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Abstract

The subresultant theory for usual commutative polynomials is generalized to linear differential,
linear difference and Ore polynomials. The generalization includes the subresultant theorem, the
gap structure, and the subresultant algorithm. The subresultant algorithm reduces the coefficient
growth in the computation of polynomial remainder sequences without computing coefficient GCDs.

Using the subresultant theorem, we present a characterization of the compatibility of two el
ements in an Ore polynomial module, and determinant formulas for the greatest coiyimon right
divisor and least common left multiple of two elements in an Ore polynomial ring. Furthermore, we
present a modular algorithm for computing the greatest common right divisor of two Ore polyno
mials whose coefficient domain is the ring of univariate commutative polynomials over the integers.
Experimental results illustrate that this modular algorithm is markedly superior to non-modular
ones.

Zusammenfassung

Die Subresultanten-Theorje der gewöhnlichen kommutativen Polynome wird auf die linearen Dif
ferentialpolynome, Differenzpolynome, und Oreschen Polynome verailgemeinert. Diese Verailge
meinerung enthält den Subresultantensatz, die Spaltstruktur und den Subresultantenalgorithmus.
Der Subresultantenalgorithmus reduziert das Wachstum der Koeffizienten in der Berechnung der
Polynomrestfolgen, ohne den gröl3ten gemeinsamen Teiler der Koeffizienten zu berechnen.

Mit Hilfe des Subresultantensatzes präsentieren wir eine Charakterisierung der Berechenbarkeit
von zwei Elementen in einem Oreschen Polynommodul, und entsprechende Determinanten-Formel
für die gröBten gemeinsamen rechten Teiler und für die kleinsten gemeinsamen linken Vielfachen
von zwei Elementen in einem Oreschen Ring. Aul3erdem präsentieren wir einen modularen Algorith
mus für die Berechnung des gröBten gemeinsamen rechten Teilers von zwei Oreschen Polynomen,
dessen Koeffizientenbereich der Ring der Polynome in einer Variablen über den ganzen Zahlen ist.
Die experimentellen Ergebnisse zeigen, daB dieser modulare Algorithmus deutlich besser ist als
nichtmodulare Algorithmen.
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Chapter 0

Introduction

0.1 Survey of the Thesis

The purpose of this survey is to provide the reader with an outline of this thesis and a summary of

the main results. Precise definitions of the terms that we use can be found in the relevant chapters.

The work in this thesis is motivated by applications of various generalizations of the Euclidean

algorithm for linear operational polynomials, for example, the characteristic set method for linear

differential (difference) polynomials, and algorithms for computing the greatest common right di

visor and least common left multiple of two elements of an Ore polynomial ring. We present a

subresultant theory for two elements of an Ore polynomial module to avoid the inefficiency of the

generalizations of the Euclidean algorithm, which uses pseudo-division. With the help of this subre

sultant theory, we extend the modular techniques used in the manipulation of algebraic polynomials

to linear operational polynomials.

In Chapter 1, we extend Ore polynomial rings to Ore polynomial modules so that both linear

homogeneous and inhomogeneous differential (difference) polynomials can be placed in one frame

work. We then define subresultants and establish a subresultant theory in an Ore polynomial

module.

The main results of this chapter are the subresultant theorem (Theorem 1.4.2) and subresultant

algorithm (Theorem 1.4.7). The subresultant theorem describes the gap structure of the subresul

tant sequence of two Ore polynomials. The subresultant algorithm computes the subresultant

sequence of the first kind of two Ore polynomials without any CCD-calculation in the coefficient

domain.

1
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2 INTRODUCTION

In Chapter 2, we apply this subresultant theory to three basic problems, namely, deciding the

compatibility of two elements of an Ore polynomial module, computing the greatest common right

divisor, and computing the least common left multiple of two elements of an Ore polynomial ring.

We show that these three problems are closely related to subresultants.

The main results of Chapter 2 include two algorithms ( COMP_t and COMP_b) for deciding

the compatibility of two elements of an Ore polynomial module, and determinant formulas for the

greatest common right divisor and least common left multiple of two elements of an Ore polynomial

ring (Propositions 2.2.3 and 2.3.3).

In Chapter 3, we present a modular algorithm for computing the greatest common right di

visor of two Ore polynomials over Z[t], where Z is the set of integers and t is an indeterminate.

Experimental results illustrate that the modular algorithm is markedly superior to non-modular

ones.

There are three algorithms, namely, GCRD_e, GCRD...p, and GCRD_m in Chapter 3. GCRDe

computes the evaluation homomorphic images of the monic associate of the greatest common right

divisor of two Ore polynomials over Z~[t], where p is a prime and Z~, is the Galois field of p elements.

This algorithm hinges on the notion of subresultants. GCRT) p and GCRD..m compute the greatest

common right divisor of two Ore polynomials over Z~[t} and Z[t], respectively.

0.2 Notation and Abbreviations

Throughout the thesis, the sets of positive integers, non-negative integers, integers, and rational

numbers are denoted by N+, N, Z, and Q, respectively. We abbreviate polynomial remainder

sequence as PRS, greatest common right divisor as GCRD, and least common left multiple as LCLM.
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Chapter 1

A Subresultant T eory for Ore

Polynomials

The objective of this chapter is to generalize the subresultant theory for univariate algebraic polyno

mials to univariate Ore polynomials. The subresultant theory for univariate algebraic polynomials

was developed by Collins [8, 9] in order to avoid the high inefficiency of the Euclidean algorithm

for computing PRS’s. Brown and Traub [3, 4] subsequently improved Collins’ results. As the

calculation of PRS’s is ubiquitous in solving polynomial systems, the algebraic subresultant the

ory is applicable to many areas such as: real root isolation [13], the computation of Sylvester’s

resultants [10], computation in algebraic extensions [37], cylindrical algebraic decomposition [11],

computer-aided geometric design [30, 31], geometric coding theory [39], and the characteristic set

method [23]. Loos [26] used Habicht’s approach to present a fresh look at the subresultant theory

and introduced the famous picture of the gap structure of a subresultant chain. We refer the reader

to [32] for a detailed account of the subresultant theory based on Habicht’s approach. Attempts to

extend the subresultant theory to multivariate polynomials were also made for different purposes

by Gonzalez-Vega [17] and Mandache [27, 28].

Since various generalizations of the Euclidean algorithm are widely used in linear differential

and difference algebra (see, respectively, [35, § 9] and [29, § 12.2]), we naturally want to extend

the algebraic subresultant theory to linear differential (difference) polynomials. Subresultants of

differential operators were first defined and investigated by Chardin [5]. Chardin claimed that

there existed a differential subresultant algorithm for differential operators. Proofs of Habicht’s

theorem, the subresultant theorem, and the correctness of subresultant algorithm for linear dif

5
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6 CHAPTER 1. SuBREsuLTANT THEORY FOR ORE POLYNOMIALS

ferential polynomials are given by the author [24]. When proving the differential subresultant

theorem, I observed that the proof had little to do with differentiation. This observation motived

me to develop a general subresultant theory for both linear differential and difference polynomials.

For this purpose we extend the notion of Ore polynomial rings [33, 2] to Ore polynomial modules

so that both homogeneous and inhomogeneous linear differential (difference) polynomials can be

placed in one framework. We then define subresultants and establish a subresultant theory in an

Ore polynomial module. This subresultant theory will focus on describing the relations among the

subresultants of two Ore polynomials and devising efficient algorithms for computing PRS’s.

This chapter is organized as follows. In Section 1.1, we present some background materials

and discuss our motivation in greater detail. The notion of Ore polynomial modules is defined in

Section 1.2. In Section 1.3, we define the subresultants of two Ore polynomials. Section 1.4 is

devoted to proving the subresultant theorem and presenting the subresultant algorithm for Ore U
polynomials.

1.1 Background and Motivation

Linear ordinary differential equations are equations of the form

d’~y(t) dy(t)
a~(t) dt~ + . + ai(t) dt + ao(t)y(t) = a(t) El

and linear ordinary difference equations are equations of the form

a~(t)y(t + ii) + .. + ai(t)y(t + 1) + ao(t)y(t) = a(t)

where y(t), a(t), and each of the a~(t)’s are functions of the variable t. If a(t) is identically zero, fl
then these two equations are said to be homogeneous.

We use algebraic language to describe the sets of linear differential equations. Let fl be a fl
commutative domain and D a derivation operator on R~. Then there always exists a differential

polynomial ring (fl{y}, D) over fl, where y is a differential indeterminate with respect to D (see fl
[21, p. 70]). The set of linear ordinary differential polynomials is

{a~D~(y) + . + a1D(y) + aoD°(y) — a an,..., a1, a0, a E ~, n E N}. fl
It is easy to see that fl{y}i is a D-module. The set of linear homogeneous ordinary differential

polynomials is

{a~D~(y) + . . . + aiD(y) + aoD°(y) an,..., a1, a0 E fl, fl E N}. fl

U
n



SECTION 1.1. BACKGROUND AND MOTIVATION

If A = a~D~(y) + + aiD(y) + aoD°(y) and B E R.{y}1, then we define the product of A and B

to be

(a~D~ + + a1D + aoD°)(B),

that is, the image of B under the linear operator (a~D’~ + + a1D + aoD°). Hence, R~{y}1 can

be regarded as a (non-commutative) ring. Notice that the multiplication just defined on i~{y}~ is

different from the multiplication on the ring 7~{y}. Briefly, we have the following inclusions:

fl{y}1 C fl{y}i C R~{y}.

Both R~{y}~ and l~{y}1 are D-modules. In particular, fl{y}i can be viewed as a ring.

If E is an injective endomorphism of fl, then R. and E form a difference domain (see, [7]). In the

same vein, we can define a difference polynomial ring in a difference indeterminate (with respect

to E), the E-module of linear difference polynomials, and the E-module of linear homogeneous

difference polynomials. Similarly, the E-module of linear homogeneous difference polynomials can

be viewed as a (non-commutative) ring.

A fundamental operation on differential (difference) polynomials is pseudo-division (see, re

spectively, [36, p. 6] and [7, p. 90]). The D-module (E-module) of linear differential (difference)

polynomials is closed under differential (difference) pseudo-division. Hence, we may define pseudo-

polynomial remainder sequences and design the differential (difference) Euclidean algorithm in

the two modules. The Euclidean algorithm in the D-module (E-module) of linear differential

(difference) polynomials is used to determine the compatibility of two elements of the D-module

(E-module). The Euclidean algorithm in the ring of linear homogeneous differential (difference)

polynomials is used to compute greatest common right divisors.

The differential (difference) Euclidean algorithm, which uses pseudo-division, is highly inefficient

because the coefficients grow exponentially as the algorithm proceeds. If 1~ is a unique factorization

domain, then one may easily design the primitive differential (difference) PRS algorithm to minimize

coefficient growth. Unfortunately this method requires many coefficient GCD-calculations, which

may be very time-consuming.

The purpose of the subresultant theory in this chapter is to reduce coefficient growth in the

Euclidean algorithm for Ore polynomials without any coefficient GCD-calculation. Note that linear

differential and difference polynomials are just two special instances of Ore polynomials.
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1.2 Ore Polynomial Modules U
Bronstein and Petkov~ek [2] observe that Ore polynomial rings [33] may be taken as an appropri- ii
ate model for studying computational problems for linear homogeneous differential and difference

polynomials. Inspired by their observation, we extend Ore polynomial rings to Ore polynomial

modules so as to set up a subresultant theory for both linear homogeneous and inhomogeneous

differential (difference) polynomials in one fell swoop. We will define Ore polynomial rings and Ore

polynomial modules in terms of operators, because we want to introduce pseudo-division without

requiring multiplication.

In the rest of this thesis, 1~ is a commutative domain and X is an indeterminate over 1~. The

algebraic polynomial ring 1?JX] is regarded as the 1~-module ~ R~, where ~ stands for the

direct sum of 1~-modules and R~, = 7?., for n E N. The power X’~ is understood as the element

(0.. ., 0, 1,0,...), whose (n + 1)th component is 1 and other components are 0. In particular, we

do not identify X° with the multiplicative identity of the domain 7?.. The additive identity in fl[X]

is denoted by 0. The degree of a polynomial A in 1?.[X] is denoted by deg A. The degree of 0 is set B
to be —oc.

This section is organized as follows. In Section 1.2.1, we define Ore operators and Ore poly- 11
nomial rings. The notion of Ore modules is defined in Section 1.2.2. Pseudo-division for two Ore

polynomials is defined in Section 1.2.3. Ii
1.2.1 Ore Operators and Ore Polynomial Rings

In this section, we present an equivalent definition of Ore polynomial rings using operators. Most

of the results in this section can be found in [33, 2].

DefInition 1.2.1 The mapping G from 7?.[X] to itself is called an Ore operator if the following

conditions are fulfilled:

1. e is an endomorphism of the additive group R.[X].

2. e(X’2) = X~1, for n E N.

3. deg ~(A) = deg A + 1, for A E fl[X].

4. (Multiplicative rule) There exist two mappings a and 5 from 7?. to itself such that

9(rA) = a(r)O(A) + S(r)A, for r E 7?. and A E R.[X]. (1.1) [~
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The next proposition describes the relation between an Ore operator e and the two mappings a

and S appearing in the multiplicative rule (1.1).

Proposition 1.2.1 If e is an Ore operator on R.[X] with the multiplicative rule (1.1), then

1. a is an injective endomorphism of the ring R~;

2. 5 is an endomorphism of the additive group fl;

3. for all r, S E 1?.,

S(rs) = a(r)S(s) + S(r)s. (1.2)

Conversely, if a and S satisfy the three properties just listed, then there exists a unique Ore

operator 0 with the multiplicative rule (1.1).

Proof If r and s are in R~, then (1.1) implies that

0((r + s)X) = a(r + s)X2 + 5(r + s)X

and that

0(rX + sX) = (a(r) + a(s))X2 + (5(r) + S(s))X.

Thus, both a and S are distributive with respect to addition. Setting s = 0 in either of the

above equalities yields 0(rX) = a(r)X2 + S(r)X. Then a is injective by the degree constraint

on 0, moreover, a(1) = 1 by letting r = 1. It remains to show that a(rs) = a(r)a(s) and (1.2).

Again, (1.1) implies that

0((rs)X) = a(rs)X2 + 5(rs)X and 0(r(sX)) = (a(r)a(s))X2 + (a(r)S(s) + 5(r)s)X.

Comparing the respective coefficients of X2 and X yields the desired results.

Conversely, assume that a and S satisfy the three conditions listed in the statement of the

proposition. Then 5(1) = 0 by (1.2). Define 0 to be the endomorphism of the additive group RJX]

that sends sX~ to a(s)Xn+’ + S(s)X~, for s é 1?. and n E N. Clearly, 0(X~) = X~1, for m E N,

and deg0(A) = 1 +degA, for A E R[X]. For rand sin R~ the following calculation verifies (1.1).

0 (r (sX’~)) = 0((rs)XTh) = a(rs)X~1 + S(rs)X~

a(r)a(s)X~’ + (a(r)S(s) + S(r)s)XTh (by (1.2))

a(r) (a(s)Xn+1 + 5(s)Xj + S(r)sX~ = a(r)0(sX~) + S(r)sX~.

The uniqueness of 0 is evident.
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Remark 1.2.2 If a and S satisfy (1.2), then 5(1) = 0.

If 0 is an Ore operator on fl[X] with the multiplicative rule (1.1), then we call a the conjugate ci
operator and S the pseudo-derivation (with respect to a) associated with 0. For n e N, by 9n we

mean the n-fold composition of 0. In particular, 9~ is defined to be the identity mapping. The

same convention also applies to a~ and S~. If

A = a~X~ + a~_1X~’ + . . . + aoX°

is an Ore polynomial in fl[X], then A(0) is understood as the mapping

a~W~ + a~_i0~’ + . . . + a00°.

The next theorem enables us to introduce multiplication on the free fl-module fl[X] via an Ore

operator. The following proof is due to Bronstein and Petkov~ek [2].

Theorem 1.2.2 Let 0 be an Ore operator on fl[X] with the conjugate operator a and pseudo-

derivation S. For A and B in fl[X], define the product AB of A and B to be A(9) (B). Then

fl[X] becomes a domain with the multiplicative identity X°.

Proof As 0 is distributive with respect to addition, we see that

A(B+C)=AB+BC and (B+C)A=BA+CA,

for A, B, C ~ fl[X]. Clearly, X°A = A. Since 0(X°) = X, AX° = A. To verify the associativity

of multiplication, we claim that

(X’~(rXm)) A = XTh (rXmA), for n, m E N, r E fi, and A E fl[X]. (1.3)

Proof of the Claim. The proof is done by induction on n. Equation (1.3) trivially holds for n = 0.

Assume that it holds for n — 1. We compute

(X~(rXm)) A = (Xn_1(a(r)Xm+1 + S(r)X~)) A

(xm’ (a(r)Xm+1)) A+ (Xn_1 (5(r)Xm)) A

X~~1 (u(r)X~A) + X~1 (S(r)XmA) (by the induction hypothesis)

Xn1 (a(r)Xm+[A + S(r)XmA)

= Xn_l(a(r)0(XmA) + S(r)(XmA)) fl

a
n
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= X~’O (r(XmA)) (by the multiplicative rule (1.1))

= X~~_l(X(rXmA))

= X~((rXm)A) (by the induction hypothesis).

This proves our claim.

Write A = Zk akXk, B = ~, b~X’, and C = ~ c3X~, where A, B, and C belong, to RJX]. The

following calculation verifies the associative law.

(BC)A = ~ ((b1X~(c3X3))A) (by definition)

= ~~bjXt(cjX3A) (by the claim)

= ~ (~c~xiA) ~(b~X~)(CA) = B(CA)

With the multiplication defined in this theorem, we call the triple (fl[X], a, 8) an Ore polynomial

ring. The Ore operator 0 is omitted in this notation because 0 is uniquely determined by a and 6.

A fundamental property of the Ore polynomial ring R{X] is that

degAB = degA + degB, for all A, BE R~[X].

The following examples illustrate that Ore polynomial rings establish a general mathematical

setting for linear (homogeneous) operational polynomials. As a matter of notation, we denote by 1

and 0 the identity and null mappings of 1~, respectively.

Example 1.2.3 The Ore polynomial ring (fl[X], 1,0) is the ring of usual commutative polynomials

in X over 1~.

Example 1.2.4 (Differential Operator) If D is a derivation operator on 1?., then D is a pseudo-

derivation with respect to 1 because D(rs) = rD(s)+D(r)s, for r, s E 7?.. Hence, (7?.[X], 1, D) is the

ring with the multiplication given by X(rX°) = rX + D(r)X°, for r e 1?.. This ring is isomorphic

to the ring of linear homogeneous differential polynomials in one differential indeterminate over 7?..

Example 1.2.5 (Hubert’s Twist [22]) If E is an injective endomorphism of the domain 7?. and 6

is 0, then 0 is a pseudo-derivation. Hence, (7?.[X], E, 0) is the ring with the multiplication given

by X(rX°) = E(r)X, for r E 7?.. This ring is isomorphic to the ring of linear homogeneous difference

polynomials in one difference indeterminate (with respect to E) over 7?..
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Example 1.2.6 Let K be a field and 1~ the usual commutative polynomial ring K[t]. For a

non-zero h e K, we define Eh and ~h by

Eh(f(t)) f(t + h) and ~h(f(t)) f(t + h) - f(t) for all f e ~.

An easy calculation shows that ~~(fg) = Eh(f)Z~h(g)+~h(f)g, forf, g e R.. Thus, (fl[X], Eh, ~h)

is the ring with the multiplication given by X(rX°) = Eh(r)X + ~h(r)X°, for all r E

Example 1.2.7 (q-Differential Operator [34]) Let K be a field and 1? the formal power series

ring K[[t]]. For q ~ K with q ~ 0, 1, we define two operators Eq and ~q by

Eq(f(t)) = f(qt) and ~q(f(t)) = f(qt) - f(t) for all f(t) E fl.

It is easy to verify that ~q(fg) = Eq(f)~q(g) + Z~q(f)g, for all f, g E 1~. Hence, (fl[X], Eq, I.~iq) is

the ring with the multiplication given by X(fX°) = Eq(f)X + ~q(f)X°, for all f e 1~.

We refer the interested reader to Chyzak [6] for more examples of Ore polynomial rings.

1.2.2 Ore Polynomial Modules

To establish a single subresultant theory for both homogeneous and inhomogeneous linear dif

ferential (difference) polynomials, we use the R.-module 1~[X] e R. We define the degree of an

element A ~ a of fl[X] ~ 1~ to be the degree of A if A is nonzero, the degree of 0 ~ a to be —1 if a

is nonzero, and the degree of 0 ~ 0 to be —co. The degree of A e a is denoted by deg(A e a). The

additive identity 0 ~ 0 of the module RJX] e 1~ is denoted by 0.

Definition 1.2.8 An endomorphism 0 of the additive group R4X]e7~ is said to be an Ore operator

on R4X] e 1~ if the following hold:

1. 0 restricted to fl[X] is an Ore operator on R~X], with the conjugate operator u and pseudo

derivation 6.

2. For every r E 1?~, 9(0 ~ r) E 0 $ 1~.

3. (Multiplicative rule) For every r E fl and A $ a e R.[X] ~ 1~, fl
0(r(Aea)) =a(r)9(A~a)+6(r)(A~a). (1.4) fl

Li
n
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The quadruple (R.[X]~R~ 0, a, 8) is called an Ore polynomial module whose elements are called Ore

polynomials.

For an Ore polynomial ring (R.[X],a,6), there is a unique Ore operator 0 on R4X] such that

equation (1.1) holds. We can extend 0 to 7~[X] $ R. by the next proposition.

Proposition 1.2.3 If 0 is an Ore operator on RIX], with the conjugate operator o and pseudo-

derivation 6, then the mapping

is an Ore operator on R~[X] ~ 1~.

Proof It suffices to verify that both 01 and 02 are subject to the respective multiplicative rules.

If A $ a is in R~{Xj ~ 1~ and r in R~, then

Oi (r(A ~ a)) = 01 ((rA) ~ (ra)) = 0(rA) ~ 6(ra)

= (a(r)0(A)+c5(a)A)~6(ra) (by (1.1))

= (u(r)0(A) + 8(r)A) $ (a(r)6(a) + 8(r)a) (by (1.2))

= a(r)0(A) e o~(r)8(a) + 8(r)A e 6(r)a

= a(r) (0(A) e 6(a)) + 6(r)(A ~ a)

= a(r)0i(A ~ a) + 6(r)(A ~ a).

This proves the first assertion. If S is the null mapping, then

02(r(A ~ a)) = 02((rA) ~ (ra)) = 0(rA) ~ a(ra) = a(r)0(A) e cr(r)a(a) = a(r)02(A 8 a). 0

Example 1.2.9 Let D be a differential operator on R. Define the Ore operator 0 on 7~[X] 8

to be such that 0(rX~) = rX”+1 + D(r)XTh and 0(08 r) = 0 ~ D(r), for all r E 7?. and n e N.

Let Y be a differential indeterminate (with respect to D) over 7?.. Define the mapping

—* R{X] 87?.

(~~=o a~(D~Y)) + a F—* (~Z~=0 a~X~) ~ a.

0~: R.[X]~7?. —*

A8a F-*

is an Ore operator on R.[X] ~ 7?. If, moreover, S is 0,

02: R[X]87?. —*

A8a ~-+

0(A) 86(a)

then the mapping

R.[X]8R.

0(A) 8 a(a),
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Then ~ is an fl-module isomorphism such that the diagram below commutes.

R{Y}1 -~-* fl[Xj~fl

fl{Y}1 —~-* fl[X]eR.

Example 1.2.10 Let E be a shift operator on fi. Define the Ore operator 0 on R.[X] ~ fi to be

such that 0(rX~) E(r)X”-+’ and 0(0 ~ r) 0 $ E(r), for all r e 1?. and n e N. Let Y be

a difference indeterminate (with respect to E) over fi. Denote by fl{Y}1 the E-module of linear

difference polynomials in V over fl. Define the mapping

fl{Y}1 —* fl{X]~fl

(Z~=0 a2(E~Y)) + a ~-+ (~~=o a~X~) ~ a.

Then 4 is an fl-module isomorphism such that the following diagram commutes.

fl{Y}1 -~-* fl[X]efl

fl{Y}1 -~-* fl[X] e fi

Example 1.2.11 Let fi, E,,, and /.~q be the same as in Example 1.2.7. Define the Ore operator 0

on fl{Xj ~ fi to be such that 0(rX~) = Eq(r)X’~’ + L~q(r)X~ and 0(0 ~ r) = 0 ~ t~q(r), for all

r E fi and n E N. Then the Ore polynomial module (fl[X] e fl, 0, Eq, ~q) can be regarded as the

fl-module of linear q-differential polynomials in a sq-indeterminate.

Notation In the remainder of this chapter, (fl{X] ~R, 0, o, 6) is assumed to be an Ore polynomial

module and simply denoted by fl[X] ~ fi. When there is no ambiguity, we denote 0(A), o(r), and

6(r), respectively, by OA, or, and Sr. By So it is understood as the composition of o and S. The

same also applies to uS.

The next lemma can be regarded as an extension of the Leibniz rule in calculus.

Lemma 1.2.4 For r in fi, A in fl[Xj ~ fi, and n in N~, (0’~(rA) — (oThr)0’~A) is an fl-linear

combination of 0’~’A, ..., OA, A.

Proof If n = 1, then 0(rA) — (or)OA = (6r)A by the multiplicative rule (1.4). Suppose that the

lemma holds for n — 1. Then

0’~’(rA) — (o’~’r)0’~1A
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where r~ belongs to 7~, for i = 0, 1, ..., n — 2. Applying 0 to both sides of the above equality

yields the lemma. D

Lemma 1.2.4 is referred as the extended Leibniz rule and will be frequently used in the sequel.

If a submodule M of RJX] ~ 1?. has the property that 0(M) C M, then M is called a 0-

submodule. If Al is a subset of fl[X] ~ R~, then the multiplicative rule (1.4) implies that the

smallest 0-submodule containing Al is the submodule [N] generated by all the elements of 0(N),

which we call the 0-submodule generated by Al. Two elements A and B of RJX] ~ are said to

be 0-compatible if the 0-submodule [A, B] generated by A and B does not contain any element of

degree —1. Clearly, 0 on R.[X] ~ 7? can be regarded as an Ore operator on 7?[X] via the canonical

projection from R[X] e 7? to R[X]. Thus, we also call 0 the Ore operator on 1?[X]. The 0-

submodule fl[X] e 0 is simply denoted by 7?[X]. The notion of 0-submodules is a general setting

for linear differential and difference submodules, and left ideals of an Ore polynomial ring.

1.2.3 Pseudo-Remainders and Polynomial Remainder Sequences

In this section, we define pseudo-division and polynomial remainder sequences. To simplify the

notation that will be used later, we extend the following factorial notation [29, p. 25].

Definition 1.2.12 For n in N~ and r in 7?, the nth u-factorial of r is defined to be the product

[J u~r,

which is denoted by r[~’1. In addition, r[01 is set to be 1.

Lemma 1.2.5 If r, s E 1?., and m, n E N, then

1. (rs)[m] r[mls[mI,

2. r[m~] r[m](umr)[~~l,

3. (r[m])[~~] (r[f1)[m]

4. r[m+1][n+hl = r[m~~4l(ur)[m][~1.

Proof The first and second assertions are immediate from Definition 1.2.12. The third assertion

is proved by the following calculation:

n—i fm—i \ n—i rn—i rn—i In—i \
(r[m1)~ = [J u2 (II oar) = fi [J u~r = u ( II u2r) = (r~)[m].

j=O i=O j=O i=O i=O \j=O J



U
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We calculate U
r[m+hlEn+hj = J~J~i (r[~+’1) = ~ (r(ar)[m1) r[n+11(jr)[n+hl[m} r{n+h1(Jr)[m)(J~~1r)[ml. fl

The last assertion is then proved by the equality r[m+~~hj = r[n+h1(un+1r)[ml. U,
If P ~ p belongs to RJX] e fl and P is nonzero, then the leading coefficient of P is also called

the leading coefficient of P ~ p, and denoted by lc(P e p). fl
Definition 1.2.13 Let A and B be in fl[X] ~ R~ with respective degrees m and n, where n> 0.

A pseudo-remainder of A and B is defined to be either A, if m < n; or C E 7~[X] ~ fl such that

degC <degB and
rn—n rn—n~ lc(OiB)) A = r~EYB + C, (1.5)

wherer~belongsto1~,foriO,l,~.,m_Th.

The pseudo-remainder, as defined in equation (1.5), can be computed by a process analogous to

the algebraic pseudo-division. As deg(Oi+1B) = deg(OtB) + 1, for all i ~ N, the pseudo-remainder

of A and B is unique. We denote the pseudo-remainder of A and B by prem(A, B).

Lemma 1.2.6 If B is a non-zero polynomial in 1~[Xj ~ then lc(GmB) grnlc(B) for ?n E N~.

Proof IfB(bnXn++blX+bo)~,then

= (~bn)X~~1 + terms of degree lower than (n + 1)

by the multiplicative rule (1.4), so lc(OB) = ulc(B). The lemma then follows by induction on m. fl
Corollary 1.2.7 If A and B are the same as in Definition 1.2.13, then equation (1.5) can be

rewritten as rn—n

lc(B)[m_hlA = ~ r~OB + prem(A, B). (1.6)

Proof It is immediate from (1.5) and Lemma 1.2.6.

We call (1.6) the pseudo-remainder formula. If A and B are in R.[X], then (1.6) can be written

as:
lc(B)[m~~1lA = QB + prem(A, B),

where Q is in fl[X], since fl[X] is a ring. We call Q the left pseudo-quotient of A and B. fl
El
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Example 1.2.14 Let (7?.[X] ~ 7?., 0, 1, D) be the same as in Example 1.2.9. Then equation (1.6)

gives us the pseudo-remainder formula for two linear differential polynomials, that is,

m — n

lc(B)m_n+1A= r20tB-~-prem(A,B).

Let (7?.[X] ~ 1?., 0, E, 0) be the same as in Example 1.2.10. Then equation (1.6) specializes to the

pseudo-remainder formula for two linear difference polynomials, that is,

m — n

lc(B)[m_~~~JA = r2€VB + prem(A, B).

Similarly, we can obtain the pseudo-remainder formulas for linear ~h- and Z~q-polynomials.

For A and B in R,{X] ~ 1?., A and B are similar over 7?. (A ‘~-‘~ B) if there exist non-zero r

and s in 1?. such that rA = sB. For A1, A2 e fl[X] ~ 7?. with deg(Ai) > deg(A2) ≥ 0, let

(1.7)

be a sequence of non-zero elements of fl[XJe 7?. such that A, ~ prem(A~_2, Ad_i), for i = 3, ...

and either deg(Ak) < 0 or prem(Ak_l, Ak) = 0. Such a sequence is called a PRS of A1 and A2.

If A~ = prem(A1_2, A~_1), for i = 3, ..., k, then the sequence (1.7) is said to be Euclidean. If 7?.

is a unique factorization domain and each of the Ag’s (i > 2) given in (1.7) is primitive, then this

sequence is said to be primitive. From the definition, it follows that there exist non-zero r~ and s~

in 7?. such that r~A12 — s~A~ E [A~..1], for i = 3, ..., k. Just as in the algebraic case, A1 and A2

are 0-compatible if and only if deg(Ak) ≥ 0.

1.3 Subresultants of Two Ore Polynomials

In this section, we define the subresultants of two Ore polynomials. Algebraic and differential

subresultants are two special instances of our general definition. We review determinant polynomials

(see, [26, 32]) in Section 1.3.1. The definition of subresultants is given in Section 1.3.2. Section 1.3.3

is devoted to presenting the row-reduction formula for subresultants. This formula is used to prove

the subresultant theorem in Section 1.4.

Throughout the remainder of this chapter, an Ore polynomial A with degree n is written as

A = a~XTh + . . . + a0X° + a1X’.
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1.3.1 Determinant Polynomials U
Definition 1.3.1 Let M be an r x c matrix with entries in R~. If r < c, then the determinant fl
polynomial of M is defined to be

c—r—1

I M ~ det(M~)X~,

where M~ is the r x r matrix whose first (r — 1) columns are the first (r — 1) columns of M and

whose last column is the (c—i— 1)th column of M, for i= —1,0, ..., c—r— 1.

The polynomial M just defined is nothing but DetPol(M) (see, [32, p. 241]) divided by X.

Let

A: A1, A2, . . .,Am (1.8)

be a sequence in R[X] ~ R~. We denote by deg A the maximum of the degrees of the members in A.

Let deg A = n> —1 and write A~ as

A~~ (1 ≤ i ≤ m) (1.9)

where each of the ~ ‘s belongs to R. The matrix associated with A is defined to be the m x (n + 2)

matrix whose entry in the ith row and jth column is the coefficient of X~’~ in A~, for i = 1,

m, and j = 1, ..., n + 2. In other words, the matrix associated with A is

ai~ ai,~_i ... a10 a1,_1

a2~ a2,~_1 a2~ a2,_1

amn am,n_1 a~o am,_1

This matrix is denoted by mat(Ai, A2, . . . Am) or mat(A).

Definition 1.3.2 The sequence A given in (1.8) is said to be deternlinantal if m ~ ii + 2. If A is

determinantal, then the determinant polynomial of A is defined to be I rnat(A) . The determinant

polynomial of A is denoted by I A

Convention In the rest of this section, the sequence A given in (1.8) is always a determinantal

sequence of degree n.

U
Fl



SECTION 1.3. SUBREsuL’rANTs OF Two ORE PoLYNOMIALs 19

Remark 1.3.3 By the determinant of the (m x m) matrix

~ ai,~_i al,n_m+2 A1

a2fl a2,fl_1 a2,n_m+2 A2

N=

am_1,n am_1,n_1 am_1,n_m+2 Am_i

amn am,n_1 am,n_m+2

we mean the sum

det(N~)A~,

where Nk is the (m — 1) >< (m — 1) submatrix obtained from deleting the kth row and the last column

of N. One sees that this definition is just the expansion of det(M) by its last column. However,

our remark is necessary because the aj~j’s are in fl while the Ak’s are in R~[X] $

The following lemmas provide some useful properties of determinant polynomials.

Lemma 1.3.1 With the notation used in Remark 1.3.3, we have A 1= det(N). In particular, I A

is an R~-linear combination of the members of A.

Proof It is immediate from Remark 1.3.3 and the formula for expanding a determinant by a

column. U

Lemma 1.3.2 The determinant polynomial of a matrix is a multilinear alternating function of

rows.

Proof S~e [32, pp. 242—243]. 0

Lemma 1.3.3 Let r be a non-zero element of R, A an element of fl[X] e 1?., and k a non—negative

integer. If

H =j . . ., Gk(rA), ~ (rA), . . ., O(rA), rA,...

then

H = r[k+h] ...,eIcA,e~c_lA,...,eA, A,...



20 CHAPTER 1. SuBREsuLTANT THEORY FOR ORE POLYNOMIALS

Proof We proceed by induction on k. The lemma is trivial when k = 0. Assume that k > 0 and

that the lemma is true for k — 1. Then

H= r[k1 ...,ek(rA),ek_1A,.eAA I.

It follows from the extended Leibniz rule (Lemma 1.2.4) that the polynomial (~r)OkA — ek(rA) U
is an fl-linear combination of ek_1A, O~2A, ..., OA, A. Thus, we may replace O’~(rA) in the

above determinant polynomial by (akr)(OkA), according to Lemma 1.3.2. D

At last, we extend the techniques for expanding triangular determinants to determinant polynomi- fl
als.

Lemma 1.3.4 Let

~ ai,~_i a10 a1,_1

0 a2,fl_1 a2o a2,_1

El
0 0 ak_1,fl+2_k ak_1,fl+1_k ak_1,o ak_i_i

rnat(A) =

o 0 0 ak,fl+i_k ako ak,_1

13
0 0 0 am_i,n+1_k ~ am_i_i

0 0 am,n+i_k a~o am_i U
1. Ifk<m, then

(n~:1’lc(A~)) I Ak,...,Am I ifdegA~ =n+1—i, for all i with 2 <i <k—i, and 13
L41 degA~=n+i—k,forsornejwithk<j<m,

0 otherwise.

2. Ifk=m, then

AI= ~ (fl~’lC(Ai))Am ifdegA~=n+1—i,foralliwith2<i<m—1,
1 0 otherwise.
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Proof By Definition 1.3.1 and Remark 1.3.3, we have

ak,~+1_k •.. ak,fl_~~2 Ak

k—i

I A (II ai,n+i_i) det (1.10)

am_1,n+i_k am_j,flm+2 Am_i

am,n+i_k ~ Am

Let k < m. If there is an integer i such that 2 < i < k—i and degA~ < n+ 1—i, then~ = 0,

so I A 0 by (1.10). If deg A3 < n + 1—k, for all j such that k <j < m, then the determinant in

the right-hand side of (1.10) is zero, and so is A I . If~ ~ 0, for all i such that 2 < i < k — 1,

and ~ ~ 0, for some j such that k <j < m, then (1.10) becomes

k—i

A (H lc(Ai)) I Ak,Ak+i,...,Am I.

If k = m, then equation (1.10) becomes I A (n~~ ai,n+i_i) Am.

1.3.2 Definition of Subresultants

Definition 1.3.4 Let A and B be polynomials in RJXj ~ R. with respective degrees m and n,

wherem≥n≥0. Forj=n—i,n--2,...,0, —i,wedefinethejthsubresultantofAandBto

be the determinant polynomial

sres~(A,B) =Ie~’’A,..., OA, A O~_3_iB,..., OB,BI,
n—j m—j

The nth subresultant of A and B is defined to be B. The sequence

S(A, B) : A, B, sres~_1 (A, B), ..., sres_1 (A, B)

is called the subresultant sequence of A and B.

Example 1.3.5 Let A = a2X2 + a1X + a0X° + a_1X’ and B = b2X2 + biX + b0X° + b_1X’.

Remark 1.3.3 enables us to describe S(A, B) by determinants as follows.

a2A

sresi(A,B) =j A,B I=det

B
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o-a2 c5a2 + o-a1 5a1 + ua0 GA

0 a2 a1 A

sreso(A, B) =1 GA, A, GB, B det

ab2 Sb2 + ub1 Sb1 + ab0 GB

B

sres_i(A,B) =1 G2A,GA,A,G2B,GB,B ,
that is

o-2a2 So-a2 + o-5a2 + o-2a1 62a2 + So-a1 + o-6a1 + o2a0 62a1 + So-a0 + o-6a0 62a0 ~2A

o o-a2 6a2 + a-a1 6a1 + a-a0 5a0 GA

o 0 a2 a1 a0 A

det

o-2b2 So-b2 + o-5b2 + a-2b1 52b2 + So-b1 + o-5b1 + o-2b0 62b1 + So-b0 + a-Sb0 52b0 02B

o Sb2 + o-b1 Sb1 + o-b0 Sb0 OB

o 0 b0 B

If A and B are in fl[X], then the coefficients of X1 in the subresultants of A and B are

all equal to zero because the last column of mat(G~~’A, . . ., A, Gm_j_1B,. . ., B) is composed

of zero entries. If u = 1, 5 = 0, and A, B E R4X], then Definition 1.3.4 defines the algebraic

subresultants in [8, 9, 4]. If a = 1 and S = D, as given in Example 1.2.4, then Definition 1.3.4

defines the differential subresultants in [5, 24].

Some elementary properties of subresultants are given in the next lemma.

Lemma 1.3.5 If A and B are in 1~[X] ~ R. with respective degrees m and n, where m > n ≥ 0,

then

1. sres~(A, B) E [A, B], where n — 1 ≥ j ≥ —1; U

U.
n
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2. deg(sres~(A,B)) <j,wheren—1>j> —1;

3. sres,~_i(A,B) = (_l)m_n+lprem(A,B).

Proof The first assertion follows from Lemma 1.3.1. Since the matrix

mat(O’~~’A, . . ., A,~ ., B)

has (m + n — 2j) rows and (m + ii — j + 1) columns, the second assertion holds by Definition 1.3.2.

Since sres~_1 (A, B) =~ A, G~_flB, . . ., B , the pseudo-remainder formula (1.6) and lemma 1.3.2

imply that

lc(B)[m_~hJsresn_i (A, B) =1 prem(A, B), Bk’, . . ., B I

Moving prem(A, B) to the last row of the above determinant, we get

lc(B)[m_n+hlsresn_i(A, B) = (_1)m_n+1 B[m_fl, . . . , B, prem(A, B)

Therefore, sres~_1(A,B) = (_1)m_n+lprem(A,B) by Lemma 1.3.4.

1.3.3 Row Reduction on Subresultants

Some proofs in the algebraic subresultant theory are based on the fact that, if A and B are two

univariate commutative polynomials in the indeterminate x, then

x prem(A, B) = prem(xA, xB).

However, the Ore operator 0 and pseudo-division for Ore polynomials do not commute, that is,

if A and B are two Ore polynomials, then in general

0(prem(A, B)) ~ prem(OA, OB).

The following lemma describes the relation between 0(prem(A, B)) and prem(OA, GB).

Lemma 1.3.6 Let A and B be in Rj~X] ~ 1?., with respective degrees m and n, where m ~ n ~ 0.

If C = prem(A, B) and Ck = prem(GkA, 0~cB), for k E N~, then Ck — 9k0 is an R.-linear

combination of 0k_lA, ..., A, 0m_~~+k_lB, ..., B.

Proof By the pseudo-remainder formula (1.6), we write

rn—n
IC(B)[m_n+l]A r~0~B + C, (1.11)
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and [I
rn—n

(Jklc(B)) [m-n+1J OkA S~ek+iB + Ck, (1.12)

where each of the ri’s and si’s belongs to 7?. Applying G to equation (1.11) k times and using the

extended Leibniz rule (Lemma 1.2.4), we obtain

k—i rn—n+k
(o.klc(B)) rn—n~ ekA+~q.eiA_ ~ h~eiB+9kC, (1.13)

where each of the qj’s and hi’s belongs to 1?. Equations (1.12) and (1.13) imply that

k—i rn—n k—i

~ qj&~A = ~ (hm~j - s)Ok+iB + ~ h1G1B + OkC - Ck.

Since Om_n+kB is the only polynomial of degree (k + m)in the above equality, hm+k — Sk = 0. U
Hence, 9kG — Ck is an 7?-linear combination of 9ic_iA, ... A, Gk+m_n_1B, ..., B.

We are ready to present the row-reduction formula for subresultants, by which the techniques fl~
for proving the algebraic subresultant theorem can be extended to Ore polynomials.

Theorem 1.3.7 Let A and B be in 7?{X]eR, with respective degrees m and n, where m> ii ~ 0. If

there exist non-zero u,v,w El? andF,G E 7?[X]E~R. such that uB = vF andsres~_i(A,B) = wG,

then

u[m_ullc(B)[m_n+11n_iisresi(A, B) = El
v[m_u]w[n_ul I 9~-~’F, .. ., F, 9~-~’G,. . ., G , (1.14)

for i = n — 1, n —2, ..., —1.

Proof Let C = prem(A, B), Ck = prem(O~cA, 9kB), for k é N, and S~ = sres~(A, B), for fl
i = n — 1, n —2, ..., —1. Note that S~ EY~—~—’A,...,9A, A,~B by

Definition 1.3.4. The pseudo-remainder formula for 9~~—’A and 9~~_i_iB implies that U
an_i_i(lc(B))[m_n+lJOn_i_1A — C~_~_1

is an l?-linear combination of Gmi_iB, ..., 9’~B, 9n—i—1 B. Therefore,

an_i_i (lc(B))[n~_~hJ9n_i_1 A —

is an fl-linear combination of 0n—i—2 A, ..., GA, A, 9~—t~iB, ..., GB, B by Lemma 1.3.6. It

then follows from Lemma 1.3.2 that

(lc(B))[m_n+i} S~ =~~9~t_2A,..., A, 9”~’B,..., B . (1.15)

F”
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In the same way, we replace ~‘A by &~C on the right-hand side of equation (1.15), while, simul

taneously, we multiply the power ~i(lc(B))[m_n+1l on the left-hand side of the same equation, for

jtn_i_2,n_i~_3,...,O.Weeventuallyarrjveat

lc(B)[n_ul[m_~hlS~ =~ e~—~—’c,~c,~B

Then, by the third assertion of Lemma 1.3.5,

1C(B)[fluJ[mn+1JS~ =1~ . . . , B,~ . . , Sn___1

This theorem thus follows from Lemma 1.3.3.

1.4 Subresultant Theorem and Algorithm

Notation To avoid endlessly repeating the same assumptions, in this section we let A and B be

in R{X} ~fl, with respective degrees m and n, where m n ~ 0. Let S,~ be B and Si be sres~ (A, B),

for j = n — 1, n —2, ..., —1. The subresultant sequence S(A, B) consists of A, S~, ..., So, ~

This section has two parts. First, we prove the subresultant theorem and describe the gap

structure of a subresultant sequence. Second, we present the subresultant algorithm.

1.4.1 Subresultant Theorem

Definition 1.4.1 The jth subresultant 8, is regular if 5, is of degree j, otherwise Sj is defective.

In particular, the nth subresultant S,-~ is always regular.

First, we demonstrate the relation between the members of S(A, B) and subresultants of two

consecutive non-zero members of S(A, B) in the next lemma. The subresultant theorem is one of

its consequences. The proof given below is based on somewhat tedious calculations because of the

presence of u-factorial expressions.

Lemma 1.4.1 Let

lc(S~), (n ≥ i> —1), /3~ = ulc(Sn)[m_7~l, and /3~ = ulc(S~), (n — 1 > ~ ≥ —1).

If S,+i is regular and 5, has degree r, for some j such that n — 1 ≥ j ≥ 0, then the following hold:

1. If r ≤ —1, then

82=0 (j—1>i>—1). (1.16)
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2. Ifr>0, then El
S~=0 (j—1≥i>r+1), (1.17)

[j_rJ5 = (1.18)
13j+1 3,

and
[r_i} [j—~j

~j+i ~j+i S~ = sres~(S~+i, S~) (r — 1 ≥ i ≥ —1). (1.19)

Proof We proceed by induction on the sequence of the regular subresultants in S(A, B). As S~ is

the first regular subresultant in S(A, B), we start with the case j = n — 1. Let i be an integer such

that n — 2 ≥ i ≥ —1. By Definition 1.3.4 we have S~ =j~ . ., A, em_i_isa, . . .,Sn I . It

follows from the row-reduction formula (1.14) that

= R~, (1.20)

where R• 0m—1—t8 s e’~—’—~s~_1, . . .,as~_1,s~_1 In,..., n~

If S~_1 has degree less than 0, then es~_1 and S~_1 are R~-linearly dependent, so R~ = 0, and

henceSj=Oby(1.20),forjfl_2,n_3,...,_1.

Assume that r ~ 0. If n —2> i ≥ r+ 1, then degS~ > 1 +degEY1_l_iS~_j. Thus; R~ = 0 by

Lemma 1.3.4, consequently, S~ = 0 by (1.20).
[m—r] [n—1—rJIf i = r, then Rr = O~ ~fl_~ S~_1 by the second assertion of Lemma 1.3.4. Hence equa

tion (1.20) can be rewritten as

~[m—n+1J[n~rjQ — ~[m—rJQ[n—1—rJ
r — n n—i ~9n_i~ (1.21)

As

n-n+i][n-r] = c4~n_rl(ga~)[m-n][n_i_rJ (by (4) in Lemma 1.2.5)

ci~_~’J,3[n_r_hj

the equation a[n1rJq [n—1—rj~3fl_~ S~_1 holds by (1.21).

If r — 1 > i ≥ —1, then R, (gr_i~n)[m_rl5re5i(Sn, S~_~) by the first assertion of Lemma 1.3.4.

This equation and (1.20) imply that

cn_n+1J[n_iJs~ (Jr_i~n)[m_rl5resj(S~, S~1). (1.22)

As

~[m—n+i][n—i] a[m_i]/3[n_i_il (by (4) in Lemma 1.2.5)

r—i )[m_r]/3[n_i_il (by (2) in Lemma 1.2.5),
— a an
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[r~i]~n~i~iJ5 = sres~(S~, S~_1) holds by (1.22). The proof of the base case is done.the equation c~

We assume that the lemma holds for the regular subresultant S~.i, and that degS3 = r, i.e.,

equations (1.16), (1.17), (1.18), and (1.19) hold. If r < —1, there is no non-zero subresultant

following S~, so there is nothing to prove. Suppose that r ~ 0. Then the regular subresultant

next to Si+i must be Sr by the induction hypothesis. Let deg(Sr_i) t. We have to prove that,

ift<—1,then

S~=0 (r—2≥i≥—1); (1.23)

and that, if t ≥ 0, then

52=0 (r—2≥i≥t+1), (1.24)

[r—i—t]~fr—i—t]5 = /3r_i Sr—i, (1.25)

and

sresj(Sr, Sr—i) (t — 1 ≥ i > 1). (1.26)

Before going to induction, we point out two important relations hiding in (1.18). Equating the

leading coefficients of both sides of (1.18) yields

[j—r} [j—rj
/9~+i ar=/3i ~i. (1.27)

Applying a to both sides of (1.27) yields

(~/~i+i)~”1/3r = i—r÷u1~ (1.28)

We claim that

~[i—i+i1Ør—i—i]5~ = T~, (r — 2 ≥ i ≥ —1), (1.29)

where T2 =j ei_tsr, • •, 5r, 9r_2_iSr_i, . ., 0Sri, Sr_i I

Proof of the Claim. Equations (1.18) and (1.19) (setting i = r — 1) give us

= /9[~’i5 and sresr_i(Sj+i,Sj) ~~
j+i ) r—i. (1.30)r

Using the relations given in (1.30) and row-reduction formula (1.14), we derive from (1.19) that

I [r—i] ~j—r+i][r—i]’~ T(~[i_r][i_i+1]) (c~[i_r+2][r_i]) (~[r_iJ~[j_j]5) ( [i—rib t+iJ

\ i+i = ~j+1 ) ~i+i ~i+i

Let
i]\ (“ [r—ij [i—il~(~[i—r][i_i+iJ~[i_r+2][r— ) ~ ~ )

r2 _ [j—r][~—i+i] ( [r—i] [~_r+i][r_~])

\~~i+i 18j+i
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[j—i+iJ jr—i—i] . [r—i]Then r,S, T1. Our claim will be proved if we show r~ . Canceling ~j+i yields

/ ,~[j—r][j—i+i] \ [j—r+2][r—i] ,~[j—i]
r, — ,-~[j—r][j—i+iJ J 1~[j—r+i][r—iJ

\1-’j+i / “i+i

The above equality can be simplified by (1.27) to

/ [j—i+i] \ [j—r+2J[r—i] A[j_il

_______ 2 (1 31

~ [j—i+i] J ,q[j—r+i][r—i]
/ ~~j+i

The fourth equality in Lemma 1.2.5 implies that

j—r+2][r—i] — ~[j—i+i],~[j_r+i][r__i_1] d j~+1][ti] — 1~[j—i]1 a ‘1[j—r][r—i—i]
— an ~j+i ~‘~‘j+i ~

So equation (1.31) can be further simplified to

/ ~[j—~’+i][ri_iJ
= 0jj—i+1] f /-‘j

r ~

It then follows from (1.28) that r~ = t+1]i1j• The claim is proved.

If t < —1, then T1 = 0, for r — 2 ≥ i ≥ —1, because esri and OSri are R.-linearly dependent,

soSjOby(1.29),forir_2,r_3,...,_1.

Assume that t ~ 0. If r — 2 ≥ i ≥ t + 1, then T~ = 0 since deg(Sr) > 1 + deg(W_t_lS~_1).

Hence Si = 0 by (1.29).

1f i = t, then T~ = L~r /~r_i5r~i by Lemma 1.3.4. Equation (1.25) holds by (1.29).

If t — 1 ≥ ~ ≥ —1, then T~ = (ot~c~r)[ t+iJsresj(Sr,Sr_i) by Lemma 1.3.4, and hence (1.29)

implies that

= (o•t_iar)[i_t+i]sresi(Sr, Sr_i). (1.32)

It follows from the second assertion of Lemma 1.2.5 that

~[j—i+1J ~[(t—i)+(j—t+1)] ~~t_i](~t_i~)[i_t+1]

Using this relation to remove the like a-factorials from both sides of (1.32), we get (1.26).

Theorem 1.4.2 (Subresultant Theorem) Let

lc(S~) (n ≥ i ≥ —1), /3~ = alc(S~)[m_f}, and /~j = alc(S~) (n — 1 ≥ i ≥ —1). El
If S,~1 is regular arid S~ has degree r, for some j with ri — 1 ≥ j> 0, then the following hold:
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1. If r < —1, then

S~ = 0, (j — 1 ≥ i ≥ —1). (1.33)

2. If r ~ 0, then

S~=0, (j—1>i>r+1), (1.34)

,~[i—r] q — a[.i—”] c~.
~-‘j+i ‘Jr—l-’~ J~

nd

~j+i~Sr_i = (— 1)i_rprem(Sj+i, S~)• (1.36)

Proof Equations (1.33), (1.34), and (1.35) hold by Lemma 1.4.1. Set i r — 1. Then equa

tion (1.19) in Lemma 1.4.1 becomes aj+iI3~~l+hlSr_i = sresr_i(Sn, Sn_i). Hence, equation (1.36)

holds by the third assertion of Lemma 1.3.5.

If o~ = 1 and S = 0, and A, B e R4~X], then Theorem 1.4.2 becomes the algebraic subresultant

theorem in [26]. If a = 1 and S = D, as given in Example 1.2.4, then Theorem 1.4.2 becomes the

differential subresultant theorem in [24].

The next corollary is a formula-free version of the subresultant theorem.

Corollary 1.4.3 Let degS3~1 = j + 1 and degS2 = r, for some j such that n — 1 ≥ j ≥ 0.

Ifr≤—1,then5~=0,fori=j_1,j2,...,_1. Ifr>—1,thenS~=O,fori=j—1,j—2,

r + 1, Si ‘-“-iz Sr, and Sr—i ‘•.~ prem(S3+i, S3).

Definition 1.4.2 A defective subresultant is said to be isolated if it is of degree —1.

Remark 1.4.3 S(A, B) does not contain any isolated subresultant if A and B belong to R4X].

Now, we extend subresultant sequences of the first and second kinds in [37]. We prove that

subresultant sequences of the first kind are PRS’s in the next section.

Definition 1.4.4 The subresultant sequence of A and B of the first kind is the subsequence of

S(A, B) that consists of the following polynomials:

1. A, B, and

2. Si, ~ S3+i is regular and 5, is nonzero.
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The subresultant sequence of A andB of the second kind is the subsequence of S(A, B) that consists U
of A, B and other regular subresultants of S(A, B). The subresultant sequences of A and B of the

first and second kinds are denoted by S1(A, B) and 82(A, B), respectively.

The next corollary describes the relation between S1(A, B) and S2(A, B). fl
Corollary 1.4.4 Let S2(A,B) consist of A, S~, Sf3, S34,.. •,S~,, S~. If S(A,B) does not con

tain any isolated subresultant, then S1(A, B) consists of A, S,,, S,,~1, Sj3_1, Sj4_1, . . ~,

Otherwise, S1(A, B) consists of A, Si,, Sni, 533—1, S34_1,. . . ,~ Sn—i. In any case we have fl
S~_1 ‘~-‘~ S~3 and Sj~_1 ‘~-~ Sj~÷~, for i = 3, 4, ..., 1 — 1.

Proof The sequence A, S~, S~_1, Sf31, S~4_1, ..., Sj~_1_1 is a subsequence of S1(A, B) by

Definition 1.4.4. If S~_1 is zero, then all the subresultants following Sj~ are zero by Corollary 1.4.3.

If ~ is nonzero, then it must be isolated, otherwise there would be a regular subresultant El
following Sj1 by Corollary 1.4.3, which is a contradiction. Since S~ is regular, S~1 ~ 533 by

Corollary 1.4.3. In the same way we deduce that S~_1 ~ Sj~,, for i = 3, 4, ..., 1 — 1. D

If Sj,~1 and ~ are consecutive members in S2(A, B), then the Si’s between ~ and S,1 are

all zero by Corollary 1.4.3. Hence, all the non-zero subresultants are contained in either 82(A, B) -
or S1(A, B). Accordingly, all the defective subresultants are contained in S1(A, B). If there is no fl
defective subresultant in S(A, B), then both S1(A, B) and S2(A, B) coincide with S(A, B).

Corollary 1.4.5 If there exists an isolated subresultant in S(A, B), then it is the last non-zero U
member in S(A, B).

Proof If 5, is isolated, then 5, is contained in S1(A, B), and S~i is regular. Hence, all the

subresultants following 5, are equal to zero by Corollary 1.4.3. U
The gap structure of S(A, B) is given in Figure 1.1.

Note that the gap-structure of the subresultant sequence of two Ore polynomials is slightly

more complicated than that of an algebraic subresultant sequence due to the possible presence of

isolated subresultants. U..
In summary, the subresultant theorem and its corollaries reveal the following:

• If S~ and S, (i > j) are both nonzero and of the same degree, then S~ and S~ are two

consecutive non-zero subresultants in S(A, B), 5, is defective, S~ is regular, and S~ ~ S,. U

U
n
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A

B

S~~1 is regular.

S~ is defective of degree r.

S~z~O(j>i>r).

5r is regular.

a regular subresultant

a defective subresultant

zero subresultants

a regular subresultant

an isolated subresultant if one exists.

Figure 1.1: The gap structure of S(A, B)

• If S, and 53 (i > j) are two consecutive non-zero subresultants with distinct degrees, then

i = j + 1, S~ is regular, and prem(S1, S~) ~ Sr—i, where r = degS3.

• The coefficients of similarity mentioned above are given explicitly by (1.35) and (1.36) in the

subresultant theorem.

1.4.2 Subresultant Algorithm

Throughout this section S1(A, B) and S2(A, B) are

A1, A2, A3,..., Ak,, and, B1, B2, B3,.~•,Bk2,

respectively, where A1 = B1 = A and A2 = B2 = B. By Corollary 1.4.4, k1 = k2 if there is no

isolated subresultant in S(A, B), otherwise k1 = k2 + 1.

Lemma 1.4.6 Let b2 = lc(B)[m_nl, a~ = lc(A~), b~ = lc(B~), and i~ = degA2_i — degAs + 1, for

i=3,...,k2.Then

(aa~)[1~21A~ = (abj_l)[12_2lBt. (1.37)

In particular, a~_hj (o.bj_i)[~_2}bj.
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Proof Let B_1 = Sj+i• Then A, = Sj by Corollary 1.4.4. Let degAs = r. Then B1 Sr by

Corollary 1.4.3. Since deg A1_1 = deg B1_1 = j + 1 by Corollary 1.4.4, we get l~ = j — r + 2. Hence

equation (1.37) holds by (1.35) in the subresultant theorem. Equating the leading coefficients of

both sides of (1.37) yields a~1~’1 = (ubj_i)[lt21b1. D

The subresultant algorithm given in the next theorem generalizes the algebraic subresultant

algorithm by Brown and Traub [4]. This algorithm computes S1(A, B) without expanding determi

nants directly, and proceeds as the Euclidean algorithm but removes a factor from the coefficients

in the pseudo-remainder after each pseudo-division. A byproduct of this algorithm is the sequence fl
of the leading coefficients of the members of S2(A, B). Consequently, we can use Lemma 1.4.6 to

construct S(A, B) from the output of the subresultant algorithm.

Theorem 1.4.7 (Subresultant Algorithm) Let

a1 = = 1, a2 = Ic(A2), and b2 = 1C(B2)[m_ni,

and let

a1 = lc(A1), b1 = Ic(B1), and l~ = degA1_1 — degA1 + 1,

fori=3,...,min(kj,k2). Then

A1 = prem(A1_2, A1_i)/e1, (1.38)

where

e~ = (_1)1t_1 (~bj_2)[lt_1_hlaj_2, (1.39)

fori=3, 4, ..., k1. In particular, Si(A,B) is a PRSoJA andB.

Proof We handle the cases in which i = 3 or 4, and then consider the general case.

If i = 3, then e3 = (_1)m_n+1, so prem(A1,A2) = (_1)m_n+1S~_~ = e3A3 by the third

assertion of Lemma 1.3.5. Note that, ifdegS~_i ≤ —1, then k1 ≤ 3 by Corollary 1.4.3. To proceed,

we assume that deg A3 = r > 0. If i = 4, then

(~ 1)’~’~’a~ (ob2)~~~J = lc(B)u(lc(B))[m_nh[72_?}.

Equation (1.36) in the subresultant theorem (settingj = n—i) implies that e4Sr_l = prem(A2, A3).

If Sr—i is nonzero, then A4 = Sr_i since 5r is regular.
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Let 5 < i ≤ k~. By (1.37) in Lemma 1.4.6, we have (uaj_2)[~_2_2]Aj_2 = (ubj_3)Pi_2_2]B1_2.

Therefore, prem((o.aj2)[lt_2_2]A1_2, A~_1) = prem((ub~_3)I~_2_2JB~_2, A~_1). From this equation

we derive

(gaj_~)~t_2_2lpre~ (A1_2, A~_1) = (ubj_3)[~_2_2lprem (B~_2, A~_1). (1.40)

Let B2_2 = S3~1. Then A~_1 = S3 by Corollary 1.4.4. Assume that degA~_1 = r. Then B~_1 = S,

and A2 = Sr—i by the same corollary. We deduce that

prem(B2_2, A~_1) = prem(Si+i, S~) = (_b~_2)[lt_hJA~, (1.41)

where the last equality follows from (1.36) in the subresultant theorem, since lc(Si+i) = b~_2 and

1i—i = j — r + 2. Equations (1.40) and (1.41) imply that

(uaj_2)[lt_2_2]prem(Aj_2, A~_1) = (_bj_2)[hhl(o.bj_3)[~_2_2]Aj.

Multiplying a2_2 to both sides of the above equation yields

a~2~prem(A1_2, A2_1) = a~_2 (_b~...2)[’t_h] (ub~...3)[l2_2_2lA2.

Simplifying the u-factorials of the above equality by Lemma 1.4.6, we see that

• [Is—ilb_2prem(A2_2, A~_1) (—1) ~1a~_2b~_2 A~.

Equation (1.38) follows.

It remains to prove that deg(A~1) = —1 or prem(Ak1_l, Ak1) = 0. Assume that degAk1 = r ≥ 0

and that Ak, = 53. Then Bk1_l = S3~1 by Corollary 1.4.4. It follows that prem(Ak1_l, Ak1)

and prem(S~+i,S~) are similar over R~. Note that prem(S~~i,Sj) = 0, otherwise Sr_i would be

nonzero, so Sr1 is in S1(A,B), contradicting the fact that S3 is the last member of S1(A,B).

Consequently, prem(Ak1_l, Ak1) = 0. n

Remark 1.4.5 Using (1.38) in Theorem 1.4.7, we may get A2 by computing prem(A1_2, A~_1)

and removing the extraneous factor e2 from the pseudo-remainder, where e2 is computed by equa

tion (1.39). At first glance, one might think that one needs both the ag’s and the b2’s to compute

the e2’s. However, the recursive formula b2 = a~i_1]/(ubj_i)[~_2] in Lemma 1.4.6 enables us to

compute the b~’s by the at’s.
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Chapter 2

Applicatio s of the Subresu ant

Theory

We will apply the subresultant theory developed in Chapter 1 to three fundamental problems.

namely, deciding 0-compatibility, computing GCRDs, and computing LCLMs. Using the subre

sultant theorem we present a characterization of the 0-compatibility of two elements in an Ore

polynomial module, define the Sylvester resultant, derive determinant formulas for GCRDs and

LCLMs, and estimate multiplicative bounds for the denominators of the monic GCRD and LCLM

of two elements in an Ore polynomial ring. Propositions 2.2.3 and 2.2.4 in this chapter establish

the basis for the modular algorithm for computing GCRDs over Z[t] in Chapter 3.

The subresultant algorithm described in Chapter 1 may also be applied to various back-and-

forth division processes in linear differential and difference algebra, for example, computing the

characteristic sets for a linear differential ideal [21, pp. 150—155], and reducing a system of linear

homogeneous equations to a diagonal form [35, pp. 39—41]. But we will not study Ore polynomials

of special kinds in this thesis.

Thronghout this chapter (fl[X] ~ fl, 0, o~, 6) is an Ore polynomial module. For brevity we

denote this module by R4X] $ 1~. We fix A and B in 7~[X] ~ 7~ with respective degrees m and n,

where m ~ n > 0.

The organization of this chapter is as follows. In Section 2.1, we present two methods for deciding

the 0-compatibility of two elements in fl[X] ~ fl and define the Sylvester resultant of two elements

in 7?~[X]. Section 2.2 is devoted to studying the relation between GCRDs and subr.esultants. We

apply the subresultant theory to the computation of LCLMs in Section 2.3.

35
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2.1 Deciding e-coi~patibi1ity by Subresultants

Two methods are presented for deciding O-compatibility by subresultants. If R.{Xj ~ 1~ is the fl
module of linear differential polynomials, the two methods may be seen as the improvements of the

differential Euclidean algorithm [35) and differential resultants [1), respectively.

Theorem 2.1.1 The following statements are equivalent:

1. A and B are 0-compatible.

2. sres_1 (A, B) is equal to zero and the last non-zero member of S(A, B) is regular.

3. The last member in S1(A, B) is of degree greater than —1.

Proof (1 ==~. 2) Since sres_i(A,B) is in {A,B], sres_1 (A, B) is equal to zero. If the last non-zero

subresultant were defective, then it would be isolated by Corollary 1.4.4, which is a contradiction

to the assumption that A and B are 0-compatible.

(2 =~ 3) This is immediate from Corollary 1.4.4.

(3 =~. 1) This follows from the fact that S1(A, B) is a PRS (see, Theorem 1.4.7).

Observe that if sresk(A, B) is a member in 51(A, B), with degree r, then the only candidate

of the member next to sresk(A,B) in S1(A,B) is sresr_i(A,B) (see Corollary 1.4.3). Using this

observation and the third equivalent condition of Theorem 2.1.1, we present the algorithm COMP_t

for deciding the 0-compatibility of A and B. COMP_t proceeds by computing the degrees of the

members in S1 (A, B) in a top-down fashion. fl
algorithm COMP_t

UInput:A,Be7~[xJe~wjthdegA>degB>~

Output: TRUE i~ A and B are O-compatible. Otherwise, FALSE.

1. r~—degB;

2. while true do {
3. r +— degsres~_j(A, B);

if r —oo then return(TRUE);

5. if r = —1 then return(FALSE); }
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The second algorithm, named COMP_b, for deciding the e-compatibility is based on the second

assertion of Theorem 2.1.1 and the fact that the last non-zero member in S(A, B) is either regular

or isolated. COMP_b proceeds by computing the degrees of the members in S(A, B) in a bottom-up

fashion.

algorithm COMP_b

Input: A,B E R4X]efl with degA> degB ≥ 0.

Output: TRUE if A and B are e-compatible. Otherwise, FALSE.

1. If sres_1(A,B) ~ 0 then return(FALSE);

2. r~—degB;

3. for i = 0 to r do {
~. if coeff(sres~(A,B),X:) ~ 0 then return(TRUE);

5. if coeff(sres~(A,B),X’) ~ 0 then return(FALSE); }

Remark 2.1.1 In COMPj and COMP_b, we do not specifically describe how to compute the

degree and coefficients of a subresultant, since the ground domain 1?. is merely a commutative

domain. Of course, determinants can always be computed by minor expansion [16, §9.4]. The

subresultant algorithm may be used in COMPt if exact division in 7~ is computable. Note that

we need only decide whether some determinants are equal to zero in both COMP_t and COMP_b.

Next, we study the e-compatibility of two Ore polynomials in R.[X].

Definition 2.1.2 For A and B in fl[X], the subresultant sreso(A, B) is called the (right) Sylvester

resultant of A and B and denoted by res(A, B).

This definition extends the definitions of the (right) Sylvester-like resultants for two univariate

algebraic polynomials, two linear differential operators [1, 5], and two linear shift operators [29].

Theorem 2.1.2 For A and B in R.[X], the left ideal [A, B] does not contain any element of degree 0

if and only if res(A, B) is equal to zero.

Proof If [A, B] does not contain any element of degree 0, then res(A, B) is equal to zero because

deg(res(A, B)) ≤ 0 and res(A, B) ~ [A, B]. Conversely, if res(A, B) is equal to zero, the last

member of S1 (A, B) is of degree greater than 0. Thus, [A, B] does not contain any elements of

degree 0 because S1 (A, B) is a PRS.
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2.2 Greatest Common Right Divisors

Notation In the remainder of this chapter. .4 and B belong to the Ore polynomial ring fl{X].

The goal of this section is to describe the relation between the GCRDs and subresultants of

two Ore polynomials In order to describe (right) divisibility, we feel it convenient to consider Ore

polynomials with coefficients in a commutative field. For this purpose we extend a and 6 to the

quotient field of 1~.

Proposition 2.2.1 If F is the quotient field of 1?., then the conjugate operator o• and pseudo-

derivation 6 can be uniquely extended to F by letting

(2.1)

and

— b(6a)—a(Sb) (22
~b) — (ab)b

for a,bEl?.. with b≠O.

Proof We have to verify the following:

1. a is an injective endomorphism of the field F.

2. 6 is an endomorphism of the additive group F.

3. For all r, s e F, 6(rs) = a(r)6(s) + 6(r)s.

From the identity 6(ab) = 6(ba), for a, b E 7?, and (1.2) in Proposition 1.2.1, it follows that

b(Sa) — a(Sb) = (ab)(6a) — (ua)(6b). (2.3)

Let a/b = c/d, where a, b, c, d E fl and bd ~ 0. Then a(d)a(a) = a(c)a(b) since a is a ring

homomorphism, hence, a is well defined on F. Applying 6 to the equality da = cb yields

(ad)(Ja) + (6d)a = (ac)(6b) + (6c)b,

consequently,

(ad)(6a) — (ac)(Sb) = (6c)b — (öd)a.

Multiplying both sides of the previous equality by (ab)d yields

d((ad)(ab)(6a) — a(bc)(6b)) = (ab)(bd(6c) — (ad)Q5d)),
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which, together with the equation da = cb, implies that

d(ud)((ub)(Sa) — (aa)(Sb)) = b(ab)(d(~c) — c(Sd)).

It then follows from equation (2.3) that

b(Sa) — ci(5b) — d(oc) — c(Sd)
b(~b) — d(ad)

Hence S is well defined on F.

Clearly, o is a ring endomorphism of F. The distributivity of S with respect to addition is

proved by the following calculation: for a, b, c, E 1~ with b ~ 0,

~ (~ + C) = ~ (a ± C) = bS(a + c)-(a + c)S(b) = ~ (~) + ~ (~).
It remains to verify the multiplicative rule, that is, for all a, b, c~, d E 7?., with bd ≠ 0,

o(~) =)o(~)+s(~) (~).
We calculate

bda(bd) (~ (~) (~) + (~) ~ (~)) =

bu(a)Q1c5(c) — cS(d)) + cu(d)(bS(a) — aS(b))

bdo-(a)5(c) — aca(d)S(b) — cbo(a)5(d) + cb~(d)S(a)

bd(o-(a)S(c) + cS(a) — cS(a)) — ac(o~(d)5(b) + bS(d) — bS(d)) — cba(a)S(d) + cba(d)c5(a)

bdS(ac) — acS(bd) + cb(u(d) — d)S(a) — cb(a(a) — a)S(d)

bdS(ac) — acS(bd) + cb( u(d)S(a) — o(a)6(d) — dS(a) + aS(d))

= bdS(ac) — ac6(bd) (by equation (2.3))

= bd~(bd)S(~).

The multiplicative rule holds.

If o’ is a conjugate operator extending a and 5’ is a pseudo-derivation (with respect to ~‘)

extending 5, then, for every non-zero b in 7?.,

,/ 1~ ,(1Nu ~b~) =u(b)cr =1,

so o’(l/b) = 1/u(b). From the property that 5(1) = 0 (see, Remark 1.2.2), we deduce

s’(b~) =cT(b)6’(~) +~-~-~=o.
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Thus

—~ 8(b)
~b) — bo(b)~

The uniqueness then follows from the multiplicative rule of o~ and 6’.

By Propositions 1.2.1 and 2.2.1. the Ore operator 0 on R[X] can be uniquely extended to F[X]. fl:
In the rest of this chapter. the vector space F[X] is regarded as an Ore polynomial ring whose Ore

operator. conjugate operator, and pseudo-derivation are also denoted by 0, a, and 6, respectively.

Definition 2.2.1 A non-zero polynomial in F[X] of highest degree, which divides both A and B

on the right, is called a GCRD of A and B.

Lemma 2.2.2 If G1 and G2 are two GCRDs of A and B, then C1 and G2 are similar over F. If

the sequence A, B, A3, ..., A~, is a PRS, then Ak is a GCRD of A and B.

Proof See, Ore [33, p. 484].

Example 2.2.2 Let D be the differential operator on Z[t] that sends t’2 to nt~1, for all n E N+.

Then (Z[t][D], 1, D) is an Ore polynomial ring. One can easily verify that tD3 = D2 (tD—2). Thus,

(tD — 2) is a GCRD of D3 and (tD — 2). Note that the product of two primitive polynomials is

not necessarily primitive. Moreover, there does not exist A in Z[t}[X] such that D3 = A(tD — 2).

Example 2.2.3 Let E be the shift operator on Z[t] that sends t~ to (t + 1)”, for all n E N~.

Then (Z[t]{E], E, 0) is an Ore polynomial ring. If

A = t(t+ 1)E2 — 2t(t+2)E+ (t+ 1)(t+2) and B = (t— 1)E2 — (3t — 2)E+2t,

then a GCRD of A and B is G = tE — (t + 1). Note that the gcd(lc(A), lc(B)) = 1, but lc(G) = t.

Now, we describe the relation between the GCRDs and subresultants of two Ore polynomials.

Proposition 2.2.3 If d is the degree of the GCRDs of A and B, then the dth subresultant of A

and B is a GCRD of A and B.

Proof As A and B are in 7?JX], S2(A, B) is a PRS of A and B by Corollary 1.4.4. If d is the

degree of the GCRDs of A and B, then the last member in S2(A, B) is sresd(A, B). C

Remark 2.2.4 Proposition 2.2.3 can be directly proved by induction on the degree of B (see, [25]). fl

LI
Ii
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Proposition 2.2.4 If d is the degree of the GCRDs of A and B, then the matrix

mat(X’~A, ..., XA,A,Xm_1B,...,XB,B)

has rank (m + n — d).

Proof Let M be mat(X~~A, ..., XA,A,Xm_1B XB,B). Since sresd(A,B) is nonzero.

the rows of M represented by

Xn_c~_lA, ..., A, Xm_d~~lB ..., B

are F-linearly independent. Therefore, the rows of M represented by

..., A, Xm_1B, ..., Xm_d_IB, ..., B

are F-linearly independent. We then have rank(M) ~ rn + n — d. On the other hand, there are

non-zero U, V e F[X] such that A — Usresd(A, B) and B = Vsresd(A, B) by Proposition 2.2.3.

Therefore, the polynomials XA (0 ≤ i ≤ n—i) and X~B (0 <j ~ rn—i) are F-linear combinations

of Xm+ndisresd(A, B), ..., Xsresd(A, B), sresd(A, B), and hence rank(M) ~ rn + n — d.

Corollary 2.2.5 If d is the degree of the GCRDs of A and B, then lc(sresd(A, B)) is a multiplicative

bound for the denominators of the coefficients in the monic GCRD of A and B.

Proof If G is the monic GCRD of A and B, then G and sresd(A, B) are similar over F.

Thus, sresd(A, B) = lc(sresd(A, B))G because G is monic.

The rest of this section is devoted to proving the theorem (Theorem 2.2.8) that describes

the relation between the subresultant sequence of two Ore polynomials and that of their two left

cofactors. This theorem will explain some experimental results in the next chapter. Chardin [5]

proved this theorem when fl[X] is a ring of differential operators. Johnson [19] proved this theorem

when 1~[X] is a ring of algebraic polynomials. Our proof is inspired by Johnson’s. First, we give

two lemmas.

Lemma 2.2.6 If G is a non-zero polynomial in F[X], then lc(BG) = lc(B)u’~(lc(G)).

Proof Since lc(BG) = lc(B)lc(X”G), the lemma follows from the extended Leibniz rule.

Lemma 2.2.7 If G is a non-zero polynomial in F[XJ, then

prem(AG, BG) = (u79c(G))[m_~1Jprem(A, B)G. (2.4)



42 CHAPTER 2. APPLICATIONS OF THE SUBRESuLTANT THEORY

Proof By the pseudo-remainder formula (1.6) we have

lc(B)[m_n+11A = PB + prem(A. B) (2.5)

and

lc(BG)[m_n+1JAG = QBG + prem(AG, BG), (2.6)

where P and Q belong to F[X]. By (2.5) we obtain fl
Un(lC(G))Im_n+1}lC(B)[m_n+1IAG = Jn(lc(G))[m_n+1IPBG + an(lc(G))[m_n+h}prem (A, B)G,

so

lc(BG){m_n+1IAG = Jn(lC(G))fm_n+JIPBG + ~lc(G))[m_n+1}prem(A, B)G

by Lemma 2.2.6. Comparing this equation and (2.6) yields (2.4), because the pseudo-remainder

of AG and BG is unique. 0

Theorem 2.2.8 If G is a non-zero polynomial in F[X}, with degree k, then

sresk÷~(AG,BG) = (~i+1lc(G))[m+n_2i_1Jsres(AB)G (n — 1 ≥ i ≥ 0).

Proof Denote lc(G) by g, sresk+1(AG, BG) by Sk+1, and sres~(A, B) by T~, for i = n — 1, n — 2,

0. Put c~k+~ = lc(Sk÷I), ~\, lc(T~), for i = n, n — 1, ..., 0, 13~~ = (uIc(Sn+k))[m_71,

= (ulc(T~))[m_fJ, ~j+k = ~lc(Sk+~), and jij = ~lc(T~), for i = n — 1, n — 2, ..., 0. With the new

notation, we need to show

Sk+2 (Ji+lg)[m+n_2i_1]~~~ (n — 1 ≥ i ≥ 0).

If the sequence A, B, A3,..., A1 is a PRS of A and B, then the sequence AG, BG, A3G, ..., A1G is a

PRS of AG and BG by Lemma 2.2.7. Hence, S(AG, BG) and S(A, B) have the same gap-structure U
by Theorem 1.4.2. In particular, Sk÷~ = 0 if and only if T~ = 0, for n — 1 ≥ i ≥ 0. Accordingly, we

need only prove that the theorem holds for non-zero subresultants.

Let degT~_1 = r ~ 0. First, we prove that the theorem holds for i = n — 1 and i = r. The

theorem holds for i = n — 1 because of the following calculation: fl
Sk+n_l = (—1)m~~’prem(AGBG) (by Lemma 1.3.5)

~ (by Lemma 2.2.7)

(ang)[m_n+hJ~~_1~ (by Lemma 1.3.5). (2.7)

[I
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By Theorem 1.4.2 we find

!31n_l_rlS = /3[n_l_rJS and ~[n_1_rJ~ = ~In_1_r}T

Combining these two equations with equation (2.7) yields

-~l_rJ/3~fl_1_r1Sk+ =

It remains to prove that

/ [n—1-_rJ\ / [n—1—rj\

I (~k+n_i (gng)Im_n+1l = (jr+lg)[m+n-2r_1l (28)
i am—I—n [rz—1—r}
\~k+n / \/mn~i

Denote by L the o-factorial expression on the left-hand side of (2.8). Since

flk+n = (~fl+1g)[m—ni and ~k+n—1 = (jn+lg)Im—n+1J(gr+lg)

I~n-i

by Lemma 2.2.6 and (2.7), we deduce

L = _________________

(an+lg){m_nJ )
= ((gm+lg)(gr+lg))[n_ in (ang)[m-n+1l

(Jr+ig)In_1_nJ(gng)[m_n+1J(jm+lg)[n_1_rJ = (~r+19){m+n—2r—1}

This proves (2.8).

So far we have proved that the theorem holds for all i such that n — 1 ≥ i ~ r, because all the

subresultants with orders between ii — 1 and r are all equal to zero. In particular, the theorem

holds when n 1. Our induction hypothesis is that the theorem holds when degB < n. Assume

that deg B = n. To complete the induction, we have to prove that

Sk+~ =~ (r — 1 ≥ i ≥ 0).

By equation (1.19) in Lemma 1.4.1, we have, for r — 1 > i ≥ 0,

lc(BG)fr_t] (~1c(BG))[n_1_ul[m_fl Sk+~ sresk+~(BG, Sk+n-i) (2.9)

and

IC(B)[r_iJ (JlC(B))[n_1_~J[m_ni T~ = sres~(B, T~_1). (2.10)
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From equation (2.9) we deduce

Ic (BG) ~-‘J (ulc(BG))~1_tl[m_n1 ~+I = sres~~ (BG, 5k+n-i)

= sresk+~ (BG, (~flg)[m_n+iJT~1G) (by (2.7))

= (Jng)[m_n+il[n_i]5~~5~~. (BG, T~_1G) (by Lemma 1.3.3)

~ (B, T~_1) G (by the induction hypothesis)

= (ang){m +1J[fl~] (uz g)In+r_2i_IJJc(~)[r_il (alc(B)) [n-i-iJ[m-nJ T~G (by (2.10)).

It remains to prove

(jflg) [m—n+iJ[n—tJ (~‘~1g) [n+r—2i— i1~~ (B) [r—i] (ulc(B) ) [n—i —iJ[rn—nJ ‘+1 + ~

= (~.i g)[7’fl ~. (2.11)Ic(BG)Ir_~] (olc(BG))I’~ I ~J[rn nJ

Denote by L’ the left-hand side of (2.11). By Lemma 2.2.6 it holds that

L’ — (ung)[rn_fl+11[n_iJ(gi+ig)[n+r_2i_lJ
— (gflg) Ir-zl (gn+ig) [n-i-i][rn_n]

The fourth assertion of Lemma 1.2.5 implies

(gflg) [rn—n+iJ[n—i] (gflg) [rn—i] (~n+19)[m_n1[n_i_il

from which it follows that

= ((gng)[rn_il) (gi+ig)[n+r_2i_Il (gi+1g)[fl+r2il](g[n+r_iJg)[rn_r} = (gi+lg)[m+n—2i—1]

(u g)

Equation (2.11) is proved.

This theorem reveals that if one uses the subresultant algorithm to compute the GCRD of two

Ore polynomials, then one gets the subresultant sequence of the first kind of the two left cofactors

as a byproduct. In particular, we have

Corollary 2.2.9 With the notation introduced in Theorem 2.2.8, we have

lc(sresk(AG, BG))X° = lc(G)[rn+flres(A, B). (2.12)

Proof Setting i = 0 in Theorem 2.2.8, we get sresk(AG, BG) = (ag)[m+~~h]res(A, B)G. Equating

the leading coefficients of both sides of this equation yields (2.12). D
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2.3 Least Common Left Multiples

Throughout this section the quotient field of 7~ is denoted by F and (F[X], 9, a, S) is denoted

by F[X]. We assume that the degree of the GCRDs of A and B is equal to d.

Definition 2.3.1 A non-zero polynomial in F[X] of lowest degree, which is right-hand divisible

by A and B, is called an LCLMof A and B.

Obviously, two LCLMs of A and B are similar over F. Ore [33] proved the existence of LCLMs

using the Euclidean algorithm. As a convenience for later references, we state his theorem [33,

Theorem 8] in terms of polynomial remainder sequences.

Theorem 2.3.1 With A = A1 and B = A2, assume that the sequence

is a PRS of A and B. Then the polynomial

L = Ak_lA~’Ak_2A~1 .. A3A~A2A~’A1 (2.13)

isanLCLMofA andB.

Ore proved that L in (2.13) was a well-defined polynomial and an LCLM of A and B. The proof

of the following corollary can also be found in [33, p. 486].

Corollary 2.3.2 If L is an LCLM of A and B, then

degA+degB = d+degL.

Another way to compute LCLMs of A and B is to use the extended Euclidean algorithm to

find U and V in F[X] with deg U = deg(B) — d and deg V = deg(A) — d such that UA + VB = 0.

Then both UA and VB are LCLMs of A and B by Corollary 2.3.2.

We shall now present a determinant formula for LCLMs. Let S3 = sres~(A, B), for j n — 1,

n — 2, ..., —1. By Remark 1.3.3 we have

Sj U~_~_1X~_~_1A + . . . + u1XA + u0A + Vm_j_iXm_2_1B + . + v1XB + v0B,

where each of the u’s and v’s belongs to 1?. In particular,

= (_i)m_3 am_i_i (lc(B))coeff(S3_i, X3’), (2.14)
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where coeff(S~_1, X3~’) stands for the coefficient of XJ’ in S3_1. Using multiplication in F[X]

we write

UjA+y~B=S3, (2J5)

where U~ = u~_~_1X”-i’ + + u1X + u0 and ~ Vm_j_iXm_J_l + ... + v~X + v0. The

polynomials Uj and V~ can be expressed by replacing the last column in the determinant of Sj by

the transposes of

(X”~i~1, Xn_i_2, ..., X°, 0, 0,..., 0)

m-j

and

(0, o, . . ., o, xm_i_i, Xm_i_2, . . ., X°),

fl_i

respectively.

Proposition 2.3.3 Both Ud_1A and Vd_1B are LCLMs of A and B.

Proof Since Sd is a GCRD of A and B by Proposition 2.2.3, we see that Sd_i = 0. Therefore,

Ud_1A + Vd_1B = 0 by (2.15). Since the coefficient of Xr4~~ in Ud_1 is nonzero by (2.14) and

Proposition 2.2.3, degUd_l n — d, consequently, degUd_1A = in + n — d. Thus Ud_1A is an

LCLM of A and B by Corollary 2.3.2. U

In the next chapter we show that the GCRDs of A and B can be obtained without computing

any PRS of A and B when 7~ is Z[t]. In this case we need only to expand a determinant to compute El
LCLMs. As the leading coefficient of an LCLM is particularly important for proving identities of

holonomic functions, we give a multiplicative bound for the denominators of the coefficients in the fl
monic LCLM of A and B.

Corollary 2.3.4 If L is the monic LCLM of A and B, then bL E ‘R[X], where

b (um_dlc(B)) (un_dlc(A)) lc(sresd(A, B)).

Proof By (2.14) we have

lc(Ud_1A) (1)m_~ (am_dlc(B)) (Jn_dlc(A)) lc(sresd(A, B))

because deg Ud_i = n — d. The lemma then follows from the fact that any two LCLMs of A and B

are similar over F. U fl

ii
n
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In the rest of this section, we present an algorithm for computing Ud_1A, Let d~ = degAs,

where A~ is given in Theorem 2.3.1, for i = 1, 2, ..., k. Theorem 1.4.7 and Corollary 1.4.4 imply

that S1 (A, B) consists of

• ., S~~_i_~

and that S2(A, B) consists of

A,B,Sd3,Sd4, . . ., ~

Lemma 2.3.5 For all i with 2 ≤ i ≤ k, deg Ud~_l = n — d~ and deg Vd~_1 m — d~, where Ud~_1

and Vd~_l are defined in (2.15).

Proof It follows from (2.14) and the fact that Sd~ is regular. 0

Theorem 2.3.6 For i = 2, 3, ..., k — 1, let a2+i be lc(Sd:_l) and Ud~_1 be the same as those

defined by (2.15). Let e3, e4, ..., ej~ form the sequence satisfying

e3Sd2_l = prem(A, B), (2.16)

e4Sd3_l = prem(B, Sd2_1), (2.17)

e~Sd~_1_l = prem(Sd:_3_l, Sd~_2_1), (2.18)

fori=5,6,...,k,

then

Ud2_1 = (_lc(B))[m_n+hl (2.19)

Ud3_1 = —e~’Q4Ud2_l (2.20)

= e11 (a 2_ChI_1+1JUdI_3_1 — Q~Ud~_2_1) , (2.21)

fori=5,6,...,k

where Q~ is the left pseudo-quotient of B and Sd2_1, and each of the Qt ‘s is the left pseudo-quotient

of Sd~_3_l and Sd2_2_1. Furthermore, if Hk = a5~_1_~~~hlUdk_2_1 — Qk÷lUdk_l_1, where Qk+1 is

the left pseudo-quotient of Sdk_2_1 and Sdk_l_1, then

Udk_1 = (_1)m_dk+llc(Sdk) (am_~1c(B)) lc(Hk)1Hk. (2.22)

Proof We say that two Ore polynomials F and G are congruent modulo an Ore polynomial M

on the right if F — G is right-divisible by M, which is denoted by F G (mod M).
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The equality (2.19) holds by the definition of Ud2_1. Assume that k > 3. By (2.16) and (2.17)

we have

Ud2_1A Sd2_l (mod B) and Q4Sd2_l E —e4Sd3_1 (mod B).

Combining the two equations just derived yields —e~’Q4Ud2_lA 8d3—1 (mod B). On the other

hand, the definition of Ud3_l implies that Ud3_lA E Sd3_j (mod B). It follows that

C4AEO (modB),

where C4 = — Ud3_1. But C4 = 0, otherwise C4A would be a non-zero left common

multiple of A and B, with degree < (m+m—d3), which contradicts Corollary 2.3.2. Equation (2.20)

holds.

Consider the case in which k > 4. For 5 < ~ ≤ k, the congruent relations

Ud1_3_1A Sd~_3_1 (mod B) and Ud~_2_lA Sd1_2_1 (mod B).

hold by (2.15). Furthermore, equation (2.18) can be written as

a~~2~t_1+hJSd~3_1 = Q~Sd~_2_l + e~Sd~_,_l.

Combining the two congruent equations and the equation just given yields

e11 (a~r2_~_1+hlud~3_l — Q~Ud~_2_l) A Sd~_,_1 (mod B).

The congruence just proved and Ud~_1_lA Sd~_1_l (mod B) imply that

0 (modB),

where C~ = Ud~_,_l — eT’ (a 2_d:_1+1JUd — Q~Ud1_2_1) . Since

degUd~_1_1 = deg (a~r2~_1+hlud~_3_1 — Q~Ud1_2_l) = n — d~_1

by Lemma 2.3.5, we have C, = 0, otherwise the degree of the LCLMs of A and B would be not

greater than (n. — d~_1), which contradicts to Corollary 2.3.2. Equation (2.21) holds.

To prove (2.22), we let Ck (_i)m-dk+1 (am_dklc(B)) lc(Sdk_l_1)lc(Hk)’Hk. Observe that

[dk....l —dk+1]a~ Sdk_2_I = Qk+lSdk_l_1

because Sdk_l_1 is the last member of S1(A, B). It then follows from the congruent equations

Udk_2_1A 8dk21 (mod B) and Udk_l_1A Sdk_2_1 (mod B)
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Chapter 3

Modular Algorithm for Computi g

GCRD over Z{tj

1 Recent years have seen a rapid development of the algorithms for manipulating the functions

that are annihilated by linear operational polynomials [42, 38, 2, 6]. This development motivates us

to design an efficient algorithm for computing GCRDs over Z[t]. The GCRD-calculation plays an

important role in the computation of linear operational polynomials. For instance, if L1 and L2 are

two linear differential operators, then their GCRD corresponds to the intersection of the solution

spaces of L1 and L2. To represent the sum of the two solution spaces, one needs an LCLM of L1

and L2, which can be expressed as a determinant with entries being the derivatives of coefficients

of L1 and L2, as long as the GCRD is obtained (see, Section 2.3). The greatest common left divisor

of L1 and L2 can be obtained from the GCRD of their adjoint operators.

We will extend the techniques used in the modular algorithm for computing usual commutative

polynomial GCDs as much as we can (see, Brown [3] and Geddes et al [16]). Two new problems

that cannot be tackled by the classical techniques, are that

evaihation mappings are not Ore ring homomorphisms

• the normalization of leading coefficients is different from that in the algebraic case.

The first problem will be solved by the subresultant theory for Ore polynomials; the second one

by rational number and rational function reconstructions. To the author’s knowledge the present

algorithm is the first modular algorithm for computing Ore polynomial GCRDs. The non-modular

1This chapter reports joint work with István Nemes.
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algorithms are the Euclidean algorithm [33] and subresultant algorithm. Grigor’ev [18] presents a

method for computing the GCRD of several linear differential operators by Gaussian elimination.

We will work in Ore polynomial rings whose ground domains are algebraic polynomial rings.

Throughout this section, p is a prime and Z~ is the Galois field with p elements. For an indetermi

nate t, Z[t] and Z~[t] are the rings of algebraic polynomials in t over Z and Z~, respectively. Let X

be a new indeterminate. For non-zero F in Z[t][X] or Z~[t][X] , the leading coefficient of F jn X is

denoted by lc(F), the leading coefficient of lc(F) in t is called the head coefficient of F and denoted

by hc(F), the degree of F in X is denoted by deg F, and the degree of F in t is denoted by deg~ F.

We assume that (Z{t][X], o~, S) is an Ore polynomial ring over Z[t]. For brevity we denote this

ring by Z[t]{X]. If A and B are in Z[t][X], then the normalized GCRD of A and B is the GCRD

of A and B, which is in Z[t][X] and primitive with respect to X, and has positive head coefficient.

If A and B are in the Ore polynomial ring Z~[t][X], then the normalized GCRD of A and B

is the GCRD of A and B, which is in Z~[t][X] and primitive with respect to X, and has head

coefficient 1. The normalized GCRD of A and B, where A and B are in Z[t][X] or Z~{t][X], is

denoted by GCRD(A,B).

The idea of our algorithm is as follows.

1. Use sufficiently many modular homomorphisms to reduce GCRD problem in Z[t][X] to a

series of GCRD problems in Z~[t][X].

2. Use sufficiently many evaluation mappings to reduce GCRD problem in Z~[t][XJ to a series

of the problems of finding evaluation homomorphic images of the monic associate of the

sought-after GCRD.

3. Use Chinese Remainder Algorithm (CRA) and rational function reconstruction to combine

the lucky evaluation homomorphic images.

4. Use CRA and rational number reconstruction to combine the lucky modular homomorphic

images.

This chapter is organized as follows. In Section 3.1, we study the modular and evaluation

mappings. Section 3.2 is devoted to presenting the algorithm for computing the evaluation ho

momorphic images of the monic associate of the GCRD of two Ore polynomials in Z~[t][X]. In

Section 3.3, we review the rational number and function reconstructions. The modular algorithms
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for computing GCRDs in Z~{t]{X] and in Z[t][X] are described in Section 3.4 and Section 3.5.

respectively. Experimental results are given in Section 3.6

3.1 Modular Mappings and Evaluation Mappings

A modular mapping ~ from Z{t]{X] to Z~{t]{X] is a module homomorphism defined .for a prime p by

= A modp, for A E Z[t]{X]. An evaluation mapping q~t—k from Z~[t]{X] to Z~{X] is a module

homomorphism defined for an element k of Z~, by ~t_k(A(t, X)) A(k, X), for A ~ Z~{t][X]. In

this section, we investigate whether modular and evaluation mappings can be regarded as Ore ring

homomorphisms.

The next lemma clearly holds because CT and 6 are endomorphisms of the additive group Z{t].

Lemma 3.1.1 If f,g E Z[t] and f gmodp, then a(f) a(g) modp and 6(f) S(g) modp. D

This lemma allows us to define two operators o~,, and 6~ on Z~{tJ by the respective rules:

= ç5,~(o~(f)) and 6~(~,(f)) = ~(6(f)), for all f e Z[t].

It is clear that cr7, is an endomorphism of the domain Z~{t] and that Si,, is a pseudo-derivation with

respect to cr~ if u~, is injective.

Lemma 3.1.2 If p is not a divisor of hc(o~(t)), then o~ is injective.

Proof Since a(m) = m, for m E Z, deg~ ~(t) > 0. Let f = f~t~ +~ + fo E Z[t]. If o~~(~~(f)) 0,

then ~bp (f~a(t)~ + + fo) = 0 by the definition of o-~. Since q!~ (hc(u(t))) ~ 0, q~~(u(t)) is of

positive degree in t, and hence cb7,(f~) = 0, 0 ≤ i < n.

The above two lemmas assert that o~, is a conjugate operator and 6~ is a pseudo-derivation with

respect tQ a, if p does not divide hc(u(t)). Thus, (Z~{t][X], o~, 6~,) is an Ore polynomial ring with

the multiplication defined by Xa = a~(a)X + S~,(a), for all a E Z~[t] (see, Proposition 1.2.1 and

Theorem 1.2.2).

When o~, is injective, the Ore polynomial ring (Z~[t][X], o~, 6~,) is said to be the induced Ore

polynomial ring from Z[t][Xj by the modular homomorphism ~. The next corollary is evident.

Corollary 3.1.3 If (Z~[tj[X], o~,, 6,) is the induced Ore polynomial ring from Z[t][Xj by the mod

ular mapping ~,, then /~, is an Ore polynomial ring homomorphism from Z[t][Xj to Z~{t]{X].
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If (Z~{X], o~, 6’) is an Ore polynomial ring, then o’ must be the identity mapping and 6’ must be

the null mapping since Z~ is generated by 1 as an additive group. Accordingly, the multiplication

induced by cr’ and 6’ is the usual commutative one. Therefore, an evaluation mapping from an

Ore polynomial ring Z~{tj[X] to Z~[X] is not always an Ore ring homomorphism. This fact tells us

that the algebraic modular method in [3] cannot be directly applied to Ore polynomials. We will

overcome this difficulty by Propositions 2.2.3 and 2.2.4.

3.2 Evaluation Homomorphic Images of GCRDs

In this section, let (Z~[t][X], o~,, 6~,) be an Ore polynomial ring. Fix an element k of Z~ and the

evaluation mapping ~t—k~ Assume that A and B are in Z~[t][X], with degA = m and degB = n,

where rn n ≥ 1. Let M be the matrix mat(X’~1A, . . ., XA, A, X~~1B ~(B, B). We show

how to use the arithmetic in Z~ to compute the monic associate of ~t_k(GCRD(A, B)). U,
Lemma 3.2.1 Let G be GCRD(A, B) with degree d and let Sd be sresd(A, B). If ~t_k(lc(Sd)) is

nonzero. then
~t_k(G) — ~t_k(Sd)

cb~~k(1c(G)) — cbt~k(1c(Sd)Y fl
Proof By Proposition 2.2.3 there exists a non-zero r in Z~[t] such that rG Sd~ Since q~~t_k(lc(Sd))

is nonzero, ~t_k(lc(G)) is nonzero. Applying ~tk to

GSd
lc(G) — lc(Sd)

yields the lemma. c

Definition 3.2.1 Let d be the degree of GCRD(A, B). The evaluation point k is unlucky for A

and B if either

~t—k fJ (o;lc(B)) ) = 0 or pt_k(lc(sresd(A, B))) = 0.
i=o / 11

One way to compute the image of the monic associate of GCRD(A, B) under cbt_k is as follows.

We compute the image of M under ~kt—k, denoted by Mt_k, and compute the rank of Mt_k. If k is fl
not unlucky, then M and Mt_k have the same rank, so the degree of GCRD(A, B), say, d, is equal

to (m + n — rank(Mt_k)) by Proposition 2.2.3. Thus, the monic associate of g5t_k(sresd(A, B)) is

the monic associate of ~t_k(GCRD(A, B)) by Lemma 3.2.1. This method has two computational

tasks, namely, calculating rank(M~_k) and ~≠~t_k(sresd(A, B)). These two tasks can be combined

D
[1
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into one Gaussian elimination when the pivot rows are chosen properly. These considerations lead

to the algorithm GCRD_e.

algorithm GCRD.e

Input: A prime p, a residue k e Z,, and A, B E Z~[t][X] with deg A ≥ deg B ≥ 0.

Output: g E Z~{X]. If k is not unlucky, then g is the monic associate of ~t_k(GCRD(A, B)).

Otherwise, g is 0 or of degree greater than d.

[initialize]

.1. m~—degA;n~---degB;

2. for i = 0 to m — 1 do { C~ ~— ~t_k(XB); if degC~~ < n + i then return(0); [unlucky k] }
[nested elimination]

3. fori=Oton—ldo{

R, f—

5. for j = m — n + ito 0 do { if deg(R2) = deg(C3) then R~ ~— R~ — lc(R~)lc(C~)’C3: }
6. while ~ 1,0<1< i—i and degR~ = degRi ≥ 0 do { I?, ~— R~ — Ic(R~)lc(Ri)’Rj; } }
[compute the rank]

7. r~—m+n;

8. fori=Oton—ldo{ ifR~=0thenr~—r—i;}

[guess the degree]

9. b~—m+n—r;

[compute the image]

10. g +— the polynomial of least degree in the set {Ro, R1, . . ., Rn_b_I, Co};

11. if degg = b then g ÷— lc(g)1g; else g ~— 0;

12. return(g);

ProposItion 3.2.2 The algorithm GCRD_e is correct.

Proof Let d = degGCRD(A,B) and Sd = sresd(A,B). We exclude the case when ~t_k(a’1c(B))

iszero, forsomeiwith 0< i≤m—i. Thus,degC~=n-+-i, fori=0, 1,..., rn—i. According

to lines 5 and 6, all of the non-zero R,’s have distinct degrees less than n, for j = 0, 1, ..., n — 1.

Hence r obtained from line 8 is the rank of Nt_k, where

Nt_k = mat(R~_1, . .., R0, Cm_i, .. ., C0).
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Let

Mt_k = mat (q~~_~(Xfl_lA), ..., cb~_~(A), ~b~_k(Xm_iB), ..., ~t~k(B)).

Then r rank(M~_k) because Nt_k is computed by row reduction on Mt_k in lines 3, 4. 5 and 6.

Note that r < rank(M). Consequently, the tentative degree b obtained from line 9 is not less than d

by Proposition 2.2.4. Notice that the polynomial g obtained from line 10 is the polynomial with

smallest degree among the polynomials

Rn_b_i, . . ., R0, Cm_b_i, . . ., C0,

all of which are Zr-linear combinations of

~t~k(A), ~~_k(Xm_b_lB), ...,

and vice versa. Therefore, g and ~bt_k(sresb(A, B)) are similar over Z~, by Lemma 1.3.4.

If k is not unlucky, then the polynomials

~t_k(XndlA), ..., ~t_~(A), ~~_k(XmdlB), ..., ~t~k(B)

are Zr-linearly independent, because ~t_k(lc(Sd)) is nonzero. Accordingly, the polynomials

~t_k(XndiA), ..., ~t-k(A), ~~_k(Xm ‘B) ..., ~t_k(Xm_d_lB), ..., ~_k(B)

are Zr-linearly independent. Hence r m + n — d. But rank(M) = m + n — d by Proposition 2.2.4.

Consequently, r = rank(M), so b = d. Since g and c~t—k(Sd) are similar over Z,,, g returned in JJ
line 12 is the monic associate of ~t_k(GCRD(A, B)) by Lemma 3.2.1.

If k is unlucky, then there are two cases, namely, b> d or b = d. In the former case, g is either 0 El
or a polynomial of degree greater than d. In the latter case, degg < b since g and cbt_k(Sd) are

similar over Z~, and deg~t_k(Sd) <d. Therefore, g is set to be 0 in line 11. E fl
3.3 Rational Number and Rational Function Reconstructions El
To use CRA to combine the evaluation homomorphic images of the monic GCRD of two Ore U
polynomials, say, A and B in Z~[tj[Xj, we need to know a multiplicative bound for the denominator

of the monic GCRD of A and B. In the algebraic case, such a bound is the GCD of lc(A) and lc(B).

However, there are counterexam pies showing that neither the GCD nor the LCM of lc(A) and lc(B)

is the desired multiplicative bound. One multiplicative bound is the leading coefficient of the dth

El
Ft
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subresultant of A and B if GCRD(A,B) has degree d (see, Corollary 2.2.5). Unfortunately, this

multiplicative bound tends to be loose. Inspired by the work of Encarnación [14, 15], we use rational

function reconstruction to combine the evaluation homomorphic images of GCRD(A, B). A similar

problem arises when A and B are in Z[t][X]. Thus, the rational number reconstruction is also

needed.

The algorithm for reconstructing rational numbers, due to Wang [40], is recoi~ded in the algo

rithm RECONn.

algorithm RECONn

Input: A modulus m E N+ and a non-zero residue r E Zm = {0, 1, . . ., m — 1}.

Output: A pair (a,b) of integers, s.t. ab’ = r in Zm, JaJ < ~ and 0< b <

if such a and b exist. Otherwise, NIL is returned.

1. a1—m;a24—r;vjf---O;v2~.--1;i~—-2;

2. while true do {
3. if v2 ~ \/~7~ then return(NIL);

if a~ < ~ and GCD(a~, v~) = 1 then return ((sign(vj)aj, v~ I));
5. q ~— integral quotient of as_i and a~;

6. a~+i f— a~_~ — qa2; vj~1 ~— v2_1 — qv2; i ~— i + 1; }

According to [12], we added the condition GCD(a~, v~) = 1 in line 4 in RECON_n. because

Wang’s original algorithm does not guarantee that GCD(b, m) = 1. The reader is advised to

consult [12] for more detailed discussion and recent progress on rational number reconstruction.

In the library of the computer algebra system Maple, there is an implementation solving the gen

eral problem of rational function reconstruction. As we could not find any proof of the correctness

of this implementation in the literature, we present the problem of rational function reconstruction

and a modified version of the algorithm, named RECONJ, for our use,

We are concerned with the following problem.

Problem RFR: Let F be a field and F[t] the algebraic polynomial ring over F.

Given: M E F[t] with deg~ M > 0, and a non-zero R e F[t]/(M).

Find: A, B E F[t] with deg~ A < (deg~ M)/2, deg~ B < (deg~ M)/2, and GCD(B, M) = 1

such that AB’ = R in F[t]/(M).
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The algorithm RECONi solves Problem RFR. El
algorithm RECONJ

Input: A modulus M E F{tj and a non-zero residue R E F[tj/(M).

Output: A pair (A, B) of polynomials in F[tj. such that AB’ R in F[tj/(M), lc(B) = 1,

deg~ A < (deg~ M)/2. and deg~ B < (deg~ M)/2 if such A and B exist. Otherwise,

NIL is returned. .

1.

2. while true do El.
3. if deg~ Vj ≥ (deg~ M)/2 then return(NIL);

if deg~ A1 ≤ (deg~ M)/2 and GCD(A1, 1’) = 1 then return (((lc~V)’A1, (lctV~)’Vj));

5. Q ~— polynomial quotient of A1_1 and A1;

6. A1÷1 ~— A1_1 — QA1; VIH ~— V~1 — qV~; i ~— i + 1; U~.
Now, we prove the correctness of RECONJ.

Lemma 3.3.1 If (A, B) is a solution to Problem RFR, then the fraction A/B is uniquely deter

mined, and the pair (A/GCD(A, B), B/GCD(A, B)) is also a solution.

Proof Suppose that (A, B) and (A’, B’) are two solutions to Problem RFR. Then BR .4 mod M

and B’R A’ mod M. It follows that B’A BA’ mod M. Hence, B’A = BA’ because both

deg~ AB’ and deg~ A’B are smaller than deg~ M.

To prove that (A/GCD(A, B), B/GCD(A, B)) is also a solution to the same problem, we observe

that there is C ~ F{tj such that CM + BR = A. Since GCD(B, M) = 1, GCD(A, B) divides C. C

RECONJ is the half-extended Euclidean algorithm equipped with a different terminating con

dition. In order to prove the correctness of RECONi, one has to prove that if there exists a

solution (A, B) to Problem RFR. then A and a member in a PRS of M and R are similar over F.

By the algebraic subresultant theory it is sufficient to show that A and a non-zero subresultant

of M and R are similar over F.

Lemma 3.3.2 Let deg~ M = m and deg~ R = n, where m > ii ~ 0. Assume that (A, B) is a

solution to Problem RFR and GCD(A, B) = 1. If deg~ B = m — j — 1, then A ~ sres~(M, R).

Proof There exists C in F{t], with degree (n—j — 1), such that

CM+BR=A. (3.1)

Ft
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Let deg~ A = d and write

d m—j—1 n—j—1

A=~a~t~. B= ~ b,t~, andC= ~ cit’.

where ad, bm_j_i, and c,~_~_1 are all nonzero. Note that d < j since m — j — 1 < m/2 and d < m 2.

Let

u= (c,~_3_j,...,co, bm_j_i,...,b0)

and

( o,...,o, ad,ad_1,...,aO).

m+n—j—d—1

Moreover, let N be the (m + n — 2j) x (m + Ti — j) matrix

mat(t~’A4, . . ., A4~, tm_j_1R, . . ., R).

Then equation (3.1) can be written as the linear system

uN=v. (3.2)

First, we prove that sres3(M, R) is nonzero. Let Nd be the (m+n—2j) x (m+n—2j) submatrix

whose first (m + n — 2j — 1) columns are the same as those of N and whose last column is the

(m + ri — j — d)th column of N. Then det(Nd) is the coefficient of td in sres~(M, R). Hence, it

suffices to prove that det(Nd) is nonzero.

From (3.2) we see that

UNd= (O,...,O, ad). (3.3)

m+n—2j—1

Suppose that u’ = (c~_~_1, .. ., c~, b~_~_1,. . ., b~) is another solution of (3.3). Let

m—j—1 n—j—1
B’ = ~ ~ C’ = ~ c~t’, and A’ = C’M + B’R.

1=0 1=0

Then 0 ≤ deg~ A’ <j because of (3.3).

Equation (3.1) and the definition of A’ give rise to the congruent equations BR A mod M and

B’R A’ mod M. Eliminating R from the two congruent equations, we get B’A BA’ mod M.

Hence B’A = BA’, since both deg~ B’A and deg~ BA’ are less than m. Thus, B divides B’ since

GCD(A, B) = 1. Consequently, there exists h in F such that hB = B’, because deg~ B’ is not

greater than deg~ B. It follows that hA = A’, so h = 1, because a~i is the coefficient of t’~ in both .4
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and A’. Hence A = A’, B = B’, and, moreover, C = C’. We then conclude that u = u’, i.e., linear

system (3.3) has a unique solution. Thus, det(Nd) is nonzero.

By Lemma 7.7.4 in [32, p. 255], there are polynomials C” and B” in F[tj, with deg~ C” < n—j— 1

and deg~ B” < m — j — 1, such that C”?vI + B”R = sres~(M, R). This equation and (3.1) give rise

to the congruent equations BR A mod M and B”R sres~ (M, R) mod M. The same argument 11:
as in the previous paragraph proves that A and sres~(M, R) are F-linear dependent. Thus, A and

sres~ (M, R) are similar over F because they are nonzero. D

We recall some basic properties of the extended Euclidean algorithm (see, [20, Excercise 3 in

§4.6.1]). Let A1 and A2 be in F[t] such that deg~ A1 ≥ deg~ A2 > 0. The extended Euclidean

algorithm with inputs A1 and A2 generates three sequences (in F[t]):

Al,A2,...,Ar, Ui,U2,...,Ur, and ~

with the properties that, for i = 3, 4, . . . ,

1. A1 is the remainder of A2_2 and A~_1;

2. U~A1 + VA2 A~, where deg~ U~ <deg~ A2 — deg~ A1 and deg~ T’~ <deg~ A1 — deg~ A1; fl
3. U~ and T’~ are relatively prime.

The last property follows from the fact that U1_1V — U2V~_1 = ±1, for i = 2, 3 r.

We are ready to prove the correctness of the algorithm RECONJ.

Proposition 3.3.3 Problem RFR has a solution if and only if RECONJ with inputs M and 1?,

returns a pair (A, B). If RECONI returns a pair (A, B), then

AB’ ER modM and GCD(A,B) = 1. fl
Proof If deg~ R < (deg~ M)/2, then RECON_f returns the pair (R, 1). If deg~ R ≥ deg~ M,

then the residue R can be replaced by the remainder of R and M. We may then assume that

(deg~ M)/2 < deg~ R < deg~ M. Suppose that RECONJ returns (A, B) in the ith iteration. Then

we have BR A mod M, because RECONJ preserves the relation V~R A3 mod M, for 2 ≤ i ≤

where V3 and A3 are produced by RECONJ. Moreover, the relation GCD(V~, A1) = 1 implies that

GCD(T’~, M) = 1, according to the third property of the extended Euclidean algorithm. The

pair (A, B) is the desired solution.
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Conversely, let (A, B) be the solution to Problem RFR with GCD(A, B) = 1. Let M. R. .43.

Ak be a PRS generated by the Euclidean algorithm. Then Lemma 3.3.2 implies that there is

a non-zero element a in F such that A = aA1. We then have the following congruent equations:

BR .4 mod M and aV~R A mod M,

where deg~ V~ < deg~ M — deg~ A1 by the second property of the extended Euclidean algorithm.

Eliminating R from the above congruent equations, we get (aV~ — B)A E 0 mod M. Thus, a1’~ = B

since deg~(aV~ — B)A < deg~ M. As the degrees of the Vj’s increase and the degrees of the 4~~s

decrease in RECON...f, the pair (A. B) is found in the lth iteration. C

Based on RECONn and RECONJ we present the algorithms COEFF...n and COEFFJ that

reconstruct the rational number and rational function coefficients of polynomials from the given

residues, respectively. These two algorithms, together with CRA, will be used to combine modular

and evaluation homomorphic images. As these two algorithms can be worked out easily, we only

specify their inputs and outputs.

algorithm COEFF.n

Input: A modulus m E N+ and a non-zero residue R E Zm{tj{X].

Output: A e Q[tj{X], such that A E R mod m and the denominators and numerators of

the rational coefficients in A range from ~ to \/~7~ if such a polynomial exists.

Otherwise, NIL is returned.

algorithm COEFFJ

Input: A modulus M E Z~{t] with deg~ M> 0, and a non-zero residue R e Z~[t]{X].

Output: A ~ Z~(t)[X], such that A R mod M,

the denominators of the coefficients of A have degrees < (deg,~ M)/2,

and the numerators of the coefficients in A have degrees < (deg,~ M)/2.

if such a polynomial exists. Otherwise, NIL is returned.

3.4 Modular Algorithm for Computing GCRDs over Z~{t]

Let (Z~{t]{Xj, a,, Si,) be an Ore polynomial ring. We present the modular algorithm GCRD..p for

computing GCRDs in this ring. We reduce the GCRD problem in Z~{t][X] to a series of problem of



62 CHAPTER 3. MODULAR ALGORITHM FOR COMPUTING GCRDs OVER Z[t]

computing the evaluation homomorphic images in Z7,[Xj, which will be later solved by the algorithm

GCRD_e. The “lucky” evaluation homomorphic images are combined by CRA and COEFFJ. The

termination of GCRD_p is determined by trial division. It is a rare, though possible case that there

are not enough lucky evaluation points in Z~. If this happens. GCRD_p reports failure.

algorithm GCRDp

Input: A prime p and A,B E Z~{t]{X] with degA ≥ degB ≥ 1. fl
Output: C, where C = GCRD(A, B).

[initialize the modulus, residue, and degree]

1. k+—O;

2. repeat

3. jfk = p then { report failure; } R~ ~— GRCDe(p, k, A, B); k +— k + 1;

~. until Rk $ 0

5. dk+-’-degR~;

6. if dk = 0 then return(1);

7.

[main loop]

8. while true do {
9. repeat

10. jfk = p then { report failure; } Rk ~— GRCD_e(p, k, A, B); k ~— k + 1;

11. until Rk # 0

12. dk+—degRk;

[test for unlucky evaluation points]

13. if dk <d then goto line 7;

Lj. ifdkdthen{

{ combine]

15. R ~— CRA(R, M, Rk, t — k); M +— (t — k)M;

16. C ~— COEFFJ(M, 1?);

17. ifC≠OandCz~then

{ trial division ] fl
18. if A 0 mod C and B 0 mod C then return(the numerator of C);

19. C+—~;}} fl

U,
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SECTION 3.5. MODULAR ALGORITHM FOR COMPUTING GCRDs OVER Z{tJ

Proposition 3.4.1 The algorithm GCRD_~ is correct.

Proof Let G be GCRD(A, B) with degree 1. If 1 = 0, then GCRDp returns 1 when there exist

a lucky evaluation point in Z~. From now on, assume 1 > 0. If there are less than (21 + 2) luck

points in Z~, GCRD_p reports failure. Assume that there are more than (21± 1) lucky points in Z~

Then the tentative degree d in GCRD~ will be eventually equal to 1, because, for each unluckx

point, GCRD_e returns either 0 or a polynomial of degree greater than 1. Unlucky evaluation points

can be detected in line 13 as soon as a lucky one is encountered. So we may suppose that d is

equal to 1. Then each Rk entering CRA in line 15 is equal to ~k(G/lc(G)) by Proposition 3.2.1.

Hence R G/lc(G) mod iVI in GCRDp. Since the solution to Problem RFR is unique, COEFFJ

in line 16 recovers G/lc(G) when deg~ M exceeds 21. COEFFJ produces G/lc(G) again when the

next lucky evaluation point is encountered. At this point the condition C = C in line 17 is satisfied.

Hence GCRJD_p returns G after a trial division.

The next lemma ensures that GCRDp does not report failure if p is sufficiently large.

Lemma 3.4.2 If A and B are in Z~{t}{XJ, with respective degrees m and n, where m ? ~ ≥ 1,

then there are at most

deg~ (~~~(lc(B))) + mdeg~ B + ndeg~ A (3.4)

unlucky evaluation points for A and B.

Proof If k is unlucky for A and B, k is a root of

(i~1c~~(lc(B))) lc(sresd(A, B)),

where d is the degree of GCRD(A, B), and (3.4) gives a degree bound for this polynomial. D

3.5 Modular Algorithm for Computing GCRDs over Z{tj

In this section, we let A and B be in Z[t){XJ with respective degrees m and n, where m ~ n ~ 1.

Assume that G GCRD(A, B) with degree k. Using modular homomorphisms we reduce the

problem of computing G to a series of the problems of computing the monic associates of the

modular homomorphic images of G. First, we define unlucky primes.

Definition 3.5.1 A prime p is ~inlucky for A and B if one of the following holds:
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1. p is a divisor of hc(u(t))lc(.4)Ic(B)•

2. p is a divisor of lc(sresk(A, B)):

3. p is a divisor of hc(G);

4. ~(G) is not primitive with respect to X.

Lemma 3.5.1 If p is not unlucky and Z~{tj[XJ is the induced Ore polynomial ring from Z[t][Xj

by the modular homomorphism ~, then

GCRD(q5~(A),q~,~(B)) = ~p(G)/q~p(hc(G)). (3.5)

Proof As degA = deg~~(A), degB = deg~~(B), and ~ is an Ore ring homomorphism, we

see that sresk(~~(A), ~~(B)) = ~P((sresk(A, B)) ~ 0. So the degree of GCRD(q~~(A), q5~(B)) is

not greater than k, since every common right factor of A and B must be a right factor of their

subresultants. On the other hand, Corollary 3.1.3 implies that ~~(G) is a common right factor

of ~b~(A) and qf~(B). Thus, ~~(G) is a GCRD of ~~(A) and q~~(B), because deg ~~(G) = k. Hence

(3.5) holds because q~~(G) is primitive with respect to X.

Clearly, there are only finitely many unlucky primes for A and B. For each lucky prime p,

can be obtained from GCRD(~~(A), q~~(B)) by Lemma 3.5.1. These considera

tions lead to the algorithm GCRDm.

algorithm GCRDm

Input: A, B E Z[t][Xj.

Output: C, where C = GCRD(A, B).

[initialize I
1. if deg(A) ≥ deg(B) then { A1 ~— A; A2 ~- B; }
2. else { A1 ~— B; A2 <— A; }
3. A1 f— the primitive part of A1 w.r.t. X;

~. A2 ~— the primitive part of A2 w.r.t. X;

5. b ~— hc(Ai)hc(~42)hc(u(t));

[initialize the modulus, residue, and degrees]

6. p ~— a large prime not dividing b;
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7. R~, ~— GCRDp(p, ~~(A1), ~b~(A2));

8. D~ ~—degR~; d~ +—deg~R~;

9. if D~ = 0 then return(1);

10. m~—p;R~_Rp;D~Dp;d~dp;C÷_o

[main loop]

11. while true do {
.12. p ~— a new large prime not dividing b;

13. ~— GCRD_p(p,q!p(Ai),q5p(A2));

14’. ~— degR~,; d~ ~— deg~R~;

[test for unlucky primes j

15. if Di,, <D then goto line 9;

16. if D~ = D and d~ > d then goto line 10;

[combine]

17. ifDp=Dandd~.=dthen{

18. R~—CRA(R,m,R~,p); m~—pm;

19. C ~— COEFFn(m, R);

20. ifC~0andC=t’then

[trial division]

21. if A1 0 modC and A2 EQ modC then return(the numerator of C);

22. C~—~;}}

Remark 3.5.2 By “large prime” p, we mean that p is so large that GCRD_p does not report

failure. It is always possible to choose such p by Lemma 3.4.2.

Proposition 3.5.2 The algorithm GCRD...m is correct.

Proof A~ b is assigned to be hc(A)hc(A)hc(o-(t)) in line 5, GCRD...p can only result R~ in lines 7

and 13 such that either deg R~ > deg G or deg~ R~ <deg~ G if p is unlucky. Unlucky primes can be

detected in lines 15 and 16 as soon as a lucky prime is encountered. Since there are only a finite

number of unlucky primes, we may further assume that D = degG and d = deg~ G. Accordingly,

the polynomial R in line 18 satisfies the congruence R E G/hc(G) mod m by Lemma 3.5.1. Then

the polynomial ~ computed by COEFF..n in line 19 is equal to G/hc(G) as soon as ~ exceeds

the absolute value of the maximum of the integral coefficients of C. Thus, GCRD...m returns C. C
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The advantages of GCRD_m are clear. The problem of finding C4CRD(A, B) is mapped to the

domains in which the arithmetic does not cause any intermediate swelling. In addition, GCRD_m

can recognize the case when GCRD(A. B) is trivial as soon as a lucky prime is encountered.

3.6 Experimental Results

This section presents experimental results to compare the algorithm GCRD_m, subresultant algo- fi
rithm, and primitive Euclidean algorithm. We implemented in Maple V (Release 3) these three

algorithms for the differential operator D and shift operator E with coefficients in Z[t], where D fl
and E are defined in Examples 2.2.2 and 2.2.3, respectively.

The first suite was generated as follows. We used the Maple function randpoly to generate fl
pairs of bivariate polynomials in Z[t, Xj, with total degree n and n — 1, where n = 5, 10, and 15.

These polynomials had five terms with coefficients ranging from —99 to 99. We then regarded

these polynomials as differential operators in Z[tj[Dj and shift operators in Z[tJ[Ej, respectively,

and computed the GCRD of each pair. The timings are summarized in Figure 3.1, in which the fl~
column labeled n gives the total degrees of the polynomials; the columns labeled DM, DS, DPE, give

the respective computing times for GCRD~-n, the subresultant algorithm, and primitive Euclidean Ii
algorithm whose inputs are differential operators; similarly, the columns labeled SM, SS, SPE,

give the respective computing times for GCRD~ri, subresultant algorithm, and primitive Euclidean

algorithm whose inputs are shift operators. All the entries are Maple CPU time and given in

seconds.

n DM DS DPE SM SS SPE

5 0.20 0.27 0.19 0.17 0.25 0.21

10 0.99 38.86 39.71 0.59 42.73 40.71

15 1.65 301.25 374.00 0.77 436.47 485.91

Figure 3.1: Computing times for the first suite

We see from Figure 3.1 that GCRD..m is considerably faster than non-modular ones when

input polynomials are of total degree more than eight. This is not a surprise since the GCRD

of two random polynomials is usually trivial. In practice, GCRD.jn can detect the case when

input polynomials have a trivial GCRD by one or two primes. The timings also indicate that

the subresultant algorithm is slightly faster than the primitive Euclidean algorithm when input

n:.
ci
D

ci
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polynomials are chosen at random.

To construct the second suite, we used randpoly to generate three polynomials, say. A. B.

and C in Z[t. Xj, with respective total degrees n — 2, n — 3, and 2, where n = 5, 10. and 15.

The number of terms and length of coefficients were the same as those in the first suite. We took

the differential (shift) products AC and BC as input polynomials. Thus. the GCRD of each pair

of input polynomials was usually nontrivial. The timings are summarized in Figure 3.2. where a

dash (—) indicates that our implementation of the primitive Euclidean algorithm took more than

three hours without any output. This could happen because it took very long time to compute the

primitive part of a polynomial in Z[tJ[X] when the content had large integral coefficients.

n DM DS DPE SM SS SPE

5 2.26 0.25 0.15 1.29 0.30 0.15

10 9.91 64.25 16.72 3.74 57.66 18.67

15 27.23 1348.83 — 6.46 1999.64 —

Figure 3.2: Computing times for the second suite

Again, the timings in Figure 3.2 indicate that GCRD_m is more efficient than non-modular ones.

We also remark that the subresultant algorithm may be slower than the primitive Euclidean algo

rithm when input polynomials have a non-trivial CCRD. This is because the primitive Euclidean

algorithm removes more extraneous factors after each division when the GCRD is not monic (see.

Theorem 2.2.8).
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