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Abstract

In the frame of the Austrian Grid Phase 2, we have designed and

implemented an API for grid computing that can be used for devel-

oping grid-distributed parallel programs without leaving the level of

the language in which the core application is written. Our software

framework is able to utilize the information about heterogeneous grid

environments in order to adapt the algorithmic structure of parallel

programs to the particular situation. Since our solution hides low-

level grid-related execution details from the application by providing

an abstract execution model, it is able to eliminate some algorithmic

challenges of nowadays grid programming. In this paper, we report

on the first feature-complete prototype of our topology-aware soft-

ware system extended with some benchmark results and a performance

comparison between MPICH-G2 and our system.

1 Introduction

In this paper, we report on a completed work whose goal was to design
and develop distributed programming software framework and API for grid
computing [5]. This software system is able to utilize the information about
the grid environment in order to adapt their algorithmic structures to the
particular situation.

Our solution is an advanced topology-aware programming tool which
takes into account not only the topology of the available grid resources but
also the point-to-point communication structure of parallel programs. In our
approach, a pre-defined schema is assigned to each given parallel program
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that specifies preferred communication patterns of the program in heteroge-
neous network environments. The execution engine first adapts and maps
this schema to the currently available grid resources and then starts accord-
ing to this mapping the processes on the grid. Our API contains function
calls which are able to query all the details of the mapping information which
contains both the adapted communication structure of the program and the
topological information of the allocated grid resources.

Regard an example where a user intends to execute a tree-like multi-
level parallel application on the grid. She specifies in advance that the given
application shall consist of 20 processes organized into a 3-levels tree struc-
ture. On the lowest level leaves belonging to the same parent process shall
form groups such that each group contains at least 5 processes scheduled
to the same local network environment. For this specification, our software
framework is able to determinate a suitable partition of processes on the
currently available grid resources and to start the processes according to this
scheduling. The partition is based on some heuristics, e.g.: our framework
prefers such tree structures where the sizes of the groups formed by the leaf
processes belonging to the same parents are maximal; consequently the pro-
cesses of each such group can be scheduled to a cluster. Furthermore, our
API maps at runtime the predefined roles of processes in the specified logical
hierarchy (global manager, local manager and workers) to the allocated pool
of grid nodes such that the execution time is minimized.

The rest of the paper is organized as follows. First we give in Section 2
an overview on the overall software architecture of our grid programming
framework and report the implementation state. In Section 3 we discuss the
applied scheduling algorithm in detail whose implementation was completely
finished in the last project phase. Finally, we present in Section 4 a per-
formance comparison with benchmark results between MPICH-G2 and our
system and conclude in Section 5.

2 The Overall Software Architecture

We have finished the implementation of a first feature-complete prototype
version of our software framework [5] called “Topology-Aware API for the
Grid” (TAAG). The system is based on the pre-Web Service architecture of
the Globus Toolkit [1] and on MPICH-G2 [9] and it consists of three major
components (see Figure 1):

Scheduling Mechanism This component depends on the Network Weather
Service (NWS) [11], which is a performance prediction tool that has
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Figure 1: Overview on the Software Framework

become a de facto standard in the grid community. Since the NWS pro-
vides all necessary information concerning the utilizable grid resources,
the user needs not know any detail of the grid architecture. In addition
to these performance characteristics the scheduling algorithm needs a
communication schema of a particular application specified in an XML
format.

Before each execution of a parallel program on the grid, the scheduling
mechanism adapts and maps a preferred communication pattern of the
program to the available grid resources such that it heuristically mini-
mizes the assessed execution time (for more details see Section 3). The
output of the algorithm is an XML-based mapping file which describes
a mapping between the grid resources and the given communication
pattern.

Deployment Mechanism This mechanism is based on the job starting
mechanism of the grid-enabled MPI implementation MPICH-G2 [9].
It expects a mapping file generated by the scheduling mechanism as
input which contains among others the name and various locations of
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the executable, the designated grid resources and the partition of pro-
cesses. It then starts in two steps the processes of an application on
the grid according to the content of the mapping file:

• First, it distributes via gridFTP the mapping file into the directory
/tmp on all designated grid machines.

• Then it generates a RSL expression from the mapping file; with
the help of this RSL expression, it starts the application on the
grid via MPICH-G2.

Topology-Aware API This API is an addition to the MPI interface. Its
purpose is to query mapping files and inform parallel programs how
their processes are assigned to physical grid resources and which are
the designated roles for these processes. It provides information such
as in which local group a particular process resides or which are the
characteristics of local groups, graphs, trees or rings.

For representing the versatility of our API, we have developed some
simple distributed example applications [4, 6] (e.g.: tree-like multilevel
parallelism on the grid).

All the three major components of our software framework have com-
pletely been implemented and the entire system has already been tested
successfully on the sites altix1.uibk.ac.at (SGI Altix 350), lilli.edvz.
uni-linz.ac.at (SGI Altix 4700) and alex.jku.austriangrid.at (SGI
Altix ICE 8200) of the Austrian Grid.

3 The Scheduling Mechanism

The task of the scheduling mechanism is to find a partition of processes
based on the given schema which can be mapped to the available hardware
resources such that the assessed use of any slow communication channel is
minimized.

This kind of communication-aware mapping is an NP-complete problem
which can be only efficiently solved by some kind of heuristic search algo-
rithm. Similar problems have already arisen three decades ago in the map-
ping of processes to parallel hardware architectures (e.g.: hypercube) [7].
Nowadays the technique of communication-aware mappings is recalled in
connection with heterogeneous multi-cluster and grid environments [10]. In
this Section we discuss our solution for the problem of the communication-
aware mapping in detail whose implementation was completely finished in
the last project phase.
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Figure 2: Composing Latency Clusters and Process Partitions

3.1 The Scheduling Algorithm in the Case

of the Schema “Groups”

In this section, we describe how the algorithm applied by the scheduling
mechanism works in the case of the schema “Groups”. The algorithm expects
as input the list of the available hosts, a forecast for the available CPU frac-
tions on these hosts and a forecast for the latency values in milliseconds are
predicted for each pair of hosts, and finally a communication schema which
specifies the preferred heterogeneous communication patterns of a program.
The first three groups of data are provided by the NWS [11] while the schema
is given by the user. The algorithm works roughly as follows:

1. First we classify all the links between each pair of hosts according to
the order of magnitude of latencies. For the generated classes we assign
an ascending sequence of integer numbers (latency levels). To the class
which comprises the fastest links we assign the level 1, to the next one
we assign the level 2 and so forth.

2. We compose some not necessarily disjoint clusters (let us call them
latency clusters) from all the given hosts such that the latency levels
of the links between any two member hosts of such a cluster cannot
exceed a certain value (some of these latency clusters may comprise
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some others with less maximum latency level), see Figure 2a. Further-
more each host itself is regarded as a latency cluster with the latency
level 0. Each latency cluster has a capacity feature which determines
how many processes can be assigned to it at most. This capacity is
calculated from the number of CPUs in the latency cluster multiplied
with an integer coefficient. The default value of the coefficient is 1,
but one can specify a higher value via a command line interface. The
generated latency clusters are stored in a list which is sorted according
to their maximal latency levels in ascending order (and on the same
level according to their capacities in descending order).

3. We generate all those partitioning of processes (in which processes are
organized into various local groups) which fulfil the given preferred
communication pattern of a program, see Figure 2b.

4. Finally we map the generated process partitions to some latency clus-
ters according to some compound heuristic (which helps to avoid the
combinatorial explosion of possibilities) which roughly works as follows:

• The process partitions are pre-evaluated. If there exist a latency
cluster whose capacity is greater than or equal to the minimal
size of groups (given by the schema) and less than or equal to the
maximal size of groups (calculated from the schema) then:

– only those partitions are kept for the mapping which either
contains only one group or

– they have at least one group whose size is equal to the capacity
of one of the latency clusters (independently from the latency
values the optimal mappings always contain at least one group
which fits exactly into a latency cluster).

• For the mapping the latency clusters are stored in a list in which
they are arranged according to their latency level in an ascending
order; and on the same latency levels according their capacity in
a descending order in the list. A process partition is mapped to
some latency clusters group by group (greater groups are assigned
earlier). Each group is assigned to a latency cluster whose latency
level is minimal and available capacity is large enough for the
group. According to some additional low level heuristics a group
can be assigned more than one latency cluster if their latency
levels are the same (this can result an alternative mapping for a
particular partition).
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To find a reasonably efficient scheduling for the program in the space
of solutions, we associate a cost function to each mapping (between a
process partition and some latency clusters). This cost function takes
into consideration the following characteristics of the mappings:

• the maximum latency level within the local groups,

• the maximum and the average latency values of all possible links
among the local groups.

The algorithm always returns the mapping whose associated cost func-
tion is minimal.

3.2 The Scheduling Algorithm in the Case of the Schema

“Graph”

In the case of the schema “Graph” the algorithm is slightly different because
the number and sizes of local groups are fixed by the given schema. So we
count only with the given process partition and we can therefore skip the
third step of the algorithm above.

Additionally since the schema “Graph” specifies links among the local
groups, in the cost function (in step 4) we apply average and maximum
latency values of the pre-defined connections instead of all connections among
the groups.

3.3 The Scheduling Algorithm in the Case of the “Tree”

and the “Ring” Schemas

Although the number and the sizes of the local groups are not specified in
the cases of the “Tree” and the “Ring” schema, but each possible partition
contains pre-defined connections among its local groups. Hence, we apply in
the cost function (in step 4) the average and maximum latency values of the
pre-defined connections instead of all connections among the groups.

Furthermore, in the case of the schema “Tree” we take into account that
every local manager process shall be scheduled together with the correspond-
ing leaf group (they are mapped to the same latency cluster).

3.4 Performance of the Algorithm

For testing purposes, we have implemented a virtual topology which is able
to substitute for the real measured forecast data of NWS about an available
particular grid environment and provides input for the scheduling mechanism.
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Figure 3: Benchmark Results with Various “Groups” Schemas

In this virtual topology the number of the hosts is scalable, such that we can
investigate the efficiency of our scheduling algorithm in the cases of different
problem sizes. For the tests we applied virtual topologies consist of 50 hosts
(with 118 CPUs), 100 hosts (with 236 CPUs) and 200 hosts (with 472 CPUs)
respectively. The scheduler of the TAAG software system were executed on
a machine which comprises an Intel Xeon CPU (3.40Ghz).

In the test cases we used various “Graph” and “Groups” schemas. The
scheduling of the former ones is always much simpler because in their case
only the given fixed process partition has to be mapped to the available grid
resources. We have tried numerous different “Graph” schemas the scheduling
mechanism always mapped to the three mentioned virtual topologies within
10 seconds, respectively.

Mapping of the “Groups” schemas is a bit more complex, since in these
cases the scheduling mechanism must generate all the possible process par-
titions which satisfies the given schema. Then it has to map all of them
to particular grid resources one by one in order to find the best mapping.
The benchmark results of the test series concerning the mappings of schema
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“Groups is depicted on Figure 3. As it can be seen despite the applied heuris-
tic if the problem size (number of hosts and/or the number of possible process
partitions) reaches a certain level the execution time of the scheduler grows
exponentially ( see the execution time related to schema Groups{64, 4, 1}).
But if we are able to choose the arguments of a schema “Groups” carefully
(such that the number of the possible process partition will not be too high),
the execution times of the mapping process can be kept only on some cou-
ple of seconds (even if the available grid architecture comprises few hundred
hosts and CPUs).

4 Comparative Benchmarks with MPICH-G2

To prove the efficiency of the concept of our communication schema based
programming and scheduling solution, we performed some comparative bench-
marks with TAAG and (pure) MPICH-G2. For this, we had to find a problem
that requires a structured communication pattern which can be adapted to
heterogeneous network environments, but which can still be implemented
easily in pure MPI, too. We chose the well-known n-body problem as a basis
of our tests. Here a large number of particles is given (with their positions
and masses) as input; the task is to compute the future positions of the
particles by taking into account the mutual gravitational attraction among
them.

In more detail, we choose as the core of our demonstration an open-source
n-body simulation [8]. On the basis of this application we implemented two
variants of a toy solution, one in pure MPI and one in TAAG. They solve a
special case of n-body problem, where the given particles are arranged into
some subsystems called galaxies. The computation of the new positions of
all particles of a galaxy is assigned to a disjunct groups of processes. For
simplicity, we assume that the galaxies are located far enough from each
other such that a collision is not possible between any two of them during
the investigated time intervals; the initial setup is prepared accordingly. Due
to this assumption a galaxy can be regarded from the other galaxies as a
single heavy particle (as long as two galaxies do not approach each other or
collide).

So for computing the next position of a particle, on the one hand the
actual positions of all other particles of the comprising galaxy and on the
other hand the total masses of and the coordinates of the central mass points
of the other galaxies are required. The former data is shared among the
corresponding processes by applying a ring pipeline communication pattern
on the lower level in which (n−1)∗n messages are sent in every turn (where
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Figure 4: The Applied Test Configurations for the Pure MPI Program and
for the TAAG-Based Version.

n is the number of those processes maintaining the particles of a galaxy).
The latter data have to be calculated and exchanged among the appointed
manager processes of process groups on the higher level (a more general
version of the program which will be prepared to take into consideration the
collision between two or more galaxies is under development). We have to
notice that the implementation of even such a simple two levels algorithm
was already much more complicated in pure MPI than with the usage of the
API of TAAG.

In the test cases, we used a setup in which the particles are organized into
three galaxies such that the sizes of the galaxies are in proportion 1:2:3. Fur-
thermore the particles were always distributed evenly among the processes,
so each process maintains the positions of the same amount of particles.

The test cases were executed on two Austrian Grid sites alex.jku.

austriangrid.at residing in Linz and altix1.uibk.ac.at residing in Inns-
bruck. The former consists of Intel Xeon processors (2.5GHz) the latter com-
prises Intel Itanium processors (1.4GHz). The two machines are connected
via a gigabit WAN connection provided by the Austrian Academic Com-
puter Network (ACONet). In our tests, we used 18 processes and 18 CPUs
(12 CPUs on alex and 6 CPUs on altix1) such that every process can be
assigned to a separate CPU (so 3 CPUs are assigned to the smallest galaxy,
6 CPUs to the middle one and 9 CPUs to the largest galaxy).

In MPICH-G2, “machines” files are used to list the computers on which
we wish to run our programs. Next to an enumerated machine name in each
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Figure 5: Execution Times and Speedups

line, a number appears which specifies the maximum number of processes
that can be executed on the machine. The processes are always scheduled to
the machine listed first. Then if we intend to use more processes than can
be established on the first machine, the remaining processes are scheduled to
the subsequent machine in the list. Consequently, the only way to influence
the scheduling of the processes from a “machines” is by changing the order of
the machine names (it is supposed that the maximum number of executable
processes are fixed for each machine).

For scheduling the processes of the MPI program, we applied two different
configurations given in “machines” files (see Figure 4).:

• According to the first configuration labeled as “MPI1” where the ma-
chine altix1 is listed first, the processes that maintain the particles
of the second galaxy are distributed between altix1 and alex (see
Figure 4a).

• According to the second configuration labeled as “MPI2” where the
machine alex is listed first, the processes that maintain the particles
of the third galaxy are distributed between alex and altix1 (see Fig-
ure 4b).

Hence, in both MPI-related configurations from all the n ∗ (n − 1) messages
sent on the corresponding ring pipeline, 2 ∗ (n− 1) messages have to be sent
via the WAN network connection in every time steps (where n is the number
of processes maintaining the particles of a galaxy).

For scheduling the processes of the TAAG-based version of the program
we applied the following communication schema

GRAPH{3, 0, [3, 6, 9], []}

which yields the optimal scheduling such that the first and the third galaxies
are maintained on the alex and the second galaxies are maintained on the
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altix1 (see Figure 4c). Apart from the way how the group of processes are
established and assigned to galaxies, the both versions (the pure MPI and the
TAAG-based versions) of the program contain the same piece of code (we
avoided the usage of any convenient statements or programming structure
introduced by our API).

The execution times presented on Figure 5 are average values of 5 com-
putations and do not include the overhead of the job submission in Globus.
As it can be seen that the reachable speedup factor is independent how we
decreased or increased either the number of the particles or the time interval
of the simulations in the test cases. The use of our topology-aware API al-
ways speeded up the simulation by a factor of 1.2 compared to the “MPI1”
configuration and by a factor of 1.5 compared to the “MPI2” configuration
roughly. We have also investigated the case in which the optimal scheduling
is possible by MPICH-G2, too (e.g.: on both grid sites 9-9 CPUs are avail-
able). In these test cases, the average execution times of the two versions of
the application were quite alike. Consequently, we can state that the usage
of our TAAG framework offers at least as efficient program execution on the
grid as MPICH-G2.

In all likelihood in more realistic test circumstances (in a testbed contain-
ing more than two clusters) the achieved speedups would be higher; because
in a pure MPI solution the chances that two interacting processes are placed
into the same local environment of a grid comprising n pieces of grid nodes
(clusters, LANs or single machines) are only 1/n. While in the TAAG-based
solutions most of the communication are done (on the priori identified “of-
ten used” communication channels which are always located) within local
network environments.

In the future, we intend to develop an efficient distributed n-body sim-
ulation (probably on the basis of the hierarchical Barnes-Hut algorithm [3])
whose execution beyond a certain problem size shall require a more complex
decomposition of process groups among physical hardware resources. Since
in these proposed simulations many to many grid sites interact with each
other according to a compound logical hierarchy (instead of the presented
simple algorithmic structure consisting of only two machines), we expect a
more significant performance gain on the side of the TAAG framework (in
comparison with pure MPICH-G2).

5 Conclusions

Summarizing the achievements of the existing topology-aware programming
tools (e.g.:MPICH-G2), we can say that they make available the given topol-
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ogy information on the level of their programming API and they optimize
(only) the collective communication operations (e.g.: broadcast) with the
help of the topology information such that they minimize the usage of the
slow communication channels. But they are still not able to adapt the point-
to-point communication pattern of a parallel programs to network topologies
such that they achieve a nearly optimal execution time on the grid.

Compared to these existing topology-aware programming tools, the major
advantages of our solution are the following:

• It takes into consideration the point-to-point communication pattern
of a MPI parallel program and tries to fit it to a heterogeneous grid
network architecture,

• It preserves the achievements of the already existing topology-aware
programming tools. This means the topology-aware collective opera-
tions of MPICH-G2 are still available, since MPICH-G2 serves as a
basis for our software framework.

• Since our system hides low-level grid-related execution details from the
application by providing an abstract execution model, it eliminates
some algorithmic challenges of the high-performance programming on
the dynamic and heterogeneous grid environments. Programmers need
to deal only with the particular problems which they are going to solve
(like in a homogeneous cluster environments).

• The distribution of the processes is always conformed to the loading of
the network resources.

A drawback of our solution is that the applicable communication patterns
cannot be retrieved from the programs. If some schema is not enclosed
to a distributed application, its effective scheduling may not be possible at
the moment. We propose to overcome this issue in a subsequent version
of our software system where the programmer will be forced by the API
library to specify a recommended schema (with defined flexibility) via some
function calls in the source of the programs. According to our conception,
the scheduling mechanism will be able to query this built-in information from
the compiled application.

As the next step, we intend to replace the MPICH-G2 in our software
framework with its successor called MPIg [2]. By this substitution, our
TAAG system will be able to submit and execute parallel programs via the
Web-Service architecture of the Globus Toolkit, too (MPIg had only one in-
ternal release at the end of 2007, which is freely available for testing and
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development purposes). Besides, we also plan to develop on the basis of
our TAAG programming framework some grid-distributed parallel applica-
tions (e.g.: a distributed n-body simulation based on Barnes-Hut algorithm
and some other programs in the fields of the hierarchical distributed genetic
algorithms) in cooperation with other research groups.
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