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Abstract This article reports several results on sparsity optimized basis functions
for hp-FEM on triangular and tetrahedral finite element meshes obtained within the
Special Research Program “Numerical and Symbolic Scientific Computing” and
within the Doctoral Program “Computational Mathematics” both supported by the
Austrian Science Fund FWF under the grants SFB FO13 and DK W1214, respec-
tively. We give an overview on the sparsity pattern for mass and stiffness matrix in
the spaces Ly, H', H(div) and H (curl). The construction relies on a tensor-product
based construction with properly weighted Jacobi polynomials.

1 Introduction

Finite element methods (FEM) are among to the most powerful tools for the ap-
proximate solution of elliptic boundary value problems of the form: Find u € V
such that

a(u,v)=F(v) WeV, (1)

where V is an infinite dimensional Sobolev space of functions on a bounded Lip-
schitz domain Q c R4, d = 2,3, a(+,-): VxV — R is an elliptic and bounded
bilinear form and F(-) : V — IR is a bounded linear functional. Examples for the
choice of a(-,-) and V are

1. the L case, where V = L,(2) and a(u,v) = [, uv,

2. the H' case, where V = H'(Q) and a(u,v) = [o Vu-Vv+uv,

3. the H(div) case, where V = H(div,Q) and a(u,v) = [(V-uV-v+u-v,

4. the H(curl) case, where V = H (curl,2) and a(u,v) = [ Vxu-Vxv+u-v,

where the space V coincides with {v € L,(£) : a(v,v) < eo}. For a general overview
of the involved spaces including their finite element approximation we refer to [48].
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In all examples, the computation of an approximate solution uy to u of (1)) requires
the solution of a linear system of algebraic equations

Au=f with o =aly; ), @)

where ¥ = [yq,...,yy] is a basis of a finite dimensional subspace Vy of V, see
e.g. [21, 26, 53]

In order to obtain a good approximation uy to u for a fixed space dimension
N of Vy, finite elements with higher polynomial degrees p, e.g. the p and hp-
version of the FEM, are preferred if the solution is piecewise smooth, see e.g.
42,156,158, 131 28l [7] and the references therein. The fast solution of @]) with an it-
erative solution method like the preconditioned conjugate gradient method requires
two main ingredients,

e a fast matrix vector multiplication <7 u,
e the choice of a good preconditioner in order to accelerate the iteration process.

Preconditioners based on domain decomposition methods (DD) for hp-FEM are
extensively investigated in the literature, see e.g. [33. 8, |51} 39, 140, 38, 2 411 15
121 144} [18, 146l [13] for the construction of DD-preconditioners and see [10, 49, 4,
27,129, 130L [11]] for extension operators which are required as one ingredient of the
DD-preconditioners. The matrix vector multiplication becomes fast if .o is a matrix
that has as many non-zero entries as possible, i.e., it is a sparse matrix. Since the
global stiffness matrix .27 in finite element methods is the result of assembling of
local stiffness matrices, it is sufficient to consider the matrices on the element level.
In this survey, we will summarize the choice of sparsity optimized basis functions
and the results for the above defined bilinear forms on triangular and tetrahedral
finite elements. The results and their proofs have been presented in [[19, (15 14} [16]],
see also [9} 134,157,132, 13, 154] for the construction of scalar- and vector-valued high-
order finite elements. For fast integration techniques we refer to [42] 136, 47]].

For proving the sparsity pattern of the various system matrices we use a symbolic
rewriting procedure to evaluate the integrals that determine the matrix entries ex-
plicitly. For this rewriting procedure several identities relating several orthogonal
polynomials are necessary. Over the past decades algorithms for proving and finding
such identities have been developed such as Zeilberger’s algorithm [61, 164, 163 65]]
or Chyzak’s approach [24,25,123]]. For a general overview on this type of algorithms
see, e.g., [S2].

The outline of this overview is as follows. Section [2] comprises several results about
Jacobi and integrated Jacobi polynomials which are crucial for the sparsity of the
system matrices. Some general basics for the definition of tensor product based
shape functions on simplicial finite elements are presented in section[3] The sections
include a summary of the definition of the basis functions and the sparsity results
for mass and main term in L,, H', H(V-), and H (curl), respectively. Section gives
a brief overview on the algorithm applied for symbolic computation of the matrix
entries.
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2 Properties of Jacobi polynomials with weight (1 —x)®

Sparsity optimization of high-order basis functions on simplices relies on using
Jacobi-type polynomials and their basic properties which will be introduced in this
section.
Forn>0,a,8 > —1andx e [—1,1] let

dn

(@B)/y _ (=1)" nta n
B = e (1 1 of e <(1_x) T+ +ﬁ) ©)

be the nth Jacobi polynomial with respect to the weight function (1 —x)%(1+ x)P.
The function P,Sa’ﬁ)(x) is a polynomial of degree n, i.e. P,ga’ﬁ)(x) e P,((—1,1)),
where P, (I) is the space of all polynomials of degree n on the interval /. In the
special case oo = B = 0, the functions P,£07°> (x) are called Legendre polynomials.
Mainly, we will use Jacobi polynomials with 3 = 0. For sake of simple notation we
therefore omit the second index in (3) and write p%(x) := pi*0 (x).
These polynomials are orthogonal with respect to the weight (1 —x)%, i.e. there
holds
! o _ o o o [0 2a+1
=0 P W) dr=pf5y, where pf =t @

This relation will be heavily used in computing the entries of the different mass and
stiffness matrices. Moreover for n > 1, let

pr = [ P wit 500 =1, )

be the nth integrated Jacobi polynomial. Obviously, p%(—1) = 0 for n > 1. Inte-
grated Legendre polynomials, by the orthogonality relation (@), vanish at both end-
points of the interval. Summarizing, one obtains

pX(—1)=0, 152(1):0 forn > 2. (6)

Factoring out these roots, integrated Jacobi polynomials (3) can be expressed in
terms of Jacobi polynomials (3) with modified weights, i.e.,

. 1+x _(0—

P = —=R% M, nzl, )
1—x?

pax) = 2n_2P,E£’21)(X), n>2. (8)

There are several further identities relating Jacobi polynomials p%(x) and integrated
Jacobi polynomials (3] that have been proven in [19], [14] and [13]]. These include
three term recurrences for fast evaluation as well as identities necessary for proving
the sparsity pattern of the mass and stiffness matrices below. We give a summary
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of all necessary identities in section |8} For more details on Jacobi polynomials we
refer the interested reader to the books of Abramowitz and Stegun [1]], Szeg6 [S9],
and Tricomi [60].

3 Preliminary definitions

We assume a conforming affine simplicial mesh. Although the basis functions are
defined on arbitrary simplices, the analysis of the basis functions can be performed
only on the reference elements 7" as defined in Figure |1} The sparsity result on
affine meshes then follows by the mapping principle. An arbitrary simplex can be
mapped by an affine transformation to these reference elements. We mention that
affine transformations guarantee that polynomials are mapped to polynomials of the
same degree. The basis functions will be defined by means of barycentric coordi-
nates A; that are functions depending on x,y (and z). For our reference triangle they
are given as

1—2x—y
4 )

14+2x—y
4 ’

1+y

)~l (ny) = )VZ(va) = and )1,3()67}1) = Ta

and for the reference tetrahedron they are defined as

1F4x—2y—z 14+2y—z 1+z
Mpy)=——0e—— Axy)=—7p—, and Al yz)=—-.
We mention that the barycentric coordinates add up to 1.
C=(0.1) D=(0,0,1)
E1=[B,C] FI=[AB,C]
E2=[C,A] F2=[A,C,D]
E3=[AB] F2=[B,C.D]
F4=[AB,D]
Ez E1
A=(-1,-1) E3 B=(1,-1) A=(-1,-1,-1) B=(1,-1,-1)

Fig. 1 Notation of the vertices and edges/faces on the reference element 7' for 2d and 3d.

By viewing the triangle (tetrahedron) as a collapsed quadrilateral (hexahedron)
as suggested by Dubiner [34] and Karniadakis, Sherwin [42], we can construct a
tensorial-type basis also for simplices. For this purpose, we need the Duffy transfor-
mation that maps the tensorial element to the simplicial element.



Sparsity optimized high order finite element functions on simplices 5

In 2 dimensions the Duffy transformation 2 mapping the unit square to the refer-
ence triangle is defined as

7:0=[-112— T .. x=3501-mn),

€))
(&,m) — (xy) y=n.
Using the inverse of the Duffy transformation, we can parameterize the triangle A
by
Eo 2 _ Aa(x,y) = A (x,y)
1=y A(y)+2i(x,y)’

Besides the Duffy transformation, polynomial basis functions which vanish on some
or all edges of the triangle are required. Therefore, we introduce several auxiliary
bubble functions, which are important for the definition of our basis functions. More
precisely, the authors introduce the edge based function

and M =y=22A3(x,y)— L.

A Aoy —Re [
g (ny) = ) (25722 ) (e + ) 10)

on the edge E = [e1, e2], running from vertex V,, to V,, and the bubbles

giley) = 0 (B2 ) u+2) and hyley)i= P32 —1), (D)

where the barycentric coordinates depend on x and y. Note that the functions in
and are polynomial functions of degrees i, i and j, respectively. Using (6),
one observes that the functions g£ as defined in (T0) vanish at the endpoints of the
edge E. In the same way, the functions g;(x,y) vanish at the edges E2 = [1,3] and
E3 =[2,3], whereas h;; vanishes at the edge E1 = [1,2].

In 3 dimensions the Duffy transformation mapping the unit cube to the reference
tetrahedron is defined as

A A

2:0=[-1,1]? T
M.8) — (x,y,2)

—~
o

X
with y =
Z

Using the inverse of the Duffy transformation we can parameterize the triangle A
by

£ A kyz)-Akixyg)
1=2y—z  A(xy2)+4i(x,y2)’

n= 2 _ Mg by - i)
-z 23(%,2) +A(x,y,2) + A1 (x,,2)”

C =I= 27L4(x,y,z) —1.

Here, the edge-based functions

A )Le _Afe i
uf(x,y,z) ~:p? (leTJrle;) (lel +lez) (12)
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are introduced on the edge E = [e],ez], running from vertex Ve, to V,,. The face
based functions

o Ap—2A i £2i
uf Z:P? (M) (Afz+)‘f1) J VZ' Z=p§ l()‘f3 _AfZ_lfl) (13)
2 T

are defined on the face F = [fi, f, f3] characterized by the vertices Vy,,Vy, and V,.
The functions

o (r—A i
u;(x,y,z) = p? (124»&1) (A'Z""A'l) 5

i 243 — (1 — A i 14
vij(x,y,2) == P? ! (31_(144)) (1—24), 14

and  wij(x,y,2) = ﬁ,%i+2j72(214 -1)

will be central in the definition of the interior bubble functions. Again, the barycen-
tric coordinates depend on x, y and z. For vector valued problems, the lowest-order
Nédélec function [50] corresponding to the edge E = [e},ez] and the lowest order
Raviart-Thomas function, [50} 20], corresponding to F = [fi, f2, f3], characterized
by the vertices Vy,,Vy, and Vy, are defined by

Qg := V2, Aey —Ae VA, and (15)
l/’(I)v = V’(gfl’fz’fé] = A Vg X VA, +Ap VA X VA + A5 VAg X VA, (16)

respectively.
The functions (T0)-(T4) and the choice of the weights for the Jacobi polynomials
are pivotal for obtaining the sparsity results in mass and stiffness matrices.

4 The L, orthogonal basis functions of Dubiner

These basis functions have been introduced by [34]], see also [42]]. Another possible
construction principle is based on Appell polynomials, [6} 122, |35].

Let A\ be a triangle with its baryzentrical coordinates A,,(x,y), m = 1,2,3. Instead
of @, we introduce the auxiliary functions

giey) = (B52) u+2) and igly) i= 3t (22— 1),
and define the L, orthogonal functions
Wij(x,y) = &i(x y)hij(x,y), 0<ij, i+ j<p.

We prove this orthogonality for the reference triangle given in Figure [T} The com-
putations are straight forward: after using the Duffy transformation the integrals
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can be evaluated by a mere application of the orthogonality relation for Jacobi
polynomials:

2x 2x 1—y\"™* .
0 0 Yy 2i+1 2k+1
/Tp, (1_y>pk<l_y>< 7 ) piT p; T (v) dx,y)

_ i+k+1 )

2 L=\ o 2i+1
:21'7“6%/4 5 pi (mp T () dn

25,85,
Qi+ D(i+j+1)

Now, let /Ay be a tetrahedron with its baryzentrical coordinates A, (x,y), m =
1,2,3,4. With the auxiliary functions

A —A .
iii(x,y,2) = p} (li-i-li) (A2 +A1),
) [ Pa—Pa— 2 .
5j(x,y,2) = p3 ! (W) (A + A2+ M),

- 2i4+2j+2
and Wip(x,3,2) = pp (A=A — A — As)
the basis functions read as
Ilfijk(x,y,Z) = ﬁi(xayaZ)ﬁij(xayaz)wijk(xayaz)a l+]+k < pvi,j»k > 0.

The evaluation of the Ly-inner product is completely analogous to the triangular
case. For the reference tetrahedron as defined in Figure[] the final result is

46;16 1 Okn
2i+1)(i+j+1)(2i+2j+2k+3)

/f‘/’ijk(%y)Z) Wimn (%,,2) d(x,y,2) = (

Also the sparsity results for the basis functions for H', H(div) and H(curl) are
proved by evaluation that proceeds by rewriting until the orthogonality relation
for Jacobi polynomials can be exploited. These computations, however, become
much more evolved as indicated in the sections below and ultimately this task is
handed over to an algorithm, see section @

5 Sparsity optimized H'-conforming basis functions

The construction of the basis functions in this section follows [[14}[15/[19]. Through-
out we assume a uniform polynomial degree p.
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In order to obtain H 1—conforming functions, the global basis functions have to be
globally continuous. In 2D, the functions are split into 3 different groups, the ver-
tex based functions, the edge bubble functions and the interior bubbles. In order
to guarantee a simple continuous extension to the neighboring element, the interior
bubbles are defined to vanish at all element edges, the edge bubbles vanish on two of
the three edges whereas the vertex functions are chosen as the usual hat functions.
In 3D, there additionally exist face bubble functions.

5.1 Sparse H'-conforming basis functions on the triangle

Using the integrated Jacobi polynomials (3), we define the shape functions on the
affine triangle A with baryzentrical coordinates A, (x,y), m = 1,2,3.

e The vertex functions are chosen as the usual linear hat functions

Wym(x,y) = An(x,y), m=1,23.

Let ¥? := [Wv.1, Wv2, W3] be the basis of the vertex functions.
e For each edge E = [ey, e;], running from vertex Ve, to V,,, we define

V’[el,ez],i(x?y) = g?(x’y)

with the integrated Legendre type functions (I0). By ¥, o] = [We, ety
we denote the basis of the edge bubble functions on the edge [e1,es]. ¥ =
[‘I’[Lz] 35 '11[3’1]] is the basis of all edge bubble functions.

e The interior bubbles are defined as

"I/l]('x7y) = gl(x7y)hlj(xay)a l+] SPalZ 27.] > 17 (17)

where the auxiliary bubble functions g; and ;; are given in (TT). Moreover, ¥? =
[l//,,]gf]gl denotes the basis of all interior bubbles.

Finally, let ¥y , = [‘I’VQ, 'Pbg, ‘I’Iz] be the set of all shape functions on A.
The interior block of the mass and stiffness matrix on the triangle /\; are denoted
by

21T 2] 5.2 i+j<pk+I<p

MII,S.,Vz = /As [!Pl} [!Pl } = [“i/;kl} k=201 , and (18)
21T 27 . 5,2 i+j<p;k+I<p

Kuows = [ V971 097) = [ai] (19)

respectively.

Theorem 5.1 Let M; v, be defined via (I8), then the matrix has € (p*) nonzero
matrix entries. More precisely, /J,szkl =0ifli—k|¢{0,2}or|i—k+j—1] >4
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Let Ky 5 v, be defined via (T9), then the matrix has O p2) nonzero matrix entries.
More precisely, afj’.;zkl =0ifli—k|>2o0r|i—k+j—1>2.

Proof. This sparsity result is proven by explicit evaluation of the matrix entries
using the algorithm described in section@ see also [[14}[15]. However, we will give
the interested reader a short impression of the proofs. After the affine linear mapping
of the element A\ to the reference element A it suffices to prove the results there.
We start with sketching the result for the mass matrix.

On the reference element 7', we have

2 _ [ o 2x 1—y iA2i71()A0 2x 1—y kA2k71()d( )
Kij = fPi I—y > p; )Pk —y N P y) d(x,y

by and (T7). With the substitution & = f—j‘y and 11 =y, cf. (O), the integral
simplifies to

i [ pen@a [ (1) A s man,

Using (33)) for a = 0, the integrated Legendre polynomials can be expressed as the
sum of two Legendre polynomials. The orthogonality relation implies that the
first integral is zero if |i — k| & {0,2}.

For i = k, we obtain

NG L=\
= (52) B s ) an

wit.h some constants ¢;. Now, relation (36) is applied for ﬁ?"’l(n) and [312"’1(1]).
This gives

N LO=n\ P 2i—1 2i—1 2i—1
B =c [ () @R ) eF )+ e ) an.

By the orthogonality relation (@), the term (p?"_1 (n)+ p?ijll (n)) is orthogonal to

2i—1
. . . . . 1-n
all polynomials of maximal degree j — 2 with respect to the weight (T) ,

2 . .
e.g., is orthogonal to (I_T") (plzl’1 (n)+ plz’:ll (n)) € P,. Therefore, /fti(z) =0 for

Jiil =
<2).l =0for |j—1| > 4. For k =i—2, one obtains

j—1>4. By symmetry, we obtain ,LALU;!

. (2) rr-n\ T o ais
'uij;ile :Ci_[l T Pj (n)pl (n) dn

Again, by and @), the result {1;;,;_»; = 0 for | j+2 — | > 4 follows.
For the stiffness matrix, the proof is similar. Starting point is the computation of the
gradient on the reference element, which is given by
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i—1
1— ADi—
. (35) (2) " o)
v 1—y i~1 ADi— Al 1— i i
Y, (123‘),) (T’ ) P70+ ) (%‘y) (Ty ) i)

With this closed form representation at hand the computations follow the same pat-
tern as outlined for the mass matrix.

Remark 5.2 The family of basis functions defined by the auxiliary functions

giley) =P (B ) i+ &) and hyj(xy) = pEo@Is = 1), Q0)

for 0 < a <4 have been considered in [15]. For a =1, the functions coincide with
the functions given in (T1). The sparsity optimal basis for H U for both mass and
stiffness matrix is given by the choice a = 0 which also yields the best condition
numbers for the system matrix.

The nonzero pattern obtained by Theorem[5.1]is displayed in Figure2|for the interior
basis functions obtained by with a =0 and a = 1. The best sparsity results
are obtained for a = 0 with a maximum of 9 nonzero entries per row for the element
stiffness matrix on the reference element A. Because of this change of the weights
in (20), the bandwidths of the nonzero blocks become larger for a = 1.

This nonzero pattern has a stencil like structure which makes it simpler to solve
systems with linear combinations of My, v, and Kj; ;. v, using sparse direct solvers
as the method of nested dissection, [37], embedded in a DD-preconditioner. This is
an important tool if static condensation is used in order to solve the system (2). We
refer the interested reader for a more detailed discussion to [[19]].

Besides the sparsity, also the condition numbers of the local matrices are important.
Figure [3| displays the diagonally preconditioned condition numbers of the stiffness
matrix IQH"VZ on the reference element T for several polynomial degrees. Nu-
merically the condition number grows at least as &(p?) for the functions with a = 0.
This is the best possible choice for interior bubbles in two space dimensions.

5.2 Sparse H'-conforming basis functions on the tetrahedron

The construction principle follows [[14].

e The vertex functions are defined as the usual hat functions, i.e.
Wv,m(xa}@Z):zfm(x,y,Z), m= 1727374"

Let ¥ = [Wy,]:_, denote the basis of the hat functions.
e With (I2), the edge bubbles are defined as

le1,¢2]

v (x,y) == uf (x,y), for2<i<p
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0 10 20 30 40 50 60 70 o 10 20 30 40 50 &0 70

[ 10 20 30 40 50 60 o 10 20 30 40 50 60 70
Fig. 2 Nonzero pattern for p = 14: mass matrix My; v, (above), stiffness matrix Kj;v, on T

(middle), stiffness matrix Kj; s v, on general element (below) for the interior bubbles based on the
functions (20) with a = 0 (left) and a = 1 (right).

for an edge E = [e],e;], running from vertex Ve, to V,,. We denote the basis of
all edge bubble functions by

= [ L B L )

e For each face F = [f1, f», 3], characterized by the vertices Vy,,Vy, and Vp,, the
face bubbles are defined as

vy 2) = ey ) vi(nyz), i>2,j>1i4j<p
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iy
o
~

N

Eigenvalues A
=]

0 2
10 10 10
polynomial degree p

Fig. 3 Maximal and reciprocals of the minimal eigenvalues for the stiffness matrix k”-,Vz (19) on
the reference element 7" for the basis functions based on 0) witha =0 and a = 1.

using the functions (T3). We denote the basis of all face bubble functions by

g | [L23] P [ 23T [ pan) TR T 2
FE\VYiio |, Y VY | Vi P
B i=2,j=1 ? i=2,j=1 B i=2,j=1 ’ i=2,j=1

e With the functions (T4), the interior bubbles read as

‘Vijk(X,)’aZ) = Mi(xay>z)vij(x7y7Z)Wijk(xay7z)a l+]+k S p7l 2 2aj7k Z 1.

Moreover, ‘1’13 = [l[/i jk] ggk;l';@l denotes the basis of the interior bubbles.
Let ¥ 5 = [¥, W2, W2, ] be the basis of all shape functions.
The interior block of the mass and stiffness matrix on the triangle /\; are denoted

by

y / T [ 3 }i+j+k§17;l+m+nSP d 1)
v, = | ¥ = |0 an
¥ = J, 1 T Hijicimn | 1.5 e
3 qiHikEplimin<p
K ——/ Vet V] = {as.i_ } 22
11,5,V As[ 71 V] et | et (22)

respectively.

Theorem 5.3 The inner block of the mass matrix My; s v, has in total O( p3) nonzero
matrix entries. More precisely, Wijimin =0 if i —1| > 2, [i—1+ j—m| >4 or|i—
I+j—m+k—n|>6.

The inner block of the stiffness matrix Ky s v, has in total O (p?) nonzero matrix
entries. More precisely, Wijmin =0 if |i—1| > 2, [i—=14+j—m|>3or|i—1+j—
m+k—n|>4.
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Proof. Evaluation of the matrix entries using the algorithm described in section [§]
see also [114,[15]).

Remark 5.4 In [l[5]], the auxiliary functions are defined in the more general form

A —A ;
ui(-x,y,Z) = ﬁ? ( 2 1> (AZ+AI)17

b+
i (Vg — (1A .
vij(x,3,2) == p; (W) (1—24), @3)
_ 2i2j—b

and Wijk(-xayvz) :_pk (22‘471)7

where the integers a and b satisfy 0 < a <4, a < b < 6. The interior bubbles coincide
with the functions given in [57)], see also [42l], if a = b = 0. To make this equiva-
lence obvious use the identities (7)) and ). This choice corresponds to the sparsity
optimal case for H' for both mass and stiffness matrix. In this case the results of
Theorem[5.3|reduce to |i—1| > 2, li—1+ j—m| >3 or|i—I+j—m+k—n| >4
for the mass matrix and |i —1| > 2, |i—{+j—m| >3 or|i—l+j—m+k—n|>2
for the stiffness matrix. The auxiliary polynomials used in this paper correspond to
settinga=1and b =2.

Again a stencil like structure for mass and stiffness matrix is obtained. However,
the elimination of the interior bubbles by static condensation with nested dissection
is much more expensive in the 3D case than in the 2D case. The computational
complexity is now &'(p®) flops in comparison to &(p*) flops in the two-dimensional
case.

Besides the sparsity, also the condition numbers of the local matrices are important.
Figure @ displays the condition numbers of the stiffness matrix I%II,V3 (22) on the
reference element 1" for several polynomial degrees and several choices of auxil-
iary functions (T4) and (23). Numerically, the condition number grows as least with

o(ph).

a2 / 10' 1
5 a=1,b=1 / el
107 |- 6~ a=1,b=0 g J
- a=0,b=2 -‘ . JOP
100 =0,b=1 » S 22 2
% 2-00-0 e . e 53
- - a-0,p=1 & % -3
10* ” A . ra e
TE -4 g S -
<, 4 & 2 < 4 %
10 e & _4—‘ ‘ *
/ -4 $ o *
"« ¥ ; Pt
10° P o 2 % ¥ *
s -% » »
| _‘44’ P
Wre &7 4
v o LS
Pt

P p

Fig. 4 Maximal (right) and minimal (left) eigenvalues for the diagonally preconditioned stiffness
matrix K7 v, 22) on the reference element 7" for different values of a and b in 23).
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6 Sparsity optimization of H(div)-conforming basis functions

The following construction of H(div)-conforming finite elements applies the ideas
on sparsity optimization on simplices of [19, |14} [15] to the general construction
principles of H (div)-conforming high-order fe bases developed in [62] and [55]. A
detailed description of both the 2 and 3 dimensional case can be found in [16]. In
the sequel, we only report the results for tetrahedra.

Let A denote an arbitrary non-degenerated simplex A, C R, its set of four vertices
by ¥ = {V1,V5,V3,V4}, V; € R3, and A1, A2, A3, A4 € P'(4y) its barycentric coordi-
nates. Global H(div) conformity requires normal continuity over element interfaces,
which can be easily achieved by using a face-interior-based high-order finite ele-
ment basis. The general construction follows [62} I55]]: The set of face-based shape
functions consists of low-order Raviart-Thomas shape functions and divergence-
free shape functions. The set of interior based shape functions are split into a set of
divergence-free fields (rotations) and a set of non-divergence-free completion func-
tions. Using the appropriately weighted Jacobi-type polynomials of Section [3] the
H (div)-conforming shape functions on the tetrahedron are defined as follows.

e For each face F = [f1, f», f3], characterized by the vertices Vy,,Vy, and Vy, we
construct the face based basis functions as follows. First, we choose the classi-
cal Raviart-Thomas function of order zero y/g (T6) and add the divergence-free
higher-order face based shape functions

vl =V x (o), 1<j<p,

vl =V x (Viuj viy) = =Vul x W, 2<i1 < jii+j<p+1

(24)

where we use the face-based Jacobi-type polynomials (I3) and the lowest-order
Nédélec function (T3) corresponding to the edge [fi, f2]. Let

Lo RN SR (25)

denote the row vector of low-order shape functions,
F1._ F1P Fitj<p+l
)= UWU} j=1’ [Wij]i:Z,jzl }

denote the row vector of the faced-based high-order shape functions of one fixed
face F', and
[ = [[P71) (92 [#7°] [ (26)

be the row vector of all face-based high-order shape functions.
e The cell-based basis functions are constructed in two types. First we define the
divergence-free shape functions by the rotations
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Y 03.2) 1=V x (91 (0,3,2) vaj (3.2 waj(.3:,2)).
Jik=1; j+k<p,

ll,l(/bk) (.X,y7Z) =Vx (Vui(xvyaz) V[j(X,y,Z) W,’jk(X,y7Z)),

i>2j,k>1i+j+k<p+2,

lVi(;}c)()Qy?Z) =VX (V(M,’(.X,)@Z) Vij(x,y,Z)) Wijk(x>yvz))u

i>22j,k>1i+j+k<p+2,
and complete the basis with the non-divergence free cell-based shape functions
~ 1,23
Wion0r02) == v Y (w3 ) wark(x,,2),
1<k<p-—1,

~1(l;'])<(xay7z) = (P(g]’Z](xava) X VWij(x7yaZ) sz(X,)@Z)’

k=15 j+k<p,

ii}i(;k)(xay7z) = Wijk(xvyﬁz) Vui(xayvz) X VVij(X,)%Z)a

i>22j,k>1Li+j+k<p+2,

where w(gl,z,s] (x,¥,2z) denotes the Raviart-Thomas function (I6) associated to the

bottom face [1,2,3] and (p(gl’z] is the Nédélec function (T3) associated to the edge
[1,2]. The auxiliary functions u;,v;; and w;; have been defined in (T4).

Finally, we denote the row vectors of the corresponding basis functions as

J+k<p

_ |y@
[%} - |:W1jk(x7yaz)i| j,k‘>1 ’

~ T i jth<p+2
[B] = | Vijk (x,y,z)_ 2kl ]
r (C) l+]+k§[7+2 .
- (¥ = |y (%, z)} , for the divergence-free parts, and
L i22,j.k,>1
~ [~(a 1p—1
- [qla} = I 1<0/)<(an,1)_ =1’
A —~(b) 1 J+k<p
- [lpb} - I 1jk(x7yvz)_ jﬁk,Zl ) and
~ " (c) i+ jTk<p+2 ) i
- [¥] = |y (xy, z)} for the non divergence-free polynomials.
LY i22,jk>1

The set of the interior shape functions is denoted by

(9] := [[®] W] with  [W]:= [[%] W] [¥]], ] = [[‘Pa] (%] [‘PA}-
e
Using 23), 26), (27), the complete set of low-order-face-cell-based shape func-
tions on the tetrahedron is written as

[W.) == [ [%0] [¥] [¥]]- (28)



16 S. Beuchler, V. Pillwein, J. Schoberl and S. Zaglmayr

Let
fr— . T .
st—/Ax[V ¥ [V-¥%.] 29)

be the element stiffness matrix with respect to the basis (28] and
M. = /A LANEA (30)

be the block of the interior bubbles of the mass matrix. The following orthogonality
results can be shown.

Theorem 6.1 Let the set [¥%.] of basis functions be defined in 28). Then, the fluxes
[V -] are Ly-orthogonal to [V - W.]. Moreover, the stiffness matrix Ks. (29) is
diagonal up to the 4 x 4 low-order block agiy ([F), [])-

The number of nonzero matrix entries per row in the matrix M ;. is bounded
by a constant independent of the polynomial degree p.

Proof. The first result can be proved by straightforward computation. For the mass
matrix, the assertion follows by evaluation of the matrix entries using the algorithm
described in section[8] see also [16].

Due to a construction based on the Jacobi type polynomials (T4), the nonzero pattern
of the matrix Mj; ;. in (30) has again a stencil like structure as the matrices My 5.v,
and K 5 v, in (1)), 22) for the H ! case. Also the growth of the condition number
is as 0(p*). However, the absolute numbers for a fixed polynomial degree p are
higher than for the H'! case.

The divergence of the inner basis functions vanishes for the first part and coincides
with the higher-order L,-optimal Dubiner basis functions for the second part. Hence,
the results for the element stiffness matrix K . are strongly related to the L, results
of Sectiond] Namely, K; . is diagonal up to the low-order block. The nonzero pattern
for mass and stiffness matrix is displayed in Figure 5| for p = 15.

Besides sparsity the appropriately chosen weights imply a tremendous improvement
in condition numbers of the system matrices (even for curved element geometries)
as reported in [16].

7 Sparsity optimized H (curl)-conforming basis functions

The sparsity results for H(curl)-conforming basis functions included in this section
will be presented in a forthcoming paper [17]]. Again, the general construction prin-
ciple follows [54]] and [62]. The sparsity optimization will be performed only for the
interior basis functions. Hence, in the sequel we restrict ourselves only to the def-
inition of interior functions, while the edge and face based functions can be taken
from [|54]].

The interior (cell-based) basis functions are constructed in two types. First we define
the curl-free shape functions by the gradients
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15: Above: Sparsity pattern of inner

block Mj; . of element mass (left, above) and element stiffness matrix K. (right, above) on reference

tetrahedron A. Below: Sparsity pattern of inner block Mjy ;..

stiffness matrix K. on a general affine tetrahedron A (right, below)

(b)

(pjjk (x7y7Z) = V(“i(x%z) Vij(xvyvz) Wijk(xay7z))7

i>2j,k> 104 j+k<p+1

and complete the basis with the non-curl free cell-based shape functions

where @

12

1

P\ (x.3.2) = 01" (3, vy Dw(x,,2),

Jk>1 j+k<p—1,

(p k(x »Z ) :Vui(xay:Z)Vij(xay7Z)Wijk(xayaZ)7
i>22;j,k>1i+j+k<p+1,

L) (x,3,2) 1= V (wi(x,y.2)vij (x.9.2)) wige (x.,2),

i>22j,k>1i+j+k<p+1,

of mass matrix (left, below) and

(€29

(32)

I is the Nédélec function (L5), and u;,v;; and w;j; are defined in (14).
Finally, we denote the row vectors of the corresponding basis functions as
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o (B = _¢i(jZ2 (x, y,z)} l:+j+'k§p+1 as the gradient fields, and
N : kggfvlf»kazl

o (@)= [o]

o 1= [0 o] " ana
~ M~ i+ j+k< 1

o (&= [dena]

as the non curl free functions. The set of interior basis functions is denoted by

[F7) = [[ @] [@2]] with  [P2] == [[@,] [By] [c] ] (33)

Finally, we introduce

Kosrx = /A V x W] T [V x W] and My = /A Fou] T [Fox] (34)

S

as the stiffness and mass matrix with respect to the interior bubbles (33)), respec-
tively.

Theorem 7.1 The matrices Ky« and My 1« (4) are sparse matrices having a
bounded number of nonzero entries per row. The total number of nonzero entries
grows as O(p).

Proof. The result follows from the construction principle of the basis functions in
@1), and Theorems[5.3|and[6.1] We refer the reader for a more detailed discus-
sion to [17].

8 Integration by rewriting

In this section we present the algorithm that is used to evaluate the matrix entries for
different spaces and choices of basis functions. As indicated earlier, the basic idea
is to apply a rewriting procedure to the given integrands that yields a reformulation
of the integrand as a linear combination of products of the form

(452) pewrseo.

These terms then can be evaluated directly by the Jacobi orthogonality relation (4).
Below we use the short-hand notation wq (x) = (1%") % for the weight function.

For the necessary rewriting steps several relations between Jacobi polynomials and
integrated polynomials are needed that have been proven in [19] 14} [15] and are

summarized in the next lemma.
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Lemma 8.1 Let p%(x) and p%(x) be the polynomials defined in (3) and (5). Then
for all n > 1 we have the relations

Pr() = (2n+i<n4f)?2)n+a)p3<x) T on afg)(zma)pgfl(x)
- (2n+ai(?)z;¢)+a—z)pg—Z(")’ az-1, G5
PR = 5 P )+ 2 (0 a>—1, (0
(= 1)p(x) = (1=x) pry (¥) +2p7 (%), a>1. (7
P = 5l )P ) i ()], a>-1 G8)

After decoupling the integrands by means of the Duffy transformation, the integrals
are evaluated in the order given by the dependencies of the parameters ¢. For each
of these univariate integrals the following algorithm is executed:

1. Collect integrands depending on the current integration variable,

2. For each integrand: Rewrite integrated Jacobi polynomials in terms of Jacobi
polynomials using (33), (36), or (37),

Collect integrands depending on the current integration variable,

For each integrand: Adjust Jacobi polynomials to appearing weight functions,
Collect integrands depending on the current integration variable,

For each integrand: Evaluate integrals using orthogonality relation (4).

kW

The two steps of the algorithm that need further explanations are steps 2 and 4.
Indeed, let us consider steps 2 and 4 in detail: which of the identities relating in-
tegrated Jacobi polynomials and Jacobi polynomials (33)- have to be used in
step 2 depends on the difference y— a of the parameters of p% (&) and of the weight
function wy({).

2. Rewrite wy({)py () in terms of Jacobi polynomials

(a) Y— o > 0: transform integrated Jacobi polynomials to Jacobi polynomials
with same parameter using (33).

(b) y— a = —1: transform integrated Jacobi polynomials to Jacobi polynomials
with parameter @ — 1 using (36)).
(¢) y— ot = —2: use the mixed relation to obtain

2

QRO = g (A QPHE) 4w (DPI(E)).

If none of the cases 2(a)-2(c) applies, the algorithms interrupts and returns the un-
evaluated integrand for further examination. Such an output can lead either to a
readjustment of the parameters of the basis functions, or to the discovery of a new
relation between Jacobi polynomials that needs to be added to the given rewrite
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rules. This finding of new, necessary identities can again be achieved with the assis-
tance of symbolic computation, e.g., by means of Koutschan’s package Holonomic-
Functions [435] or Kauers’ package SumCracker [43]].

Rewriting the Jacobi polynomials p®({) in terms of p}({) fitting to the appearing
weights wy({) in step 4, means lifting the polynomial parameter o using (38)) (y —
o) times. This transformation is performed recursively for each appearing Jacobi
polynomial.

4. Rewrite the Jacobi polynomials p%({) in terms of Jacobi polynomials fitting to
the appearing weights wy (&) (y — o > 0) by lifting the polynomial parameter o
using (38) (y— a)-times, i.e., written in explicit form we have

o _7_a_ [ 7—o\ (n+y—m)=2"pm o om y
p©O= L0 (7% ) g n= ey Dol (©)

where ak = a(a—1)-...-(a—k+1) denotes the falling factorial.

If y— o < 0 the algorithm interrupts. In this step of the algorithm polynomials down
to degree n — Y+ « are introduced. Hence this transformation is a costly one as it
increases the number of terms significantly.
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