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Abstract. We propose linear systems of hedge language equations (LSH)
as a formalism to represent regular hedge languages. These linear sys-
tems are suitable for several computations in the algebra of regular hedge
languages. We indicate algorithms to translate between representations
by hedge automata and LSH, and for the computation of LSH for the
intersection, quotient, left and right factors of regular hedge languages.

1 Introduction

Regular hedge languages (RHLs) play an important role in computer science
where they are well known as a formalism for a schema of XML [8]. There are
many equivalent ways to represent RHLs: by hedge automata [7], regular hedge
grammars [6], regular hedge expressions [7], regular expression types for XML [3],
etc. The choice of a suitable representation depends on the computation under
consideration, and conversions between representations are often required.

We propose a new characterization of RHLs, by linear systems of hedge
language equations (LSH for short). LSHs can be viewed as a generalization of
the notion of system of linear equations over a Kleene algebra [4] which is linear
in both horizontal and vertical directions. An important result is that LSHs
have a unique solution and that the solution consists of regular hedge languages.
Solving LSHs can be achieved by a slight generalization of solving linear systems
over a Kleene algebra. Conversely, for every language L represented by a hedge
automaton we can compute an LSH with variables x1, . . . , xn whose solution for
x1 coincides with L. Thus, we can use LSHs to represent RHLs.

LSHs are convenient for several computations in the algebra of RHLs. Many
properties of regular word languages carry over to RHLs, such as closure under
intersection and quotient, and the fact that the factors of RHLs are regular and
finitely many. In this paper we indicate how LSHs can be used to compute the
intersection, quotient, left and right factors of regular hedge languages.

The paper is structured as follows. In Sect. 2 we define LSHs and provide al-
gorithms to translate between LSH and hedge automaton. Sections 3–5 describe
algorithms for the computation of intersection, right quotient, and left factors
of RHLs represented by LSHs. Section 6 concludes.
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2 Linear Systems of Hedge Language Equations

For any set S, by 2S we mean the set of all subsets of S. For any finite set A
we consider the set A∗ of all finite words over A, and denote the empty word
by ε. The set Reg(A) of regular expressions over A is defined by the grammar
r ::= 0 | 1 | a | r + r | r r | r? where a ∈ A. We write [[r]] for the usual
interpretation of r ∈ Reg(A) as a regular language, and r1

.= r2 if [[r1]] = [[r2]].
The constant part o(r) of r is defined recursively on the structure of r such that
it is 1 if ε ∈ [[r]] and 0 otherwise [1].

Hedges over an alphabet Σ with constants from a set K are finite sequences
of trees produced by the grammar h ::= ε | k | a〈h〉h where a ∈ Σ and k ∈ K.
We denote this set by H(Σ,K). A hedge language (HL) is a set of hedges. The
product of two HLs L and M is the HL LM := {hh′ | h ∈ L, h′ ∈M}.

In this paper we consider only HLs with no constants. We also consider an
infinite set X of hedge language variables and regular hedge expressions over
Σ and X generated by w ::= 0 | 1 | x | a〈w〉 | w + w | ww | w? where a ∈ Σ
and x ∈ X . An assignment is a mapping σ from variables to HLs. Given an
assignment σ, we interpret regular hedge expressions over Σ and X as follows:
[[0]]σ := ∅, [[1]]σ := {ε}, [[x]]σ := σ(x), [[w1 + w2]]σ := [[w1]]σ ∪ [[w2]]σ, [[w1 w2]]σ :=
[[w1]]σ [[w2]]σ, [[a〈w〉]]σ := {a〈h〉 | h ∈ [[w]]σ}, and [[w?]]σ :=

⋃∞
n=0[[w]]nσ where

[[w]]0σ := {ε} and [[w]]nσ := {h1 . . . hn | h1, . . . , hn ∈ [[w]]σ} for n ≥ 1. Also, we
write w1

.=σ w2 if [[w1]]σ = [[w2]]σ.
A hedge automaton (HA) is a 4-tuple A = (Σ,Q,P, r1) where Σ is the

alphabet for hedges, Q is a finite set of states, r1 ∈ Reg(Q), and P is a finite set
of transition rules of the form q→ a〈r〉 with q ∈ Q, a ∈ Σ, and r ∈ Reg(Q). The
language accepted by A is the set L(A) := {h ∈ H(Σ, ∅) | h →∗P v ∧ v ∈ [[r1]]},
where→P is the transition relation induced by P on H(Σ,Q). A hedge language
is regular (RHL for short) if it is accepted by a hedge automaton.

A linear system of hedge language equations (LSH) over a finite alphabet Σ
with variables from {x1, . . . , xn} is a system of equations of the form

xi = `i1 x1 + . . .+ `in xn + bi (1 ≤ i ≤ n) (1)

with `ij sums of elements from {a〈xl〉 | a ∈ Σ, 1 ≤ l ≤ n} and bi ∈ {0, 1} for
all i, j ∈ {1, . . . , n}. If `ij 6= 0 then we say that xj occurs at horizontal position
in the right side of the equation of xi. A solution of (1) is an assignment σ for
X = {x1, . . . , xn} such that xi

.=σ `i1 x1 + . . .+ `in xn + bi for all 1 ≤ i ≤ n.

Solving Linear Systems of Hedge Language Equations. Suppose Σ =
{a1, . . . , ap} and σ is a solution of (1). We solve (1) in two steps:

Abstraction step. Let Q := {qkl | 1 ≤ k ≤ p, 1 ≤ l ≤ n} be a set of fresh
symbols. We replace every coefficient ai〈xj〉 of (1) with qij . This replacement
produces a linear system of equations over the Kleene algebra Reg(Q):

xi = mi1 x1 + . . .+min xn + bi (1 ≤ i ≤ n)

where mij are sums of elements from Q, and bi ∈ {0, 1}.
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Solving step. Let P := {ak〈rl〉 → qkl | 1 ≤ k ≤ p, 1 ≤ l ≤ n}, and computer1...
rn

 := M?

b1...
bn

 where M =

m11 . . . m1n

...
. . .

...
mn1 . . . mnn


and M? is the asterate of matrix M [4].
The unique solution of (1) is {x1 7→ L1, . . . , xn 7→ Ln} where, for every
1 ≤ i ≤ n, Li is the language accepted by the HA (Σ,Q,P, ri).

The correctness of this algorithm can be explained as follows. Let µ be the ex-
tension of σ to X ∪ Q with the assignments µ(qkl) := [[ak〈xl〉]]σ for all qkl ∈
Q. Then xi

.=µ mi1 x1 + . . .+min xn + bi for 1 ≤ i ≤ n. Since [[mij ]]µ ⊆⋃p
k=1

⋃n
l=1[[ak〈xj〉]]σ for all i, j, we learn that mij denote languages of terms,

which are ε-free HLs. By [5, Lemma 1], we have

x1

...
xn

 .=µ M?

b1...
bn

, thus

xi
.=µ ri for 1 ≤ i ≤ n. This relation shows that the solution of (1) is unique and

that, for every 1 ≤ i ≤ n, [[xi]]σ coincides with the language recognized by the
HA (Σ,Q,P, ri) where P = {ak〈rl〉 → qkl | 1 ≤ k ≤ p, 1 ≤ l ≤ n}.

Example 1. The equations x1 = (a1〈x1〉 + a2〈x2〉)x1 + a1〈x1〉x2 and x2 =
a2〈x2〉x2 + 1 form an LSH over signature Σ = {a1, a2} can be solved as follows.
First we abstract the coefficients a1〈x1〉 and a2〈x2〉 by replacing them with q11

and q22 respectively. This replacement produces the new system of equations(
x1

x2

)
= M

(
0
1

)
where M =

(
q11 + q22 q11

0 q22

)
. Then

M?

(
0
1

)
=
(

(q11 + q22)? (q11 + q22)?q11q?22
0 q?22

) (
0
1

)
=
(

(q11 + q22)?q11q?22
q?22

)
and we conclude that the solution of this LSH is the assignment σ such that
σ(x1) = L((Σ, {q11, q22},P, r1)) and σ(x2) = L((Σ, {q11, q22},P, r2)), where
r1 := (q11 + q22)?q11q?22, r2 := q?22, and P := {a1〈r1〉 → q11, a2〈r2〉 → q22}. ut

Since an LSH has unique solution, we can define the notion of LSH for a hedge
language L as any LSH whose solution σ assigns language L to the variable that
occurs in the left hand side of its first equation.

Converting HA into LSH. Suppose A = (Σ,Q,P, r1) is an HA and Σ =
{a1, . . . , ap}. We indicate how to compute an LSH over Σ and a set of variables
{x1, . . . , xn} such that its unique solution σ has σ(x1) = L(A).

Let R := {r1} ∪ {r | ∃a〈r〉 → q ∈ P}. It is well known [1] that for any
regular expression r ∈ Reg(Q) we can compute: (1) a finite set ∂Q∗(r) of regular
expressions in Reg(Q) \ {0}, and (2) for every s ∈ ∂Q∗(r), a finite set lf(s)
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of pairs 〈q, s′〉 ∈ Q × ∂Q∗(r), such that s .= o(s) +
∑
〈q,s′〉∈lf(s) q s

′. Thus, if
{r1, . . . , rn} :=

⋃
r∈R ∂Q∗(r) then ri

.= o(ri) +
∑
〈q,r〉∈lf(ri)

q r for 1 ≤ i ≤ n.
Let X := {xi | 1 ≤ 1 ≤ n} be a set of fresh variables, and the assignment σ

of variables from X ∪Q such that σ(xi) is the language accepted by (Σ,Q,P, ri)
for all 1 ≤ i ≤ n, and σ(q) is the language accepted by (Σ,Q,P, q), for all q ∈ Q.
If we replace every horizontal occurrence of ri with xi in the previous equations,
we obtain xi

.=σ bi +
∑n
j=1mij xj for 1 ≤ i ≤ n, where bi = o(ri) ∈ {0, 1}

and mij are sums of elements of Q for all 1 ≤ i, j ≤ n. We define the regular
hedge expressions re(q) :=

∑
(a〈ri〉→q)∈P a〈xi〉 for all q ∈ Q, and re(mij) :=∑

q∈Sij
re(q) where Sij is the subset of Q for which mij =

∑
q∈Sij

q. Then
obviously mij

.=σ re(mij) for all i, j ∈ {1, . . . , n}, and thus we have xi
.=σ

bi +
∑n
j=1 re(m1j)xj for 1 ≤ i ≤ n. Since re(mij) are sums of regular hedge

expressions from {a〈x〉 | a ∈ Σ, x ∈ X}, what we’ve got is an LSH over Σ with
variables x1, . . . , xn whose unique solution is the restriction of σ to X . The first
component of the solution of this LSH is σ(x1), which is L(A).

Example 2. Consider the HA A = (Σ, {q11, q22},P, (q11 + q22)?q11q?22) where
Σ = {a1, a2} and P = {a1〈(q11 + q22)?q11q?22〉 → q11, a2〈q?22〉 → q22}.

This is the HA computed in Example 1 from an LSH with 2 equations. In this
example we have R = {r1, r2} where r1 := (q11 +q22)?q11q?22 and r2 := q?22, and
∂Q∗(r1)∪∂Q∗(r2) = R. We have o(r1) = 0, o(r2) = 1, r1

.= (q11 +q22) r1 +q11 r2,
r2

.= q22 r2 + 1, and re(q11 + q22) = re(q11) + re(q22) = a1〈x1〉 + a2〈x2〉,
re(q11) = a1〈x1〉, re(q22) = a2〈x2〉. We obtain the equations x1 = (a1〈x1〉 +
a2〈x2〉)x1 + a1〈x1〉x2 and x2 = a2〈x2〉x2 + 1 which form an LSH whose unique
solution σ satisfies the condition σ(x1) = the language of A. ut

3 Intersection of Regular Hedge Languages

In this section we indicate how to compute an LSH for L ∩M from LSHs for L
and M . Let’s assume given an LSH S made of equations xi = ci +

∑m
k=1 aik xk

(1 ≤ i ≤ m) and with solution σ such that σ(x1) = L, and an LSH T made of
equations yj = dj+

∑n
l=1 bjl yl (1 ≤ j ≤ n) with solution τ such that τ(y1) = M ,

and that ci, dj ∈ {0, 1}, aik are sums of elements from {a〈xu〉 | a ∈ Σ, 1 ≤
u ≤ m}, and bjl are sums of elements from {a〈yv〉 | a ∈ Σ, 1 ≤ v ≤ n}. The
idea of computing an LSH for L ∩M is based on the principle of intersecting
equations of S with equations of T . When we intersect xi = ci+

∑m
k=1 aik xk with

yj = dj +
∑n
l=1 bjl yl, we aim at computing an equation that characterizes the

intersection of RHLs σ(xi)∩µ(yj). We regard the set of expressions Z := {xk∩yl |
1 ≤ k ≤ m, 1 ≤ l ≤ n} as variables and consider the assignment ν for variables
from Z defined by ν(xk ∩ yl) := σ(xk) ∩ µ(yl) for all 1 ≤ k ≤ m and 1 ≤ l ≤ n.
Since xi

.=σ ci+
∑m
k=1 aik xk and yj

.=µ dj +
∑n
l=1 bjl yl, we can compute regular

hedge expressions sijkl such that xi∩yj
.=ν min(ci, dj)+

∑m
k=1

∑n
l=1 sijkl (xk∩yl)

for 1 ≤ i ≤ m and 1 ≤ j ≤ n, where sijkl are sums of regular hedge expressions
of the form a〈z〉 with a ∈ Σ and z ∈ Z. More precisely:
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– We identify two families of finite sets {Uik | 1 ≤ i, k ≤ m} ∈ 2Σ×{x1,...,xm}

and {Vjl | 1 ≤ j, l ≤ n} ∈ 2Σ×{y1,...,yn} such that aik =
∑
〈a,u〉∈Uik

a〈xu〉
and bjl =

∑
〈a,v〉∈Vjl

a〈yv〉 for all 1 ≤ i, k ≤ m and 1 ≤ j, l ≤ n.
– We define sijkl :=

∑
a∈Σ

∑
〈a,xu〉∈Uik∧〈a,yv〉∈Vjl

a〈xu ∩ yv〉.

For example, the intersection of the equations x1 = 1 + (a〈x1〉 + b〈x3〉)x1 +
(b〈x3〉+d〈x4〉)x2 and y2 = 1+(a〈y1〉+c〈y2〉) y1 +b〈y4〉 y2 produces the equation
x1 ∩ y2 = 1 + a〈x1 ∩ y1〉 (x1 ∩ y1) + b〈x3 ∩ y4〉 (x1 ∩ y2) + b〈x3 ∩ y4〉 (x2 ∩ y2).

We can construct an LSH I for the HL L ∩M = [[x1 ∩ y1]]ν as follows:

1. Intersect the first equation of S with the first equation of T and add it to I.
This intersection produces an equation with variable x1 ∩ y1 to the left.

2. For every variable xk ∩ yl that occurs in the right side of some equation
already in I, add to I the intersection of the equation for xk in S with the
equation for yl in T .

This process will terminate because Z is a finite set, so we can not add indefi-
nitely equations to I. We end up with an LSH of at most m × n equations for
the RHL [[x1 ∩ y1]]ν = L ∩M.

4 Quotient of Regular Hedge Languages

The quotient of an HL L with respect to an HL M is the HL M−1L := {h | ∃h′ ∈
M such that h′ h ∈ L}. Like for regular languages, we can prove that if L is RHL
and M is any HL then M−1L is RHL. To see why this is so, assume L is the
language recognized by an HA (Σ,Q,P, r) and let {r1, . . . , rn} :=

⋃
w∈Q∗ ∂w(r).

It can be shown for any hedge h, the HL {h}−1L is recognized by an HA from{
(Σ,Q,P,

∑
s∈Q′ s)

∣∣∣ Q′ ⊆ {r1, . . . , rn}} . This is a finite set of at most 2‖r‖+1

HAs, where ‖r‖ is the alphabetic width of r ∈ Reg(Q) [1, Corollary 10]. Thus,
{{h}−1L | h ∈M} is a finite set of RHLs. But M−1L =

⋃
h∈M{h}−1L is a finite

union of RHLs, hence it is RHL too.
Similarly, we can define the right quotient of an HL L with respect to an

HL M as the HL LM−1 := {h | ∃h′ ∈ M such that hh′ ∈ L}. If we define
the symmetric Ls of L as the language obtained by reversing the order of trees
at the outermost level in hedges, then (Ls)s = L and M−1L = (Ls(Ms)−1)s

for any HLs L and M . Moreover, if L is RHL then Ls is RHL too. Since
M−1L = (Ls(Ms)−1)s, we can achieve quotient computations via right quotient
computations. Therefore, in the remainder of this section we consider only the
computation of right quotient.

If M is RHL then we can compute a representation of LM−1. In the remain-
der of this section we indicate a method to compute an LSH for LM−1 when we
know an LSH for L and an LSH for M .

Suppose the LSHs for L and M are like in the previous section, X :=
{x1, . . . , xm}, Y := {y1, . . . , yn}, and let σ and µ be their unique solutions.
Let Z := {z1, . . . , zn} be a set of fresh new variables and ν the assignment for
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X ∪ Z which extends σ by associating every zi with the language [[xi]]σ[[y1]]−1
µ .

We can construct incrementally an LSH S for LM−1 as follows:

1. Since x1
.=σ c1 +

∑m
k=1 a1k xk, we can multiply it to the right with [[y1]]−1

µ

and obtain z1
.=ν e1 +

∑m
k=1 a1k zk where e1 = 1 if ε ∈ [[x1]]σ[[y1]]−1

µ and
e1 = 0 otherwise. We add to S the equation z1 = e1 +

∑m
k=1 a1k zk.

2. For every variable zi ∈ Z which occurs in the right side of some equation
already in S, add to S the equation zi = ei +

∑m
k=1 aik zk with ei = 1 if

ε ∈ [[xi]]σ[[y1]]−1
µ and ei = 0 otherwise. The addition of this equation to S

is justified by the relation zi
.=ν ei +

∑m
k=1 aik zk whose validity follows by

multiplying the relation xi
.=σ ci +

∑m
k=1 aik xk to the right with [[y1]]−1

µ .
This process will eventually terminate because Z is a finite set, so we do not
add indefinitely equations to S.

3. Finally, we add to S the equations of the LSH for L.

We end up with S being an LSH containing equations zij = eij +
∑
k∈I aijk zk

(1 ≤ j ≤ p) in addition to the equations of the LSH for L, where I = {i1, . . . , ip} ⊆
{1, . . . ,m} with i1 = 1. This is an LSH with at most 2m equations whose
unique solution of S is the restriction of ν to {zi | i ∈ I} ∪ X . To compute
ei1 , . . . , eip it is useful to notice that for every 1 ≤ i ≤ m we have ei = 1 iff
ε ∈ [[zi]]ν = [[xi]]σ[[y1]]−1

µ iff [[xi]]σ∩[[y1]]µ 6= ∅. Since [[xi]]σ = [[ci]]∪
⋃m
k=1[[aik]]σ[[xk]]σ

and [[yj ]]µ = [[dj ]] ∪
⋃n
l=1[[bjl]]µ[[yl]]µ, we learn that [[xi]]σ ∩ [[yj ]]µ 6= ∅ iff

1. ci = dj = 1 (in this case, ε ∈ [[xi]]σ ∩ [[yj ]]µ), or
2. there exist k ∈ {1, . . . ,m} and l ∈ {1, . . . , n} such that [[aik]]σ ∩ [[bjl]]µ 6= ∅

and [[xk]]σ ∩ [[yl]]µ 6= ∅.

It follows that [[xu]]σ ∩ [[yv]]µ 6= ∅ iff the judgment xu � yv can be inferred with

[ci = 1 ∧ dj = 1]
xi � yj

xi1 � yj1 xi2 � yj2 [a〈xi1〉xi2 ∈ rhs(xi) ∧ a〈yj1〉yj2 ∈ rhs(yj)]
xi � yj

where a〈xi1〉xi2 ∈ rhs(xi) means that a〈xi1〉xi2 occurs in the right side of the
equation for xi, and the meaning of a〈yj1〉 yj2 ∈ rhs(yi) is that a〈yj1〉 yj2 occurs
as summand in the right hand side of the equation for yj . In particular ei = 1 iff
the judgment xi � y1 can be inferred with the inference rules mentioned above.

Example 3. Consider the LSHs

x1 = 1 + a1〈x2〉x1 + a2〈x4〉x2 y1 = 1 + (a1〈y1〉+ a2〈y2〉+ a3〈y1〉) y1
x2 = 1 + a2〈x4〉x2 y2 = (a1〈y1〉+ a2〈y2〉+ a3〈y1〉) y3
x3 = (a2〈x4〉+ a3〈x4〉)x4 y3 = 1
x4 = 1 + a1〈x4〉x4

with solutions σ and µ. Our construction of an LSH for [[x1]]σ[[y1]]−1
µ yields the

LSH with the equations z1 = e1 + a1〈x2〉 z1 + a2〈x4〉 z2 and z2 = e2 + a2〈x4〉 z2
besides the equations of the first LSH, where e1 and e2 are still to be computed.
In this example, e1 = e2 = 1 because the inference rules

x1 � y1
x4 � y2 x2 � y3

x1 � y2
x4 � y1 x4 � y3

x4 � y2 x2 � y3 x4 � y1 x4 � y3
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are available to infer the judgments x1 � y1 and x1 � y2. ut
Note that in this example we had Z = {z1, z2, z3, z4}, but we had to add only
two equations, those for z1 and z2, in the LSH for [[x1]]σ[[y1]]−1

µ . In general, we
can say that the number of equations that must be prepended to the LSH for
L to produce an LSH for LM−1 is between 1 and the number of variables of X
that occur at horizontal positions in the equations of the LSH for L.

5 Left and Right Factors of a Regular Hedge Language

The following are straightforward generalizations to HLs of notions from Con-
way’s theory of factorizations of regular languages [2]. A product of HLs F1 . . . Fn
is a subfactorization of a an HL E if and only if F1 . . . Fn ⊆ E. The languages
F1, . . . , Fn are called the terms of the subfactorization. A term Fi is maximal
if it can not be increased without violating the HL inclusion. A factorization
of E is a subfactorization in which every term is maximal. A subfactorization
F ′1 . . . F

′
n of E dominates another subfactorization F1 . . . Fn of E if Fi ⊆ F ′i

for all 1 ≤ i ≤ n. A factor of E is any term of some factorization of E. A left
(resp. right) factor of E is one which can be the leftmost (resp. rightmost) term
in some factorization of E.

RHLs have finitely many factors. E.g., we can reason as follows to show that
the right factors of an RHL E are finitely many: F is right factor of E iff there
is a factorization GF of E iff F =

⋂
h∈G{h}−1E for some hedge language G.

We noticed that {{h}−1E | h a hedge} is a finite set of RHLs. Therefore, the
right factors of E are intersections of RHLs taken from a finite set. Hence, they
are RHLs (because RHLs are closed under intersection) and finitely many.

Note that F is a left factor of an HL E if and only if F s is a right factor
of the symmetric language Es. This property enables to conclude that the set
of right factors of an RHL is finite too, and to reduce the computation of left
factors of an RHL to a computation of right factors of an RHL and vice versa.

From now on we consider only the problem of computing LSHs for the left
factors of L when we know an LSH S made of xi = ci+

∑m
k=1 `ik xk (1 ≤ i ≤ m)

with solution σ such that σ(x1) = L. We tackle this problem in two steps:
(1) Compute LSHs for all RHLs L{h}−1 when h ranges over all hedges. (We saw
already that this set of RHLs is finite. We call these RHLs the right derivatives
of L); (2) Use the LSHs produced in step 1 to compute one LSH whose solution
contains bindings to all possible intersections of right derivatives of L.

Let X = {xi | 1 ≤ i ≤ m} and I := {i1, . . . , is} = {i | x1 →∗ xi} where
i1 = 1 and →∗ is the reflexive-transitive closure of → defined by: xi → xj if xj
occurs at horizontal position in the right side of the i-th equation of S.

We have xj
.=σ cj +

∑m
k=1 `jk xk for all j ∈ I, and if we multiply all these

relations to the right with {h}−1, we obtain yj
.=µ dj(h) +

∑m
k=1 `jk yk where

dj(h) = 1 if h ∈ [[xj ]]σ and dj(h) = 0 otherwise, and µ extends σ with µ(yj) :=
[[xj ]]σ{h}−1 for all j ∈ I. Hence the LSHs for the right derivatives of L are

yij = vij +
∑m
k=1 `ijk yk (1 ≤ j ≤ s)

xi = ci +
∑m
k=1 `ik xk (1 ≤ i ≤ m)

(2)
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with (vi1 , . . . , vis) ∈ ∆ := {(di1(h), . . . , dis(h)) | h ∈ H(Σ, ∅)}. In order to
compute the set ∆, we define the relation M ./ N for M,N ∈ 2X , with the
reading “there exists a hedge h that belongs to [[x]]σ for all x ∈ M and does
not belong to any [[x′]]σ when x′ ∈ N .” Then (vi1 , . . . , vis) ∈ ∆ if and only if
there exist M,N ∈ 2X such that M ∪ N = {xj | j ∈ I}, M ./ N holds, and
{j ∈ I | vj = 1} = {j ∈ I | xj ∈M}. Thus, in order to compute ∆ it is sufficient
to be be able to compute the pairs 〈M,N〉 ∈ 2X × 2X for which M ./ N holds.

It is easy to see that M ./ N holds if and only if it can be inferred with

[∀j ∈ J. cj = 1 ∧ ∀k ∈ K. ck = 0]

{xj | j ∈ J} ./ {xk | k ∈ K}
{x1j | j ∈ J} ./ {x1n | n ∈ N1} {x2j | j ∈ J} ./ {x2n | n ∈ N2} [α]

{xj | j ∈ J} ./ {xk | k ∈ K}

where the side condition [α] of the second inference rule is

there is an a ∈ Σ such that (∀j ∈ J. a〈x1j〉x2j ∈ rhs(xj)) and
{a〈x1n〉x2n | n ∈ N} = {a〈x〉x′ | a〈x〉x′ ∈

⋃
k∈K rhs(xk)} and

{N1, N2} is a partition of N (that is, N1 ∪N2 = N and N1 ∩N2 = ∅)

and the meaning of rhs(xj) is as defined in Sect. 4. The first inference rule is valid
because ε ∈

⋂
j∈J [[xj ]]σ \

⋃
k∈K [[xk]]σ, whereas the second inference rule is valid

because of the existence of a hedge a〈h1〉h2 ∈
⋂
j∈J [[xj ]]σ \

⋃
k∈K [[xk]]σ. These

inference rules are finitely branching and they constitute an inductive definition
for the relation M ./ N defined on a finite set of 2m×2m pairs. Therefore, these
inference rules render a decision algorithm for the relation M ./ N , and this
yields an algorithm for the computation of ∆.

We have just seen how to compute LSHs for all right derivatives of L, and
that these LSHs share the common structure of (2). Suppose we have computed
p such LSHs S1, . . . , Sp where every Sl is of the form

ylij = vlij +
∑m
k=1 `ijk y

l
k (1 ≤ j ≤ s)

xi = ci +
∑m
k=1 `ik xk (1 ≤ i ≤ m)

with the specific set of variables Yl = {yli1 , . . . , y
l
is
} besides the set of variables

X that is shared by all of them. Let’s denote the unique solution of Sl by σl.
The left factors of L are the elements of the set

{⋂
l∈G[[yl1]]σl

| G ∈ 2{1,...,p}
}

.

We consider the set of variables Z :=
{⋂

l∈G y
l
kl

∣∣∣G ∈ 2{1,...,p} ∧ ∀l ∈ G. kl ∈ I
}
∪{⋂

i∈H xi | H ∈ 2{1,...,m}
}

where variable names are identified modulo associa-
tivity, commutativity, and idempotency of intersection. We will construct an
LSH LF with variables from Z whose unique solution µ satisfies the conditions:
(c1) µ(

⋂
l∈G y

l
kl

) =
⋂
l∈G[[ylkl

]]σl
for every variable

⋂
l∈G y

l
kl

that occurs in LF ;
and (c2) µ(

⋂
i∈H xi) =

⋂
i∈H [[xi]]σ for every variable

⋂
i∈H xi that occurs in LF .

Our main requirement is that variables of {
⋂
l∈G y

l
1 | G ⊆ {1, . . . , p}} appear in

LF . Then LF can be regarded as LSH for every left factor of L because every
left factor of L is [[

⋂
l∈G y

l
1]]µ for some G ∈ 2{1,...,p}}, and a rearrangement of

8



the equations of LF which places the equation for
⋂
l∈G y

l
1 first is an LSH for

the left factor [[
⋂
l∈G y

l
1]]µ. The equations of LF are constructed incrementally,

by intersecting equations of the LSHs S1, . . . , Sp:

– For every G ∈ 2{1,...,p} we intersect the first equations of the LSHs from
the set {Sl | l ∈ G}. The intersection of any number of equations is the
obvious generalization of the intersection operation of 2 equations described
in Sect. 3. There are 2p such intersections, and they will produce 2p equations
with variables

⋂
l∈G y

l
1 in their left sides. We add these equations to LF .

– For every variable
⋂
l∈G y

l
kl

that occurs at horizontal position in some equa-
tion of LF , add (if missing) to LF the equation obtained by intersecting the
equations of the set {kl-th equation of Sl | l ∈ G}.

– For every variable
⋂
i∈H xi that occurs in some equation of LF , add (if

missing) to LF the equation produced by intersecting the equations of the
set {i-th equation of the LSH for L | i ∈ H}.

This process terminates because Z is finite, so we can not add indefinitely equa-
tions to LF . We end up with LF being an LSH with properties (c1) and (c2).

6 Conclusion

LSHs are a representation of RHLs that is suitable for performing several op-
erations that show up in the analysis and processing of XML. The algorithms
described here indicate how the intersections, quotients, and the left and right
factors of RHLs can be computed when using the LSH formalism. It should be
mentioned, however, that there are also several operations for which LSHs are
not a suitable representation, such as the computation of symmetric language.
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