
When can we detect that a P-finite sequence is positive?

Manuel Kauers
∗

RISC
Johannes Kepler University

4040 Linz (Austria)

mkauers@risc.jku.at

Veronika Pillwein
†

RISC
Johannes Kepler University

4040 Linz (Austria)

vpillwei@risc.jku.at

ABSTRACT
We consider two algorithms which can be used for proving
positivity of sequences that are defined by a linear recurrence
equation with polynomial coefficients (P-finite sequences).
Both algorithms have in common that while they do succeed
on a great many examples, there is no guarantee for them to
terminate, and they do in fact not terminate for every input.
For some restricted classes of P-finite recurrence equations
of order up to three we provide a priori criteria that assert
the termination of the algorithms.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms; G.2.1 [Discrete Mathe-

matics]: Combinatorics—Recurrences and difference equa-
tions

General Terms
Algorithms

Keywords
P-finite Sequences, Positivity, Cylindrical decomposition

1. INTRODUCTION
Inequalities for special functions are a serious challenge,

both from the traditional paper-and-pencil point of view,
but also (and in particular) for computer algebra. In con-
trast to the vast number of algorithms for dealing with iden-
tities, almost no algorithms are available for inequalities.
Already for the very restricted class of sequences satisfy-
ing linear recurrence equations with constant coefficients
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(C-finite sequences), the positivity problem leads to hard
number theoretic questions to which no solutions are known
today, see [8, 10] and the references given there for the cur-
rent state of the struggle.

Still, inequalities are not entirely hopeless. For example,
Mezzarobba and Salvy have recently given an algorithm for
effectively computing tight upper bounds for sequences de-
fined by linear recurrence equations with polynomial coeffi-
cients (P-finite sequences) [16]. Five years ago, Gerhold and
Kauers [11] proposed a method applicable to inequalities
concerning quantities that satisfy recurrence equations of a
very general type. Their method consists of constructing a
sequence of polynomial sufficient conditions that would im-
ply the non-polynomial inequality under consideration. If
one of the conditions in the sequence happens to be true
(which can be detected, e.g., with Cylindrical Algebraic De-
composition [5, 6, 4, 2]), the method succeeds, otherwise
it keeps on running forever. Simultaneously, the method
searches for counterexamples and it will find one and termi-
nate for every false inequality.

Despite its simplicity, the method has proven quite suc-
cessful in applications. Not only did it provide the first
computer proofs of some special function inequalities from
the literature [11, 12, 13, 14], but it even helped to resolve
some open conjectures [1, 15, 14, 17]. At the same time, the
method remains somewhat unsatisfactory from a computa-
tional point of view, as it is not clear on which inequalities
it succeeds and on which it doesn’t. It would be interesting
to have, at least for some restricted classes, some a priori
criteria telling us whether the method (or some variation of
it) will succeed or not.

Our goal in this paper is to provide such criteria for two
particular proving procedures (Algorithms 1 and 2 described
below). We are far from being able to give a full answer to
the question posed in the title, but we can identify some
nontrivial portions of P-finite recurrence equations of fixed
order on which termination of Algorithms 1 or 2 is guaran-
teed. For first order equations, deciding positivity is trivial.
For second order equations, we provide a result (Theorems 2
and 3) that answers the question under a genericity assump-
tion. For third order equations, we are able to identify the
terminating cases of Algorithm 2 but only have partial re-
sults for Algorithm 1 supplemented by empirical evidence
supporting a conjecture concerning its terminating cases.
An interesting aspect of our analysis is that algorithms for
real quantifier elimination are not only used as a subroutine
of Algorithms 1 and 2, but they are also contributing in an
essential way to the proofs of our termination theorems. It



is therefore possible—in principle—to extend our results to
equations of order greater than three. Only the increasing
time and memory requirements of the computations have
prevented us from doing so.

2. PRELIMINARIES
A sequence f : N → K := R ∩ Q̄ is called P-finite (or

holonomic) if there exist polynomials p0, . . . , pr ∈ K[x], not
all zero, such that

p0(n)f(n) + p1(n)f(n + 1) + · · · + pr(n)f(n + r) = 0

for all n ∈ N. Such an equation is called a (P-finite) recur-
rence, and r is called its order. If pr(n) 6= 0 for all n ∈ N,
then the infinite sequence f is uniquely determined by the
recurrence and r initial values f(0), f(1), . . . , f(r − 1). The
assumption pr(n) 6= 0 for all n ∈ N can be adopted without
loss of generality, because we can substitute g(n) = f(n+u)
for some u larger than the greatest integer root of pr and
then consider g instead of f and check nonnegativity of the
finitely many terms f(0), f(1), . . . , f(u − 1) by inspection.
We will do so.

From now on, all recurrences are assumed to
have a leading coefficient pr with no positive in-
teger roots.

A P-finite recurrence is called balanced if deg p0 = deg pr

and deg pi ≤ deg p0 (i = 1, . . . , r). The characteristic poly-
nomial of a balanced recurrence is defined as

lcy

`

p0(y) + p1(y)x + p2(y)x2 + · · · + pr(y)xr´

∈ K[x].

Its roots λ1, . . . , λr ∈ C are called the eigenvalues of the
recurrence. (The λi are not necessarily distinct.) Note that
for a balanced recurrence, the characteristic polynomial has
always degree r and it has never 0 as a root.

An eigenvalue λi is called dominant if |λj | ≤ |λi| for all
j = 1, . . . , r. Dominant eigenvalues govern the asymptotics
of the sequences defined by the recurrence [20, 9]. If there
is a unique dominant eigenvalue λi, then for we will usually
have

f(n) ∼ c(n)λn
i (n → ∞)

where c is of subexponential growth in the sense that

c(n + 1)

c(n)
n→∞−−−−−→ 1.

There may be choices of initial values for which c(n) = 0
for all n so that the asymptotics of f is not affected by λi

but by the next smaller eigenvalue(s). Whether this is the
case or not can be hard to verify formally, but is usually
easy to verify empirically. Some of our termination results
apply only to this generic situation where initial values are
chosen such as to actually exhibit the asymptotic behavior
predicted by the dominant eigenvalue.

Finally, if the dominant eigenvalue λi is not real and pos-
itive, then it is clear that f will be ultimately oscillating,
and so f(n) ≥ 0 cannot possibly be true for all n. This case
can be sorted out trivially beforehand, and we may there-
fore assume that the unique dominant eigenvalue is real and
positive. In this case, the substitution g(n) = f(n)/λn

i turns
the recurrence

p0(n)f(n) + p1(n)f(n + 1) + · · · + pr(n)f(n + r) = 0

into

p0(n)g(n) + p1(n)λig(n + 1) + · · · + pr(n)λr
i g(n + r) = 0

whose dominant eigenvalue is 1. As g(n) ≥ 0 ⇐⇒ f(n) ≥
0, it suffices to consider this case.

3. INDUCTION BASED PROVING
PROCEDURES

3.1 The Original Version
The approach of [11] is as follows. Suppose that f : N→

K is defined by a recurrence

p0(n)f(n) + p1(n)f(n + 1) + · · · + pr(n)f(n + r) = 0

and initial values f(0) = f0, f(1) = f1, . . . , f(r − 1) = fr−1.
We seek to prove f(n) ≥ 0 for all n ∈ N by induction:

f(n) ≥ 0 ∧ · · · ∧ f(n + r − 1) ≥ 0 =⇒ f(n + r) ≥ 0.

Because of the recurrence, this is equivalent to

f(n) ≥ 0 ∧ · · · ∧ f(n + r − 1) ≥ 0

=⇒ −p0(n)

pr(n)
f(n) − · · · − pr−1(n)

pr(n)
f(n + r − 1) ≥ 0

For this to be true for all n ∈ N, it is sufficient that the
induction step formula

∀ y0, y1, . . . , yr−1 ∈ R ∀ x ∈ R :
`

x ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yr−1 ≥ 0
´

=⇒ −p0(x)

pr(x)
y0 − · · · − pr−1(x)

pr(x)
yr−1 ≥ 0

is true, and this can be decided by a quantifier elimination
algorithm. If it is true, the induction step is established and
f is nonnegative everywhere if and only if it is nonnegative
for n = 0, . . . , r − 1, which can be checked.

In the unlucky case when the induction step formula is
false, there is no immediate conclusion about f that could
be drawn. In this case, refined induction step formulas

f(n) ≥ 0 ∧ · · · ∧ f(n + ̺ − 1) ≥ 0 =⇒ f(n + ̺) ≥ 0

for ̺ > r are constructed. Using the recurrence, each term
f(n + i) can be rewritten as a linear combination of f(n),
. . . , f(n+r−1) with rational function coefficients, and using
this rewriting, the refined induction step formula takes the
form

Φ(̺) := ∀ y0, y1, . . . , yr−1 ∈ R ∀ x ∈ R :
`

x ≥ 0 ∧ y0 ≥ 0 ∧ · · · ∧ yr−1 ≥ 0

∧ qr,0(x)y0 + · · · + qr,r−1(x)yr−1 ≥ 0

∧ qr+1,0(x)y0 + · · · + qr+1,r−1(x)yr−1 ≥ 0
...

∧ q̺−1,0(x)y0 + · · · + q̺−1,r−1(x)yr−1 ≥ 0
´

=⇒ q̺,0(x)y0 + · · · + q̺,r−1(x)yr−1 ≥ 0,

where the qi,j are some rational functions.
The full method then reads as follows.

Algorithm 1.
Input: A P-finite recurrence of order r and a vector of initial



values defining a sequence f : N→ K.
Output: True if f(n) ≥ 0 for all n ∈ N, False if f(n) < 0 for
some n ∈ N, possibly no output at all.

1 for n = 0 to r − 1 do

2 if f(n) < 0 then return False
3 for n = r, r + 1, r + 2, r + 3, . . . do

4 if Φ(n) then return True
5 if f(n) < 0 then return False

Example 1. Let f : N→ K be defined by

(2n + 13)f(n + 3) − (5n + 22)f(n + 2)

+ (3n + 20)f(n + 1) − (2n + 7)f(n) = 0,

f(0) = f(1) = f(2) = 1.

We use Algorithm 1 to show that f(n) ≥ 0 for all n ∈ N.
Since f(0), f(1), f(2) ≥ 0, we enter the loop in line 3. For

n = 3, we have

Φ(n) = ∀ y0, y1, y2 ∀ x ∈ R :
`

x ≥ 0 ∧ y0 ≥ 0 ∧ y1 ≥ 0 ∧ y2 ≥ 0
´

=⇒ 2x+7

2x+13
y0 − 3x+20

2x+13
y1 + 5x+22

2x+13
y2 ≥ 0.

This is false, but since f(3) = 9/13 > 0 (checked in line 5),
we continue.

The formula Φ(4) is too lengthy to be reproduced here ex-
plicitly, and it is also false. Yet f(4) = 61/195 ≥ 0, so we
proceed to consider the even lengthier formula Φ(5), which
turns out to be true. At this point the algorithm terminates
with output True.

3.2 A Variation
In cases where Algorithm 1 does not terminate, it is some-

times possible to prove inductively the stronger statement
that f(n) is increasing, viz. that f(n + 1) ≥ f(n) for all
n ≥ 0. While this is obviously a sufficient condition for
f(n) ≥ 0 for all n, there are of course sequences f which
are non-negative but not increasing. For such cases, a good
strategy is to prove that µ−nf(n) is increasing, for some
suitably chosen constant µ > 0. The choice of µ is criti-
cal in two respects: it must be small enough to assure that
µ−nf(n) actually is increasing, and it must be big enough to
allow for an inductive proof. The following algorithm proves
positivity of a P-finite sequence f by searching for a µ that
meets both criteria.

Algorithm 2.
Input: A P-finite recurrence of order r and a vector of initial
values defining a sequence f : N→ K.
Output: True if f(n) ≥ 0 for all n ∈ N, False if f(n) < 0 for
some n ∈ N, possibly no output at all.

1 Determine a quantifier free formula Φ(ξ, µ) equivalent
to

∀ y0, . . . , yr−1 ∀ x ≥ ξ :
“

y0 ≥ 0 ∧ y1 ≥ µy0 ∧ · · · ∧ yr−1 ≥ µyr−2

”

=⇒ −p0(x)

pr(x)
y0 − · · · − pr−1(x)

pr(x)
yr−1 ≥ µyr−1

2 for n = 0, 1, 2, 3, . . . do

3 if f(n) < 0 then

4 return False
5 else if ∃ µ ≥ 0 : Φ(n, µ) ∧ f(n + 1) ≥ µf(n)

∧ · · ·∧ f(n+ r− 1) ≥ µf(n+ r− 2) then
6 return True

Theorem 1. Algorithm 2 is correct.

Proof. Correctness is obvious whenever the algorithm
returns False, because this happens only when an explicit
point n with f(n) < 0 has been found. Suppose now that the
algorithm returns True at the nth iteration of the for loop.
Then f(k) ≥ 0 for k = 0, . . . , n, otherwise the algorithm
would have terminated in an earlier iteration with output
False. The condition in line 5 inductively implies

∃ µ ≥ 0 ∀ k ≥ n : f(k + 1) ≥ µf(k).

Since µ ≥ 0 and f(n) ≥ 0, this inductively implies f(k) ≥ 0
also for all k > n.

Example 2. Let f : N→ K be defined by

(n + 3)f(n + 3) − (5n + 13)f(n + 2)

+ (5n + 12)f(n + 1) − (n + 2)f(n) = 0,

f(0) = 1, f(1) = 1/4, f(2) = 1/10.

Algorithm 1 does not seem to terminate for this sequence.
But Algorithm 2 succeeds.

Step 1 produces the quantifier free formula

ξ ≥ 0 ∧ 5 −
√

5

2
≤ µ ≤

p

5ξ2 + 22ξ + 25 + 5ξ + 13

2(ξ + 3)
,

which we denote Φ(ξ, µ). In the iteration of the for loop, we
get:

For n = 0, since f(0) = 1 ≥ 0, we check whether

0 ≥ 0 ∧ 5 −
√

5

2
≤ µ ≤ 3 ∧ 1

4
≥ µ ∧ 1

10
≥ µ

4

is satisfiable. As it is not, we proceed.
Also n = 1 and n = 2, we have f(n) ≥ 0 but there is no

µ ≥ 0 with

Φ(n, µ) ∧ f(n + 1) ≥ µf(n) ∧ f(n + 2) ≥ µf(n + 1).

Then for n = 3, since f(3) ≥ 0, we check whether

3 ≥ 0 ∧ 5 −
√

5

2
≤ µ ≤ 28 + 2

√
34

12
∧ 17

80
≥ µ

10
∧ 247

400
≥ 17µ

80

is satisfiable. As it is satisfiable (e.g., by µ = 2) the algo-
rithm terminates with output True.

The two strategies employed in Algorithms 1 and 2 in the
case where a direct proof of the induction step formula fails
(prolonging the induction hypothesis in Algorithm 1 ver-
sus multiplying with a positivity preserving exponential in
Algorithm 2) are independent of each other. It is possible
to merge both strategies into a single strategy that simul-
taneously prolongs the induction hypothesis and inserts a
positivity preserving exponential. An algorithm based on
such a combined strategy is easily written down, but turns
out to be computationally quite expensive on examples. It
would be interesting to carry out the termination analysis
given below for the combined algorithm, but the quantifier
elimination problems arising in this analysis seem currently
too hard to be carried out for the combined algorithm.



4. TERMINATING CASES
Both algorithms given in the previous section may fail to

terminate. Our goal now is to identify classes of P-finite re-
currence equations for which termination can be guaranteed
a priori.

4.1 Order One
This case is rather simple and included here merely for

the sake of completeness. If f : N→ K satisfies

p0(n)f(n) + p1(n)f(n + 1) = 0,

then f(n) ≥ 0 for all n ∈ N if and only if f(0) ≥ 0 and
−p0(n)/p1(n) ≥ 0 for all n ∈ N. Since sign changes of
−p0(n)/p1(n) can occur only at the real roots of p0 or p1,
the only thing we need to do is to find an upper bound
n0 ∈ R for the real roots (this can be done), and then check
whether −p0(n)/p1(n) ≥ 0 for n = 0, 1, 2, . . . , n0 + 1.

Example 3. Consider f : N→ K defined via

(3n − 16)f(n) − (3n − 17)f(n + 1) = 0, f(0) = 1.

The roots of p0, p1 are 16/3 and 17/3, respectively, and they
are both less than n0 = 6, for instance. Therefore, since
f(n) ≥ 0 for n = 0, . . . , 6, we can conclude that f(n) ≥ 0
for all n ∈ N.

4.2 Order Two
We now turn to sequences f : N → K which are defined

by a balanced P-finite recurrence of second order,

p2(n)f(n + 2) − p1(n)f(n + 1) − p0(n)f(n) = 0.

We assume (without loss of generality) that 1 is a dominant
eigenvalue of this recurrence and let u ∈ K with |u| < 1 be
such that

(x − 1)(x − u) = x2 − (u + 1)x − (−u)

is the characteristic polynomial of the recurrence. The ques-
tion is whether Algorithm 1 and Algorithm 2 succeed in
proving that f(n) ≥ 0 for all n. (If this is actually the case;
if it is not, then both algorithms will obviously succeed in
finding a counterexample.) We will show that termination of
Algorithm 1 depends on the sign of u whereas Algorithm 2
(generically) terminates for all u.

Theorem 2. If u ∈ (−1, 0), then Algorithm 1 terminates.

Proof. Rewrite the recurrence in the form

f(n + 2) =
p1(n)

p2(n)
f(n + 1) +

p0(n)

p2(n)
f(n).

Since the characteristic polynomial is

(x − 1)(x − u) = x2 − (u + 1)x − (−u),

we have

p1(n)

p2(n)
n→∞−−−−−→ u + 1 > 0 and

p0(n)

p2(n)
n→∞−−−−−→ −u > 0.

Therefore,

∃ n0 ∈ N ∀ n ≥ n0 :
p1(n)

p2(n)
> 0 ∧ p0(n)

p2(n)
> 0,

where we may safely regard n as ranging not only over the
integers but over all reals except the roots of p2. We show

that Algorithm 1 terminates after at most n0 iterations. The
previous formula implies

∀ y0, y1 ∀ n ≥ n0 :
`

y0 ≥ 0 ∧ y1 ≥ 0
´

=⇒ p0(n)

p2(n)
y0 +

p1(n)

p2(n)
y1 ≥ 0.

Substituting n 7→ n − n0 leads to

∀ y0, y1 ∀ n ≥ 0 :
`

y0 ≥ 0 ∧ y1 ≥ 0
´

=⇒ p0(n + n0)

p2(n + n0)
y0 +

p1(n + n0)

p2(n + n0)
y1 ≥ 0.

As the variables y0, y1 range over all reals, the latter formula
will remain true if we apply a substitution

y0 7→ r0(n)y0 + r1(n)y1,

y1 7→ r2(n)y0 + r3(n)y1,

where r0, . . . , r3 are some rational functions in n. This gives

∀ y0, y1 ∀ n ≥ 0 :
`

r0(n)y0 + r1(n)y1 ≥ 0

∧ r2(n)y0 + r3(n)y1 ≥ 0
´

=⇒ p0(n + n0)r0(n) + p1(n + n0)r2(n)

p2(n + n0)
y0

+
p0(n + n0)r1(n) + p1(n + n0)r3(n)

p2(n + n0)
y1 ≥ 0.

We are free to further modify this formula, without harming
its truth, by imposing arbitrary additional conditions on the
left hand side of the implication.

By choosing r0, r1, r2, r3 such that

f(n + n0) = r0(n)f(n) + r1(n)f(n + 1)

f(n + n0 + 1) = r2(n)f(n) + r3(n)f(n + 1)

and adding constraints qi,0(n)y0 + qi,1(n)y1 ≥ 0 encoding
f(n + i) ≥ 0 (i = 0, . . . , n0 − 1) on the hypothesis part, we
obtain precisely the formula Φ(n0) as defined in Section 3.1
and used in Algorithm 1. As the formula is true, the al-
gorithm terminates in the n0th iteration (or earlier), as we
wanted to show.

Remark 1. Algorithm 1 fails to terminate for positive u.
To see this, consider the C-finite recurrence

f(n + 2) − (u + 1)f(n + 1) + uf(n) = 0

for some u ∈ (0, 1). If Algorithm 1 applied to this recurrence
terminated in the n0th iteration, for some n0 ≥ 0, then the
truth of Φ(n0) implies that no solution f : N → K of the
recurrence can have n0 consecutive nonnegative terms fol-
lowed by a negative term. (So that, if n0 consecutive terms
are found nonnegative, all subsequent terms must be non-
negative as well.)

To see that no such n0 can exist for the C-finite recur-
rence above, it is sufficient to construct for every n0 ≥ 0
a solution which contains a run of exactly n0 nonnegative
terms. The general solution of the recurrence is c0 + c1u

n

for some constants c0, c1 ∈ K. It is easily checked that the
choice c0 = −1, c1 = u−n0+1 has the desired property.

The argument extends, at least for generic initial values,
to P-finite balanced recurrence equations, using the fact that
the recurrence admits two solutions f1, f2 : N → K with
f1(n + 1)/f1(n)

n→∞−−−−−→ 1 and f2(n + 1)/f2(n)
n→∞−−−−−→ u.



Theorem 3. If u ∈ (−1, 1) \ {0}, then Algorithm 2 ter-
minates for generic initial values.

Proof. Consider the set D3 ⊆ R3 consisting of all points
(c0, c1, µ) satisfying

0 < µ < 1 ∧ µ < c1 < 2 ∧ µ(µ − c1) < c0 < 1

and the set

D2 := { (c0, c1) ∈ R2 : 0 < c1 < 2 ∧ − 1

4
c2
1 < c0 < 1 }.

It can be shown by CAD computations that

∀ (c0, c1) ∈ D2 ∃ µ ∈ (0, 1) : (c0, c1, µ) ∈ D3 (1)

and that

∀ (c0, c1, µ) ∈ D3 ∀ y0, y1 ∈ R :
`

y0 ≥ 0 ∧ y1 ≥ µy0

´

=⇒ c0y0 + c1y1 ≥ µy1. (2)

Since 1

4
(u+1)2 > u for all u ∈ (−1, 1), the set D2 contains in

particular the point (−u, u+1) where u is from the statement
of the theorem. Because of (1), there exists µ ∈ (0, 1) with
(−u, u + 1, µ) ∈ D3. Since D3 is open, there exists ε > 0
such that

U := (−u − ε,−u + ε) × (u + 1 − ε, u + 1 + ε) × {µ} ⊆ D3.

Because of

p0(n)

p2(n)
n→∞−−−−−→ −u and

p1(n)

p2(n)
n→∞−−−−−→ u + 1,

there exists ξ ∈ N such that

“ p0(n)

p2(n)
,
p1(n)

p2(n)
, µ

”

∈ U ⊆ D3

for all n ≥ ξ. Together with (2), this implies

∃ µ ∈ (0, 1) ∃ ξ ∈ N ∀ n ≥ ξ ∀ y0, y1 ∈ R :

`

y0 ≥ 0 ∧ y1 ≥ µy0

´

=⇒ p0(n)

p2(n)
y0 +

p0(n)

p2(n)
y1 ≥ µy1.

Therefore, the set

C := { (ξ, µ) ∈ (0,∞) × (0, 1) : Φ(ξ, µ) }
with Φ(ξ, µ) as used in Algorithm 2 is not empty.

Fix some point (ξ, µ) ∈ C. Then it is immediate by the
defining formula that also (ξ′, µ) ∈ C for every ξ′ > ξ, so

(ξ,∞) × {µ} ⊆ C.

Let now f : N → K be the sequence to which Algorithm 2
is applied. Then, because the eigenvalues of its defining
recurrence are 1 and u and we have |u| < 1 and we assume
generic initial values, we have

f(n + 1)

f(n)
n→∞−−−−−→ 1.

Since µ < 1, this implies the existence of an index m ∈ N
such that f(n) ≥ 0 for all n ≥ m and f(n + 1)/f(n) ≥ µ for
all n ≥ m, so that we get f(n + 1) ≥ µf(n) for all n ≥ m.

It follows that the algorithm terminates no later than at
iteration max(m, ξ).

Remark 2. The defining inequalities of D3 in the pre-
ceding proof were found by quantifier elimination applied to
formula (2) with the first quantifier dropped. This computa-
tion as well as the CAD computations referred to in the proof

were performed with Mathematica’s built-in implementation
of CAD [18, 19]. The computation time is negligible for all
of them and we are sure that other implementations [7; 3,
etc.] would have no problem with them either.

Example 4. The restriction to generic initial values in
Theorem 3 is essential: let f : N→ K be defined via

(n + 3)2f(n + 2) − 1

2
(n + 2)(3n + 11)f(n + 1)

+ 1

2
(n + 4)(n + 1)f(n) = 0

and f(0) = 1, f(1) = 1/4. Then we have f(n) = 2−n/(n+1)
for all n ∈ N and so in particular f(n) ≥ 0 (n ∈ N).

Algorithm 2 finds

Φ(ξ, µ) ≡ 1

2
≤ µ ≤ 1 ∧ ξ ≥ 17 − 12µ −√

25 − 16µ

2µ − 3

in Step 1 and continues by searching for an index n with
f(n + 1) ≥ 1

2
f(n). As no such index exist, the search con-

tinues forever.
The general solution of the defining recurrence for f is

c0 + c1

2−n

n + 1

and we will have c0 6= 0 for a generic choice of initial values.
In these cases, the solution converges to c0 and therefore
eventually reaches an index n0 with a term that is greater
than half its predecessor.

4.3 Order Three
Consider now sequences f : N→ K defined by a balanced

P-finite recurrence of third order,

p3(n)f(n+3)−p2(n)f(n+2)−p1(n)f(n+1)−p0(n)f(n) = 0.

Again, we assume without loss of generality that 1 is a dom-
inant eigenvalue and we let u, v ∈ K be such that

(x − 1)(x2 + ux + v) = x3 − (1 − u)x2 − (u − v)x − v

is the characteristic polynomial of the recurrence under con-
sideration. The condition that the two roots of the quadratic
factor belong to the interior of the complex unit disc trans-
lates into the condition

|u| − 1 < v < 1

for the coefficients of the polynomial. The points (u, v) ∈ K2

satisfying this condition form the interior of the triangle with
corners at (−2, 1), (2, 1), (0,−1):

A

B C

D

-1 0 1 2
u

0

1

v

Just for the sake of orientation: the polynomial x2+ux+v
has two complex conjugate roots in region A, two positive
real roots in region B, two negative real roots in region C,
and a positive as well as a negative root in region D.



We want to identify regions of the triangle corresponding
to recurrence equations on which Algorithms 1 and 2 termi-
nate. Only for Algorithm 2 we have a satisfactory result, so
let us consider this case first.

Theorem 4. If |u|−1 < v < 1 and 4v < (u+1)2 and u <
1, then Algorithm 2 terminates for generic initial values.

Proof. Consider the set D4 ⊆ R4 consisting of all points
(c0, c1, c2, µ) satisfying

0 < µ < 1 ∧ µ < c2 ∧ µ(µ − c2) < c1 ∧ µ3 − c2µ
2 − c1µ < c0

and the set D3 ⊆ R3 consisting of all points (c0, c1, c2) with
`

0 < c2 < 2 ∧ − 1

4
c2
2 < c1 < min(3 − 2c2, c

2
2)

∧ 2c3
2 + 9c1c2 + 27c0 + 2(c2

2 + 3c1)
3/2 > 0

´

∨
`

0 < c2 < 1 ∧ c1 ≥ c2
2 ∧ c0 + c1c2 > 0

´

.

The following facts can be verified by CAD:

• ∀ (c0, c1, c2) ∈ D3 ∃ µ ∈ (0, 1) : (c0, c1, c2, µ) ∈ D4

• ∀ (c0, c1, c2, µ) ∈ D4 ∀ y0, y1, y2 ∈ R :
`

y0 ≥ 0 ∧ y1 ≥ µy0 ∧ y2 ≥ µy1

´

=⇒ c0y0 + c1y1 + c2y2 ≥ µy2

• ∀ u, v ∈ R :
`

|u| − 1 < v < 1 ∧ 4v < (u + 1)2 ∧ u < 1
´

=⇒ (v, u − v, 1 − u) ∈ D3.

Consequently, for u, v from the statement of the theorem
there exists µ ∈ (0, 1) such that (v, u − v, 1 − u, µ) ∈ D4.
Since D4 is open, there exists ε > 0 such that

U := (v − ε, v + ε) × (u − v − ε, u − v + ε)

× (1 − u − ε, 1 − u + ε) × {µ} ⊆ D4.

Using

p0(n)

p3(n)

n→∞−−−→ v,
p1(n)

p3(n)

n→∞−−−→ u − v,
p2(n)

p3(n)

n→∞−−−→ 1 − u,

the rest of the proof is fully analogous to the proof of The-
orem 3.

The set of points (u, v) for which Theorem 4 asserts ter-
mination of Algorithm 2 is the shaded area in the figure
below.

-2 -1 1 2
u

0

1

v

The truth of the formula

∀ u ∈ (−1, 1) ∀ v ∈ (|u| − 1, 1) :
ˆ

∃ µ > 0 ∀ y0, y1, y2 :
`

y0 ≥ 0 ∧ y1 ≥ µy0 ∧ y2 ≥ µy1

´

=⇒ vy0 + (u − v)y1 + (1 − u)y2 ≥ µy2

˜

=⇒ u < 1 ∧ 4v < (u + 1)2

(as confirmed, once again, by a CAD computation) asserts
that Theorem 4 is sharp.

We are not able to provide a sharp result for the ter-
minating region of Algorithm 1. If we proceed to reason
as in the proof of Theorem 2, we obtain termination for
(u, v) restricted to the (open) triangle with vertices (0, 0),
(1, 0), (1, 1), essentially because of

∀ u ∈ (0, 1) ∀ v ∈ (0, u) ∀ y0, y1, y2 :
`

y0 ≥ 0 ∧ y1 ≥ 0 ∧ y2 ≥ 0
´

=⇒ vy0 + (u − v)y1 + (1 − u)y2 ≥ 0

and the convergences

p0(n)

p3(n)
n→∞−−−→ v,

p1(n)

p3(n)
n→∞−−−→ u − v,

p2(n)

p3(n)
n→∞−−−→ 1 − u.

But this is not the entire terminating region. A larger por-
tion of the terminating region can be identified by starting
out with a formula corresponding to an induction hypothesis
of length four. As the formula

∀ y0, y1, y2 :
`

y0 ≥ 0 ∧ y1 ≥ 0 ∧ y2 ≥ 0

∧ vy0 + (u − v)y1 + (1 − u)y2 ≥ 0
´

=⇒ (1 − u)vy0 + u(1 − u + v)y1 + (1 − u + u2 − v)y2 ≥ 0

is true for all (u, v) with

u < 1 ∧ v > 0 ∧ 1 − u + u2 − v > 0

∧
`

u > 0 ∨ u2 − v − uv + v2 < 0
´

,

and as we have

p0(n)p2(n + 1)

p3(n)p3(n + 1)
n→∞−−−−−→ (1 − u)v,

p1(n)p2(n + 1) + p0(n + 1)p3(n)

p3(n)p3(n + 1)
n→∞−−−−−→ u(1 − u + v),

p2(n)p2(n + 1) + p1(n + 1)p3(n)

p3(n)p3(n + 1)
n→∞−−−−−→ 1 − u + u2 − v,

Algorithm 1 also terminates for all (u, v) satisfying the con-
ditions stated above.

Starting out with a formula corresponding to a hypothesis
of length five leads to a portion of the termination region
whose description can be computed in a reasonable amount
of time, but which is already too big to be reproduced here.
For longer induction hypotheses, the computational effort
for doing quantifier elimination becomes prohibitive. But
it is still possible to determine experimentally the regions
obtained by taking a particular length ̺ of the induction
hypothesis taken as the starting point of the termination
proof. The empiric results for induction hypotheses of length
up to 10 are as follows (the numbers indicate the length of
the induction hypothesis):

4
3

5 5
6

7 77

-2 -1 0 1 2
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1

v



The picture suggests the following characterization for the
full region of termination.

Conjecture 1. If |u| − 1 < v < 1 and

(u > 1 ∧ v > 0) ∨ 4v > (u + 1)2,

then Algorithm 1 terminates.

The conjecture is equivalent to saying that Algorithm 1
terminates if x2 +ux+ v has no positive root. If the conjec-
ture is true, then about 96.35% of the area of the triangle
are covered by one of the two algorithms we considered.
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[18] Adam Strzeboński. Solving systems of strict
polynomial inequalities. Journal of Symbolic
Computation, 29:471–480, 2000.
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