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Abstract—We report on a symbolic-numeric algorithm for
computing the Alexander polynomial of each singularity of a
plane complex algebraic curve defined by a polynomial with
coefficients of limited accuracy, i.e. the coefficients are both
exact and inexact data. We base the algorithm on combinatorial
methods from knot theory which we combine with computational
geometry algorithms in order to compute efficient and accurate
results. Nonetheless the problem we are dealing with is ill-posed,
in the sense that tiny perturbations in the coefficients of the
defining polynomial cause huge errors in the computed results.

I. INTRODUCTION

Plane complex algebraic curves play an important role in
mathematical topics such as number theory, complex analysis
or algebraic topology as discussed in [1]. For our study, we
consider plane complex algebraic curves defined by polyno-
mials whose coefficients are both exact data (i.e. integer or
rational numbers) and inexact data (i.e. numerical values) as
in [2]. In this context, when we refer to numerical values we
mean indetermination of a given order with respect to compu-
tational operations. For instance, an inexact data represented
by the numerical value 1.976 is interpreted as having attached
an indetermination of order 10−3, which means that the last
digit is uncertain. In this setting, we are interested in the type
of the singularities of the plane complex algebraic curve and in
the way in which the type of these singularities changes when
one slightly varies the coefficients of the polynomial. For this
purpose, we compute the algebraic link of each singularity.
From the algebraic link we compute the Alexander polynomial
of each singularity. From the Alexander polynomial we may
compute other information about the plane complex algebraic
curve: the delta-invariant of each singularity and the genus of
the plane complex algebraic curve.

In this paper, we give a precise symbolic-numeric algorithm
for computing the Alexander polynomial of each singularity
of a plane complex algebraic curve. We base the algorithm
on computational geometry algorithms performed on a graph
data structure [3], on combinatorial methods from knot theory
[4], and on specific results concerning the singular points of
complex hypersurfaces [5] and the Alexander polynomials
of algebraic links [6], [7]. The results computed with this

symbolic-numeric algorithm are interpreted in the frame of
approximate algebraic computation, as described in [8], [9].
This interpretation has the advantage of ensuring that the
computed results continuously depend on the input data.

In Section II we describe the mathematics required for
computing the Alexander polynomial of the singularity of
a plane complex algebraic curve. In Section III we discuss
the ill-posedness of the problem, and we present a strategy
called regularization which we use in order to handle this ill-
posedness. In Section IV we give the algorithm for computing
the Alexander polynomial of each singularity of a plane
complex algebraic curve. In addition, we describe the library
that contains the implementation of this algorithm, and present
an example performed with the library. We end with giving
the conclusion and future directions of research in Section V.

II. MATHEMATICAL DEFINITION OF THE ALEXANDER
POLYNOMIAL

A. Plane Complex Algebraic Curves and Their Singularities

In this subsection, following [10], [11], [12], we define the
objects of our study, i.e. the plane complex algebraic curves:

Definition 1: Let C to be the field of complex numbers,
and A2(C) = {(x, y) ∈ C2} the affine plane over C. Let
f(x, y) ∈ C[x, y] to be an irreducible polynomial in x and
y with coefficients in C of degree m. The set of zeroes
of the polynomial f(x, y) denoted with C = {(x, y) ∈
A2(C)|f(x, y) = 0} is called the (affine) plane complex
algebraic curve of degree m defined by f(x, y).

In particular, we are interested in a special type of points
of each plane complex algebraic curve, i.e the singular points,
that we define as follows:

Definition 2: Let C be a plane complex algebraic curve of
degree m defined by the irreducible polynomial f(x, y) ∈
C[x, y]. The set of singular points (or simply singularities) of
C is defined as Sing(C) = {(x0, y0) ∈ A2(C)|f(x0, y0) =
∂f(x, y)
∂x

(x0, y0) =
∂f(x, y)
∂y

(x0, y0) = 0}.
Example 1: We consider C the plane complex algebraic

curve defined by f(x, y) = x2 − y5 ∈ C[x, y], i.e. C =
{(x, y) ∈ C2|x2−y5 = 0}. Based on Definition 2, we compute



Sing(C) by solving the following overdeterminate system of
polynomial equations in C2:

f(x0, y0) = x2
0 − y5

0 = 0

∂f(x, y)
∂x

(x0, y0) = 2x0 = 0

∂f(x, y)
∂y

(x0, y0) = 5y4
0 = 0

(1)

We obtain Sing(C) = {(0, 0)}.

B. The Link of a Plane Curve Singularity

In this subsection, we define several notions that are re-
quired for introducing the link of a plane curve singularity.
Firstly, we define the knots (links):

Definition 3: A knot is a piecewise linear or a differentiable
simple closed curve in the 3-dimensional space R3. A link is
a finite union of disjoint knots.

We add that the knots that make up a link are called the
components of the link, and thus a knot is a link with one
component.

Secondly, we define the stereographic projection in R3 as
a certain mapping that projects a sphere onto a plane. It is
constructed as in Figure 1: we take a sphere; we draw a line
from the north pole N of the sphere to a point P̂ in the equator
plane to intersect the sphere at a point P . The stereographic
projection of P̂ is P . In fact, the stereographic projection gives
an explicit homeomorphism from the unit sphere minus the
north pole to the Euclidean plane:

Definition 4: Two subsets U ⊂ Rk, V ⊂ Rn are topologi-
cally equivalent or homeomorphic if and only if there exists a
bijective function ϕ : U → V such that both ϕ and its inverse
are continuous. In this case, ϕ is called an homeomorphism.

More generally, the stereographic projection may be applied
to a n-sphere Sn in Rn+1:

x, ξ

y, η

z, ζ

N

P̂

S

P
β

φ

a

Fig. 1. Stereographic projection (generated with PGF/TikZ Latex packages
by T. M. Trzeciak)

Definition 5: Consider a n-sphere
Sn = {(x1, x2, ..., xn+1) ⊂ Rn+1|x2

1 + x2
2 + ...+ x2

n+1 = 1}
in Rn+1, and Q(0, 0, 0, ..., 1) ∈ Sn the north point of the
n-sphere. If H is a hyperplane in Rn+1 not containing Q,
then the stereographic projection of the point P ∈ Sn \ Q
is the point P

′
of the intersection of the line QP with

H . The stereographic projection is a homeomorphism from
Sn \Q ⊂ Rn+1 → Rn.

We now define the link of a plane curve singularity:
Definition 6: Let C = {(x, y) ∈ C2|f(x, y) = 0} be a

plane complex algebraic curve defined by f(x, y) ∈ C[x, y]
with an isolated singularity in the origin (0, 0) ∈ C2, i.e. there
is no other singularity on a sufficiently small neighborhood of
(0, 0). Let Sε = {(x, y) ∈ C2|x2 + y2 = ε2} be the sphere
centered in the origin of a sufficiently small radius ε ∈ R∗+.
Consider X = C∩Sε ⊂ C2 ∼= R4, and π(ε,N) the stereographic
projection of the sphere Sε in R4 from the north pole N(0, ε)
of the sphere Sε, which does not belong to the curve C. Then
π(ε,N)(X) ⊂ R3, i.e. the image of X through the stereographic
projection, is called the link of the singularity (0, 0).

We define the equivalence of two links in the following way:
Definition 7: We say that two links are equivalent if there

exists an orientation-preserving homeomorphism on R3 that
maps one link onto the other. This equivalence is called
(ambient) isotopy.

We introduce a certain type of links, i.e. the algebraic links:

Definition 8: A link is called algebraic if it is equivalent to
the link of a plane curve singularity.

Remark 1: Under the same assumptions from Definition 6
and considering S1 the unit circle, and | · | the absolute value
function, Milnor fibration theorem states that the mapping

φ : Sε \ X → S1, φ(x, y) =
f(x, y)
|f(x, y)|

is a fibration, i.e. the

complement Sε \X is a union of smooth surfaces, each being
the preimage of one point.

Example 2: In Figure 2, we see the algebraic link and the
Milnor fibration of the singularity (0, 0) of the plane complex
algebraic curve C defined by f(x, y) = x2 − y5 ∈ C[x, y].

(a) Algebraic link of (0, 0) (b) Milnor fibration of (0, 0)

Fig. 2. Output of the singularity (0, 0) of f(x, y) = x2−y5 produced with
GENOM3CK, see Section IV-B for more information



The equivalence class of the link of the singularity deter-
mines the homeomorphism class of the singularity, by the
following theorem:

Theorem 1: (Milnor[5]) Let V ⊂ Cn+1 be a hypersurface
in Cn+1, i.e. an algebraic variety defined by a single poly-
nomial. Assume ~0 ∈ V and ~0 is an isolated singularity; Sε
is the sphere centered in ~0 and of radius ε; and Dε is the
disk centered in ~0 of radius ε. Then, for sufficiently small ε,
L = Sε ∩ V is a (2n − 1)-dimensional nonsingular set and
Dε ∩ V is homeomorphic to the cone over L.

C. The Alexander Polynomial of an Algebraic Link

In this subsection, we define the Alexander polynomial of an
algebraic link. Firstly we need to introduce some preliminary
notions from knot theory. From now on, we consider only
piecewise linear algebraic links. When we work with knots,
we work with their projection in the 2-dimensional space:

Definition 9: A regular projection is a linear projection for
which no three points on the knot project to the same point,
and no vertex projects to the same point as any other point on
the knot. A crossing point is an image of two knot points of
such a regular projection from R3 to R2. Then:

1) A (link) diagram is the image under regular projection,
together with the information on each crossing point
telling which branch goes over and which goes under.
Thus we speak about overcrossings and undercrossings.

2) A diagram together with an arbitrary orientation of each
knot in the link is called an oriented diagram.

We define the elements of a diagram as follows:
Definition 10: 1) A crossing is called lefthanded (denoted

with −1) if the underpass traffic goes from left to right or
it is called righthanded (denoted with +1) if the underpass
traffic goes from right to left.

2) An arc is the part of a diagram between two undercross-
ings (Figure 3). Whether lefthanded or righthanded, each
crossing is determined by three arcs and we denote the
overgoing arc with i, and the undergoing arcs with j and k
(Figure 4). The number of arcs in a link diagram is equal
to the number of crossings in the same link diagram.

The main problem in knot theory is to decide whether two
different diagrams represent the same link or not, i.e. whether
two links are equivalent or not. The difficult problem in knot
theory is to show that two links are different up to (ambient)
isotopy. In order to show that two links are not equivalent, we
use the notion of link invariant defined in the following way:

Definition 11: A link invariant is a function from link
diagrams to some discrete set (Z or Z[t]) which is unchanged
when we replace the link by an equivalent one.

For our purpose, we know that the Alexander polynomial
is a complete invariant for algebraic links, i.e. it distinguishes
between all the algebraic links ([13]). We compute the Alexan-
der polynomial ∆L of an algebraic link L in several stages
as follows: from D(L), the diagram of the algebraic link we
compute LM(L), the labeling matrix of L; from LM(L) we
compute PM(L), the prealexander matrix of L; and from
PM(L) we compute ∆L.

Fig. 3. Oriented counterclockwise diagram of the cinquefoil algebraic knot
x2 − y5 with 8 arcs, 8 lefthanded crossings (produced with 3D-XplorMath-J
Applet). We denote the crossings from the upperleft to the lowerright corner
with {c0, c1, c2, c3} and the crossings from the lowerleft to the upperright
corner with {c4, c5, c6, c7}.
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Fig. 4. Types of crossings: lefthanded (-1) and righthanded(+1).

Definition 12: Let D(L) be an oriented link diagram with
r components and p crossings xq : q ∈ {0, ..., p − 1}. We
denote the arcs of D(L) with the labels {0, ..., p − 1} and
separately the crossings of D(L) with {0, ..., p−1}. We denote
the labeling matrix of D(L) with LM(L) ∈ M(p, 4,Z). We
define LM(L) = (bql)q,l with q ∈ {0, ..., p−1}, l ∈ {1, ..., 4}
row by row for each crossing xq as follows:
• at bq1 store the type of the crossing xq (+1 or − 1);
• at bq2 store the label of the arc i of xq in D(L);
• at bq3 store the label of the arc j of xq in D(L);
• at bq4 store the label of the arc k of xq in D(L).
Definition 13: Let D(L) be an oriented link diagram with

r components and p crossings xq : q ∈ {0, ..., p − 1}. We
denote the arcs and the crossings of D(L) as in Definition 12.
We consider LM(L) the labeling matrix of D(L) as in
Definition 12. We denote the prealexander matrix of L with
PM(L) ∈M(p, p,Z[t0, t1, ..., tr−1]). We define PM(L) row
by row for each crossing xq depending on LM(L). For xq we
consider the variable ts, where s ∈ {0, ..., r − 1} is the s-th
knot component of D(L), which contains the overgoing arc
that determines the crossing xq . Then:
• if xq is righthanded, i.e. bq1 = +1 in LM(L) then at

position bq2 of PM(L) store the label 1− ts, at position
bq3 store −1 and at position bq4 store ts;

• if xq is lefthanded, i.e. bq1 = −1 in LM(L) then at



position bq2 of PM(L) store the label 1− ts, at position
bq3 store ts and at position bq4 store −1;

• if two or all of the positions bq2, bq3, bq4 have the same
value, then store the sum of the corresponding labels at
the corresponding position. All other entries of the matrix
are 0.

We define the Alexander polynomial of D(L) depending on
the number of knot components in L:

Definition 14: Let D(L) be an oriented link diagram with
r components and p crossings, LM(L) be its labeling matrix
as in Definition 12 and PM(L) be its prealexander matrix as
in Definition 13.

1) Univariate case, ([14]). The univariate Alexander poly-
nomial ∆L(t0) ∈ Z[t±1

0 ] is the normalized polynomial
computed as the determinant of any (p − 1) × (p − 1)
minor of the prealexander matrix of D(L). A normalized
polynomial is a polynomial in which the term of the
lowest degree is a positive constant.

2) Multivariate case, ([7]). The multivariate Alexander poly-
nomial ∆L(t0, ..., tr−1) ∈ Z[t±1

0 , ..., t±1
r−1] is the nor-

malized polynomial computed as the greatest common
divisor of all the (p− 1)× (p− 1) minor determinants of
the prealexander matrix of D(L).

Example 3: We compute ∆L for the cinquefoil algebraic
knot from Figure 3. We denote the arcs with {0, ..., 7}. Then:

LM(L) =



type labeli labelj labelk
c0 −1 0 7 1
c1 −1 1 4 3
c2 −1 0 5 6
c3 −1 1 2 0
c4 −1 0 3 2
c5 −1 1 0 5
c6 −1 0 1 4
c7 −1 1 6 7



PM(L) =



labeli labelj labelk
c0 0 7 1
−1 1− t0 t0 −1
c1 1 4 3
−1 1− t0 t0 −1
c2 0 5 6
−1 1− t0 t0 −1
... ... ... ...
c7 1 6 7
−1 1− t0 −1 t0


=

=



0 1 2 3 4 5 6 7
1− t0 −1 0 0 0 0 0 t0

0 1− t0 0 −1 t0 0 0 0
1− t0 0 0 0 0 t0 −1 0
−1 1− t0 t0 0 0 0 0 0

1− t0 0 −1 t0 0 0 0 0
t0 1− t0 0 0 0 −1 0 0

1− t0 t0 0 0 −1 0 0 0
0 1− t0 0 0 0 0 t0 −1



det
(

Minor77
(
PM(L)

))
= −t50 + t40 − t30 + t20 − t0

∆L(t0) = t40 − t30 + t20 − t0 + 1

D. Relation with the Genus

As an application, we may compute the genus of a plane
complex algebraic curve in terms of the Alexander polynomial
of its singularities:

Definition 15: Let C be a plane complex algebraic curve
of degree m in A2(C), and C∗ the corresponding projective
plane algebraic curve in P2(C) defined as in [11]. We denote
with Sing(C∗) the set of singularities of C∗. The genus of C
is defined as:

genus(C) =
(m− 1)(m− 2)

2
−

∑
s∈Sing(C∗)

δs,

with genus(C) ∈ Z, and where δs ∈ N denotes the delta-
invariant of the singularity s.

We notice that the computation of the genus reduces to the
computation of the delta-invariant of each singularity, which
we define in terms of the Alexander polynomial defined in
Subsection II-C:

Definition 16: (based on Milnor[5]) Let ∆L(t0, . . . , tr−1)
be the Alexander polynomial of the link of the isolated
singularity s = (0, 0) of a plane complex algebraic link. Let
r be the number of variables in ∆L and ρ the degree of ∆L.
If r = 1 then we define δs =

ρ

2
, otherwise δs =

ρ+ r

2
.

III. REGULARIZATION TECHNIQUES FOR DEALING WITH
ILL-POSEDNESS OF THE PROBLEM

In this subsection, we explain the notion of an ill-posed
problem and we present a regularization method for dealing
with such a problem. In particular, we apply these notions to
the problem we solve, i.e. the computation of the Alexander
polynomial of a plane curve singularity.

Firstly, we introduce basic notions from approximate alge-
braic computation following [15], [16], which we use for our
problem. Approximate algebraic computation is a new promis-
ing and challenging field of mathematics, that developed in the
recent years with important achievements such as for instance
in [17], [18], [19].

The objects of approximate algebraic computation are poly-
nomials with coefficients of limited accuracy, i.e. the coef-
ficients may be exact data (integer or rational numbers) or
inexact data (numerical values). In the polynomial f(x, y) =
x3 − 1.865y2 − y3, for 1.865 we associate a tolerance σ
of 10−3 which means that the last digit is uncertain. When
we apply exact computation on classical algebraic problems
defined in terms of polynomials with coefficients of limited
accuracy, we observe that tiny perturbations in the coefficients
produce huge errors in the solution. This is the case in classical
algorithms such as: the Euclidean algorithm for computing
the greatest common divisor of polynomials, root computation
of polynomials, factorization of polynomials, Groebner bases
computation, etc. These algorithms (or rather the problem
specifications addressed by them) are ill-posed in the sense



of Hadamard, which means that the solution does not depend
continuously on the input data, i.e. the solution is not stable
under small changes of the input data. A major goal of
approximate algebraic computation is to deal with this kind
of ill-posed problems. In particular, the computation of the
Alexander polynomial of each singularity of a plane complex
algebraic curve, is an ill-posed problem in the sense of
Hadamard discussed here.

A method called regularization has been introduced to solve
ill-posed problems, that makes it possible to construct numeri-
cal methods that approximate solutions of ill-posed problems,
which are stable under small changes of the input data.
We adopt such a regularization method for the computation
of the Alexander polynomial of a plane curve singularity,
following [9]. In the rest of this subsection, we describe this
regularization method.

We denote D the set of all squarefree polynomials in x and y
with complex coefficients of degree m ∈ N such that the sum
of squares of absolute values of the coefficients is 1. This is
not a restriction because we are only interested in the zero sets
of these polynomials, and this does not change if we multiply
each polynomial by a scalar. The set D is a metric space by the
Euclidean distance of coefficient vectors, denoted with || − ||.
We denote P = {Z[x0]∪Z[x0, x1]∪ ...∪Z[x0, ..., xi]∪ ...} the
set of all normalized Alexander polynomials either in the x0

variable, or in the x0, x1 variables, or in x0, x1, ...xi sequence
of variables with i ∈ N, etc.

We consider the function: E : D → P, f 7→ E(f). For
the image of E we use the notation I = {E(f))|f ∈ D}. We
consider E as a function for computing the exact algorithm
for the Alexander polynomial of a plane curve singularity. We
notice that the function E is discontinuous. We consider the
partial function R : D × R+ → I, (f, ε) 7→ Rε(f). For
f ∈ D, we say that the function f : R≥0 → D, δ 7→ fδ is a
perturbation of f if and only if ||fδ−f || < δ, for all δ ∈ R≥0.

We say that Rε is a regularization for E : D → I if and only
if for any perturbation function f , the following properties are
fulfilled:

∀f ∈ D lim
ε→0

Rε(f) = E(f), (2)

∀f ∈ D ∀fδ ∈ D lim
δ→0

Rε(δ)(fδ) = E(f), (3)

for some function ε(−), which is independent of f .
We call (2) the convergence property for exact data, and (3)

the convergence property for noisy data, where the parameter
δ is called the error (or the noise) in the input data. The
numerical parameter ε is called the regularization parameter
of the function Rε.

In the following, we introduce the Milnor number depending
on the Alexander polynomial of the singularity s of a plane
complex algebraic curve, and on the algebraic link L of s: if L
has one component, then the Milnor number equals the degree
of the Alexander polynomial; otherwise (i.e. L has more than
one component), the Milnor number equals the degree of the
Alexander polynomial plus 1. The Milnor number measures
the degeneracy of the singularity s of the plane complex

algebraic curve. Thus, on D we consider the partial order <
induced by the Milnor number: ∀p, q ∈ D, p < q if and only
if the Milnor number of p is less than the Milnor number of q.
The partial order induced on D by the Milnor number makes
the exact function E for computing the Alexander polynomial
an upper semicontinuous function based on the result proved
in [20] according to which: the Milnor number is an upper
semicontinuous function of the coefficients of the defining
polynomial of the plane complex algebraic curve.

Under these assumptions, we consider Aε : D×R+ → I as
the symbolic numeric algorithm for computing the Alexander
polynomial of the singularity s of a plane complex alge-
braic curve C defined by the polynomial f(x, y) ∈ C[x, y],
constructed using the notions from Section II. We consider
the parameter ε to be the radius of the sphere Sε which
we intersect with the zero set of f(x, y), as described in
Subsection II-B. We study whether A is a regularization for
the exact function E : D → I , as previously explained. The
convergence property (2) for exact data holds for A , based
on Theorem 1. The partial function A is defined for all (f, ε)
such that the intersection of the zero set of f(x, y) with the
sphere Sε in C2 is nonsingular. The domain of definition of
the partial function A denoted with U is open and dense in
D × R≥0, and A is constant on each connected component
of U (in other words A is continuous).

We believe that the following “working hypothesis” is true,
i.e. if E is an (upper) semicontinuous function from a compact
set into a discrete partially ordered set, and A is a partially
continuous function defined on an open subset of D × R≥0

which satisfies the convergence property (2) for exact data,
then A is a regularization of E, i.e. A satisfies also the
convergence property (3) for noisy data. A similar statement
can be found in [9], proposition 3.4. For our study, we
considered the exact upper semicontinuous function for the
computation of the Alexander polynomial to be defined as
E : D → I . We notice that the set D is not compact, but it is
possible to restrict the function E to compact subsets of D. If
we assume this “working hypothesis” true, then it follows that
the algorithm Aε, which we construct using the notions from
Section II, is a regularization for the Alexander polynomial.
We present this algorithm thoroughly in Subsection IV-A.

IV. ALGORITHM AND IMPLEMENTATION

A. Description of the Algorithm

In this subsection we describe the algorithm for computing
the Alexander polynomial of the singularities of a plane
complex algebraic curve, constructed using the notions from
Section II.

Remark 2: Once the Alexander polynomial of a plane curve
singularity is known, the computation of the delta-invariant
and the genus are not anymore subject to numerical errors,
because we use discrete combinatorial algorithms combined
with robust computational geometry algorithms for their com-
putation. The Alexander polynomial itself is determined by
the topology of the algebraic link. The computation of the
topology of the link is unstable under tiny perturbations. Thus,



we need to analyze the numerical behavior of the algebraic
link under tiny perturbations. This information is captured
by the Alexander polynomial, which is a complete invariant
for algebraic links, i.e. different algebraic links have different
Alexander polynomials.

For a plane complex algebraic curve C defined by the
squarefree complex polynomial f(x, y) ∈ C[x, y], for a point
p ∈ C2, and for ε ∈ R≥0, we define the curve L(C,p,ε)
as the stereographic projection of the intersection of C with
the sphere Sε(p) of radius ε and origin p. If L(C,p,ε) is
a link, then we define the ε-Alexander polynomial of C
at p as the Alexander polynomial of L(C,p,ε). We give the
algorithm for this computation, denoted in the following with
ALEXPOLY(f, C, ε).

Remark 3: If ε is sufficiently small, then L(C,p,ε) will be
a link and the ε-Alexander polynomial will be the Alexander
polynomial of the singularity of C at p.

Algorithm 1 Alexander polynomial of the singularities of a
plane algebraic curve ALEXPOLY(f, C, ε)
Input: f(x, y) ∈ C[x, y] a complex squarefree polynomial
C = {(x, y) ∈ C2|f(x, y) = 0} a plane algebraic curve
ε ∈ R∗+ a positive real number
Output: ∆L(t0, ..., tr−1) the ε-Alexander polynomial of each
numerical singularity of C.

1) Compute numeric Sing(C), the singularities of C, by
solving system (1) with subdivision methods from [21];

2) For each singularity s0 = (x0, y0) ∈ Sing(C) do:
a) Translate (x0, y0) in s = (0, 0) by a change of coor-

dinates, i.e. C = {(x, y) ∈ C2|f(x+ x0, y + y0) = 0}.
b) Compute symbolic-numeric L, the link of the singu-

larity s = (0, 0), with the algorithm LINK(f, C, s, ε).
c) Compute symbolic-numeric:

- D(L), the diagram of L,
- r, the number of components of D(L),
- p, the crossings of D(L),
with computational geometry and combinatorial algo-
rithms from [22].

d) Compute symbolic LM(L), the labeling matrix of
D(L), with Definition 12.

e) Compute symbolic PM(L), the prealexander matrix
of D(L), with Definition 13.

f) If r = 1 then:
i) Compute M , any (p−1)×(p−1) minor of PM(L);

ii) Compute D, the determinant of the minor M ;
iii) Return ∆L(t0) = Normalize(D);

g) If r ≥ 2 then:
i) Compute all the (p−1)×(p−1) minors of PM(L);

ii) Compute G, the greatest common divisor of all the
computed minors in g).i);

iii) Return ∆L(t0, ...tr−1) = Normalize(G).

We describe the algorithm LINK(f, C, s, ε) for computing
the algebraic link L of the singularity s of the plane complex

algebraic curve C defined by the squarefree complex polyno-
mial f(x, y) ∈ C2. The parameter ε denotes the radius of
the sphere Sε ⊂ C2 which we intersect with the zero set of
f(x, y), as described in Subsection II-B:

Algorithm 2 Link of a plane curve singularity s = (0, 0)
LINK(f, C, s, ε)
Input: f(x, y) ∈ C[x, y] a complex squarefree polynomial
C = {(x, y) ∈ C2|f(x, y) = 0} a plane algebraic curve
s = (0, 0) a numerical singularity of C
ε ∈ R∗+ a positive real number
Output: G, H ∈ R[u, v, w]
where the common zero set of G,H equals L(C,p,ε).

1) Substitute the variables x = a+ ib, y = c+ id:

f(x, y)⇔ f(a, b, c, d) = R(a, b, c, d) + iI(a, b, c, d)

where R, I ∈ R[a, b, c, d].
2) Intersect the plane complex algebraic curve:

C = {(a, b, c, d)|R(a, b, c, d) = I(a, b, c, d) = 0}

with an isolated singularity in the origin (0, 0, 0, 0), with
the sphere centered in the origin and of small radius ε:

Sε = {(a, b, c, d)|a2 + b2 + c2 + d2 − ε2 = 0} .

3) Obtain X = C ∩ Sε ⊂ R4;
4) Consider a point N(0, 0, 0, ε) ∈ Sε \ C;
5) Project X with the generalized stereographic projection:

π(ε,N) : Sε \ {P} ⊂ R4 → R3 ,

(a, b, c, d)→ (u, v, w) = ( a
ε−d ,

b
ε−d ,

c
ε−d ) .

6) Compute the inverse:

π−1
(ε,N) : R3 → S3 \ {P}

(u, v, w)→ (a, b, c, d) = (2uε
n , 2vε

n ,
2wε
n , −ε+u

2ε+v2ε+w2ε
n )

where n = 1 + u2 + v2 + w2 .
7) Compute π(ε,N)(X) using π−1

(ε,N) and finding G,H:

π(ε,N)(X) =
{

(u, v, w)| G := R( 2uε
n , 2vε

n ,
2wε
n , mn ) = 0

H := I( 2uε
n , 2vε

n ,
2wε
n , mn ) = 0

}
where m = −ε+ u2ε+ v2ε+ w2ε.

8) Return π(ε,N)(X) as computed in step 6.

We notice that after clearing out the denominators G,H ∈
R[u, v, w]. Their common set of zeroes in R3 is equal to
π(ε,N)(X) the differentiable algebraic link of the singularity
(0, 0). In fact, π(ε,N)(X) is an implicit algebraic curve in R3

with no singularities, given as the intersection of two implicit
algebraic surfaces S1, S2 in R3 with defining polynomials
G,H. The surfaces S1, S2 appear in the Milnor fibration
of R3 \ π(ε,N)(X) over Sε. Using the library GENOM3CK
implemented in Axel, we compute a piecewise linear approx-
imation of this differentiable algebraic link. For an example,



see Figure 2.

B. Implementation of the Algorithm

Algorithm 1 and Algorithm 2 described in Subsection IV-A
are implemented in the library GENOM3CK, a library we
originally developed for computing the genus of a plane
complex algebraic curve using knot theory. Together with its
main functionality to compute the genus, the library computes
other topological and algebraic invariants of each singular-
ity of the plane complex algebraic curve. GENOM3CK is
implemented in the free algebraic geometric modeler Axel
[23], [24] (written in C++ and using Qt Script for Appli-
cations), and in the free computer algebra system Math-
emagix [25]. Axel is a new system developed at INRIA-
Sophia Antipolis, which provides for our purposes unique
algebraic tools and visualization techniques to manipulate
implicit algebraic curves and surfaces. Axel uses also libraries
from the free computer algebra system Mathemagix [25],
for instance a library for computing the singularities of a
plane complex algebraic curve. The power of the Axel system
comes from the fact that it allows its extension into ”sub-
programs” with new functionalities that are called plugins.
We implement the proposed symbolic-numeric algorithms into
one of Axel’s plugins, which was further on transformed into
a library. More information on the library is available at:
http://people.ricam.oeaw.ac.at/m.hodorog/software.html.

Example 4: In Figure 5, we visualize the output of the
library on the input plane complex algebraic curve C defined
by f(x, y) = x2 − y5 for ε = 1.0 . The library computes:
(i) the set of all distinct singularities both in the affine and
in the projective space by using the subdivision method from
Mathemagix. In this case, the set contains two singularities
Sing(C) = {s1 = (−1.77636e − 14, 0), s2 = (0, 0)}; (ii) the
algebraic link of each singularity; (iii) information on the
diagram of each algebraic link; (iv) the Milnor fibration of
each singularity, i.e. the implicitly defined algebraic surfaces
from the 3-dimensional space that define as their intersection
the algebraic link. This operation is selected and displayed in
Figure 5; (v) the Alexander polynomial of each singularity,
i.e. ∆(s1) = x4

0 − x3
0 + x2

0 − x0 + 1,∆(s2) = x8
0 − x7

0 +
x5

0 − x4
0 + x3

0 − x2
0 + x0 − 1, and the delta-invariant of each

singularity, i.e. δ(s1) = 2, δ(s2) = 4; (vi) the genus of C, i.e.
genus(C) = 0; (vii) and the computational time needed for
the symbolic-numeric algorithms.

Remark 4: The test experiments performed with the library
GENOM3CK indicate that the algorithm is a regularization
for the Alexander polynomial as discussed in Section III. The
precise proof for this statement is under construction.

V. CONCLUSION

We presented a symbolic-numeric algorithm for computing
the Alexander polynomial of each singularity of a plane
complex algebraic curve, that we completely and successfully
automatized in the GENOM3CK library. Together with its
main functionality to compute the Alexander polynomial of
each singularity of a plane complex algebraic curve, the

Fig. 5. GENOM3CK on the input curve defined by F (x, y) = x2 − y5

GENOM3CK library offers tools for computational operations
in algebraic topology and geometry (i.e. algebraic link of
each singularity of the plane algebraic curve, delta-invariant
of each singularity of the plane algebraic curve, genus of
the plane complex algebraic curve), and for computational
operations in knot theory (i.e. information on the diagram of
each algebraic link). The library also allows us to analyze the
performance of the symbolic-numeric algorithm, that turns out
to be efficient. For symbolic input data, the symbolic-numeric
algorithm from the library computes certified and exact results.
For numeric input data, based on the tests performed with the
library GENOM3CK, the symbolic-numeric algorithm from
the library computes a regularization of the problem. Thus,
the library provides certified results for both symbolic and
numeric input data, due to the efficient combination between
the symbolic and numeric algorithms.
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