplorer

where the logic variable old x refers to the value of the program variable x in the prestate of the command
and the logic variable var x refers to its value in the poststate. In this way, we can constrain the allowed
state transitions, i.e. handle the partial correctness of programs. To capture also total correctness, we
introduce the set of states 〈〈c〉〉 on which the execution of c must terminate (〈〈c〉〉 is a subset of the domain
of [c]). Such a set can be also described in a declarative form by a logic formula (a state condition) fc.
Thus we derive a judgment c ↓ fc such that [fc] ⊆ 〈〈c〉〉. In this fashion, the pair of formulas fr and fc

captures the semantic essence of c in a declarative form that is open for inspection and manipulation.
We have implemented this idea in a comprehensive form in the RISC ProgramExplorer1, a new

program reasoning environment for educational purposes which encompasses the previously developed
RISC ProofNavigator as an interactive proving assistant [5]. The RISC ProgramExplorer supports rea-
soning about programs written in a restricted form of Java (including support for control flow inter-
ruptions such as continue, break, return, and throw, static and dynamic methods, classes and a
restricted form of objects) and specified in the formula language of the RISC ProofNavigator (which
is derived from PVS [3]). The system is currently in beta state, a first release under the GNU Public
License will be available by July 2011 and will be subsequently used in regular courses. A screenshot of
the software is given in Figure 1; in the remainder of this abstract, we will first sketch the formalism on
which the RISC ProgramExplorer is based and then give an illustrative example.

For the purpose of this presentation, we use a simple command language without control flow inter-
ruptions and method calls; a command c can be formed according to the grammar

c ::= x = e | {var x; c} | {c1;c2} | if (e) then c | if (e) then c1 else c2 | while (e) f ,t c

1http://www.risc.jku.at/research/formal/software/ProgramExplorer

http://www.risc.jku.at/research/formal/software/ProgramExplorer

Wolfgang Schreiner 3

c : [f]xs
g,h x 6∈ xs

c : [f ∧ var x = old x]xs ∪ {x}
g,h

e'h t

x = e : [var x = t]{x}true,h

c : [f]xs
g,h

{var x; c} : [∃x : f]xs\x
g,∀x : h[x/old x]

c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

PRE(c2,h2) = h3

{c1;c2} : [∃ys : f1[ys/var xs]∧ f2[ys/old xs]]xs
g1∧g2,h1∧h3

e'h fe c1 : [f1]
xs
g1,h1

if (e) then c : [if fe then f1 else var xs = old xs]xs
g1,h∧ (fe⇒ h1)

e'h fe c1 : [f1]
xs
g1,h1

c2 : [f2]
xs
g2,h2

if (e) then c1 else c2 : [if fe then f1 else f2]
xs
g1∧g2,h∧ if fe then h1 else h2

e'h fe c : [fc]
xs
gc,hc

g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒
h[ys/old xs]∧ f [xs/old xs,zs/var xs]

while (e) f ,t c : [f ∧¬ fe[var xs/old xs]]xs
gc∧g,h∧ f [old xs/var xs]

Figure 2: The Transition Rules

x = e ↓true true
c ↓g f

{var x; c} ↓g ∀x : f
c1 ↓g1 f1 c2 ↓g2 f2 PRE(c2, f2) = f3

{c1;c2} ↓g1∧g2 f1∧ f3

e'h fe c ↓g f
if (e) then c ↓g fe ⇒ f

e'h fe c1 ↓g1 f1 c2 ↓g2 f2

if (e) then c1 else c2 ↓g1∧g2 if fe then f1 else f2

e'h fe c : [fc]
xs
gc,hc

c ↓gt ft
g≡ ∀xs,ys,zs : f [xs/old xs,ys/var xs]∧ fe[ys/old xs]∧ fc[ys/old xs,zs/var xs]⇒

gt [ys/old xs]∧ ft [ys/old xs]∧ let n = t[zs/old xs] in n ∈ N∧n < t[ys/old xs]
while (e) f ,t c ↓g t ∈ N

Figure 3: The Termination Rules

where x denotes a program variable, e denotes a program expression, and a while loop is annotated by
an invariant formula f and termination term t. As shown in Figures 2, 3, and 4 (where the terms old xs
and var xs refer to the sets of values of the program variables xs in the pre-/post-state), we can derive for
these commands the following kinds of judgments:

• c : [fr]
xs
g,h denotes the derivation of a state relation fr from command c together with the set of

program variables xs that may be modified by c. The derived relation is correct if the derived
state-independent condition g holds, and if the derived state condition h holds on the pre-state of
c. The rationale for g is is to capture state-independent conditions such as the correctness of loop
invariants; the purpose of h is to capture statement preconditions that prevent e.g. arithmetic over-
flows. These side conditions have to be proved; they are separated from the transition relation fr

to make the core of the relation better understandable.

• c ↓gc fc denotes the derivation of a state condition (termination condition) fc from c; the derived
condition is correct, if the state-independent condition gc holds. The purpose of this side condition

4 Computer-Assisted Program Reasoning Based on a Relational Semantics of Programs

c : [f]xs
g,h

PRE(c, fq) = ∀xs : f [xs/var xs]⇒ fq[xs/old xs]

c : [f]xs
g,h

POST(c, fp) = ∃xs : fp[xs/old xs]∧ f [xs/old xs,old xs/var xs]

Figure 4: The Pre-/Postcondition Rules

is to capture that the value of a loop’s termination term does not decrease forever.

• PRE(c, fq) = fp and POST(c, fp) = fq denote derivations that compute from a command c and
a condition fq on the post-state of c a corresponding condition fp on the pre-state, respectively
from c and pre-condition fp the post-condition fq. The corresponding rules in Figure 4 show that
these conditions can be computed directly from the transition relation of c.

The derivations make use of additional judgments e ' fe f and e ' fe t which translate a boolean-valued
program expression e into a logic formula f and an expression e of any other type into a term t, provided
that the state in which e is evaluated satisfies the condition fe (the rules for these judgments are omitted).
Formally, the derivations satisfy the following soundness constraints.
Theorem 1 (Soundness) For all c ∈ Command, fr, fc, fp, fq,g,h ∈ Formula,xs ∈ P(Variable), the fol-
lowing statements hold:

1. If we can derive the judgment c : [fr]
xs
g,h, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([c](s,s′)⇒ [fr](s,s′)∧∀x ∈ Variable\xs : [x](s) = [x](s′)).

2. If we can (in addition to c : [fr]
xs
g,h) derive the judgment c ↓gc fc, then we have for all s ∈ Store

[g]∧ [gc]∧ [h](s)⇒ ([fc](s)⇒ 〈〈c〉〉(s)).

3. If we can (in addition to c : [fr]
xs
g,h) also derive the judgment PRE(c, fq) = fp or the judgment

POST(c, fp) = fq, then we have for all s,s′ ∈ Store

[g]∧ [h](s)⇒ ([fp](s)∧ [fr](s,s′)⇒ [fq](s′)).

The semantics [f](s,s′) of a transition relation f is determined over a pair of states s,s′ (and a logic
environment, which is omitted for clarity); the semantics of state condition g is defined as [g](s)⇔∀s′ :
[g](s,s′) and the semantics of a state independent-condition h is defined as [h]⇔∀s,s′ : [h](s,s′).

As an example, take the following method fac computing the factorial of a natural number n (the
specification term VALUE@NEXT denotes the return value of fac):

public static int fac(int n) /*@
requires OLD n >= 0 AND factorial(OLD n) <= Base.MAX_INT;
ensures VALUE@NEXT = factorial(OLD n); @*/ {
int i=1; int p=1;
while (i <= n) /*@

invariant OLD n >= 0 AND factorial(OLD n) <= Base.MAX_INT
AND 1 <= VAR i AND VAR i <= OLD n+1 AND VAR p = factorial(VAR i-1);

decreases OLD n - OLD i + 1; @*/ {
p = p*i; i = i+1;

}
return p;

}

Wolfgang Schreiner 5

Based on the calculus above, the RISC Program Explorer translates the while loop to the following
formulas (and also generates tasks for the verification of the various side conditions):

Here the core of the transition relation is the formula var i = old n+1∧var p = factorial(var i−1) while
the termination condition is old n−old i+1 ≥ 0. Based on this translation, the body of the method fac
is translated to

Here the core of the transition relation is ∃i : i = old n+ 1∧ value@next = factorial(i− 1) which can
be further simplified to fr :⇔ value@next = factorial(old n); the termination condition can be further
simplified to fc :⇔ old n ≥ 0 (work is going on to improve the automatic simplification). Both fr and
fc represent the semantic essence of fac from which the correctness of the method according to its
specification is quite self-evident even before the formal proof is started. More realistic examples seem to
indicate that from the construction and simplification of the semantic essence also the further verifications
become substantially clearer and perhaps even technically simpler.

References
[1] Bernhard Beckert, Reiner Hähnle & Peter H. Schmitt, editors (2007): Verification of Object-Oriented Soft-

ware: The KeY Approach. Lecture Notes in Computer Science 4334, Springer-Verlag. http://www.
springer.com/computer/ai/book/978-3-540-68977-5.

[2] Leslie Lamport (2002): Specifying Systems: The TLA+ Language and Tools for Hardware and Software
Engineers. Addison-Wesley. http://research.microsoft.com/users/lamport/tla/book.html.

[3] S. Owre, J. M. Rushby & N. Shankar (1992): PVS: A Prototype Verification System. In Deepak Kapur, editor:
11th International Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence 607,
Springer, Saratoga, NY, June 14–18, pp. 748–752. http://www.csl.sri.com/papers/cade92-pvs.

[4] David A. Schmidt (1986): Denotational Semantics – A Methodology for Language Development. Allyn and
Bacon, Boston, MA. http://people.cis.ksu.edu/~schmidt/text/densem.html.

[5] Wolfgang Schreiner (2008): The RISC ProofNavigator: A Proving Assistant for Program Verification in the
Classroom. Formal Aspects of Computing doi:10.1007/s00165-008-0069-4.

http://www.springer.com/computer/ai/book/978-3-540-68977-5
http://www.springer.com/computer/ai/book/978-3-540-68977-5
http://research.microsoft.com/users/lamport/tla/book.html
http://www.csl.sri.com/papers/cade92-pvs
http://people.cis.ksu.edu/~schmidt/text/densem.html
http://dx.doi.org/10.1007/s00165-008-0069-4

