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ABSTRACT
We construct the algebra of integro-differential operators
over an ordinary integro-differential algebra directly in terms
of normal forms. In the case of polynomial coefficients,
we use skew polynomials for defining the integro-differential
Weyl algebra as a natural extension of the classical Weyl al-
gebra in one variable. Its normal forms, algebraic properties
and its relation to the localization of differential operators
are studied. Fixing the integration constant, we regain the
integro-differential operators with polynomial coefficients.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expres-
sions and Their Representation—simplification of expres-
sions; I.1.2 [Symbolic and Algebraic Manipulation]:
Algorithms—algebraic algorithms

General Terms
Theory, Algorithms

Keywords
Integro-differential operators, skew polynomials, Weyl alge-
bra, integro-differential algebra, Baxter algebra.

1. INTRODUCTION
Skew polynomials provide a powerful framework for study-

ing linear differential operators from an algebraic and algo-
rithmic perspective [24, 12, 10]. In this paper, we develop a
related approach for ordinary integro-differential operators,
complementing the development reported in [27].
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We have introduced the algebra of integro-differential op-
erators in [28] for a symbolic treatment of linear boundary
problems following [26]. It is based on integro-differential al-
gebras (Section 2), which bring together the usual derivation
structure with a suitable notion of indefinite integration and
evaluation. Integro-differential operators are constructed as
the corresponding operator algebra. They can be applied
for solving boundary problems and for factoring them along
a given factorization of the underlying differential equation.
A prototype implementation of integro-differential operators
in Theorema is presented in [7].

In contrast to our earlier construction, the present treat-
ment of integro-differential operators is directly based on
normal forms (Section 3). This is useful for analyzing the
algebraic structure and developing algorithms. In this con-
text, polynomial coefficients are of particular interest.

We construct an integro-differential analog of the classical
Weyl algebra in one variable—henceforth called the differ-
ential Weyl algebra—as a skew polynomial ring (Section 4).
The integro-differential Weyl algebra has a natural decom-
position into the differential Weyl algebra, the integro Weyl
algebra (Section 5), and the two-sided evaluation ideal. Un-
like its differential part, the integro-differential Weyl algebra
has zero divisors and is neither simple nor Noetherian.

The integro Weyl algebra forms a curious counterpart to
the differential Weyl algebra. Following an analogous con-
struction as a skew polynomial ring, the resulting algebra
is also a Noetherian integral domain, but otherwise exhibits
some striking differences: It is not a simple ring and it lacks
a canonical action on the polynomials but it has a natural
grading.

Compared to the algebra of integro-differential operators,
the integro-differential Weyl algebra has a finer structure,
which can be specialized naturally in two different ways,
either discarding or fixing the evaluation (Section 6). Fac-
toring out the evaluation ideal leads to a localization, where
the “integral” is added as a two-sided inverse of the deriva-
tion. Factoring out a suitable relation choosing the integra-
tion constant, we obtain the algebra of integro-differential
operators.

Some notational conventions: We fix a ground field K of
characteristic 0. The inner direct sum of modules is written
as M = M1 u M2. We use the symbol ≤ for algebraic
substructures. Unless specified otherwise the variables i, j,
k, m, n range over the nonnegative integers.



2. INTEGRO-DIFFERENTIAL ALGEBRAS
In this section, we summarize basic properties of integro-

differential algebras from [28]. We recall that (F , ∂) is a
differential K-algebra if ∂ : F → F is K-linear map satisfy-
ing the Leibniz rule

∂(fg) = ∂(f) g + f ∂(g). (1)

For convenience, we assume K ≤ F and write f ′ for ∂(f).

Definition 1. Let F be a commutative algebra over a
field K. We call (F , ∂,

r
) an integro-differential algebra if

(F , ∂) is a differential algebra,
r

: F → F is a K-linear
section of ∂, that is,

∂
r

= 1, (2)

and the differential Baxter axiom

(
r
f ′)(

r
g′) = (

r
f ′)g + f(

r
g′)−

r
(fg)′ (3)

holds. Then we call
r

an integral operator for ∂.

We refer to the elements of I = Im(
r

) as initialized, while
those of C = Ker(∂) are usually called constants. Since

r
is

a section of ∂, we have projectors
r
∂ and

P = 1−
r
∂, (4)

and a direct sum F = CuI with C = Im(P ) and I = Ker(P ).
Conversely, for every projector P onto a complement of C
there exists a unique section of ∂ such that (4) holds; see for
example [22, p. 17] or [25].

The standard example F = C∞(R) comes from analysis,
where ∂ is the usual derivation and

r
the integral operator

r x

c
: f 7→

Z x

c

f(ξ) dξ.

for c ∈ R. Here (2) is the Fundamental Theorem, while (3)
can be verified either directly or by using the characteriza-
tion of integral operators below. The projector P : f 7→ f(c)
corresponds to a point evaluation. For an algorithmic ap-
proach to constant coefficient ODE, the subalgebra of expo-
nential polynomials is important.

The polynomial ring K[x] with the usual derivation is sim-
ilarly seen to form an integro-differential algebra, with inte-
gral operator

r x

c
: xn 7→ (xn+1−cn+1)/(n+1) for c ∈ K. The

corresponding projector is the evaluation homomorphism
determined by x 7→ c; we call c the constant of integration.

Substituting respectively
r
f for f and

r
g for g in (3) and

using (1), (2) gives the plain Baxter axiom (of weight zero)
r
f ·

r
g =

r
(f

r
g) +

r
(g

r
f), (5)

which is obviously an algebraic version of integration by
parts (corresponding to the rewrite rule for

r
f
r

in Table 1).
A Baxter algebra (F ,

r
) is then a K-algebra F with a K-

linear operation
r

fulfilling the Baxter axiom (5); we refer
to [14, 2, 29] for more details.

Substituting
r
g for g in (3), one obtains with (1), (2) the

following one-sided variant of the differential Baxter axiom
r
fg = f

r
g −

r
(f ′

r
g), (6)

which we used in [28] for the definition of integro-differential
algebras. In the commutative case, both versions of the Bax-
ter axiom are equivalent, but (3) has the advantage that it
generalizes to noncommutative algebras over rings and Bax-
ter operators with nonzero weight. Compare to the setting

in [15], where a similar structure was introduced indepen-
dently under the name of differential Rota-Baxter algebras.
They only require (2) and the Baxter axiom (5) rather than
its differential variant (3).

One can characterize what makes (3) stronger than (5). A
section

r
of ∂ is an integral operator if and only if it is also

C-linear. Moreover, we can characterize the integral opera-
tors among sections by requiring the projector in (4) to be
multiplicative. Another equivalent formulation of the differ-
ential Baxter axiom (corresponding to the usual integration
by parts and the identity for

r
f∂ in Table 1) is

r
fg′ = fg −

r
f ′g − P (f)P (g), (7)

following from C-linearity of
r

and multiplicativity of P .
In the rest of the paper, we focus on ordinary differen-

tial equations. Thus we call an (integro-)differential algebra
ordinary if dimK Ker(∂) = 1. Note that this terminology de-
viates from [17, p. 58], where it only refers to having a single
derivation. In an ordinary differential algebra F , we clearly
have K = C, so F is an algebra over its field of constants.
A section is then automatically C-linear, so the pure Baxter
axiom (5) and its differential version (3) are equivalent.

In this case, the corresponding projector is a character

e = 1−
r
∂ (8)

since it is multiplicative (by the above characterization of
integral operators) and its image is C = K. We writeM(F)
for the set of all characters on (F , ∂,

r
), including in partic-

ular the evaluation e.

3. THE ALGEBRA OF INTEGRO-
DIFFERENTIAL OPERATORS

In analogy to differential operators over a differential alge-
bra, it is natural to consider the algebra of linear operators
over an integro-differential algebra. In [28] we defined the
algebra of integro-differential operators as the quotient of
the free algebra in the corresponding operators modulo the
parametrized equations in Table 1. We showed that they
form an infinite two-sided noncommutative Gröbner basis
(or a Noetherian and confluent rewrite system [1]) and de-
termined the corresponding normal forms. (See also [27]
for a summary.) For the theory of Gröbner bases, we refer
to [5, 6], for its noncommutative extension to [3, 21]. In this
section, we want to define the algebra of integro-differential
operators directly in terms of their normal forms.

Let F be an ordinary integro-differential algebra over K.
In the following, the variables f, g are used for elements of
F and ϕ,ψ for characters inM(F). Moreover, we use U • f
for the action of U on f , where U is a combination of ∂,

r
,

functions in F and characters in M(F). In particular, we
have ∂ • f for the derivation,

r
• f for the integral operator

and ϕ•f for the application of characters, while g•f denotes
the product in F .

We remark that Table 1 is to be understood as including
implicit equations for

r r
,
r
∂ and

r
ϕ by substituting f = 1

in the equations for
r
f
r

,
r
f∂ and

r
fϕ, respectively. More-

over, one obtains the equation e
r

= 0 from the definition of
the evaluation e.

For defining the algebra of integro-differential operators in
terms of normal forms, we use the fact [28, Prop. 17] that
every integro-differential operator can be uniquely written as
a sum of a differential, an integral, and a so-called boundary



gf = g • f ∂f = f∂ + ∂ • f
ϕψ = ψ ∂ϕ = 0

ϕf = (ϕ • f)ϕ ∂
r

= 1
r
f
r

= (
r
• f)

r
−

r
(
r
• f)r

f∂ = f −
r

(∂ • f)− (e • f) er
fϕ = (

r
• f)ϕ

Table 1: Relations for Integro-differential Operators

operator. Since all these operators form subalgebras, we first
describe them separately, and then the interaction between
them. It is clear that the normal forms constitute an algebra
isomorphic to the algebra of integro-differential operators in
the sense of [28].

Moreover, for simplicity we take the evaluation e as the
only character. For F = C∞[a, b], this amounts to consid-
ering only initial conditions, but the approach can be ex-
tended by using the normal forms for Stieltjes boundary
conditions [28, Def. 14].

We first recall the well-known algebra of differential op-
erators F [∂] over F . It is defined as sums of terms of the
form f∂i with the usual addition or, more abstractly, as the
free left F-module generated by the ∂i. The multiplication
is determined by viewing F as a subalgebra of F [∂] and by
using the equation

∂ · f = f∂ + ∂ • f (9)

coming from the Leibniz rule (1).
Clearly, sums of terms of the form f

r
g represent linear

integral operators. But they cannot be normal forms since,
by linearity, f

r
λg and λf

r
g with λ ∈ K represent the same

operator. This can be solved by choosing a K-basis B for
F . We additionally require 1 ∈ B so that we can represent
integral operators of the form f

r
. Moreover, we use in the

following the convention that f
r
g is to be understood as an

abbreviation for the corresponding basis expansion if g is
not a basis element.

We define the algebra of integral operators F [
r

] over F
as sums of terms of the form f

r
b with b ∈ B (or as the free

left F-module generated by the
r
b). The multiplication is

based on the equation
r
b ·

r
= (

r
• b)

r
−

r
(
r
• b) (10)

corresponding to the Baxter axiom (5). Note that F [
r

] does
not contain F ; it is an algebra without unit element.

We define the algebra of boundary operators F [e] as sums
of terms of the form fe∂i. Their product is determined by

e∂i · fe∂j = (e∂i • f) e∂j , (11)

which is a result of the Leibniz rule and the equations ∂e =
0, ef = (e • f)e, e2 = e. Also F [e] does not contain F .

The additive structure on integro-differential operators is
then constructed as the direct sum

F [∂,
r

] = F [∂]⊕F [
r

]⊕F [e].

We regard the summands as being embedded in F [∂,
r

].
The multiplication within the summands is given by (9),

(10), and (11). It remains to define the multiplication be-

tween different summands. To start with, multiplying a dif-
ferential operator with an integral operator is given by

∂ · f
r
b = f • b+ (∂ • f)

r
b,

corresponding to (1) and (2). So we have F [∂]F [
r

] ⊂ F [∂]+
F [

r
]. The multiplication in the reverse order is based on

r
b · f∂ = b • f −

r
(∂b • f)− (eb • f) e,

corresponding to the variant of the Baxter axiom (7), so that
F [

r
]F [∂] ⊂ F [∂] + F [

r
] + F [e].

The equations for multiplying a boundary operator from
either side with a differential or integral operator are

∂i · fe∂j = (∂i • f)e∂j ,

e∂i · f∂j =

iX
k=0

(e • fk)e∂j+k,

r
b · fe∂i = (

r
b • f)e∂i,

e∂i · f
r
b =

i−1X
l=0

(e • gl)e∂
l,

where ∂if =
Pi

k=0 fk∂
k and

Pi
k=1 fk∂

k−1b =
Pi−1

l=0 gl∂
l

as differential operators in F [∂]. Besides the rules used
for (11), this involves the rule

r
fe = (

r
• f)e. So we have

F [∂]F [e], F [e]F [∂] ⊂ F [e] as well as F [
r

]F [e], F [e]F [
r

] ⊂
F [e] in these cases.

Since by the above definitions multiplying a boundary op-
erator with any integro-differential operator gives a bound-
ary operator, we see that F [e] is the ideal in F [∂,

r
] gener-

ated by the evaluation e, which we call the evaluation ideal
of F [∂,

r
]. Here and in the following an ideal always means

a two-sided ideal. So we have

F [∂,
r

] = F [∂] u F [
r

] u (e) (12)

as a direct sum of F-modules or K-vector spaces.
In the rest of this paper we will deal with the important

special case F = K[x] from a skew polynomial perspective.
Using the natural K-basis (xk) yields a natural K-basis for
all normal forms. In this case the above construction can
be simplified substantially. We know from the Weyl algebra
that the Leibniz rule (9) reduces to ∂ · x = x∂ + 1 and one
can verify (compare Lemma 11) that

r
·
r

= x
r
−

r
x suffices

to derive (10) for all polynomials. This is the basis for the
skew polynomial construction in the following section.

4. THE INTEGRO-DIFFERENTIAL
WEYL ALGEBRA

For analyzing rings of formal differential operators it is
convenient to view them as skew polynomial rings. Special-
izing the coefficients to K[x], one is led to the corresponding
Weyl algebra. Our goal is to gain a skew polynomial per-
spective on the above ring F [∂,

r
] for F = K[x]. In this

context, we write ` instead of
r

to avoid confusion between
iterated integrals `m and integrals with upper bounds

r m
.

We recall the construction of skew polynomials [24] [12,
p. 276] [10]. Let A be a (noncommutative) ring without
zero divisors, ξ an indeterminate, σ : A → A an injective
endomorphism (also known as “twist”) and δ : A → A a σ-
derivation. The skew polynomial ring A[ξ;σ, δ] consists of
the elements a0 + a1ξ + · · ·+ anξ

n with a0, . . . , an ∈ A.



While the addition is defined termwise, the multiplication
is determined by the rule

ξa = σ(a) ξ + δ(a).

It is well-known that A[ξ;σ, δ] is an integral domain since
the usual degree equality deg fg = deg f +deg g is valid. We
write A[ξ; δ] for A[ξ; 1, δ].

We concentrate for a moment on the integral operators.
One is tempted to take A = K[x] and ξ = `. But the
Baxter axiom requires `x = x`−`2, in violation of the degree
requirement. The way out is to reverse the adjunction of x
and `, thus picking A = K[`] for the coefficient ring and
ξ = x for the indeterminate. (In the case of the differential
Weyl algebra, the order of adjunction does not matter: This
is the point of the well-known automorphism x↔ −∂, which
does not carry over to its integro counterpart)

We choose a coefficient ring A that includes both ∂ and
` so that A[x; δ] yields in one stroke integro-differential op-
erators that are “almost” isomorphic to K[x][∂,

r
]. It turns

out that A[x; δ] has a finer structure than K[x][∂,
r

]; their
relations will be studied in Section 6.

The coefficient ring A should contain all K-linear com-
binations of ∂ and `, taking into account that ∂` = 1. Its
derivation δ is set up so as to ensure the relations ∂x−x∂ = 1
and x`− `x = `2 when A[x; δ] is introduced.

Definition 2. The algebra K〈∂, `〉 is the quotient of the
free algebra K〈D,L〉 modulo the ideal (DL − 1). We write
∂ and ` for the corresponding residue classes. We define a
derivation δ on K〈∂, `〉 by δ(∂) = −1 and δ(`) = `2.

Note that δ is well-defined: Defining first a derivation on
the free algebra by δ(D) = −1 and δ(L) = L2, one sees
immediately that δ(DL − 1) = (DL − 1)L, so the passage
to the quotient is legitimate.

The algebra K〈∂, `〉 is studied by N. Jacobson [16] from
the general perspective of one-sided inverses in rings. His
results imply immediately that K〈∂, `〉 is neither (left or
right) Artinian nor (left or right) Noetherian. Extending
this approach, L. Gerritzen [13] describes the right mod-
ules and derivations on K〈∂, `〉; using his classification [13,
Prop. 7.1], we have δ = −∂0. Some of the following results
(without the differential structure—see below) can be found
in their papers. Their approach is based on representation
theory, while our treatment is based on a more algorithmic
normal form perspective.

We shall now establish a decomposition of K〈∂, `〉 that is
akin to (12). For this goal, observe that the monomials `i∂j

form a K-basis of K〈∂, `〉 since they are normal forms with
respect to the Gröbner basis DL− 1.

In analogy to Equation (8) and [16], we define

e = 1− `∂ and eij = `ie∂j .

The eij satisfy the multiplication table for matrix units; see
for example [16] and [18, Ex. 21.26]. The eij together with
the pure ∂ and ` monomials form another K-basis. Indeed,
iterating `i+1∂j+1 = −eij + `i∂j , we obtain

`i+1∂j+1 =

(
`i−j −

Pj
k=0 eij for i > j,

∂j−i −
Pi

k=0 eij for i ≤ j.

Hence ∂j , `i, and eij generate K〈∂, `〉 over K. Using the
relation eij = `i∂j − `i+1∂j+1, one sees that they are also
linearly independent because the `i∂j are.

We note also that the K-vector space generated by the
eij is the ideal (e) since `eij = ei+1,j and ∂eij = ei−1,j for
i > 0 and ∂e0j = 0; analogously for multiplication on the
right. Confer also [16, 13]. In analogy to F [∂,

r
], we refer

to (e) as the evaluation ideal of K〈∂, `〉.

Proposition 3. We have

K〈∂, `〉 = K[∂] uK[`]`u (e)

as a direct sum of K-vector spaces, where K[∂] is a differ-
ential subring of K〈∂, `〉 while K[`]` is a differential subring
without unit and (e) is a δ-ideal.

Proof. We have already seen the decomposition part.
All three summands are obviously closed under addition,
multiplication and the first one also under derivations. For
the second note that δ(q) = dq

d`
`2 ∈ K[`]` for all q ∈ K[`]`.

The third summand is closed under δ since

δ(e) = −δ(`)∂ − `δ(∂) = −`2∂ + ` = `e ∈ (e).

This completes the proof since δ is a derivation.

Since ∂e = ∂ − ∂ = 0 and e` = ` − ` = 0, we obtain also
∂i+1eij = 0 and eij`

j+1 = 0, so every element of (e) is both
a left and and a right zero-divisor. The following minimality
property of the evaluation ideal was also noted in [16].

Lemma 4. Every nonzero ideal in K〈∂, `〉 contains (e).

Proof. Assume I is an ideal and 0 6= f ∈ I. Write now
f = p + q + e where p ∈ K[∂], q ∈ K[`]` and e ∈ (e) as in
Propostion 3. Assume first p 6= 0. For a sufficiently high
k ≥ 0 we may assume that ∂kf ∈ K[∂] since ∂keij = 0 for
k > i while q just gets “shifted” into K[∂]. We may assume
∂kf is monic. Now let e∂m be the term with highest ∂-
power in e∂kf ∈ I. Then e∂kf`m = e ∈ I since e∂n`m = 0
for m > n. If p = 0 but q 6= 0 we may reason analogously
by first looking at f`k for a suitable k.

Therefore, assume now p = q = 0 and e 6= 0. Let k
be maximal such that ekj occurs in e. Then we have ∂kf =
∂ke ∈ eK[∂]\{0} since all terms eij with i < k vanish but the
terms ekj do not. By the same argument as above e ∈ I.

The lattice of differential ideals turns out to be particu-
larly simple.

Proposition 5. The only proper δ-ideal of K〈∂, `〉 is (e).

Proof. We have already seen in Proposition 3 that (e)
is a δ-ideal. Suppose that I 6= 0 is another δ-ideal. By
Lemma 4 we have (e) ⊆ I. Assume there exists f = p+ q+
e ∈ I\(e) where p ∈ K[∂], q ∈ K[`]` and e ∈ (e) as above,
but with either p or q unequal to zero. Using the same trick
as before, we can find k ≥ 0 such that ∂kf ∈ K[∂]\{0}. Now,
if ∂m is the leading term of ∂kf , we have δm(∂kf) ∈ K since
K has characteristic 0. Hence I = K〈∂, `〉.

We consider for a moment K[∂], the subring of polynomi-
als in ∂. The derivation δ extends uniquely to the Laurent
polynomials K[∂, ∂−1] if we view them as the localization of
K[∂] by ∂. Intuitively, another way of getting the Laurent
polynomials is making ` also a left inverse of ∂ in K〈∂, `〉.
That would mean to set e = 1 − `∂ = 0. It turns out that
the intuition is right in this case; compare [13, Prop. 2.6] for
the algebraic part.



Proposition 6. The map

K〈∂, `〉/(e) ∼−→ K[∂, ∂−1]

defined by ∂ + (e) 7→ ∂ and ` + (e) 7→ ∂−1 is a differential
isomorphism.

Proof. The map ϕ given by `i∂j 7→ ∂j−i is a well-defined
K-vector space homomorphism from K〈∂, `〉 to K[∂, ∂−1].
We claim that it is also a differential ring homomorphism.
Since it is additive, we need to check this just for basis ele-
ments of K〈∂, `〉: We have ϕ(`i∂j · `k∂m) = ϕ(`i+k−j∂m) =
∂j+m−i−k = ϕ(`i∂j)ϕ(`k∂m), assuming k ≥ j. The com-
putation for j > k is almost the same. We have further-
more ϕ(δ(`i∂j)) = ϕ(i`i+1∂j − j`i∂j−1) = (i − j) ∂j−i−1 =
δ(∂j−i) = δ(ϕ(`i∂j)).

We compute the kernel of ϕ by considering the basis that
corresponds to the decomposition in Proposition 3. The
basis vectors `i and ∂j are sent to nonzero elements (even
basis elements) in K[∂, ∂−1]. On the other hand, we have
ϕ(eij) = ϕ(`i∂j − `i+1∂j+1) = 0 for all i, j. Hence we con-
clude kerϕ = (e), and by the First Isomorphism Theorem
the claim follows.

Using Proposition 6 and Lemma 4 together with the Third
Isomorphism Theorem—see for instance [11, Thm. 1.23]—
we see that the ideals of K〈∂, `〉 are completely described
by the ideals in K[∂, ∂−1]. This is a principal ideal domain
by [4, Th. 2.18].

The main purpose of this section is to define the integro-
differential analog of the differential Weyl algebra. As noted
before Lemma 4, K〈∂, `〉 is not an integral domain. One can
nevertheless introduce the skew polynomials as before (even
with non-injective twists); see [11, Sec. 5.2], [20, Sec. 1.1.2],
[18, Ex. 1.9]. Consequently the skew polynomials have zero
divisors, and the degree equality must be replaced by the
inequality deg fg ≤ deg f + deg g. The crucial point is that
the normal forms are unique as before.

Definition 7. The integro-differential Weyl algebra is
given by the skew polynomial ring K〈∂, `〉[x; δ] and is de-
noted by A1(∂, `).

Any infinite ascending chain I1 < I2 < · · · of left ideals
in A yields the infinite ascending chain RI1 < RI2 < · · ·
of left ideals in R = A[ξ; δ]; similarly for right ideals and
for descending chains. Consequently A1(∂, `) is also neither
(left or right) Artinian nor (left or right) Noetherian. The
latter is in stark contrast to the differential Weyl algebra, as
the following proposition is.

Over a Q-algebra A, simplicity of skew polynomial rings
can be decided by the following practical characterization
from [18, Th. 3.15]. The ring A[ξ; δ] is simple if and only if
A has no nontrivial δ-ideals and δ is not an inner derivation.
Otherwise, the skew polynomials with coefficients in a δ-
ideal of A form an ideal in A[ξ; δ]. Since we have seen in
Proposition 3 that (e) is a nontrivial δ-ideal in K〈∂, `〉, we
can use this criterion to see that the integro-differential Weyl
algebra—unlike its differential companion—is not simple.

Proposition 8. The ring A1(∂, `) is not simple.

Proof. It remains to prove that δ is not an inner deriva-
tion. For assume δ = [p, ·] for some p ∈ K〈∂, `〉. Application
to ∂ yields −1 = [p, ∂]. But K〈∂, `〉/(e) being a commutative
ring, every commutator of K〈∂, `〉 lies in the ideal (e). Thus
we obtain −1 ∈ (e), in contradiction to Proposition 3.

5. THE INTEGRO WEYL ALGEBRA
For comparing A1(∂, `) with the construction in Section 3,

it is useful to investigate the subring of integral operators.

Definition 9. The subring of A1(∂, `) consisting of skew
polynomials with coefficients in K[`] is called the integro
Weyl algebra and denoted by A1(`).

Obviously we have A1(`) = K[`][x; δ], with the derivation
δ restricted to K[`]. In the same fashion, the differential
Weyl algebra A1(∂) = K[∂][x; δ] is the subring of A1(∂, `)
consisting of skew polynomials with coefficients in K[∂].

Note that—unlike its integro-differential companion—the
integro Weyl algebra is indeed an integral domain since K[`]
is. It provides an interesting and natural example of an Ore
algebra, which to our knowledge has not been studied in the
literature [10, 19].

At first sight, A1(`) seems to be very similar to A1(∂),
but we shall soon realize that appearances are deceptive. To
start with, recall that A1(∂) has a canonical action on K[x]
in the following sense: If x ∈ A1(∂) acts by multiplication
and ∂ ∈ A1(∂) as a derivation, then ∂ • f = f ′ yields the
usual differentiation. The corresponding statement for A1(`)
would require x ∈ A1(`) to act by multiplication and ` ∈
A1(`) as a Baxter operator. But this admits any integrals
` • f =

r x

c
f with arbitrary c ∈ K. We will come back

to this in Section 6. Another important difference to the
differential case is that A1(`) comes with a natural grading
(by total degree in x and `).

For comparing A1(`) ≤ A1(∂, `) with the corresponding
summand K[

r
] ≤ F [∂,

r
], it is necessary to consider differ-

entK-bases for A1(`). The construction of skew polynomials
comes with the basis (`ixj), which we shall call the left basis
(since the coefficients appear to the left of the indetermi-
nate). It is an easy exercise to determine the transition to
the corresponding right basis (xj`i).

Lemma 10. We have the identities

xn`m =

nX
k=0

(−m)k nk

k!
(−1)k `m+kxn−k, (13)

`mxn =

nX
k=0

(−m)k nk

k!
xn−k`m+k, (14)

where nk = n(n− 1) . . . (n− k + 1) is the falling factorial.

Proof. Applying the Leibniz rule in both directions, one
shows by induction that

xnf =

nX
k=0

„
n
k

«
δk(f)xn−k,

fxn =

nX
k=0

„
n
k

«
(−1)k xn−k δk(f)

for all f ∈ K[`]. Setting f = `m and applying
`

n
k

´
= nk/k!,

the claim follows since δk(`m) = (−1)k (−m)k `m+k.

The formulae in Lemma 10 are written in such a way
that the similarity to the corresponding formulae for A1(∂)
becomes apparent. In fact, Equation (1.4) of [30] coincides
with (13) if we allow m ∈ Z and identify ` with ∂−1. These
heuristic observations are made precise in Section 6 by the
isomorphism of Proposition 16.



While the left and right bases of A1(`) are special to the
skew polynomial setting, the general ring of integral oper-
ators F [

r
] from Section 3 has the K-basis (b̃

r
b). In the

present setting, this leads to the mid basis (xm, xm`xn). As
we shall see immediately, its role as a K-basis is justified by
the following commutator relation.

Lemma 11. We have [xn, `] = n `xn−1`.

Proof. The case n = 0 being trivial, we prove the iden-
tity for arbitrary n + 1. Substituting m = 1 in (13) and
multiplying with (n+ 1) ` from the left yields

(n+ 1) `xn` =

nX
k=0

(n+ 1)k+1 `k+2xn−k

= −`xn+1 +

n+1X
k=0

(n+ 1)k `k+1xn−k+1;

we conclude by substituting (n+ 1, 1) for (n,m) in (13).

Corollary 12. The monomials (xm) and (xm`xn) form
a K-basis of A1(`).

Proof. In analogy to the differential Weyl algebra, one
sees immediately that A1(`) is isomorphic to the free K-
algebra in X and L modulo the ideal generated by XL −
LX − L2. Lemma 11 implies that the polynomials

LXnL− (n+ 1)−1 [Xn+1, L]

belong to the ideal. They form a Gröbner basis with re-
spect to the following admissible order [31, p. 268]: Words
are compared in L-degree, then in total degree, and finally
lexicographically (letters ordered either way). A routine cal-
culation shows that the overlaps LXnLXmL are resolvable.
The residue classes of the monomials Xn and XmLXn form
a K-basis of the quotient ring [31, Thm. 7].

The transition between the left/right basis and the mid
basis is governed by the following formulae.

Lemma 13. We have the identities

xm`xn =

mX
k=0

m!

k!
`m−k+1xk+n, (15)

xm`xn =

nX
k=0

n!

k!
(−1)n−kxm+k`n−k+1, (16)

`m+1 =

mX
k=0

(−1)k

k! (m− k)!
xm−k`xk (17)

for changing between the left/right and the mid basis.

Proof. For proving the first formula, it suffices to set
n = 0. Substituting (m, 1) for (n,m) in (13), one obtains
Equation (15) after an index transformation. Analogously,
one proves the second formula with m = 0 by substituting
1 for m in (14).

We prove the third formula by induction. The base case
m = 0 is trivial, so assume (17) for m ≥ 0. Multiplying it
with ` from the right and using Lemma 11 yields

`m+2 =

mX
k=0

(−1)k

(k + 1)! (m− k)!
(xm+1`− xm−k`xk+1).

After expanding the parenthesis and extracting xm+1`, one
is left with the simple binomial sum

mX
k=0

(−1)k

(k + 1)! (m− k)!
=

1

(m+ 1)!
,

so we obtain

1

(m+ 1)!
xm+1`+

m+1X
k=1

(−1)k

k! (m− k + 1)!
xm−k+1`xk

=

m+1X
k=0

(−1)k

k! (m− k + 1)!
xm−k+1`xk

for `m+2, which is indeed (17) for m+ 1.

We note that (17) can be regarded as an algebraic ver-
sion of the well-known Cauchy formula for repeated integra-
tion [23, p. 38].

In view of the transition formulae (15) and (17), one can
use the K-basis (xm`xn) of A1(`)` for setting up a con-
crete isomorphism (of algebras without unit) to K[x][

r
] with

its K-basis (xm
r
xn). Confer Theorem 20 for an analogous

statement for the full integro-differential Weyl algebra.
As for A1(∂, `), we see that A1(`) is not a simple ring by

the following characterization of the δ-ideals in K[`].

Lemma 14. An ideal I ≤ K[`] is a nontrivial δ-ideal if
and only if I = (`n) with n > 0.

Proof. Since δ(`n) = n`n+1, ideals generated by `n are
obviously δ-ideals. Conversely, let I = (q) be a nontrivial
δ-ideal with q =

Pn
i=k ai`

i ∈ K[`] a polynomial of degree
n > 0 and order k, meaning ak 6= 0. Hence δ(q) = rq for
some r ∈ K[`] so that

δ(q) =

nX
i=k

aii `
i+1 = r

nX
i=k

ai `
i

with r = b1` + b0. Equating the coefficients of `k and `n+1

implies respectively b0 = 0 and b1 = n, the latter sinceK has
characteristic 0. If k < n, equating the coefficients of `k+1

implies (n − k)ak = 0, in contradiction to our assumption
on the characteristic of K.

Proposition 15. The ring A1(`) is not simple.

Proof. By the previous lemma there are nontrivial δ-
ideals in K[`]. Since δ cannot be an inner derivation, the
claim follows as in Proposition 8 from [18, Th. 3.15].

6. LOCALIZATION AND EVALUATION
By the construction of A1(∂, `), we have set up ` as an

integral that is a right inverse for ∂. This still leaves some
ambiguity for the choice of `, which we will now remove.
There are two extreme possibilities: When we require ` to
be a two-sided inverse, we obtain a localization. On the
other hand, we may insist ` to be a proper integral by fixing
the integration constant; this leads us back to the ring of
integro-differential operators K[x][∂,

r
].

Let us start with the localization. Extending the deriva-
tion to the Laurent polynomial ring K[∂, ∂−1] as in Propo-
sition 6, we form the skew polynomial ring K[∂, ∂−1][x; δ].
Of course, we may also localize K[`] to obtain K[`, `−1][x; δ]
by using an analogous construction. These two rings are



naturally isomorphic, as we will now prove. In the follow-
ing proofs, we will make use of the universal property of
skew polynomial rings [9, Prop. 3.6] [20, §1.2.5] that allows
to lift differential homomorphisms from coefficients to skew
polynomials.

Proposition 16. The map

K[∂, ∂−1][x; δ] ∼−→ K[`, `−1][x; δ]

induced by ∂ 7→ `−1 is an isomorphism.

Proof. The map ϕ induced by ∂ 7→ `−1 is a differen-
tial homomorphism between K[∂, ∂−1] and K[`, `−1] since
δ(ϕ(∂)) = δ(`−1) = −`2/`2 = −1 = ϕ(δ(∂)). By the univer-
sal property, its extension to K[∂, ∂−1][x; δ] is also a homo-
morphism, and it is clearly bijective.

The following lemma allows to transfer the skew polyno-
mial structure across quotients as in the commutative case,
compare also [9, Prop. 3.15].

Lemma 17. Let (R, δ) be a differential ring and I ≤ R a
differential ideal. Then

(R/I)[x; δ̃] ∼= R[x; δ]/(I)

as rings where (I) denotes the ideal generated by I in R[x; δ]

and δ̃ is the derivation induced by δ.

Proof. The proof is as in the commutative case. First we
note that (I) consists exactly of the skew polynomials with
coefficients in I. The canonical map R→ R/I is a differen-
tial epimorphism and extends therefore to an epimorphism
R[x; δ] → (R/I)[x; δ̃] by the universal property. Its kernel
are all skew polynomials whose coefficients are in I.

The next step is to explore the relation between A1(∂, `)
and K[∂, ∂−1][x; δ]. It is very natural—the latter arises from
the former by making ` also a left inverse of ∂.

Theorem 18. We have

A1(∂, `)/(e) ∼= K[∂, ∂−1][x; δ]

as rings.

Proof. In Proposition 6 we have proved that there exists
an isomorphism ϕ : K〈∂, `〉/(e) → K[∂, ∂−1]. Using again
the universal property, there is a corresponding isomorphism
ϕ̃ between the skew polynomial rings (K〈∂, `〉/(e))[x; δ̃] and

K[∂, ∂−1][x; δ], where δ̃ denote the derivative induced by δ.
The claim now follows from Lemma 17.

We note that the localization can also be applied in the
setting of Section 3 by factoring out (e), leading to the iso-
morphism F [∂,

r
]/(e) ∼= F [∂] u F [

r
].

For reconstructing the ring K[x][∂,
r

] of Section 3 from
A1(∂, `), we need a decomposition analogous to (12). Since
the decomposition in Proposition 3 carries over coefficient-
wise to A1(∂, `), we obtain

A1(∂, `) = A1(∂) u A1(`)`u (e), (18)

where (e) is the evaluation ideal in A1(∂, `). Note that this
ideal consists of the skew polynomials with coefficients in
(e) ⊆ K〈∂, `〉 as observed before Proposition 8.

The key tool for fixing the integration constant c ∈ K
is the following refinement of the above decomposition. In

analogy to the space K[x][e] introduced in Section 3, we con-
sider the K-vector space B ≤ A1(∂, `) with basis (xke∂j).
Note that here and in the following we make use of the right
basis (xk∂i, xk`i, xkeij) of A1(∂, `).

Lemma 19. In A1(∂, `), we have for every c ∈ K the de-
composition

(e) = B u (η),

and (xk`iη∂j) is a K-basis for (η), where η = ex− ce.

Proof. One can easily see ex = (x − `)e. This implies
`i−1η = x`i−1e− i`ie− c`i−1e ∈ (η) and hence

xkeij +
c

i
xkei−1,j −

1

i
xk+1ei−1,j ∈ (η)

for i ≥ 1. This allows to replace xkeij by terms with smaller
powers of `, eventually eliminating all occurrences of `. This
means that every element in (e) may be represented as K-
linear combination of elements of the form xke0j = xke∂j

and some element in (η).
We write ηij for `iη∂j and H for the K-vector space gen-

erated by xkηij . Obviously H is is a subspace of (η). The
product of an element xkηij by ∂ or ` from the right is again
in H. By Lemma 10 and by the Leibniz rule we may com-
mute products of the form `xk and ∂xk, so left multiplication
by ` and ∂ does not leave H either. Finally, H is also closed
under right multiplication by x since ηx = (x − `)η. Hence
H is an ideal, which implies H = (η).

For proving directness assumeX
m,n

amnx
ke0n =

X
i,j,k

bijkx
kηij (19)

for suitable amn, bijk ∈ K. Converting the right-hand side to
the basis (xkeij) by xkηij = xk+1eij−(i+1)xkei+1,j−cxkeij

and choosing i maximal, we see that the terms bijk must all
vanish because (xkeij) is a K-basis and the left-hand side
does not contain terms of the form ei+1,j . Repeating this
for smaller i, it follows that the sum is direct. Using the
same argument with 0 as the left-hand side, we conclude
that (xkηij) is a K-basis of (η).

Using the direct sum from Lemma 19, it is now immediate
to draw the connection to the ring K[x][∂,

r
] of Section 3.

Theorem 20. If
r

is an integral operator for the standard
derivation ∂ on K[x], we have

A1(∂, `)/(ex− ce) ∼= K[x][∂,
r

]

with c = e • x ∈ K as the constant of integration.

Proof. Using Lemma 19 and (18) we see that

A1(∂, `)/(η) = A1(∂) u A1(`)`uB.

As K-bases we can choose (xk∂i), the mid basis (xm`xn)
and (xke∂j), respectively. They map directly to the corre-
sponding basis elements in K[x][∂,

r
] detailed in Section 3.

This yields a K-linear isomorphism.
For proving that it is also an isomorphism of K-algebras,

it suffices to verify that all identities in Table 1 are satis-
fied. The first six are immediate, for the

r
f
r

rule one uses
Lemma 11, for the remaining two rules one can apply the
identity `xke ≡ (xk+1− ck+1)/(k+ 1) modulo (ex− ce).



An alternative proof of Theorem 20 takes the detour via
the free algebra K〈D,L,X〉. Using its construction, one
can show that A1(∂, `)/(ex − ce) is isomorphic to the free
algebra modulo the four relations DL = 1, XD = DX − 1,
XL = LX + L2, and (1 − LD)X = c(1 − LD). It remains
to prove that these four relations generate the identities of
Table 1, which is laborious but straightforward.

7. CONCLUSION
The integro-differential Weyl algebra exhibits an inter-

esting algebraic structure that deserves further study. En-
coding integro-differential operators in a skew polynomial
setting, it allows to recast our algebraic approach to linear
boundary problems in a new language. We hope this will ad-
vance the algorithmic treatment of various operations [28],
for example the computation of Green’s operators and the
factorization into lower-order problems.

The current formulation is still very limited in scope. Since
we have taken only one character (necessarily the evalua-
tion), boundary problems—both their formulation and their
solution—are restricted initial value problems. Adjoining
more characters in a skew polynomial setting will be an in-
teresting task.

A more challenging extension concerns the transition from
ODE to PDE, analogous to the classical Weyl algebra in
several variables. As reported in [25], our algebraic setup
(including the factorization) extends to boundary problems
for PDE; the task is now to develop an algorithmic frame-
work for relevant classes of such boundary problems. The
skew polynomial approach initiated here could provide an
appropriate vantage point.
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pages 3–31. 1998.

[7] B. Buchberger, G. Regensburger, M. Rosenkranz, and
L. Tec. General polynomial reduction with Theorema
functors: Applications to integro-differential operators
and polynomials. ACM Commun. Comput. Algebra,
42(3):135–137, 2008. Poster presented at ISSAC’08.

[8] B. Buchberger and F. Winkler, editors. Gröbner bases
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