Strategies in PpLog

Besik Dundua Temur Kutsia Mircea Marin
RISC, JKU Linz, Austria RISC, JKU Linz, Austria University of Tsukuba, Japan
bdundua@risc.uni-linz.ac.at kutsia@risc.uni-linz.ac.at mmarin@cs.tsukuba.ac. jp

PpLog is an experimental extension of logic programming with strategic conditional transformation
rules, combining Prolog with pLog calculus. The rules perform nondeterministic transformations on
hedges. Queries may have several results that can be explored on backtracking. Strategies provide a
control on rule applications in a declarative way. With strategy combinators, the user can construct
more complex strategies from simpler ones. Matching with four different kinds of variables provides
a flexible mechanism of selecting (sub)terms during execution. We give an overview on programming
with strategies in PpLog and demonstrate how rewriting strategies can be expressed.

1 Introduction

PpLog (pronounced Pé-ro-log) is an experimental tool that extends logic programming with strategic
conditional transformation rules, combining Prolog with pLog calculus [14]. pLog deals with hedges
(sequences of terms), transforming them by conditional rules. Transformations are nondeterministic and
may yield several results. Logic programming seems to be a suitable framework for such nondeter-
ministic computations. Strategies provide a control on rule applications in a declarative way. Strategy
combinators help the user to construct more complex strategies from simpler ones. Rules apply match-
ing to the whole input hedge (or, if it is a single term, apply at the top position). Four different types
of variables give the user flexible control on selecting subhedges in hedges (via individual and sequence
variables) or subterms/contexts in terms (via function and context variables). As a result, the obtained
code is usually quite short, declaratively clear, and reusable.

PpLog programs consist of clauses. The clauses either define user-constructed strategies by (condi-
tional) transformation rules or are ordinary Prolog clauses. Prolog code can be used freely within PpLog
programs. One can include its predicates in PpLog rules, which is especially convenient when arithmetic
calculations or input-output features are needed.

PpLog inference mechanism is essentially the same as SLDNF-resolution, multiple results are gen-
erated via backtracking, its semantics is compatible with semantics of normal logic programs [13]] and,
hence, Prolog was a natural choice to base PpLog on: The inference mechanism comes for free, as
well as the built-in arithmetic and many other useful features of the Prolog language. Following Prolog,
PpLog is also untyped, but values of sequence and context variables can be constrained by regular hedge
or tree languages. We do not elaborate on this feature here.

For the users familiar with logic programming and Prolog it is pretty easy to get acquainted with
PpLog and to quickly start writing programs, since its syntax is very similar to that of Prolog and se-
mantics is based on logic programming.

We tried to provide as little as possible hard-wired features in the system to give the user a freedom in
experimenting with different choices. Probably the most notable such feature is the leftmost-outermost
term traversal strategy the PpLog’s matching algorithm uses, but it can also be easily modified since the
corresponding Prolog code is open: Exchanging the order of clauses there would suffice. The user can
also program different traversal strategies pretty easily inside PpLog.

© B. Dundua, T. Kutsia, M. Marin
This work is licensed under the |Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Electronic Proceedings in Theoretical
Computer Science ?, 2009, pp. l

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 Strategies in PpLog

The goal of this paper is to give an overview of PpLog and, in particular, show how it uses strategies.
After briefly reviewing the related work in Section[2] we discuss the syntax of PpLog (Section[3) and then
list some of the strategies from the library together with examples that explain the input-output behavior
of the system (Section). Next, we show how user-defined strategies can be introduced illustrating it on
the examples of defining rewriting strategies in PpLog (Section [3)). One can see that the code there is
quite short and readable, and it also demonstrates expressiveness of PpLog.

2 Related Work

Programming with rules has been experiencing a period of growing interest since the nineties when
rewriting logic [15]] and rewriting calculus [4} 5] have been developed and several systems and languages
(ASF-SDF [2]], CHR [8]], Claire [3l], ELAN [1], Maude [6], Stratego [18]], just to name a few) emerged.
The pLog calculus has been influenced by the p-calculus [4} 5] as also its name suggests, but there are
some significant differences: pLog adopts logic programming semantics (clauses are first class concepts,
rules/strategies are expressed as clauses), uses top-position matching, and employs four different kinds
of variables. Consequently, PpLog (based on pLog) differs from ELAN (based on p-calculus). Also,
ELAN is a mature system with a very efficient compiler while PpLog is an experimental extension of
Prolog implemented in Prolog itself.

From the architecture point of view, PpLog is closer to another mature system, CHR, because both
extend the host language (in this case, Prolog) in a declarative way. However, the purpose of CHR is
different: It has been designed as a language for writing constraint solvers. CHR extends Prolog with the
rules to handle constraints that are the first class concept there. PpLog is not designed specifically for
programming constraint manipulation rules and we have not experimented with specifying such rules.

In the OBJ family of languages (OBJ2 [9]], OBJ3 [[11]], CafeOBJ [10]), local strategies can be explic-
itly specified. They guide evaluation: In function calls, only the arguments specified by the strategies
are evaluated. Among the other systems, strategic programming is supported Maude, and Stratego.
Maude is based on rewriting logic, can perform efficient pattern matching modulo equational theories
like associativity, commutativity, idempotence, and has a high-performance rewrite engine. Stratego is
a domain-specific language designed for program transformation, combining term traversal strategies,
pattern matching, and rewriting.

To compare with these systems, PpLog has been designed with the purpose to experiment with
strategic conditional transformation rules in a logic programming environment. Strategies and nondeter-
ministic computations fit well into the logic programming paradigm. Bringing hedge and context pattern
matching and strategic transformations into logic programs seems to facilitate writing declaratively clear,
short, and reusable code.

3 Preliminaries

PpLog is essentially based on the language of pLog [14], extending Prolog with it. Here we use the
PpLog notation for this language, writing its constructs in typewriter font. The expressions are built
over the set of functions symbols .# and the sets of individual, sequence, function, and context variables.
These sets are disjoint. PpLog uses the following conventions for the variables names: Individual vari-
ables start with i_ (like, e.g., i_Var for a named variable or i_ for the anonymous variable), sequence
variables start with s_, function variables start with £_, and context variables start with c_. The symbols

B. Dundua, T. Kutsia, M. Marin 3

in .#, except the special constant hole, have flexible arity. To denote the symbols in .%, PpLog basically
follows the Prolog conventions for naming functors, operators, and numbers.
Terms t and hedges h are constructed in a standard way by the following grammars:

i_X | hole | £(h) | £_X(h) | c_X(t)
t | s X | eps | h 1, h_ 2

t i
h ::

where eps stands for the empty hedge and is omitted whenever it appears as a subhedge of another hedge.
a(eps) and £_X(eps) are often abbreviated as a and £_X. A Context is a term with a single occurrence
of hole. A context can be applied to a term, replacing the hole by that term. For instance, applying the
context f (hole, b) to g(a) gives f(g(a), b).

A Substitution is a mapping that maps individual variables to (hole-free) terms, sequence variables
to (hole-free) hedges, function variables to function symbols, and context variables to contexts so that

e all but finitely many individual, sequence, and function variables are mapped to themselves, and
o all but finitely many context variables are mapped to themselves applied to the hole.

The mapping is extended to arbitrary terms and hedges in the usual way. For instance, the im-
age of the hedge (c_Ctx(i_Term), f_Funct(s_Termsl, a, s_Terms2)) under the substitution
{c_Ctx—f (hole), i_Term—g(s_X), f_Funct—g, s_Termsl—eps, s_Terms2— (b, c)} is
the hedge (£ (g(s_X)), g(a, b, c)).

In [12], an algorithm to solve matching equations in the language just described has been introduced.
Matching equations are equations between two hedges, one of which does not contain variables. Such
matching equations may have zero, one, or more (finitely many) solutions, called matching substitutions
or matchers.

Example 1 The term c_X(£(s_Y)) matches g(£f(a, b), h(f(a), £)) in three different ways with
the matchers {c_X—g(hole, h(f(a), f)), s_Y—(a, b)}, {c_X—g(f(a, b), h(hole, £)),
s_Y—a}, and {c_X—g(f(a, b), h(f(a), hole)), s_Y—eps}

The hedge (s_X, £_F(i_X, a, s_), s_Y) matches (a, £(b), g(a, b), h(b, a)) with the
matcher {s_X—(a, £(b), gla, b)), f_F—h, i_X—b, s_Y—eps}

A pLog atom (p-atom) is a triple consisting of a term st (a strategy) and two hedges h1 and h2,
written as st :: hl ==> h2. (The hedges h1 and h2 do not contain the hole constant.) Intuitively, it
means that the strategy st transforms the hedge h1 to the hedge h2. (We will use this, somehow sloppy,
but intuitively clear wording in this paper.) Its negation is written as st :: hl =\=> h2. A plLog
literal (p-literal) is a p-atom or its negation. A PpLog clause is either a Prolog clause, or a clause of the
form st :: hl ==> h2 :- body (in the sequel called a p-clause) where body is a (possibly empty)
conjunction of p- and Prolog literals

A PpLog program is a sequence of PpLog clauses and a query is a conjunction of p- and Prolog
literals. A restriction on variable occurrence is imposed on clauses: If a p-clause has the body that
contains Prolog literals, then the only variables that can occur in those Prolog literals are the pLog
individual variables. (When it comes to evaluating such Prolog literals, the individual variables there are
converted into Prolog variables.) The same restriction applies to p-queries where Prolog literals occur.
On the other hand, Prolog clauses can not contain any pLog variables. In short: p-clauses and queries
can contain only pLog variables. Prolog clauses and queries can contain only Prolog variables.

In fact, PpLog clauses may have a more complex structure, when (some of) the literals are equipped with membership
constraints, constraining possible values of sequence and context variables. Such constraints are taken into account in the
matching process. For simplicity, we do not consider them in this paper.

4 Strategies in PpLog

Both a program clause and a query should satisfy a syntactic restriction, called well-modedness,
to guarantee that each execution step is performed using matching (which is finitary in our language)
and not unification (whose decidability is not known. It subsumes context unification whose decid-
ability is a long-standing open problem [16]].). To explain the essence of the problem, consider a query
str :: (i_X, i_X) ==> i_X. Itcontains (two copies of) a variable in the left-hand side, which might
give rise to an arbitrarily complex context unification problem #; =" 1, if there is a clause with the head
of the form str :: (¢,) ==> hand #; and 1, are terms containing context variables. It can be that
the unification problem has infinitely many unifiers (this might be the case also with sequence variables),
which leads to computing infinitely many answers. Even worse, since the decision algorithm for context
unification is not known, an attempt to compute context unifiers might run forever without detecting that
there are no more unifiers.

All these cases are extremely undesirable from the computational point of view. Therefore, we would
like to restrict ourselves to the fragment that guarantees a terminating finitary solving procedure. Match-
ing is one of such possible fragments. Well-moded clauses and queries forbid uninstantiated variables to
appear in one of the sides of unification problems and, hence, allow only matching problems. Queries
like str :: (i_X, i_X) ==> i_X above and clauses that might lead to such kind of queries are not
allowed in PpLog.

More specifically, well-modedness for PpLog programs extends the same notion for logic programs,
introduced in [7]: A mode for the relation - :: - ==>- is a function that defines the input and output
positions of the relation respectively as in(- : : - ==>-) = {1,2} and out(- : : - ==>-) = {3}. A mode is
defined (uniquely) for a Prolog relation as well. A clause is moded if all its predicate symbols are moded.
We assume that all p-clauses are moded. As for the Prolog clauses, we require modedness only for those
ones that define a predicate that occurs in the body of some p-clause. If a Prolog literal occurs in a query
in conjunction with a p-clause, then its relation and the clauses that define this relation are also assumed
to be moded.

Before defining well-modedness, we introduce the notation vars(E) for a set of variables occurring
in an expression E, and define vars(E, {p1, ..., pn}) = UL vars(E|p,), where E |, is the standard notation
for a subexpression of E at position p;. The symbol 73, stands for the set of anonymous variables. A
ground expression contains no variables. Then well-modedness of queries and clauses are defined as
follows:

Definition 1 A query Ly, ... Ly, is well-moded iff it satisfies the following conditions for each 1 <i < n:
e vars(Li,in(L;)) C U’ _\vars(Ly,out(L;)) \ Yan.
e [fL; is a negative literal, then vars(L;,out(L;)) C U;.;ll vars(Ly,out(L;)) U %4n.
o [fL; is a pLog literal, then its strategy term is ground.
A clause Lo :-Ly,...,Ly is well-moded, iff the following conditions are satisfied for each 1 <i < n:
e vars(Li,in(L;)) Uvars(Lo,out(Ly)) C U’ _ovars(Ly,out(L;)) \ Yan.
e [fL; is a negative literal, then vars(Ly,out(L;)) C U’ "vars(Ly,out(Ly)) U ¥n Uvars(Lo,in(Lo)).

e [fLo and L; are pLog literals with the strategy terms st and st;, respectively, then vars(sti) C
vars(sto).

PpLog allows only well-moded program clauses and queries. There is no restriction on the Prolog
clauses if the predicate they define is not used in a p-clause.

B. Dundua, T. Kutsia, M. Marin 5

Example 2 The query strl :: a ==> i_X, str2 :: i_Y ==> i_Zis not well-moded, because the
variable 1_Y in the input position of the second subgoal does not occur in the output position of the first
subgoal. On the other hand, strl :: a ==> i_X, str2 :: i_X ==> i_Zis well-moded.

If we change the last goal into strl :: a ==> i_X, str2 :: i_X =\=> i_Z, well-modedness
will get violated again, because the variable i_Z, occurring in the negative literal, does not appear in
the output position of the previous subgoal. Examples of well-moded queries involving negative liter-
als are, e.g., strl :: a ==> (i_X, i_Z), str2 :: i_X =\=> i_Z and strl :: a ==> i_X,
str2 :: i X =\=> i_.

For well-moded programs and queries, PpLog uses Prolog’s depth-first inference mechanism with
the leftmost literal selection in the goal. If the selected literal is a Prolog literal, then it is evaluated in
the standard way. If it is a p-atom of the form st :: hl ==> h2, then PpLog finds a (renamed copy of
a) program clause st’ :: h1l’ ==> h2’ :- body such that st’ matches st and h1’ matches h1 with
a substitution o. Then, it replaces the selected literal in the query with the conjunction of bodyc and a
literal that forces matching h2 to h2'c, applies o to the rest of the query, and continues. Success and
failure are defined in the standard way. Backtracking allows to explore other alternatives that may come
from matching the selected query literal to the head of the same program clause in a different way, or to
the head of another program clause.

Negative p-literals are processed by the standard negation-as-failure rule: A negative query of the
form str :: hl =\=> h2 succeeds if all attempts of satisfying its complementary literal, a positive
query str :: hl ==> h2, end with failure. Well-modedness guarantees that whenever such a negative
literal is selected during the PpLog execution process, there are no variables in it except, maybe, some
anonymous variables that may occur in h2.

4 Strategic Programming in PpLog

Strategies can be combined to express in a compact way many tedious small step transformations. These
combinations give more control on transformations. PpLog provides a library of several predefined
strategy combinators. Most of them are standard. The user can write her own strategies in PpLog or
extend the Prolog code of the library. Some of the predefined strategies and their intuitive meanings are
the following:

e id :: hl ==> h2 succeeds if the hedges h1 and h2 are identical (or can be made identical by h2
matching h1) and fails otherwise.

e compose(sty,sta,...,sty), n > 2, first transforms the input hedge by st; and then transforms
the result by compose(sta,...,sty,) (or by sto, if n = 2). Via backtracking, all possible results
can be obtained. The strategy fails if either sty or compose(sta,...,sty) fails.

e choice(sty,...,Sty), n > 1, returns a result of a successful application of some strategy st; to
the input hedge. It fails if all st;’s fail. By backtracking it can return all outputs of the applications
of each of the strategies sty,...,sty.

e first_one(sty,...,sty), n > I, selects the first st; that does not fail on the input hedge and re-
turns only one result of its application. first_one fails if all st;’s fail. Its variation, first_all,
returns via backtracking all the results of the application to the input hedge of the first strategy st;
that does not fail.

Strategies in PpLog

nf(st), when terminates, computes a normal form of the input hedge with respect to st. It never
fails because if an application of st to a hedge fails, then nf (st) returns that hedge itself. Back-
tracking returns all normal forms.

iterate(st,N) starts transforming the input hedge with st and returns a result (via backtracking
all the results) obtained after N iterations for a given natural number N.

map1l(st) maps the strategy st to each term in the input hedge and returns the result hedge. Back-
tracking generates all possible output hedges. st should operate on a single term and not on an
arbitrary hedge. map1(st) fails if st fails on at least one term from the input hedge. map is a vari-
ation of map1 where the single-term restriction is removed. It should be used with care because
of high nondeterminism. Both map1 and map, when applied to the empty hedge, return the empty
hedge.

interactive takes a strategy from the user, transforms the input hedge by it and waits for further
user instruction (either to apply another strategy to the result hedge or to finish).

rewrite(st) applies to a single term (not to an arbitrary hedge) and rewrites it by st (which also
applies to a single term). Via backtracking, it is possible to obtain all the rewrites. The input term
is traversed in the leftmost-outermost manner. Note that rewrite(st) can be easily implemented

inside PpLog:
rewrite(i_Str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-
i_Str :: i_Redex ==> i_Contractum.

We give below few examples that demonstrate the use some of the PpLog features, including the
strategies we just mentioned. The users can define own strategies in a program either by writing clauses
for them or using abbreviations of the form str_1 := str_2. Such an abbreviation stands for the clause

str_

1 :: s X==>s.Y :- str_2 :: s_X ==> s_YV.

Example 3 Let strl and str2 be two strategies defined as follows:

strl :: (s_1, a, s_2) ==> (s_1, f(a), s_2).
str2 :: (s_1, i_x, s_2, i_x, s_3) ==> (s_1, i_x, s_2, s_3).

Putting different strategies in the goal we get different answers:

The goal strl :: (a, b, a, £(a)) ==> s_X returns two answers (instantiations of the se-
quence variable s_X): (f(a), b, a, f(a)) and (a, b, £(a), £(a)). Multiple answers are
computed by backtracking. They are two because (s_1, a, s_2) matches (a, b, a, £(a))in
two ways, with the matchers {s_1—eps, s_2— (b, a, f(a))}and{s_1—(a, b),s_2—f(a)},
respectively.

If we change the previous goal into strl :: (a, b, a, f(a)) ==> (s_X, f(a), s_Y), then
PpLog will return four answers that correspond to the following instantiations of s_X and s_Y:
1. s_X—eps, s_Y—(b, a, f(a)).
2. s_ X—(f(a), b, a), s_Yr—eps.
3. s_X—(a, b), s_Y—f(a).
4. s_X—(a, b, f(a)), s_Y—eps.

The goal strl :: (a, b, a, £(a)) =\=> s_ fails, because it’s positive counterpart suc-
ceeds. On the other hand, strl1 :: (a, b, a, f(a)) =\=> (b, s_) succeeds.

B. Dundua, T. Kutsia, M. Marin 7

e The composition compose (strl, str2) :: (a, b, a, f(a)) ==> s_X gives two answers:
(f(a), b, a)and (a, b, £(a)),
e Onthe goal choice(strl, str2) :: (a, b, a, f(a)) ==> s_Xwe get three hedges as an-

swers: (f(a), b, a, f(a)), (a, b, f(a), £(a)), and (a, b, f(a)).

e nf (compose(strl, str2)) :: (a, b, a, £(a)) ==> s_X, which computes a normal form
of the composition, returns (£ (a), b) twice, computing it in two different ways.

e The goal first_one(strl, str2) :: (a, b, a, f(a)) ==> s_X returns only one answer
(f(@), b, a, £(a)). This is the first output computed by the first applicable strategy, strl.

e Finally, first_all(strl, str2) :: (a, b, a, £(a)) ==> s_X computes two instantia-
tions: (f(a), b, a, £(a)) and (a, b, f(a), f(a)). These are all the answers returned
by the first applicable strategy, strl.

Example 4 The two PpLog clauses below flatten nested occurrences of the head function symbol of a
term. The code is written using function and sequence variables, which makes it reusable, since it can
be used to flatten terms with different heads and different numbers of arguments:

flatten_one :: f_Head(s_1, f_Head(s_2), s_3) ==> f_Head(s_1, s_2, s_3).
flatten := nf(flatten_one).

The first clause flattens one occurrence of the nested head. The second one (written in the abbreviated
form) defines the £latten strategy as the normal form of flatten_one. Here are some examples of
queries involving these strategies:

e flatten_one :: f(a, f(b, f(c)), £(d)) ==> i_Xgivesf(a, b, f(c), £(d)).
e flatten :: f(a, f(b, f(c)), £(d)) ==> i_Xreturnsf(a, b, c, d).

o We can map the strategy £latten to a hedge, which results in flattening each element of the hedge.
For instance, the goal mapl(flatten) :: (a, f(f(a)), gla, g(b))) ==> s_Xreturnsthe
hedge (a, f(a), g(a, b)).

Example 5 The replace strategy takes a term and a sequence of replacement rules, chooses a subterm
in the given term that can be replaced by a rule, and returns the result of the replacement. replace_all
computes a normal form with respect to the given replacement rules.

replace :: (c_Context(i_X), s_1, i X -> i_ Y, s_2) ==>

(c_Context(i_Y), s_1, i_X -> i_Y, s_2).

replace_all :: (i_Term, s_Rules) ==> i_Instance :-
nf (replace) :: (i_Term, s_Rules) ==> (i_Instance, s_).

With replace_all, one can, for example, compute an instance of a term under an idempotent substi-
tution: replace_all :: (f(x, g(x, y)), x -> z, y -> a) ==> i_X gives £(z, g(z, a)).
(We can take the conjunction of this goal with the cut predicate to avoid recomputing the same instance
several times.) The same code can be used to compute a normal form of a term under a ground rewrite
system, the sort of a term if the rules are sorting rules, etc.

Example 6 This is a bit longer example that shows how one can specify a simple propositional proving
procedure in PpLog. We assume that the propositional formulas are built over negation (denoted by ‘-’
and disjunction (denoted by ‘v’). The corresponding PpLog program starts with the Prolog operator
declaration that declares disjunction an infix operator:

8 Strategies in PpLog

:- op(200, xfy, v).

Next, we describe inference rules of a Gentzen-like sequent calculus for propositional logic. The
rules operate on sequents, represented as sequent (ant (sequence of formulas) , cons(sequence of
formulas)). ant and cons are tags for the antecedent and consequent, respectively. There are five infer-
ence rules in the calculus: The axiom rule, negation left, negation right, disjunction left, and disjunction
right.

axiom :: sequent(ant(s_, i_Formula, s_), cons(s_, i_Formula, s_)) ==> eps.

neg_left :: sequent(ant(s_F1, -(i_Formula), s_F2), cons(s_F3)) ==
sequent (ant(s_F1, s_F2), cons(i_Formula, s_F3)).

neg_right :: sequent(ant(s_F1), cons(s_F2, -(i_Formula), s_F3)) ==
sequent (ant(s_F1, i_Formula), cons(s_F2, s_F3)).

disj_left :: sequent(ant(s_F1, i_Formulal v i_Formula2, s_F2), i_Cons) ==>
(sequent (ant(s_F1, i_Formulal, s_F2), i_Cons),
sequent (ant(s_F1, i_Formula2, s_F2), i_Cons)).

disj_right :: sequent(i_ant, cons(s_F1, i_Formulal v i_Formula2, s_F2)) ==>
sequent (i_ant, cons(s_F1, i_Formulal, i_Formula2, s_F2)).

Next, we need to impose control on the applications of the inference rules and define success and
failure of the procedure. The control is pretty straightforward: To perform an inference step on a given
hedge of sequents, we select the first sequent and apply to it the first applicable inference rule, in the
order specified in the arguments of the strategy first_one below. When there are no sequents left, the
procedure ends with success. Otherwise, if no inference step can be made, we have failure.

success :: eps ==> true.

inference_step :: (sequent(i_Ant, i_Cons), s_Sequents) ==
(s_New_sequents, s_Sequents) :-
first_one(axiom, neg_left, neg_right, disj_left, disj_right)
sequent (i_Ant, i_Cons) ==> s_New_sequents.

failure :: (sequent(i_Ant, i_Cons), s_Sequents) ==> false.

Finally, we specify the proof procedure as repeatedly applying the first possible strategy between
success, inference_step, and failure (in this order) until none of them is applicable:

prove := nf(first_one(success, inference_step, failure)).

Note that it does matter in which order we put the clauses for the inference rules or the control in the
program. What matters, is the order they are combined (e.g. as it is done in the strategy first_one).

What we described here is just one way of implementing the given propositional proof procedure in
PpLog. One could do it differently as well, for instance, by writing recursive clauses like it has been
shown in [l14]. However, we believe that the version above is more declarative and naturally corresponds
to the way the procedure is described in textbooks.

B. Dundua, T. Kutsia, M. Marin 9

Note that there can be several clauses for the same strategy in a PpLog program. In this case they
behave as usual alternatives of each other (when a query with this strategy is being evaluated) and are
tried in the order of their appearance in the program, top-down.

5 Implementing Rewriting Strategies

In this section we illustrate how rewriting strategies can be implemented in PpLog. It can be done in a
pretty succinct and declarative way. The code for leftmost-outermost and outermost rewriting is shorter
than the one for leftmost-innermost and innermost rewriting, because it takes an advantage of PpLog’s
built-in term traversal strategy.

Leftmost-Outermost and Outermost Rewriting. As mentioned above, the rewrite strategy tra-
verses a term in leftmost-outermost order to rewrite subterms. For instance, if the strategy strat is
defined by two rules

strat :: £(i_X) ==> g(i_X).
strat :: f(£f(i_X)) ==> i_X.

then for the goal rewrite(strat) :: h(f(£(a)), f(a)) ==> i_X we get, via backtracking, four
instantiations for i_X, in this order: h(g(f(a)), f(a)), h(a, f(a)), h(f(g(a)), f(a)), and
h(f(f(a)), g(a)).

If we want to obtain only one result, then it is enough to add the cut predicate at the end of the goal:
rewrite(strat) :: h(f(f(a)), f(a)) ==> i_X, ! returnsonly h(g(f(a)), f(a)).

To get all the results of leftmost-outermost rewriting, we have to find the first redex and rewrite it in
all possible ways (via backtracking), ignoring all the other redexes. This can be achieved by using an
anonymous variable for checking reducibility, and then putting the cut predicate:

rewrite_left_out(i_Str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-
i_Str :: i_Redex ==> i_,
',
i_Str :: i_Redex ==> i_Contractum.

The goal rewrite_left_out(strat) :: h(f(f(a)), f(a)) ==> i_X gives two instantiations

fori_X:h(g(f(a)), f(a)) andh(a, f(a)).
To return all the results of outermost rewriting we find an outermost redex and rewrite it. Backtrack-
ing returns all the results for all outermost redexes.

rewrite_out(i_Str) :: i_X ==> i Y :-
i_Str :: i X ==> i_,
b,
i_Str :: i X ==> i_Y.

rewrite_out(i_Str) :: f_F(s_1, i_X, s_2) ==> f_F(s_1, i Y, s_2) :-
rewrite_out(i_Str) :: i_X ==> i_Y.

The goal rewrite_out(strat) :: h(f(f(a)), f(a)) ==> i_X gives three answers, in this
order: h(g(£f(a)), f(a)), h(a, f(a)), andh(£(£(a)), g(a)).

10 Strategies in PpLog

Leftmost-Innermost and Innermost Rewriting. Implementation of innermost strategy in PpLog is
slightly more involved than the implementation of outermost rewriting. It is not surprising since the out-
ermost strategy takes an advantage of the PpLog built-in term traversal strategy. For innermost rewriting,
we could have modified the PpLog source by simply changing the order of two rules in the matching
algorithm to give preference to the rule that descends deep in the term structure. It would change the
term traversal strategy from leftmost-outermost to leftmost-innermost. Another way would be to build
term traversal strategies into PpLog (like it is done in ELAN and Stratego, for instance) that would give
the user more control on traversal strategies, giving her a possibility to specify the needed traversal inside
a PpLog program.

However, here our aim is different: We would like to demonstrate that rewriting strategies can be
implemented quite easily inside PpLog. For the outermost strategy it has already been shown. As for the
innermost rewriting, if we want to obtain only one result by leftmost-innermost strategy, we first check
whether any argument of the selected subterm rewrites. If not, we try to rewrite the subterm and if we
succeed, we cut the alternatives. The way how matching is done guarantees that the leftmost possible
redex is taken:

rewrite_left_in_one(i_Str) :: c_Ctx(f_F(s_Args)) ==> c_Ctx(i_Contractum) :-
rewrites_at_least_one(i_Str) :: s_Args =\=> i_,

i_Str :: f_F(s_Args) ==> i_Contractum,
.

rewrites_at_least_one(i_Str) :: (s_, i_X, s_) ==> true :-
rewrite(i_Str) :: i_X ==> i_,
I

To get all results of leftmost-innermost rewriting, we first check whether the selected subterm is an
innermost redex. If yes, the other redexes are cut off and the selected one is rewritten in all possible
ways:

rewrite_left_in(i_Str) :: c_Context(f_F(s_Args)) ==
c_Context(i_Contractum) :-
rewrites_at_least_one(i_Str) :: s_Args =\=> i_,

i_Str :: f_F(s_Args) ==> i_,
'
i_Str :: f_F(s_Args) ==> i_Contractum.

If strat is the strategy defined in the previous section, then we have only one answer for the goal
rewrite_left_in(strat) :: h(f(f(a)), f(a)) ==> i_X: the term h(f(g(a)), f(a)). The
same term is returned by rewrite_left_in_one.

Finally, rewrite_in computes all results of innermost rewriting via backtracking:

rewrite_in(i_Str) :: f_F(s_Args) ==> i Y :-
rewrites_at_least_one(i_Str) :: s_Args =\=> i_,
i_Str :: f_F(s_Args) ==> i_Y.

rewrite_in(i_Str) :: f_F(s_1, i_X, s_2) ==> f_F(s_1, i_Y, s_2) :-
rewrite_in(i_Str) :: i_X ==> i_Y.

The goal rewrite_in(strat) :: h(f(f(a)), f(a)) ==> i_Xreturns two instantiations of i_X:
h(f(g(a)), f(a)) andh(f(f(a)), g(a)).

B. Dundua, T. Kutsia, M. Marin 11

6 Concluding Remarks

PpLog extends Prolog with strategic conditional transformation rules that operate on hedges. The rules,
written as clauses in PpLog programs, define strategies. Strategy combinators help the user to construct
more complex strategies from simpler ones. PplLog queries may have several results. They can be
explored by backtracking. Four different kinds of variables used in PpLog make the system expressive
and flexible.

PpLog is based on Prolog’s inference mechanism and allows Prolog clauses and predicates in its
programs. The users familiar with logic programming and Prolog can very quickly start using PpLog
since its syntax is similar to that of Prolog and semantics is based on logic programming.

We gave a brief overview on strategies in PpLog, explained some of them on examples, and showed
how rewriting strategies can be compactly and declaratively implemented. PpLog is written in SWI-
Prolog [17] and has been tested for versions 5.6.50 and later. It is available for downloading from
http://www.risc.uni-linz.ac.at/people/tkutsia/software.html.

7 Acknowledgments

This research has been partially supported by the European Commission Framework 6 Programme for
Integrated Infrastructures Initiatives under the project SCIEnce—Symbolic Computation Infrastructure
for Europe (Contract No. 026133) and by JSPS Grant-in-Aid no. 20500025 for Scientific Research (C).

References

[1] P. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau & M. Vittek (1996): ELAN: A logical framework
based on computational systems. Electronic Notes in Theoretical Computer Science 4, pp. 35-50.

[2] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser & J. Visser (2001): The ASF + SDF Meta-
environment: A Component-Based Language Development Environment. In: R. Wilhelm, editor: Proceedings
of the 10th International Conference on Compiler Construction (CC’01), LNCS 2027. Springer, pp. 365-370.

[3] Y. Caseau, F.-X. Josset & F. Laburthe (2002): Claire: combining sets, search and rules to better express
algorithms. Theory and Practice of Logic Programming 2(6), pp. 769—805.

[4] H. Cirstea & C. Kirchner (2001): The rewriting calculus - Part I. Logic Journal of the IGPL 9(3), pp.
339-375.

[5] H. Cirstea & C. Kirchner (2001): The rewriting calculus - Part Il. Logic Journal of the IGPL 9(3), pp.
377-410.

[6] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer & J. F. Quesada (2002): Maude:
specification and programming in rewriting logic. Theoretical Computer Science 285(2), pp. 187-243.

[7] P. Dembinski & J. Maluszynski (1985): AND-parallelism with intelligent backtracking for annotated logic
programs. In: Proceedings of the 2nd IEEE Symposium on Logic Programming. IEEE Computer Society,
pp- 29-38.

[8] T. Frithwirth (1998): Theory and Practice of Constraint Handling Rules. J. Logic Programming 37(1-3), pp.
95-138.

[9] K. Futatsugi, J. A. Goguen, J.-P. Jouannaud & J. Meseguer (1985): Principles of OBJ2. In: Conference
Record of the Twelfth Annual ACM Symposium on Principles of Programming Languages (POPL’85). ACM
Press, pp. 52-66.

12

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

Strategies in PpLog

K Futatsugi & A. T. Nakagawa (1997): An Overview of CAFE Specification Environment - An Algebraic
Approach for Creating, Verifying, and Maintaining Formal Specifications over Networks. In: Proceedings
of the First IEEE International Conference on Formal Engineering Methods (ICFEM’97). IEEE Computer
Society, pp. 170-182.

J. A. Goguen, T. Winkler, K. Futatsugi, J. Meseguer & J.-P. Jouannaud (2000): Introducing OBJ. In: J. A.
Goguen & G. Malcolm, editors: Software Engineering with OBJ - Algebraic Specification in Action. Kluwer
Academic Publishers, pp. 3-167.

T. Kutsia & M. Marin (2005): Matching with Regular Constraints. In: G. Sutcliffe & A. Voronkov, ed-
itors: Logic in Programming, Artificial Intelligence and Reasoning. Proceedings of the 12th International
Conference LPAR’05, LNAI 3835. Springer, pp. 215-229.

J. Lloyd (1987): Foundations of Logic Programming. Springer-Verlag, 2nd edition.

M. Marin & T. Kutsia (2006): Foundations of the Rule-Based System pLog. J. Applied Non-Classical Logics
16(1-2), pp. 151-168.

N. Marti-Oliet & J. Meseguer (2002): Rewriting Logic: Roadmap and Bibliography. Theoretical Computer
Science 285(2), pp. 121-154.

RTA List of Open Problems. Problem #90. Are context unification and linear second order unification decid-
able? http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html.

SWI-Prolog. http://www.swi-prolog.org.

E. Visser (2001): Stratego: A Language for Program Transformation Based on Rewriting Strategies. In:
A. Middeldorp, editor: Proceedings of the 12th International Conference on Rewriting Techniques and Ap-
plications (RTA’01), LNCS 256. Springer, pp. 357-362.

	Introduction
	Related Work
	Preliminaries
	Strategic Programming in PLog
	Implementing Rewriting Strategies
	Concluding Remarks
	Acknowledgments

