
Implementing Design Patterns in AspectJ and

JavaMOP ∗

Gergely Kovásznai

Department of Information Technology

Eszterházy Károly College, Eger, Hungary

kovasz@aries.ektf.hu

December 20, 2010

Abstract

In this report, we primarily investigate what are the strengths of
aspect-oriented programming in implementing design patterns. Further-
more, we propose a higher-level specification layer by employing monitoring-
oriented programming (MOP). Since we develop a generic Java framework
for design pattern specification, we use AspectJ and JavaMOP . In this
report, we implement the Observer design pattern, for the sake of demon-
strating the usefulness of those tools. Furthermore, we show a case study
of using our generic framework.

Contents

1 Introduction 2

2 Aspect-Oriented Programming and AspectJ 2

2.1 Installing and Using AspectJ . 3

3 Monitoring-Oriented Programming and JavaMOP 4

3.1 Installing and Using JavaMOP 6

4 Our Generic Framework 7

5 The Observer Pattern 7

5.1 Interfaces . 8
5.2 Abstract Aspect . 9

5.2.1 Auxiliary Fields and Methods 9
5.2.2 Abstract Auxiliary Methods 9

∗Supported by the Austrian-Hungarian Intergovernmental S&T Cooperation Program
(TéT) under the contract AT-25/2008

1

5.2.3 Pointcuts . 10
5.2.4 Advice Actions . 11
5.2.5 Error Handlers . 12

5.3 JavaMOP Monitor . 13
5.3.1 Events . 13
5.3.2 Finite State Machine . 14

6 Conclusion 17

A Case Study for the Observer Framework 18

A.1 Classes . 18
A.2 Aspect . 19

A.2.1 Classes’ Parents . 20
A.2.2 Implementing Abstract Auxiliary Methods 20
A.2.3 Advice . 21

A.3 Main Method . 21

1 Introduction

Aspect-oriented programming seems an advantageous paradigm when one would
like to specify constraints on classes, and to make a software framework able
to check at runtime if those constraints are not violated. On the top of that,
another paradigm, monitoring-oriented programming is about handling the vi-
olation of constraints.

In this report, we investigate these two paradigms in connection with design
pattern specifications. We are about implementing generic design pattern frame-
works in Java, hence we investigate aspect-oriented and monitoring-oriented pro-
gramming tools for Java. In Section 2 and 3, the tools AspectJ and JavaMOP
are introduced.

In Section 4, we propose the general idea of our generic design pattern frame-
work. In Section 5, we demonstrate how to build such a framework for a given
pattern, namely for the Observer pattern. In Appendix A, a case study of using
our Observer pattern framework is introduced.

2 Aspect-Oriented Programming and AspectJ

As it is written in [2], “The basic premise of aspect-oriented programming is to
enable developers to express modular cross-cutting concerns in their software.
(. . .) A cross-cutting concern is behavior, and often data, that is used across
the scope of a piece of software.”

For a cross-cutting concern, an aspect is another term. In aspect-oriented
programming, aspects can be specified in a modular way. For this, three types
of constructs are used:

2

Join points: Specific points within an application of which the nature is depen-
dent on the tools being used. In AspectJ [4], which is an aspect-oriented
extension to Java, the following join points are supported, among others:

• join when a method is called

• join when a constructor is invoked

• join during object initialization

• join during static initializer execution

• join when a class’ field is referenced/assigned

• etc.

Pointcuts: Pointcuts are for declaring an interest in a joint point. They en-
capsulate the decision-making logic that is evaluated every time when a
joint point is encountered.

Advices: The code that is executed when a join point has been triggered.
Together with the advice, it is also specified when it is to be invoked in
the relation to the join point.

In Figure 1, it is illustrated what the relationship between the aforementioned
constructs is.

Figure 1: The relationship between join points, pointcuts, and advices.

2.1 Installing and Using AspectJ

Prerequisites. Java SE Development Kit (JDK) must be installed. We in-
stalled Java SE 6 Update 23. Similarly, Eclipse IDE for Java developers must
be downloaded and executed. We used Eclipse 3.6.1.

3

The most convenient way for using AspectJ is to install the AspectJ Devel-

opment Tools (AJDT) [5], which is an Eclipse platform aspect-oriented software
development with AspectJ. We used AJDT 2.1.1. for Eclipse 3.6.

To install AJDT, one must select the menu item “Install New Software. . . ”
in Eclipse, and then adding the AJDT zip archive as a new repository, as can be
seen in Figure 2. We recommend all AJDT tools but its source code installed.

Figure 2: Installing AJDT in Eclipse.

After this, one can create a new AspectJ project, as can be seen in Figure
3. When such a project has been created, one can add a new aspect to it, as
can be seen in Figure 4.

3 Monitoring-Oriented Programming and JavaMOP

Monitoring-oriented programming (MOP) is a “programming paradigm built
upon runtime verification intuitions and techniques, aiming at supporting reli-
able software development via monitoring and recovery. MOP takes monitoring
of system requirements as a fundamental software development principle, pro-
viding an extensible formal framework to combine implementation and specifi-
cation. The user of MOP specifies desired properties using definable formalisms.
Monitoring code is then automatically generated from properties and integrated
into the original program; the role of the monitoring code is to verify the runtime
behavior of the system against the specified properties. Traditional runtime ver-
ification approaches mainly focus on detecting violations. MOP goes one step
beyond that by allowing and encouraging the user to provide code to execute
when properties are violated or validated, which can be used not only to report

4

Figure 3: Creating a new AspectJ project in Eclipse.

but especially to recover from errors at runtime.” [6]
One of the several layers of the MOP framework contains so-called logic

plugins, which synthesize monitors in a programming language independent way,
e.g., as finite state machines (c.f., Section 5.3.2).

JavaMOP [7] is a MOP development tool for Java. Its specification processor
employs AspectJ for monitor integration. “In other words, JavaMOP translates
outputs of logic plugins into AspectJ code, which is then merged within the
original program by the AspectJ compiler.” JavaMOP currently supports 6
logic plugins:

• finite state machines (FSM)

• extended regular expressions (ERE)

• context-free grammars (CFG)

• past time linear temporal logic (PTLTL)

• future time linear temporal logic (FTLTL)

• past time linear temporal logic with calls and returns (PTCaRet)

5

Figure 4: Adding a new aspect to a project in Eclipse.

3.1 Installing and Using JavaMOP

Prerequisites. AspectJ [4] must be installed, since JavaMOP intends to use
the AspectJ compiler (ajc.exe). The installer is a JAR file which one can
execute by double-click. We installed AspectJ 1.6.10.

The JavaMOP installer (we used JavaMOP 2.1.2.) requires some modifica-
tions on environment variables:

• Add the JDK bin folder and the AspectJ bin folder to the PATH variable.

• Add AspectJ’s lib/aspectjrt.jar file to the CLASSPATH variable.

After installing JavaMOP, it is recommended to add JavaMOP’s bin folder to
the PATH variable, since the javamop compiler has to be executed from command
line. For example, having an observer.mop JavaMOP source file, one can
compile it by typing “javamop observer.mop”. The output of javamop is an
AspectJ source file, which should be added manually to your AspectJ project.
Let us note that JavaMOP’s lib/external/commons-collections-3.2.jar

library must be referenced from such projects.
Usually, the javamop compiler requires to increase default stack size. Hence,

one may need to modify the javamop script by using the -Xss java switch. For
instance, in order to compile the JavaMOP source written in Section 5.3, we
used the following javamop script:

java -cp "c:\javamop2.1\lib\javamop.jar;

c:\javamop2.1\lib\logicrepository.jar;

c:\javamop2.1\lib\plugins*.jar;

c:\javamop2.1\lib\mysql-connector-java-3.0.9-stable-bin.jar"

-Xss4096k

javamop.Main %*

6

Note that quite a big stack is necessary for even such a small JavaMOP project
as the one proposed in Section 5.3.

It is interesting that the JavaMOP installer installs only 3 logic plugins (from
all the 6 ones): FSM, ERE, and CFG. The other 3 plugins (e.g., PTLTL) do
not seem well-supported, not even on JavaMOP webpage.

4 Our Generic Framework

When implementing a specific design pattern which can be used in a generic way,
the following software components are needed to be implemented in advance:

Interfaces: Interfaces that correspond to roles in the given pattern. For exam-
ple, in the Observer pattern (c.f., Section 5), two roles are distinguished:
“subject” and “observer”.

Abstract aspects: They capture the common requirements to be checked for
each concrete application applying the given pattern. They also specify
the pointcuts and advice actions for MOP events.

MOP monitors: They capture the higher-level constraints for the given pat-
tern. A MOP code is abstract enough not to depend on concrete applica-
tions.

Given such a generic pattern, one can incorporate it in a concrete application,
by implementing further components:

Classes: They model the object types related to the application. Let us note
that any pattern-specific code can be eliminated from these classes by
moving it into the aspects.

Aspects: They inherit all requirements from the aforementioned abstract as-
pects. These concrete aspects are typically for

• assigning the roles (i.e., interfaces) to the classes;

• implementing all the abstract methods of the abstract aspects;

• extending the classes with auxiliary fields or methods, which are ac-
cessed by aspects;

• extending the abstract aspects with new pointcuts or advices.

5 The Observer Pattern

The Observer pattern is illustrated in Figure 5. There are two roles in this
pattern, “subject” and “observer”. Observers that have been enrolled by the
subject are to be notified whenever the state of the subject changes.

The framework we are going to propose is based on the one in [3]. However,
we have improved the idea by

7

Figure 5: Observer pattern.

• applying Java generics, in order to make the framework type-safe;

• transforming the fields and methods of the abstract aspect into auxiliary
fields/methods of the subject or the observers, for the sake of clearer
object-oriented model;

• moving all the pattern-specific constraints into the aspects, in order to
separate business logic from pattern-specific knowledge completely;

• moving all the possible pointcuts into the abstract aspect, in order to let
the concrete aspects inherit them;

• correcting an error.

Let us propose our Observer framework in the subsequent sections.

5.1 Interfaces

Since only two roles can be identified in the Observer pattern, two interfaces
are needed, Subject and Observer.

public interface Subject {

}

public interface Observer {

}

Note that no field or method is defined in these interfaces. They are really to
formalize roles, but not behavior.

8

5.2 Abstract Aspect

In our Observer framework, only one abstract aspect is needed. Its code con-
tains several elements: auxiliary fields and methods, abstract auxiliary methods,
pointcuts, advice actions, and error handlers.

5.2.1 Auxiliary Fields and Methods

In the following piece of code, the header of the abstract aspects can be seen,
together with auxiliary fields and methods:

public abstract aspect ObserverAspect {

private Set<Observer> Subject.observers;

public void Subject.attach(Observer o) {

observers.add(o);

o.update(this);

}

public void Subject.detach(Observer o) {

observers.remove(o);

}

public void Subject.notifyObs() {

for (Iterator<Observer> e = observers.iterator(); e.hasNext();) {

e.next().update(this);

}

}

private Set<Observer> Subject.updateCalls = new HashSet<Observer>();

private String Subject.recordedState;

The interface Subject is “extended” by three fields and three methods. Of
course, as a matter of fact, not the interface itself is extended, but each class
which implements this interface (and which is in fact not yet known at this point
of the development).

The field observers is to enroll the observer objects which are listening to
the changes of the subject. Note that the method notifyObs is to notify them
in the case of a change.

The fields updateCalls and recordedState play an important role in en-
suring the proper functioning of the pattern, as it will be detailed later.

5.2.2 Abstract Auxiliary Methods

Now, let us propose abstract auxiliary methods for Subject and Observer:

9

public abstract String Subject.getState();

public abstract String Observer.getState();

public abstract boolean Subject.StateModified(String previousState);

public abstract boolean Subject.StateConsistentWith(String observerState);

As it is discussed in [3], it is not clear in the Observer pattern when one can
say that the state of the subject has changed. Another question is when the
state of the subject and the state of one or more observers become inconsistent

with each other, and hence, when to notify the observers of the change of the
subject’s state.

To provide the greatest flexibility in our framework, we have to give the
opportunity for the developers to implement

• the Subject.StateModified(String previousState) method in order
to formalize if the current state of the subject (returned by Subject.getState())
is considered as changed as compared to its previous state;

• the Subject.StateConsistentWith(String observerState)method in
order to formalize if the current state of the subject is consistent with an
observer state.

This is why the aforementioned methods are abstract.
Let us note that the state of a subject or an observer is described as a string,

similarly as in [3]. Of course, a more reasonable solution could be proposed for
the same purpose.

One more abstract method has to be specified:

public abstract void Observer.update(Subject subject);

As it was already shown, this method is called by the Subject.notifyObs()

method.

5.2.3 Pointcuts

Several pointcuts have to be specified, as follows:

• One needs to capture when a subject has been enrolled, i.e., the construc-
tor of the subject has been executed.

protected pointcut subjectEnrollment(Subject subject):

this(subject) && execution(Subject+.new(..));

As can be seen, any constructor of any subclass of Subject is referenced
by this pointcut.

Let us note that this pointcut was faultily formalized in [3].

• For capturing the attaching of an observer to a subject, let us specify the
following pointcut:

10

protected pointcut attachObserver(Subject subject,

Observer observer):

target(subject) && call(void Subject.attach(Observer))

&& args(observer);

• For capturing the moment when a subject notifies all of its observers:

protected pointcut notify(Subject subject):

target(subject) && call(void Subject.notifyObs());

• For capturing the moment when an observer is updated by a subject:

protected pointcut update(Subject subject,

Observer observer):

target(observer) && call(void Observer.update(Subject))

&& args(subject);

• For capturing the call of any method of the subject:

protected pointcut subjectMethod(Subject subject):

target(subject) && call(public void Subject.*());

5.2.4 Advice Actions

By an advice action, we mean a method which captures an advice body. As can
be seen in Section 5.3.1, these methods are going to be invoked by JavaMOP
events.

• After a subject has been enrolled, its auxiliary fields have to be initiated.

void Subject.afterSubjectEnrollment() {

observers = new HashSet<Observer>();

recordedState = getState();

}

• As it was shown in 5.2.1, an observer gets automatically updated when it
is being attached to a subject. The following two advice actions are used
to check if that update has been completed.

void Subject.beforeAttachObserver(Observer observer) {

updateCalls.clear();

}

void Subject.afterAttachObserver(Observer observer) {

if (!updateCalls.contains(observer)) {

notifyError();

}

}

11

• Similary, the following two advice actions are used to check if all the ob-
servers were updated during the subject was about notifying them. Fur-
thermore, in the Subject.recordedState, the current state of the subject
gets stored, for further use.

void Subject.beforeNotify() {

updateCalls.clear();

recordedState = getState();

}

void Subject.afterNotify() {

if (!updateCalls.containsAll(observers))

notifyError();

}

• The first of the following two advice actions contributes to the check kept
by the aforementioned advice action. The second one verifies if the state
of the subject is consistent with the state of the observer after its update.

void Subject.beforeUpdate(Observer observer) {

updateCalls.add(observer);

}

void Subject.afterUpdate(Observer observer) {

if (!StateConsistentWith(observer.getState()))

updateError();

}

• After invoking any methods of the subject, it has to be checked if its
observers has been notified.

void Subject.afterSubjectMethod() {

if (StateModified(recordedState))

subjectMethodError();

}

5.2.5 Error Handlers

By an error handler, we mean a method which is invoked in case of a specific
error occurring. The main purpose of the error handlers is to detect their
invocation by JavaMOP events.

void Subject.notifyError() {

System.out.println("Some Observers not notified of change in Subject!");

}

12

void Subject.updateError() {

System.out.println("Observer not properly updated!");

}

void Subject.subjectMethodError() {

System.out.println("Observers not notified of change in Subject!");

}

5.3 JavaMOP Monitor

Besides the necessary events, the JavaMOP monitor in our Observer framework
contains the specification of a finite state machine.

5.3.1 Events

All the JavaMOP events connect the pointcuts and advice actions which have
been specified in the abstract aspect. Furthermore, a few events perform error
handling.

ObserverMonitor(Subject subject) {

event subjectEnrollment after(Subject subject) :

ObserverAspect.subjectEnrollment(subject) {

subject.afterSubjectEnrollment();

}

event beforeAttachObserver before(Subject subject, Observer observer) :

ObserverAspect.attachObserver(subject,observer) {

subject.beforeAttachObserver(observer);

}

event afterAttachObserver after(Subject subject, Observer observer) :

ObserverAspect.attachObserver(subject,observer) {

subject.afterAttachObserver(observer);

}

event beforeNotify before(Subject subject) :

ObserverAspect.notify(subject) {

subject.beforeNotify();

}

event notifyError before(Subject subject) :

target(subject) && call(void Subject.notifyError()) {

System.out.println("Error during notify");

}

event afterNotify after(Subject subject) :

13

ObserverAspect.notify(subject) {

subject.afterNotify();

}

event beforeUpdate before(Subject subject, Observer observer) :

ObserverAspect.update(subject, observer) {

subject.beforeUpdate(observer);

}

event updateError before(Subject subject) :

target(subject) && call(void Subject.updateError()) {

System.out.println("Error during update");

}

event afterUpdate after(Subject subject, Observer observer) :

ObserverAspect.update(subject, observer) {

subject.afterUpdate(observer);

}

event subjectMethod after(Subject subject) :

ObserverAspect.subjectMethod(subject) {

subject.afterSubjectMethod();

}

event subjectMethodError before(Subject subject) :

target(subject) && call(void Subject.subjectMethodError()) {

System.out.println("Error during executing a subject method");

}

5.3.2 Finite State Machine

Our finite state machine contains only seven states. Let us introduce them, one
after the other.

• start: In the initial state, the subject must be enrolled first, and then
the state changes to safe. Before that, any other events are prohibited
(unsafe).

fsm :

start [

default start

subjectEnrollment -> safe

beforeNotify -> unsafe

notifyError -> unsafe

afterNotify -> unsafe

beforeUpdate -> unsafe

14

updateError -> unsafe

afterUpdate -> unsafe

subjectMethod -> unsafe

subjectMethodError -> unsafe

]

• safe: In the state safe, it is permitted either to attach an observer, or
to notify the observers, or to invoke any method of the subject.

safe [

subjectEnrollment -> unsafe

beforeAttachObserver -> attachingObserver

afterAttachObserver -> unsafe

beforeNotify -> notify

notifyError -> unsafe

afterNotify -> unsafe

beforeUpdate -> unsafe

updateError -> unsafe

afterUpdate -> unsafe

subjectMethod -> safe

subjectMethodError -> unsafe

]

• attachingObserver: This state indicates that an observer is currently
being attached to the subject. Two events are permitted to occur in this
state:

– afterAttachObserver, i.e., the attaching of the observer can be fin-
ished;

– beforeUpdate, i.e., the observer can be updated before finishing its
attaching.

attachingObserver [

subjectEnrollment -> unsafe

beforeAttachObserver -> unsafe

afterAttachObserver -> safe

beforeNotify -> unsafe

notifyError -> unsafe

afterNotify -> unsafe

beforeUpdate -> updateDuringAttachingObserver

updateError -> unsafe

afterUpdate -> unsafe

subjectMethod -> unsafe

subjectMethodError -> unsafe

]

15

• notify: The subject is notifying all its observers. In this state, the
afterNotify and the updateDuringNotify events are permitted.

notify [

subjectEnrollment -> unsafe

beforeAttachObserver -> unsafe

afterAttachObserver -> unsafe

beforeNotify -> unsafe

notifyError -> unsafe

afterNotify -> safe

beforeUpdate -> updateDuringNotify

updateError -> unsafe

afterUpdate -> unsafe

subjectMethod -> unsafe

subjectMethodError -> unsafe

]

• updateDuringAttachingObserverand updateDuringNotify: An observer
is updated during it is being attached to a subject or being notified. In
these states, only the afterUpdate event is permitted.

updateDuringAttachingObserver [

subjectEnrollment -> unsafe

beforeAttachObserver -> unsafe

afterAttachObserver -> unsafe

beforeNotify -> unsafe

notifyError -> unsafe

afterNotify -> unsafe

beforeUpdate -> unsafe

updateError -> unsafe

afterUpdate -> attachingObserver

subjectMethod -> unsafe

subjectMethodError -> unsafe

]

updateDuringNotify [

subjectEnrollment -> unsafe

beforeAttachObserver -> unsafe

afterAttachObserver -> unsafe

beforeNotify -> unsafe

notifyError -> unsafe

afterNotify -> unsafe

beforeUpdate -> unsafe

updateError -> unsafe

afterUpdate -> notify

subjectMethod -> unsafe

subjectMethodError -> unsafe

]

16

• unsafe: This state announces that some pattern rule has been violated.

unsafe [

]

One may write some pieces of code to execute when a state occurs, e.g., to
display messages, as follows.

@start {

System.out.println("START");

}

@safe {

System.out.println("SAFE");

}

@attachingObserver {

System.out.println("ATTACHING OBSERVER");

}

@notify {

System.out.println("NOTIFY");

}

@updateDuringAttachingObserver {

System.out.println("UPDATE DURING ATTACHING OBSERVER");

}

@updateDuringNotify {

System.out.println("UPDATE DURING NOTIFY");

}

@fail {

System.out.println("FAIL");

Runtime.getRuntime().exit(1);

}

6 Conclusion

In the previous sections, we made some investigations on AspectJ and JavaMOP
in order to implement generic design pattern frameworks. We had to complete a
lot of installation steps and to solve several installation/configuration problems,
so you can also find our observations and advices in our report. Furthermore, we
showed how to incorporate pattern-specific constraints as aspects and monitors
in any Java program, through a comprehensive example.

17

A Case Study for the Observer Framework

Let us introduce a simple system that uses our Observer framework.

A.1 Classes

The instances of the Time class play the Subject role. A Time object records
the time passing, by letting its tickTock method be called.

public class Time {

protected int hour, minute, second;

public Time() {

}

public Time(int hour, int minute, int second) {

this.hour = hour;

this.minute = minute;

this.second = second;

}

public int getHour() {

// Return hour in 12-hour mode.

int h = hour % 12;

return h > 0 ? h : 12;

}

public int getMinute() {

return minute;

}

public int getSecond() {

return second;

}

public boolean isAm() {

return hour < 12;

}

public void tickTock() {

second++;

if (second == 60) {

minute++;

second = 0;

}

if (minute == 60) {

18

hour++;

minute = 0;

}

if (hour == 24)

hour = 0;

}

}

The instances of the Clock and LazyPerson classes play the Observer role,
since they are to observe how time passing.

class Clock {

protected int hour, minute;

protected boolean isAm;

public Clock(int hour, int minute, boolean isAm) {

this.hour = hour;

this.minute = minute;

this.isAm = isAm;

}

public int getHour() {

return hour;

}

public int getMinute() {

return minute;

}

public boolean isAm() {

return isAm;

}

}

class LazyPerson {

protected boolean isSleepy = true;

public boolean isSleepy() {

return isSleepy;

}

}

A.2 Aspect

As it can be seen, the aforementioned classes contain no pattern-specific code.
As it was proposed in Section 4, those codes are to be moved into the aspects.

19

A.2.1 Classes’ Parents

First, each class has to have a role (Subject and Observer) assigned to. In
AspectJ, this can be done in the following way:

public aspect TCLAspect extends ObserverAspect {

declare parents: Time implements Subject;

declare parents: Clock implements Observer;

declare parents: LazyPerson implements Observer;

A.2.2 Implementing Abstract Auxiliary Methods

First, let us implement the state-specific methods. As it was mentioned in
Section 5.2.2, the state of a subject or an object is represented by a string.

public String Time.getState() {

return "Time:" + hour + ":" + minute + ":" + second;

}

public String Clock.getState() {

return "Clock:" + hour + ":" + minute + (isAm ? "am" : "pm");

}

public String LazyPerson.getState() {

return "LazyPerson:" + (isSleepy ? "sleepy" : "ready");

}

Implementing the Subject.StateModifiedand Subject.StateConsistentWith

abstract methods is particularly an important issue since it is about how to de-
cide when the subject should notify its observers.

public boolean Time.StateModified(String previousState) {

return !getState().equals(previousState);

}

public boolean Time.StateConsistentWith(String observerState) {

if (observerState.startsWith("Clock:")) {

String time = getState().substring("Time:".length());

String clockTime = observerState.substring("Clock:".length());

clockTime = clockTime.substring(0, clockTime.length() - 2);

return time.startsWith(clockTime);

} else if (observerState.startsWith("LazyPerson:")) {

String time = getState().substring("Time:".length());

int hour = Integer.parseInt(time.substring(0, time.indexOf(":")));

String sleepyOrReady = observerState.substring("LazyPerson:".length());

return (hour < 12 && sleepyOrReady.equals("sleepy"))

20

|| (hour >= 12 && sleepyOrReady.equals("ready"));

}

return false;

}

Next, the Observer.update abstract method must be implemented. Since
both the Clock and LazyPerson classes have the Observer interface as parent,
we propose two implementations:

public void Clock.update(Subject s) {

Time t = (Time) s;

hour = t.getHour();

minute = t.getMinute();

isAm = t.isAm();

}

public void LazyPerson.update(Subject s) {

Time t = (Time) s;

isSleepy = t.isAm();

}

A.2.3 Advice

Since any pattern-specific code is prohibited in the class Time, none of its meth-
ods may call a method which is pattern-specific. I.e., the only way to enforce
such a behavior is to employ AspectJ.

The following advice calls the Subject.notifyObs methods whenever the
Time.tickTock method has been called.

after(Time t): call(void Time.tickTock()) && target(t) {

t.notifyObs();

}

A.3 Main Method

Let us implement a simple main method. As you can see, time is set to 11:59:58,
and then the Time.tickTock method is called three times.

public static void main(String[] args) {

Time aTime = new Time(11, 59, 58);

Clock aClock = new Clock(12, 0, false);

LazyPerson bob = new LazyPerson();

aTime.attach(bob);

21

aTime.attach(aClock);

aTime.tickTock();

aTime.tickTock();

aTime.tickTock();

if (bob.isSleepy()) {

System.out.println("Too early for Bob!");

} else {

System.out.println("Bob is ready to face anotherday!");

}

}

When executing our program, one can notice, as it is expected, that Bob the
lazy person is not sleepy any more. Furthermore, the framework has not fallen
into an unsafe state. The output of the program:

SAFE

ATTACHING OBSERVER

before Update(Time:11:59:58,LazyPerson:sleepy)

UPDATE DURING ATTACHING OBSERVER

after Update(Time:11:59:58,LazyPerson:sleepy)

ATTACHING OBSERVER

SAFE

ATTACHING OBSERVER

before Update(Time:11:59:58,Clock:12:0pm)

UPDATE DURING ATTACHING OBSERVER

after Update(Time:11:59:58,Clock:11:59am)

ATTACHING OBSERVER

SAFE

before Notify(Time:11:59:59)

NOTIFY

before Update(Time:11:59:59,Clock:11:59am)

UPDATE DURING NOTIFY

after Update(Time:11:59:59,Clock:11:59am)

NOTIFY

before Update(Time:11:59:59,LazyPerson:sleepy)

UPDATE DURING NOTIFY

after Update(Time:11:59:59,LazyPerson:sleepy)

NOTIFY

after Notify(Time:11:59:59)

SAFE

after subjectMethod(Time:11:59:59)

SAFE

before Notify(Time:12:0:0)

NOTIFY

before Update(Time:12:0:0,Clock:11:59am)

22

UPDATE DURING NOTIFY

after Update(Time:12:0:0,Clock:12:0pm)

NOTIFY

before Update(Time:12:0:0,LazyPerson:sleepy)

UPDATE DURING NOTIFY

after Update(Time:12:0:0,LazyPerson:ready)

NOTIFY

after Notify(Time:12:0:0)

SAFE

after subjectMethod(Time:12:0:0)

SAFE

before Notify(Time:12:0:1)

NOTIFY

before Update(Time:12:0:1,Clock:12:0pm)

UPDATE DURING NOTIFY

after Update(Time:12:0:1,Clock:12:0pm)

NOTIFY

before Update(Time:12:0:1,LazyPerson:ready)

UPDATE DURING NOTIFY

after Update(Time:12:0:1,LazyPerson:ready)

NOTIFY

after Notify(Time:12:0:1)

SAFE

after subjectMethod(Time:12:0:1)

SAFE

Bob is ready to face anotherday!

References

[1] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: El-

ements of Reusable Object-Oriented Software. Pearson Education, 1995.

[2] R. Miles, AspectJ Cookbook. O’Reilly, 2004.

[3] J. O. Hallstrom, N. Soundarajan, B. Tyler, Monitoring Design Pattern

Contracts. Proceedings of the the 3rd FSEWorkshop on the Specification
and Verification of Component-Based Systems, pp. 87 - 93, 2004.

[4] AspectJ, http://www.eclipse.org/aspectj/

[5] AspectJ Development Tools (AJDT), http://www.eclipse.org/ajdt/

[6] F. Chen, G. Rosu, MOP: An Efficient and Generic Runtime Verification

Framework. OOPSLA’07, pp. 569-588, 2007.

[7] Monitoring-Oriented Programming, JavaMOP,

http://fsl.cs.uiuc.edu/index.php/MOP/

23

http://www.eclipse.org/aspectj/
http://www.eclipse.org/ajdt/
http://fsl.cs.uiuc.edu/index.php/MOP/

	Introduction
	Aspect-Oriented Programming and AspectJ
	Installing and Using AspectJ

	Monitoring-Oriented Programming and JavaMOP
	Installing and Using JavaMOP

	Our Generic Framework
	The Observer Pattern
	Interfaces
	Abstract Aspect
	Auxiliary Fields and Methods
	Abstract Auxiliary Methods
	Pointcuts
	Advice Actions
	Error Handlers

	JavaMOP Monitor
	Events
	Finite State Machine

	Conclusion
	Case Study for the Observer Framework
	Classes
	Aspect
	Classes' Parents
	Implementing Abstract Auxiliary Methods
	Advice

	Main Method

