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Abstract. In this note, we provide simple convergence analysis for the algebraic multilevel
iteration methods [37, 51]. We consider two examples of AMLI methods with different poly-
nomial acceleration. The first one is based on shifted and scaled Chebyshev polynomial and
the other on the polynomial of best approximation to x−1 on a finite interval [λmin , λmax ],
0 < λmin < λmax in the ‖ ·‖∞ norm. The construction of the latter polynomial is of interest
by itself, and we have included a derivation of a recurrence relation for computing this poly-
nomial. We have also derived several inequalities related to the error of best approximation,
which we applied in the AMLI analysis.

1. Introduction

Nowadays, algebraic multigrid and multilevel methods provide powerful solution tools
for a wide range of sparse matrix problems in science an engineering. The classical alge-
braic multigrid (AMG) algorithm was originally proposed in the early eighties [13, 14, 15].
From a practical point of view its description in [46] has made a great impact. In the
last decade there has been a revival of research in the field of classical AMG [22], element-
based AMG [18, 26, 29], spectral AMG [21], AMG based on energy-minimizing interpolation
and smoothed aggregation [38, 48, 49, 52, 54], bootstrap AMG [16], adaptive smoothed ag-
gregation [19] and adaptive algebraic multigrid [20]. While AMG methods can be viewed
as matrix-based multigrid, there exist also various multilevel (ML) methods that utilize a
sequenze of coarse-grid operators that arise form rediscretization of the continuous problem–
based on its variational formulation–or from hierarchical basis transformation of the discrete
problem. Multilevel methods evolved from two-level methods that have been introduced
and analyzed for finite element elliptic systems in [4, 11]. For sharp two-sided bounds on
the convergence rate of two-level methods see [57]. A straightforward recursive extension
of the two-level methods leads to the class of hierarchical basis (HB) methods for which
the condition number of the preconditioned system in general grows exponentially with
the number of levels, cf. [56]. That is why one often combines HB methods with certain
stabilization techniques [50]. By using specially constructed matrix polynomials HB-ML
methods can be made optimal. Known as (linear) algebraic multilevel iteration (AMLI)
such methods have been introduced in the late eighties [7, 8], for nonlinear AMLI methods
see also [5, 6, 32]. Recent works on algebraic multilevel preconditioning methods mainly
focus on additive and parameter-free methods [9, 32, 40], aggregation-based preconditioners
[12, 36, 42], and on extending their theoretic foundation and their applicability to vari-
ous nonconforming and discontinuous Galerkin (DG) discretizations of highly ill-conditioned
problems [2, 10, 17, 23, 24, 25, 34, 35].
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Such problems arise for example in continuum mechanics when highly heterogeneous or
porous media such as human bone tissue or geocomposites are considered, which have a com-
plicated hierarchical structure with multiple characteristic length scales. In [33] preliminary
results are shown on the construction of robust two-level methods for elliptic problems with
extremely rough coefficients.

The combination of AMLI and AMG techniques is a promising approach in view of in-
creasing the robustness of multilevel solvers for this kind of applications. For instance it is
known that standard AMG with piecewise constant interpolation yields an instable multi-
level method in general even though the related two-level method is stable, see, e.g., [51].
In such cases polynomial acceleration is a key tool for stabilizing the multilevel solution
method.

A theoretical comparison of algebraic multigrid and multilevel methods can be found in
[41]. A common framework for their analysis has been established in form of the abstract
theory of subspace correction methods [53, 55]. A comprehensive exposition and analysis of
various multilevel block factorization preconditioners, including AMG, has been presented
in [51].

In this work we review the basic construction of multilevel methods as recursive extensions
of two-level methods and consider polynomial acceleration techniques that can be employed
in AMLI and AMG methods. In particular, we study the polynomial of best approximation
to 1/x in uniform norm, derive recurrence relations and error estimates and show how these
enter the convergence analysis and condition number bounds of the accelerated multilevel
methods.

2. Two-level and multilevel methods

In this section we consider a two-level iterative method for the solution of a system of
linear algebraic equations

(2.1) Ax = b,

where A ∈ IRN×N , is symmetric and positive definite, b ∈ IRN is a given right hand side. To
describe a general two-level or multilevel multiplicative method, we denote V = IRN , and
also introduce a coarse space VH , VH ⊂ V , NH = dimVH , NH < N . In the following we will
always assume that VH = range(P ), where P : IRNH 7→ V and its matrix representation in
the canonical basis of IRNH is given by the coefficients in the expansion of the basis in VH via
the basis in V . Clearly P is a full rank operator, and its matrix representation is oftentimes
called prolongation or interpolation matrix.

2.1. Exact and inexact two-level methods and polynomial acceleration. We now
consider a classical two-level preconditioning iteration, which utilizes a multiplicative pre-
conditioner B−1 ≈ A−1.

Algorithm 2.1. Given x ∈ V the action B−1x is defined via the following three steps:

1. Pre-smoothing: y = M−1x.

2. Coarse grid correction: z = y + PB̃−1
H P T (x− Ay).

3. Post-smoothing: B−1x:=z +M−T (x− Az).

To apply this algorithm, for example in the Preconditioned Conjugate Gradient (PCG)
method, one needs to define an appropriate smoother M and a coarse grid preconditioner

B̃H . The coarse grid preconditioner is an approximation to the restriction of A on VH . This
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restriction we denote by AH and we have AH = P TAP and B̃−1
H ≈ A−1

H . To write down
the closed form of B−1 we also need the symmetrization of M , denoted here with M̄ . This
symmetrization is defined in a usual manner, namely M̄ satisfies(

I − M̄−1A
)

=
(
I −M−TA

) (
I −M−1A

)
.

A simple calculation then shows that

(2.2) M̄ = M
(
M +MT − A

)−1
MT , and M̄−1 = M−1 +M−T −M−TAM−1.

Writing the three steps in the two-level algorithm in terms of x then leads to

z =
[
M−1x+ PB̃−1

H P T (x− AM−1x
]

=
[
M−1 + PB̃−1

H P T (I − AM−1)
]
x,

and hence

B−1x = z +M−T (x− Az) = M−Tx+ (I −M−TA)z

= M−Tx+ (I −M−TA)
[
M−1 + PB̃−1

H P T (I − AM−1)
]
x

= M−Tx+ (I −M−TA)M−1x

+(I −M−TA)PB̃−1
H P T (I − AM−1)x

=
[
M̄−1 + (I −M−TA)PB̃−1

H P T (I − AM−1)
]
x.

Since this identity holds for all x ∈ V we have that

(2.3) B−1 = M̄−1 +
(
I −M−TA

)
PB̃−1

H P T
(
I − AM−1

)
.

The aim is to construct B such that the condition number B−1A is constant (independent
of the size of A). We will always assume that the action of M−1 requires O(N) operations.

We distinguish two cases in choosing B̃H :

exact two level method if B̃H = AH , where AH = P TAP .(2.4)

inexact two level method if B̃H 6= AH .(2.5)

The exact two-level method is easier to analyze, in many cases has a uniformly bounded
condition number, but is in general not practical, since NH is usually taken proportional to
N , and typical cases are NH = N/2, NH = N/4 or NH = N/8. Then the size of the coarse
level problem is comparable to the size of the original problem and hence the application of
B−1 would require the solution of a coarse level problem which is of the same difficulty as
the solution of (2.1).

On the other hand, in a typical inexact method the action B̃−1
H is defined recursively, by the

same algorithm. Clearly, in such case, computing the action of B−1 on a vector requiresO(N)
operations. Such method is known as multilevel V-cycle preconditioner. If in addition the
condition number of B−1A is uniformly bounded, then we have an optimal method. However,
depending on the choice of the coarse spaces VH in the recursive application of the algorithm,
one may also end up with a method for which this condition number depends on the size of
the problem N . Here coarse spaces is in plural, since recursive application of Algorithm 2.1
requires more than one VH . A typical example for such behavior is when A results from finite
element discretization of a second order elliptic equation with conforming linear elements and
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the coarse spaces VH are chosen to interpolate piece-wise constant functions. In such cases

one definitely wants to further improve the method by modifying B̃H , without changing the
coarse spaces.

In our focus will be the Algebraic Multi-Level Iteration (AMLI) methods, which are con-
structed as follows: Suppose that we have an initial coarse level preconditioner BH . This
means basically that we have in hand a BH , and as an initial algorithm we consider Algo-

rithm 2.1 with BH instead of B̃H . We would like to design now a B̃H , in such a way that the
inexact method becomes close to the exact two-level method. In doing this, we would like
to keep the number of operations in calculating the action of B−1 under control, and also to
decrease the condition number of B−1A.

In AMLI for a given initial BH the coarse-level preconditioner B̃H = B−1
H,ν , is defined as

(2.6) B−1
H,ν :=qν−1(B−1

H AH)B−1
H ,

where qν−1 ∈ Pν−1 is an appropriately chosen polynomial of degree less than or equal to
(ν − 1) for some ν ≥ 1. To give a motivation for doing this, we list here three examples,
which may be not practical, but are instructive:

• Set ν = 1 and q0(x) = 1, which results in B̃H = BH , that is we have no change in the
preconditioner.
• Set ν = NH and for a given non-singular operator XH : VH 7→ VH , define qNH−1(XH) =
X−1
H . This results in the exact two-level method. Note that regardless of what form

the initial coarse level preconditioner BH : VH 7→ VH takes, as long as BH is invertible
the resulting method will be the exact two-level method.
• Again, let ν = NH and in the notation of Algorithm 2.1, rH = P T (b − Ax). Let
qNH−1(XH) be any polynomial such that

qNH−1(XH)rH = X−1
H rH .

As a result we get that B−1
H,νrH = A−1

H rH , but the action of B−1
H,ν depends on the

argument, and hence we have a nonlinear preconditioner. For a given rH , such a poly-
nomial qν−1(XH)rHcan be constructed by applying (ν − 1) Preconditioned Conjugate
Gradient iterations to the solution of

AHeH = rH , with preconditioner B−1
H .

For ν = NH as we have in this example, we immediately obtain the exact two level
method. Since applying (NH − 1) PCG iterations may be expensive, one may take a
fixed number of PCG iterations, namely ν = O(1) and the resulting method is known
as nonlinear AMLI method. More details about nonlinear AMLI methods are found
in [32].

2.2. Error propagation operators and polynomial acceleration. The two-level mul-
tiplicative preconditioner B−1 constructed in the previous section may also be used as an
iterator. A two-level iterative method generates a sequence of iterates x(i) (for a given initial
guess x(0)) via

(2.7) x(i+1) = x(i) +B−1r(i) = x(i) +B−1(b− Ax(i)), i = 0, 1, . . .

If x∗ is the exact solution to (2.1) and e(i) = x∗−x(i) is the error, then the error propagation
operator E of the two-level iterative method (2.7) is written as

(2.8) e(i+1) = Ee(i), E = I −B−1A.
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As we pointed out, an inexact two-level method is based on approximating the coarse grid
correction for the exact two level method

eH = A−1
H rH , with rH = P Tr(i).

Hence the error transfer operator for one coarse-level update x(i) + PB−1
H P Tr(i) is given by

(2.9) EH = I − PB−1
H P TA

where B−1
H is the inverse of the initial preconditioner (the approximation to A−1

H ) at the

coarse level, which is used to build B̃H .
The following simple identity will be useful in deriving the error propagation relation

between the coarse and the fine-grid level.

Lemma 2.2. Let pν(x) = 1 − qν−1(x)x. Then the following identity holds for the error

propagation operator E = I−B−1A, where B−1 is defined in Algorithm 2.1 with B̃−1
H = B−1

H,ν:

(2.10) I −B−1A =
(
I −M−TA

)
p̃ν(EH)

(
I −M−1A

)
where

(2.11) p̃ν(x):=pν(1− x).

Proof. Let qr be a polynomial of degree less or equal to r and AH = P TAP denote the
coarse-grid matrix. We will first prove that

(2.12) Pqr(B
−1
H AH)B−1

H P TA = qr(PB
−1
H P TA)PB−1

H P TA.

It suffices to prove the identity (2.12) for the case qr(x) = xk, k ≤ r. For k = 0 the result is
obvious. For k = 1 we obtain

PB−1
H AHB

−1
H P TA = PB−1

H P TAPB−1
H P TA,

which is true since AH = P TAP . Finally, assuming that (2.12) holds true for k = j − 1 we
have

P
(
B−1
H AH

)j
B−1
H P TA = P

(
B−1
H AH

)j−1
B−1
H P TAPB−1

H P TA

=
(
PB−1

H P TA
)j−1

PB−1
H P TAPB−1

H P TA

=
(
PB−1

H P TA
)j
PB−1

H P TA.(2.13)

Using (2.3) we find

I −B−1A = I − M̄−1A−
(
I −M−TA

)
PB−1

H,νP
T
(
I − AM−1

)
A

=
(
I −M−TA

) (
I −M−1A

)
−

(
I −M−TA

)
PB−1

H,νP
TA
(
I −M−1A

)
=

(
I −M−TA

) (
I − PB−1

H,νP
TA
) (
I −M−1A

)
.(2.14)

Moreover, since pν(x) = 1− qν−1(x)x we can rewrite (2.6) in the form

B−1
H,ν =

(
I − pν(B−1

H AH)
)
A−1
H

=
(
I −

(
I − qν−1(B−1

H AH)
)
B−1
H AH

)
A−1
H

= qν−1(B−1
H AH)B−1

H .(2.15)
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Then by substituting (2.15) in (2.14) and using (2.13) and finally (2.9) we obtain the following
representation of (2.8):

I −B−1A =
(
I −M−TA

)(
I − Pqν−1(B−1

H AH)B−1
H P TA

)(
I −M−1A

)
=
(
I −M−TA

)(
I − qν−1(PB−1

H P TA)PB−1
H P TA

)(
I −M−1A

)
=
(
I −M−TA

)
(I − qν−1(I − EH)(I − EH))

(
I −M−1A

)
=
(
I −M−TA

)
(pν(I − EH))

(
I −M−1A

)
=
(
I −M−TA

)
p̃ν(EH)

(
I −M−1A

)
(2.16)

�

We move on to describe the multilevel case and prove a condition number estimate, which
depends on the approximation properties of VH as well as on the estimates involving qν−1(·).

2.3. The algebraic multilevel iteration (AMLI) algorithm. We now focus on more
implementation and analysis details for multilevel methods, which are obtained by recursively
applying Algorithm 2.1. In what follows we will denote by B(k) a preconditioner for a finite
element (stiffness) matrix A(k) corresponding to a k times refined mesh (0 ≤ k ≤ `). We

will also make use of the corresponding k-th level hierarchical matrix Ã(k), which is related
to A(k) via a two-level hierarchical basis (HB) transformation J (k), i.e.,

(2.17) Ã(k) = (J (k))TA(k)J (k).

By A
(k)
ij and Ã

(k)
ij , 1 ≤ i, j ≤ 2, we denote the blocks of A(k) and Ã(k) that correspond to

the fine-coarse partitioning of degrees of freedom (DOF) where the DOF associated with the
coarse mesh are numbered last.

The aim is to build a multilevel preconditioner B(`) for the coefficient matrix A(`) := Ah
at the level of the finest mesh that has a uniformly bounded (relative) condition number

κ(B(`)−1
A(`)) = O(1),

and an optimal computational complexity, that is, linear in the number of degrees of freedom
N` at the finest mesh (grid). In order to achieve this goal hierarchical basis methods can be
combined with various types of stabilization techniques.

One particular purely algebraic stabilization technique is the so-called Algebraic Multi-
Level Iteration (AMLI) method, where a specially constructed matrix polynomial p(k) of
degree νk is employed at some or at all levels k = k0 + 1, · · · , `. The AMLI methods have
originally been introduced and studied in a multiplicative form, see [7, 8]. The presentation
in this section follows Reference [32].

Starting at level 0 (associated with the coarsest mesh) on which a complete LU factoriza-
tion of the matrix A(0) is performed, we define

(2.18) B(0) := A(0).

Given the preconditioner B(k−1) at level k − 1 the preconditioner B(k) at level k is defined
by

(2.19) B(k) := L(k)D(k)U (k)
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where

(2.20) L(k) :=

 I 0

Ã
(k)
21 C

(k)
11

−1
I

 , U (k) :=

 I C
(k)
11

−1
Ã

(k)
12

0 I

 ,
and

(2.21) D(k) :=

 C
(k)
11 0

0 Z(k−1)

 .
Here we use the approximation

(2.22) Z(k−1) := A(k−1)
(
I − p(k)(B(k−1)−1

A(k−1))
)−1

to the Schur complement S = A(k−1) − Ã
(k)
21 C

(k)
11

−1
Ã

(k)
12 where A(k−1) := AH = Ã

(k)
22 is the

coarse-level stiffness matrix (stiffness matrix at level k− 1), which can be obtained from the
two-level hierarchical basis representation

(2.23) Ã(k) =

Ã(k)
11 Ã

(k)
12

Ã
(k)
21 Ã

(k)
22

 =

A(k)
11 Ã

(k)
12

Ã
(k)
21 A(k−1)


at level k, and p(k) is a polynomial of degree νk satisfying

(2.24) p(k)(0) = 1.

It is easily seen that (2.22) is equivalent to

(2.25) Z(k−1)−1
= B(k−1)−1

q(k)(A(k−1)B(k−1)−1
)

where the polynomial q(k) is given by

(2.26) q(k)(x) =
1− p(k)(x)

x
.

We note that the multilevel preconditioner defined via (2.19) is getting close to a two-level

method when q(k)(x) approximates well
1

x
in which case Z(k−1)−1 ≈ A(k−1)−1

. In order to

construct an efficient multilevel method the action of Z(k−1)−1
on an arbitrary vector should

be much cheaper to compute (in terms of the number of arithmetic operations) than the

action of A(k−1)−1
. Optimal order solution algorithms typically require that the arithmetic

work for one application of Z(k−1)−1
is of the order O(Nk−1) where Nk−1 denotes the number

of unknowns at level k − 1.

A linear system with B(k), an unknown vector v(k) = (v
(k)
1

T
,v

(k)
2

T
)T , and right hand side

vector d(k) = (d
(k)
1

T
,d

(k)
2

T
)T at level k can be written as C

(k)
11 0

Ã
(k)
21 Z(k−1)

 I C
(k)
11

−1
Ã

(k)
12

0 I

 v
(k)
1

v
(k)
2

 =

 d
(k)
1

d
(k)
2

 .

Its solution involves the solution of a system

B(k−1)v(k−1) = d(k−1)
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at level (k − 1) for some right hand side d(k−1). Let

u(k) =

 u
(k)
1

u
(k)
2

 =

 I C
(k)
11

−1
Ã

(k)
12

0 I

 v
(k)
1

v
(k)
2

 ,

then we have

u
(k)
1 = C

(k)
11

−1
d

(k)
1

Z(k−1)u
(k)
2 = d

(k)
2 − Ã

(k)
21 u

(k)
1 =: w(k−1).(2.27)

Using (2.25) we write (2.27) in the form

(2.28) B(k−1)u
(k)
2 = q(k)(A(k−1)B(k−1)−1

)w(k−1)

where q(k)(x) =
1− p(k)(x)

x
= a

(k)
0 + a

(k)
1 x+ . . .+ a

(k)
νk−1x

νk−1. Hence

d(k−1) = q(k)(A(k−1)B(k−1)−1
)w(k−1),

v(k−1) = u
(k)
2 .

The following algorithm computes the solution of

(2.29) B(`)v(`) = d(`).

Algorithm 2.3. [Linear AMLI] (cf., [8])

for k = 1 to ` set σk:=0

k:=`
forward: σk:=σk + 1

if σk = 1
d(k) := (J (k))Td(k)(2.30)

v
(k)
1 :=(C

(k)
11 )−1d

(k)
1

w(k−1):=d
(k)
2 − Ã

(k)
21 v

(k)
1

d(k−1):=a
(k)
νk−1w

(k−1)

else
d(k−1):=A(k−1)v(k−1) + a

(k)
νk−σkd

(k−1)(2.31)
end
k:=k − 1
if k > 0 goto forward
solve A(0)v(0) = d(0) for v(0)(2.32)

backward: k:=k + 1
v

(k)
2 :=v(k−1)

if σk < νk goto forward

v
(k)
1 :=v

(k)
1 − (C

(k)
11 )−1Ã

(k)
12 v

(k)
2

v(k) := J (k)v(k)(2.33)
σk:=0
if k < ` goto backward
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Here the vector ν = (ν1, ν2, . . . , ν`)
T defines the cycle, i.e., νk = 1 for 1 ≤ k ≤ ` corresponds

to the V-cycle, and νk = 2 for 1 ≤ k < `, ν` = 1, corresponds to the classical W-cycle.
Higher-order stabilization or mixed cycles with varying polynomial degree are possible and
sometimes preferable from a computational point of view.

Algorithm (2.3) is based on the multiplicative two-level preconditioner

(2.34) C(k) =

 C
(k)
11 Ã

(k)
12

Ã
(k)
21 A(k−1) + Ã

(k)
21 (C

(k)
11 )−1Ã

(k)
12

 .
It uses the approximations C

(k)
11

−1
for A

(k)
11

−1
, and Z(k−1)−1

for the inverse of the Schur

complement at level k, see (2.25). The action of the matrix polynomial q(k)(A(k−1)B(k−1)−1
)

in (2.25) on a vector is computed via Horner’s rule, where the coefficients of q(k)(x) are given

by a
(k)
νk−σk , 1 ≤ σk ≤ νk.

The matrices Ã
(k)
12 and Ã

(k)
21 are the off-diagonal blocks of the two-level hierarchical basis

matrix Ã(k) at level k, and A(k−1) is the matrix associated with the coarse grid (with respect
to the coarse-grid nodal basis).

2.4. Condition number estimates. Let us now study the spectral condition number

κ(B(`)−1
A(`)) where B(`) denotes the recursively defined linear AMLI preconditioner, cf.

(2.18)–(2.22). The presented results are in the spirit of [3, 7, 8] and have the same recursive
structure, that is, an estimate at level k involves the same type of estimate at level k − 1.

The basic assumption in the analysis of the multilevel preconditioner is an approximation
property of the form

(2.35) θ
(k)
0 vTA(k)v ≤ vTC(k)v ≤ θ

(k)
1 vTA(k)v ∀v, k = 1, 2, . . . , `.

Additionally, it reasonable to assume that

(2.36) 0 < θ0 < θ
(k)
0 ≤ θ

(k)
1 < θ1 <∞, 1 ≤ k ≤ `.

The following lemma shows the basic induction step in the multilevel analysis.

Lemma 2.4. If the multilevel preconditioner at level j = k − 1 satisfies the relation

(2.37) ρ
(j)
0 v

TA(j)v ≤ vTB(j)v ≤ ρ
(j)
1 v

TA(j)v ∀v
then the preconditioner at level j = k satisfies the same relation with the constants

ρ
(k)
0 =

θ
(k)
0

max{1, r(k−1)
1 }

,(2.38a)

ρ
(k)
1 =

θ
(k)
1

min{1, r(k−1)
0 }

,(2.38b)

where

r
(k−1)
0 = min

x∈I(k−1)
σ

x q(k)(x),(2.39a)

r
(k−1)
1 = max

x∈I(k−1)
σ

x q(k)(x),(2.39b)

and q(k) can be any polynomial that satisfies q(k)(x) ≥ 0 ∀x ∈ I(k−1)
σ = [1/ρ

(k−1)
1 , 1/ρ

(k−1)
0 ].
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Proof. In order to prove the transition from level k − 1 to level k we consider the matrix
(2.34) corresponding to the multiplicative two-level preconditioner at level k, which can be
factored as

C(k) = L(k)D̄(k)L(k)T

where

D̄(k) =

 C
(k)
11 0

0 A(k−1)


and the matrix L(k) is given by (2.20). Now from (2.25) we see that for any vector y2 6= 0
and x2:=(A(k−1))−1/2y2 we have

yT2 (Z(k−1))−1y2

yT2 (A(k−1))−1y2

yT2 B
(k−1)−1

q(k)(A(k−1)B(k−1)−1
)y2

yT2 (A(k−1))−1y2

=
xT2 (A(k−1))1/2B(k−1)−1

q(k)(A(k−1)B(k−1)−1
)(A(k−1))1/2x2

xT2 x2

=
xT2Xq

(k)(X)x2

xT2 x2

where X = (A(k−1))1/2B(k−1)−1
(A(k−1))1/2 and thus the relation

(2.40) r
(k−1)
0 yT2 Z

(k−1)y2 ≤ yT2 A(k−1)y2 ≤ r
(k−1)
1 yT2 Z

(k−1)y2

holds with constants r
(k−1)
0 and r

(k−1)
1 defined in (2.39). Further,

vTC(k)v

vTB(k)v
=
yT D̄(k)y

yTD(k)y
=
yT1 C

(k)
11 y1 + yT2 A

(k−1)y2

yT1 C
(k)
11 y1 + yT2 Z

(k−1)y2

,(2.41)

for all v 6= 0 and y = (yT1 ,y
T
2 )T = L(k)v and thus, by using (2.40), we find that for all

v ∈ V ,

(2.42) min{1, r(k−1)
0 }vTB(k)v ≤ vTC(k)v ≤ max{1, r(k−1)

1 }vTB(k)v,

Finally, we combine the estimates

(2.43) max
v 6=0

vTA(k)v

vTB(k)v
≤ max

v 6=0

vTA(k)v

vTC(k)v
max
v 6=0

vTC(k)v

vTB(k)v
,

and

(2.44) min
v 6=0

vTA(k)v

vTC(k)v
min
v 6=0

vTC(k)v

vTB(k)v
≤ min

v 6=0

vTA(k)v

vTB(k)v
,

with (2.42) and (2.35) and for all v ∈ V we obtain

(2.45)
1

θ
(k)
1

min{1, r(k−1)
0 }vTB(k)v ≤ vTA(k)v ≤ 1

θ
(k)
0

max{1, r(k−1)
1 }vTB(k)v,

which proves the lemma. �

The following theorem provides an estimate of the (relative) condition number of the
multilevel preconditioner B(`).
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Theorem 2.5. Assume that the approximation property (2.35) is satisfied on all levels k,
1 ≤ k ≤ `, which means that (2.36) is true for some positive constants θ0 and θ1. Further,

let 0 < ρ0 < ρ
(k−1)
0 ≤ ρ

(k−1)
1 < ρ1 <∞ for all k = 1, 2, . . . , `. Then the estimate

(2.46) κ(B(`)−1
A`) ≤ θ1

θ0

max{1, r1}
min{1, r0}

holds where

r0 = min
x∈[ρ1−1,ρ0−1]

x q(k)(x),(2.47a)

r1 = max
x∈[ρ1−1,ρ0−1]

x q(k)(x).(2.47b)

The condition number κ(B(`)−1
A`) is uniformly bounded if

(2.48)
θ1

θ0

max{1, r1}
min{1, r0}

≤ ρ1

ρ0

.

Proof. Since B(0) = A(0) implies λmin(B(0)−1
A(0)) = λmax(B(0)−1

A(0)) = 1 the bound (2.37)

holds for j = 0 and ρ
(0)
0 = ρ

(0)
1 = 1. Then a repeated application of Lemma 2.4 finally results

in the estimate (2.46) for the multilevel preconditioner B(`). Clearly this estimate does not
depend on the number of levels ` if (2.48) holds. �

3. Best polynomial approximation to 1/x in uniform norm

In this section we prove a three term recurrence relation for the polynomials of best uniform
approximation to 1/x on a finite interval. We use symbolic computation to derive and prove
the recurrence relation. The specific form of these polynomials that we derive here is suitable
for the AMLI analysis from the previous section and we provide such analysis in Section 4.

The polynomial of best approximation in uniform norm to 1/x on a finite interval has
been known for some time and can be found in classical texts on approximation theory, for
example, see [39, 45, 1]. The problem of approximating x−1 has also been considered by
Chebyshev [47] more than 100 years ago. A more recent work on this topic, which we will
use in the derivation of the recurrence relation is [28].

3.1. Notation. Our considerations are on a finite interval, [λmin , λmax ], with 0 < λmin <
λmax < ∞. Since our aim is to use the construction here for preconditioning of linear

systems, we introduce the condition number κ =
λmax

λmin

> 1, and

σ =
1

λmax − λmin

, a =
λmax + λmin

λmax − λmin

=
κ+ 1

κ− 1
.

Note that a > 1 and σ > 0. The change of variables

t =
2

λmax − λmin

(
x− λmax + λmin

2

)
= 2σx− a,

maps the interval [λmax , λmin ] to [−1, 1]. The inverse map is

x =
1

2σ
(t+ a), and

1

x
=

2σ

t+ a
.
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We thus aim to find the polynomial of degree less than or equal to m of best approximation

in ‖ · ‖∞,[−1,1] norm of f(t) =
1

t+ a
, a > 1. We note that if Qm(t) is the polynomial of best

approximation to 1/(t+ a) on [−1, 1], and the error of approximation is

E[−1,1] = min
Q∈Pm

∥∥∥∥ 1

t+ a
−Q

∥∥∥∥
∞,[−1,1]

,

then

(3.1) qm(x) := 2σQm(2σx− a), and E = min
q∈Pm

∥∥∥∥1

x
− q
∥∥∥∥
∞,[λmax ,λmin ]

= 2σE[−1,1].

are the polynomial of best approximation in ‖ · ‖∞ norm on [λmin , λmax ] and the error of
approximation respectively.

We denote the Chebyshev polynomial of degree k by Tk. For Tk(x) ∈ Pk. we have

Tk(ξ) =
1

2

[
(ξ +

√
ξ2 − 1)k + (ξ +

√
ξ2 − 1)−k

]
=

1

2

[
(ξ +

√
ξ2 − 1)k + (ξ −

√
ξ2 − 1)k

]
.

We recall that
Tk(t) = cos k arccos(t), t ∈ [−1, 1].

and denote

(3.2) δ := a−
√
a2 − 1 =

√
κ− 1√
κ+ 1

, η = −δ

Observe that δ is the CG-convergence rate estimate, when λmax and λmin are the extreme
eigenvalues of a positive definite matrix, (see, e.g. M. R. Hestenes and E. Stiefel [27]). Note

also that 0 ≤ δ < 1, δ−1 = a+
√
a2 − 1, η < 0 and δ = |η|.

With this notation in hand, we have the following identities,

(3.3) a = −1

2
(η + η−1),

1

t+ a
=

2

2t− η − η−1
,

and directly from the expression for Tk(ξ) given above, we also have

(3.4) Tk(a) = 1
2
(−1)k(ηk + η−k), Tk(−a) = 1

2
(ηk + η−k).

Next we give the best polynomial approximation to
1

t+ a
as it is given in [45] and [28].

Theorem 3.1. Let m ≥ 1 be a fixed integer. The polynomial Qm ∈ Pm, which furnishes the

best approximation to
1

t+ a
in the L∞ norm on [−1, 1] is

Qm(t) = − 2

η − η−1
+

4

η − η−1

m−1∑
j=0

ηjTj(x)− 4ηm−1

(η − η−1)2
Tm(x).

The error of best approximation is

E[−1,1] = min
Q∈Pm

∥∥∥∥ 1

t+ a
−Q

∥∥∥∥
∞,[−1,1]

=
δm

a2 − 1
.

Proof. See [45] or [28]. �

The following corollary is immediate and follows after a simple calculation.
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Corollary 3.2. If Em,[λmin ,λmax ] is the error of approximation with polynomial of degree m
on the interval [λmin , λmax ], 0 < λmin < λmax <∞ then

(3.5) Em,[λmin ,λmax ] = 2δm−1E2
0,[
√
λmin ,

√
λmax ]

,

where E0,[
√
λmin ,

√
λmax ] is easily calculated to be

E0,[
√
λmin ,

√
λmax ] =

1

2

(
1√
λmin

− 1√
λmax

)
.

For computations, the following result is useful, since it gives a straightforward way of
computing the polynomial of best approximation. By means of algorithms for symbolic
summation a simple closed form for the polynomial of best approximation stated above as
well as a short recurrence relation can be found completely automatically. Nowadays there
exist plenty of methods and implementations thereof that are up to complete these tasks [43].
It is in the nature of these algorithms that discovering new identities and relations means
having a proof at hand at the same time.

For our specific problem we choose to apply the Mathematica package SumCracker de-
veloped and implemented by M. Kauers [31]. We are going to use two of the features of
this package: discovering (thus proving) closed form representations, and discovering (thus
proving) recurrence relations for admissible sequences. Admissibility in this context means
that the input for this algorithm consists of expressions that satisfy systems of difference
equations, i.e., recurrence relations, with polynomial coefficients. This is certainly the case
for Chebyshev polynomials. Informally speaking, the admissible sequences are translated
into a difference ring context. In this difference ring computations are carried out using
known techniques for commutative, multivariate polynomial rings, especially Gröbner bases.
The results of these computations can then be interpreted as statements about the original
admissible sequences. For a detailed description of this and further algorithms contained in
SumCracker we refer to [30, 31].

Theorem 3.3. The best approximation out of Pm to
1

t+ a
in the L∞ norm on [−1, 1] is

Qm(t) =
1

t+ a

(
1− 2ηm

(η − η−1)2
Rm+1(t)

)
,

where

Rm+1(t) = η−1Tm+1(t)− 2Tm(t) + ηTm−1(t).

Furthermore for the polynomials of best approximation the following three term recurrence
relation holds:

(3.6) η−1Qm+2(t)− 2tQm+1(t) + ηQm(t) = −2, m = 0, 1, . . .

with

Q0(t) =
a

a2 − 1
, Q1(t) =

1√
a2 − 1

− t

a2 − 1
.

The error of approximation is:

E[−1,1] = min
Q∈Pm

∥∥∥∥ 1

t+ a
−Q

∥∥∥∥
∞,[−1,1]

=
δm

a2 − 1
.
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Proof. The closed form can be obtained in an instance by an application of SumCracker’s
command “Crack” as follows:

In[1]:= Crack[SUM[ηjChebyshevT[j, t], {j, 0,m− 1}]]

Out[1]=
−ηm+1ChebyshevT[m+ 1, t] + tm(2ηt− 1)ChebyshevT[m, t]− ηt+ 1

η2 − 2ηt+ 1

From the sum representation given in Theorem 3.1 it is obvious that Qm(t) is indeed a
polynomial of degree m. Certainly it is also an immediate consequence of the three term
recurrence relation together with the initial values. This recurrence, however, can again be
obtained completely automatic:

In[2]:= GetLinearRecurrence[Q[m, t], In→ m,Head→ Q]

Out[2]= Q[m+ 2] == −2η − η2Q[m] + 2tηQ[m+ 1]

Here Q[m, t] was defined as the polynomial of best approximation, the option “In” specifies
the discrete variable along which we look for a recurrence relation and the option “Head”
declares which variable shall be used for a concise output. The default head would be “SUM”.
The initial values for the recurrence are easily computed as well, which completes the proof
of the theorem. �

Another proof of this theorem is given in the appendix.
The next lemma gives an estimate on |Rm+1(t)| by a linear polynomial, which is used later

to derive sufficient condition for the positivity of qm(·).

Lemma 3.4. The following estimate holds for the polynomial Rm+1(t) defined in Theorem
3.3:

(3.7) − 2(t+ a) ≤ Rm+1(t) ≤ 2(t+ a), t ∈ [−1, 1].

Proof. Recall that by the definition of η and δ (see (3.2)), we have that η < 0, and |η| = δ.
Let t = cosα, for α ∈ [0, π]. Then we find that

Rm+1(t) + 2t− η − η−1 = η−1(Tm+1(t)− 1)− 2(Tm(t)− t) + η(Tm−1(t) + 1)

= −2η−1 sin2 m+ 1

2
α + 4 sin

m+ 1

2
α sin

m− 1

2
α

−2η sin2 m− 1

2
α

= −2η−1

(
sin

m+ 1

2
α− η sin

m− 1

2
α

)2

(3.8)

= 2δ−1

(
sin

m+ 1

2
α + δ sin

m− 1

2
α

)2

≥ 0.(3.9)
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In an analogous fashion we obtain

Rm+1(t)− 2t+ η + η−1 = η−1(Tm+1(t) + 1)− 2(Tm(t) + t) + η(Tm−1(t) + 1)

= 2η−1 cos2 m+ 1

2
α− 4 cos

m+ 1

2
α cos

m− 1

2
α

+2η cos2 m− 1

2
α

= 2η−1

(
cos

m+ 1

2
α− η cos

m− 1

2
α

)2

(3.10)

= −2δ−1

(
cos

m+ 1

2
α + δ cos

m− 1

2
α

)2

≤ 0.(3.11)

Combining (3.8) and (3.10) and using 2t− η − η−1 = 2(t+ a) yields the desired result. �

3.2. Algorithm for finding best polynomial approximation to 1/x. We now assume
that we are given a matrix A, and bounds for its eigenvalues denoted by λmin and λmax . We
will use the result from Theorem 3.3 to construct the polynomial qm(A) which approximates
A−1. We first write the recurrence relation for qm+1(x) = 2σQm+1(2σx− a):

Qm+1(2σx− a) = η[−2 + 2(2σx− a)Qm(2σx− a)− ηQm−1(2σx− a)].

Multiplying by 2σ then gives

qm+1(x) = η[−4σ + 2σ(2σx− a)Qm(2σx− a)− 2σηQm−1(2σx− a)].

We then have the following algorithm in which the formulae are obtained by writing η, σ and
a in terms of λmax and λmin . The polynomials qm(x) are written in terms of two parameters,
χ and δ, where δ is defined in (3.2) and for χ we have

(3.12) χ =
4

(
√
λmax +

√
λmin )2

,

Algorithm 3.5. Set µ0 = 1/λmax and µ1 = 1/λmin .

1. Calculate the 0-th order polynomial q0 and the first order polynomial q1:

q0(x) =
1

2
(µ0 + µ1), and q1(x) =

1

2
(
√
µ0 +

√
µ1)2 − µ0µ1x.

2. For k = 1, . . . ,m− 1, qk+1 written as a correction to qk is computed as follows:

sk+1(x) =
4µ0µ1

(
√
µ0 +

√
µ1)2

[1− qk(x)x] + δ2[qk(x)− qk−1(x)]

=
4µ0µ1

(
√
µ0 +

√
µ1)2

[1− qk(x)x] + δ2sk(x)

qk+1(x) = qk(x) + sk+1(x).

The reason to write qk+1 as a correction to qk is to show that such iterations look like
iterations in a defect-correction method: First computing the residual [1 − qk(x)x], and
then trying to correct it by adding an additional term. One can also easily see that for any
initial q0 and q1, if the sequence qk(x) converges, then it converges to x−1. In another word,
choosing q0 and q1 different from what they are above, will not generate the sequence of best
approximations to x−1, but still this sequence will converge to x−1.
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In the remaining sections we will show how the best polynomial approximation to 1/x can
be utilized in multilevel methods, which results in efficient and often optimal order solution
algorithms for symmetric positive definite systems of finite element equations, as they arise
for instance from discretization of elliptic partial differential equations.

4. Application to multilevel methods

Example 1. A classical choice of q(k) is (2.26) where p(k) is a properly scaled and shifted
Chebyshev polynomial satisfying the condition p(k)(x) ≤ 0 ∀t ∈ [ρ1

−1, ρ0
−1]. For degree

two this polynomial is given by

(4.1) p(k)(x) = p(x) = ρ0ρ1

(
1

ρ0

− x
)(

1

ρ1

− x
)

which results in

q(k)(x) = q(x) = ρ0 + ρ1 − ρ0ρ1x.

For this choice,

r0 = min
x∈[ρ1−1,ρ0−1]

x q(x) = [x q(x)] |x= 1
ρ1

= 1,

r1 = max
x∈[ρ1−1,ρ0−1]

x q(x) = [x q(x)] |
x=

ρ0+ρ1
2ρ0ρ1

=
(ρ0 + ρ1)2

4ρ0ρ1

.

Hence the uniform bound (2.48) reads

θ1

θ0

(ρ0 + ρ1)2

4ρ0ρ1

≤ ρ1

ρ0

which requires a uniform approximation property such that

θ1

θ0

≤ 4ρ1
2

(ρ0 + ρ1)2
=

4κ̄2

(1 + κ̄)2
,

where we denoted by κ̄ =
ρ1

ρ0

.

Example 2. This example is analysis of AMLI method with the polynomial derived in

Theorem 3.3. Let Qm is the best approximation from Pm to
1

t+ a
in the L∞ norm on [−1, 1].

We then set

qm(x) = 2σ Qm(2σx− a)

where x = (t+ a)/(2σ). Recall again that from (3.2), we have η < 0, and |η| = δ.

(4.2)
x qm(x) = 2σxQm(2σx− a) = (t+ a)Qm(t)

= 1− 2ηm

(η − η−1)2
Rm+1(t) = 1− 2(−1)mδm

(δ − δ−1)2
Rm+1(t), t ∈ [−1, 1].
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Combining (3.7) with (4.2) we obtain the estimate

maxx∈[ρ1−1,ρ0−1] x qm(x)

minx∈[ρ1−1,ρ0−1] x qm(x)
≤

maxt∈[−1,1]

(
1 + 4δm

(δ−δ−1)2
(t+ a)

)
mint∈[−1,1]

(
1− 4δm

(δ−δ−1)2
(t+ a)

)
≤

1 + 4δm

(δ−δ−1)2
(1 + a)

1− 4δm

(δ−δ−1)2
(1 + a)

.(4.3)

Substituting δ =
(√

κ− 1
)
/
(√

κ+ 1
)

and (1 + a) = (2κ)/(κ − 1) in the right hand side of
(4.3) we get an estimate that depends on the condition number κ

(4.4)
maxx∈[ρ1−1,ρ0−1] x qm(x)

minx∈[ρ1−1,ρ0−1] x qm(x)
≤ 2 + δm(κ− 1)

2− δm(κ− 1)

If the degree m of the polynomial is chosen large enough, that is, if

2 + δ̄m(κ̄− 1)

2− δ̄m(κ̄− 1)
≤ κ̄

θ0

θ1

=:κ,

for some number κ̄ ≥ 1, where δ̄ =

√
κ̄− 1√
κ̄+ 1

, or, equivalently,

m ≥
log 2(κ−1)

(κ̄−1)(κ+1)

log δ̄

for given constants θ0 and θ1 in (2.35) then κ̄ is a uniform bound for the condition number

κ = κ(B(`)−1
A(`)), i.e., κ ≤ κ̄ holds for any number of levels `.

The best linear approximation to
1

x
on [ρ1

−1, ρ0
−1] is given by

q(x) =
1

2
(
√
ρ0 +

√
ρ1)2 − ρ0ρ1x.

In this case the estimate (4.4) shows that a uniform condition number bound κ̄ =
ρ1

ρ0

requires

a uniform approximation property (2.35) with θ0 and θ1 satisfying

θ1

θ0

≤ κ̄(1 + 2
√
κ̄− κ̄)

3− 2
√
κ̄+ κ̄

.

For comparison, if we would like to have κ̄ ≤ 3 according to (4.4) we need
θ1

θ0

≤
√

3, whereas

the Chebyshev polynomial in Example 1 yields the same upper bound on the condition

number already for
θ1

θ0

≤ 5

4
.

Example 3. One interesting application of of the best polynomial approximation to
1

x
is

in constructing a smoother for any AMG (or AMLI) method. In order to use qm(A) as
smoother for A, we have to make sure that qm(x) > 0 for all x in (0, λ̄] where λ̄ is an upper
bound on the spectrum of A. In practice, when estimates on λmin (A) and λmax (A) are not
available one can use

(4.5) λ̄ = ‖A‖`∞
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and construct the best approximation qm(x) to
1

x
on the interval [

λ̄

µ
, λ̄] where µ > 1 is a

constant. Note that qm(x) > 0 for all x in (0, λ̄] if qm(x)x > 0 for all x ∈ [
λ̄

µ
, λ̄]. The latter

condition holds true if

(4.6) 1− 2(−1)mδm

(δ − δ−1)2
Rm+1(t) > 0.

We first estimate below the left side of this inequality as follows

1− 2(−1)mδm

(δ − δ−1)2
Rm+1(t) ≥ 1− 2δm

(δ − δ−1)2
|Rm+1(t)|

≥ 1− 2δm

(δ − δ−1)2

(
2t+ δ + δ−1

)
= 1− 4δm

(δ − δ−1)2
(t+ a)

≥ 1− 4δm

(δ − δ−1)2
(1 + a) = 1− (a−

√
a2 − 1)m

a− 1
,

where we have used that δ = a−
√
a2 − 1 and (δ − δ−1)2 = 4(a2 − 1). As a consequence, a

sufficient condition for the inequality (4.6) to hold then is given by

(4.7)

(√
µ− 1
√
µ+ 1

)m
<

2

µ− 1
.

An upper bound on the damping factor of the smoother on the error components that

correspond to eigenvalues in the interval [
λ̄

µ
, λ̄] is as follows

(4.8) ρ(I − qm(A)A) ≤ µ− 1

2

(√
µ− 1
√
µ+ 1

)m
.

For example, if µ = 4 the condition (4.7) holds for all m ≥ 1. Choosing m = 2 in this case

results in a damping factor of at most
1

6
for all error components in the span of eigenvectors

whose eigenvalues are in the interval [
λ̄

4
, λ̄].

If µ = 8 the condition (4.7) for positivity of qm(x) is satisfied for all m ≥ 2. Choosing
m = 3 in this case the estimate of the damping factor (right hand side of (4.8)) is given by

7

2

(√
8− 1√
8 + 1

)3

≈ 0.381276 for the interval [
λ̄

8
, λ̄]. To calculate the damping factor in other

cases is also rather straightforward.

5. Correspondence and differences between the standard AMLI methods
and AMG

Finally, we would like to comment on the correspondence and differences between the
“smoother” M̄ and the prolongation used in AMG and the ones used in the standard AMLI
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method. The standard AMLI method, as introduced in [7, 8] uses f-smoothing only, i.e.,

(5.1) M̄−1 =

 2C−1
11 − C−1

11 A11C
−1
11 0

0 0

 .
One possible implementation (that corresponds to the multiplicative variant) yields the pre-
conditioner

B̃−1 =

 C−1
11 0

0 0

+

 −C−1
11 A12

I

Z−1
[
−A21C

−1
11 , I

]

=

 C−1
11 0

0 0


+

 I − C−1
11 A11 −C−1

11 A12

0 I

 0

I

Z−1 [0, I]

 I − A11C
−1
11 0

−A21C
−1
11 I


= M−1 +

(
I −M−TA

)
PZ−1P T

(
I − AM−1

)
,(5.2)

which uses the symmetrized smoother (5.1). Then, in order to write B−1 in the form (2.3)
one has to choose

(5.3) P =

 0

I

 .
We notice that the simple form of (5.3) is related to the fact that the AMLI preconditioner is
defined for the hierarchical two-level matrix Ã = JTAJ , which contains already the coarse-
level matrix as a sub-matrix in its lower right block, i.e.,

AH = [0, I] Ã

 0

I

 .
This, however, is in accordance with the Galerkin relation AH = P TAP as is used in AMG
methods.

We conclude that the polynomial acceleration techniques that we studied here can be
exploited in various ways in the implementation of AMLI and/or AMG based precondition-
ers, since both can be viewed as inexact two-level methods as we described in Section 2.1.
The performance of both type of methods crucially depends on the particular choice of the
polynomial qν−1(·) in equation (2.15).
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Appendix A. Proof of Theorem 3.3

With the intent to keep this article self-contained, in this section we give another proof of
Theorem 3.3, without using symbolic computation techniques. We start by defining several
trigonometric functions which are used in the proof of the theorem.

co(α) = cos `α + d cos(`− 1)α,(A.1)

so(α) = sin `α + d sin(`− 1)α,(A.2)

se(α) = sin
(2`+ 1)α

2
+ d sin

(2`− 1)α

2
,(A.3)

ce(α) = cos
(2`+ 1)α

2
+ d cos

(2`− 1)α

2
.(A.4)

We first show that Qm(t) as defined in the statement of Theorem 3.3 is indeed a polynomial
of degree at most m.

Lemma A.1. Let m ≥ 1 be a fixed integer and

Q(t) =
1

t+ a

(
1− 2ηm

(η − η−1)2
Rm+1(t)

)
,

where
Rm+1(t) = η−1Tm+1(t)− 2Tm(t) + ηTm−1(t).
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Then Q(t) ∈ Pm(t).

Proof. We consider

r(t) = 1− 2(η)m

(η − η−1)2
Rm+1(t)

which is obviously a polynomial in t of degree less than or equal to (m + 1). Since Q(t) =
r(t)/(t+ a), it is enough to show that r(−a) = 0 and hence, r(t) is divisible by (t+ a). We
first compute Rm+1(−a), noting that

Tk(−a) =
1

2
(ηk + η−k).

Therefore,

Rm+1(−a) =
1

2
(ηm + η−m−2 − 2ηm − 2η−m + ηm + η2−m)

=
1

2
(η−m−2 − 2η−m + η2−m)

For r(−a) we then have

r(−a) = 1− 1

(η − η−1)2
ηm(η−m−2 − 2η−m + η2−m)

= 1− η−2 − 2 + η2

(η − η−1)2
= 0.

�

We now give the proof of Theorem 3.3. The proof uses two auxiliary results, on the inter-
lacing of zeroes of the trigonometric functions defined by (A.1)-(A.4), namely Lemma A.4,
and Lemma A.5. We stated and proved these results in subsection A.1.

Proof of Theorem 3.3. From Lemma A.1, we know that Qm is a polynomial. To show that
Qm(t) is the polynomial of best approximation, we need to show that the error e(t) =

(
1

t+ a
−Qm(t)) has (m+2) points of Chebyshev alternance, that is, to show that there exist

points t1 < t2 . . . < tm+2, such that

|e(t1)| =
∣∣∣∣ 1

t+ a
−Qm(t)

∥∥∥∥
∞
, and e(tk) = −e(tk−1), k = 2, 3, . . . , (m+ 2).

Clearly,

e(t) = (−1)m
4δm

(δ − δ−1)2

Rm+1(t)

2t+ δ + δ−1
.

We put t = cosα, for α ∈ [0, π], take d = δ < 1 in definitions (A.1)–(A.4) and apply the
identites from the proof of Lemma 3.4. We then find that if m is odd, m = (2`− 1), then

Rm+1(t) = −(2t+ δ + δ−1) + 2δ−1s2
o(α) ≥ −(2t+ δ + δ−1)

Rm+1(t) = 2t+ δ + δ−1 − 2δ−1c2
o(α) ≤ 2t+ δ + δ−1

If m is even, m = 2`, in an analogous fashion we have

Rm+1(t) = −(2t+ δ + δ−1) + 2δ−1s2
e(α) ≥ −(2t+ δ + δ−1)

Rm+1(t) = 2t+ δ + δ−1 − 2δ−1c2
e(α) ≤ 2t+ δ + δ−1
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From these relations it is easy to see that in both cases m odd or even,

(A.5) − (2t+ δ + δ−1) ≤ Rm+1(t) ≤ 2t+ δ + δ−1,

and hence |Rm+1(t)| ≤ 2t+ δ + δ−1 (this is the same as in Lemma 3.4, but written in terms
of δ). Clearly, we have equalities in (A.5) when t = arccos(α), and α is a zero of co and so
in case m = (2`− 1), and a zero of ce and se in case m = 2`. Thus, since the zeros of these
functions interlace (see Lemma A.4, and Lemma A.5 below) we may conclude that there
exist {tk}m+2

k=1 , such that

(A.6) Rm+1(tk) = ±(−1)k(2tk + δ + δ−1).

Indeed, it is easy to check that Lemma A.4 (item 3.), and Lemma A.5 (item 3.), imply that
whenm = (2`−1), the (2`+1) points of Chebyshev alternance for e(t) are given in Lemma A.4
and are {cosαk}2`

k=0, and analogously, for m = 2`, the points of Chebyshev alternance of e(t)
are given in Lemma A.5 and they are {cos βk}2`+1

k=0 . Finally, by the Chebyshev alternating

theorem we conclude thatQm(t) is the best polynomial approximation to
1

t+ a
in the uniform

norm, and for the error we have

E[−1,1] =
4δm

(δ − δ−1)2
.

This completes the proof of the theorem. �

A.1. Auxiliary results. This subsection contains two auxiliary results Lemma A.4, and
Lemma A.5, used in the proof of Theorem 3.3. The proof of these two lemmas requires
series of inequalities, most of which are well known. We state and prove these here for
completeness. Here is a Lemma, which gives known trigonometric identities and can be
found in many texts (see e.g. [44]).

Lemma A.2. The following identity holds

(A.7) sin
α

2
[1 + 2

∑̀
k=1

cos kα] = sin
(2`+ 1)α

2
.

Proof. Set aj = sin
(2j + 1)α

2
, j = 0, . . . , ` and recall that, for j = 1, 2 . . . , ` we have

2 cos jα sin
α

2
= sin

(2j + 1)α

2
− sin

(2j − 1)α

2
= aj − aj−1.

Therefore,

sin
α

2

(
1 + 2

∑̀
j=1

cos jα

)
= sin

α

2
+
∑̀
j=1

2 sin
α

2
cos jα

= a0 +
∑̀
j=1

(aj − aj−1) = a`,

which completes the proof. �

Next, we show an upper bound on the number of zeros of co and se for fixed `.
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Lemma A.3. Let ` ≥ 1 be a fixed integer, 0 < d < 1 and co(α) and se(α) be defined as
in (A.1) and (A.3) respectively. Then co has at most ` zeros in the interval [0, π] and se has
at most (`+ 1) zeros in the interval [0, π].

Proof. We first prove that co(α) has no more than ` zeros in [0, π]. Set t = cosα, and then

co(arccos(t)) = T`(t) + dT`−1(t),

and hence co(arccos(t)) is a polynomial of degree ` in t. If we assume that co(α) has more
than ` zeros for α ∈ [0, π], then the polynomial co(arccos(t)) would have more than ` zeros,
which would imply co(α) ≡ 0, and this obviously is a contradiction.

We now prove that se(α) has at most (`+ 1) zeros. From Lemma A.2, we have that

se(α) = sin
(2`+ 1)α

2
+ d sin

(2`− 1)α

2

= sin
α

2

[
1 + 2

∑̀
k=1

cos kα

]
+ d sin

α

2

[
1 + 2

`−1∑
k=1

cos kα

]

= sin
α

2

[
(1 + d) + 2 cos `α + (2 + 2d)

`−1∑
k=1

cos kα

]
.

Hence we have for α = arccos(t), t ∈ [−1, 1]

se(arccos(t)) = sin
arccos(t)

2
q(t),

where q(t) is a polynomial of degree `,

q(t) =

[
(1 + d) + 2T`(t) + (2 + 2d)

`−1∑
k=1

Tk(t)

]
.

Clearly, q(t) has at most ` zeros. Another zero of se(arccos(t)) is at t = 1 (or α = 0). Hence
there are at most (`+ 1) zeros of se in the interval [0, π]. �

The following two lemmas give more precise estimates on the location of the zeros of co(α)
and so(α) (se(α) and ce(α), respectively).

Lemma A.4. Let ` ≥ 1 be a given integer, and 0 < d < 1. Then,

1. The function co(α) has exactly ` zeros α2k−1 ∈
(

(2k − 1)π

2`
,
kπ

`

)
, k = 1, 2, . . . , ` in

the open interval (0, π).
2. The function so(α) has exactly (`+ 1) zeros in the interval [0, π]: α0 = 0, α2` = π and

(`− 1) zeros α2k ∈
(
kπ

`
,
(2k + 1)π

2`

)
, k = 1, 2, . . . , (`− 1).

3. The zeros of co(α) and so(α) interlace, namely

0 = α0 < α1 < α2 < . . . < α2`−2 < α2`−1 < α2` = π.

The total number of zeros (either zeros of co or zeros of so) is (2`+ 1).
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Proof. We calculate the value of co(α) at the end points of each interval

(
(2k − 1)π

2`
,
kπ

`

)
.

For k = 1, . . . , `, we have

co

(
(2k − 1)π

2`

)
= cos

(2k − 1)π

2
+ d cos

(`− 1)(2k − 1)π

2`

= d cos

(
(2k − 1)π

2
− (2k − 1)π

2`

)
= d sin

(2k − 1)π

2
sin

(2k − 1)π

2`
= (−1)k−1d sin

(2k − 1)π

2`

co

(
kπ

`

)
= cos(kπ) + d cos(kπ − kπ

`
)

= (−1)k + d cos(kπ) cos
kπ

`
= (−1)k[1 + d cos

kπ

`
].

Since for 0 < d < 1 and k = 1, 2, . . . , `, we have that

d sin
(2k − 1)π

2`
> 0, and [1 + d cos

kπ

`
] > 0,

we may conclude that

(A.8) sign co

(
(2k − 1)π

2`

)
= (−1)k−1, sign co

(
kπ

`

)
= (−1)k.

Hence, co(α) has at least one zero in each of the open intervals

(
(2k − 1)π

2`
,
kπ

`

)
. These are

` disjoint intervals and thus co(α) has at least ` different zeros. Since from Lemma A.3 we
know that co(α) has at most ` zeros, we conclude that co(α) has exactly ` zeros in [0, π], and
we denote these with α2k−1. This completes the proof of the first item.

We note here that the number of zeros of co and the intervals in which the zeros of co are
located is independent of the particular value of d, as long as 0 < d < 1.

We move on, to prove item 2. in the statement of the lemma. We take the derivative of
so with respect to α, to obtain that

dso
dα

= `[cos `α +
`− 1

`
d cos(`− 1)α].

According to what we proved above for co(α), (but with d replaced by
`− 1

`
d), the derivative

ds

dα
has exactly ` different zeros, and therefore so(α) cannot have more than (`+ 1) different

zeros in [0, π].
It is immediate to verify that s(0) = s(π) = 0. We will show now that so(α) changes sign

in each of the open intervals

(
kπ

`
,
(2k + 1)π

2`

)
, k = 1, 2, . . . , (`− 1), and hence has at least

one zero in every such interval. Together with the end points this will give all the zeros of
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so(α). Calculating so

(
kπ

`

)
and so

(
(2k + 1)π

2`

)
k = 1, 2, . . . , (`− 1) gives

so

(
kπ

`

)
= sin(kπ) + d sin(kπ − kπ

`
)

= −d cos(kπ) sin
kπ

`
= (−1)k+1d sin

kπ

`
.

so

(
(2k + 1)π

2`

)
= sin

(2k + 1)π

2
+ d sin

(`− 1)(2k + 1)π

2`

= (−1)k + d sin

(
(2k + 1)π

2
− (2k + 1)π

2`

)
= (−1)k + d(−1)k cos

(2k + 1)π

2`
= (−1)k[1 + d cos

(2k + 1)π

2`
].

Clearly, for k = 1, . . . , ` − 1 and 0 < d < 1 we have that d sin
kπ

`
> 0 and that [1 +

d cos
(2k + 1)π

2`
] > 0, which leads to

(A.9) sign so

(
kπ

`

)
= (−1)k+1, sign so

(
(2k + 1)π

2`

)
= (−1)k,

and (A.9) implies that in addition to the end points α0 = 0 and α2` = π, we have exactly

one zeros α2k in each of the intervals

(
kπ

`
,
(2k + 1)π

2`

)
.

To show that item 3. holds is easy, because for k = 1, . . . , (`− 1) we have that α2k−1 is to

the left of
kπ

`
, while α2k is to the right of

kπ

`
. Therefore,

α2k−1 <
kπ

`
< α2k <

(2k + 1)π

2`
< α2k+1 <

(k + 1)π

`
.

Since for all j = 1, . . . , 2`, 0 = α0 < αj and for j = 0, . . . , (2`− 1), αj < α2` = π, the proof
of item 3. is concluded. �

Similar lemma and with similar proof (which we only sketch below) holds for ` replaced

by (`+
1

2
).

Lemma A.5. Let ` ≥ 1 be a given integer, 0 < d < 1. Then,

1. The function se(α) has exactly (`+ 1) zeros: β0 = 0, and β2k ∈
(

2kπ

2`+ 1
,
(2k + 1)π

2`+ 1

)
,

k = 1, . . . , `.

2. The function ce(α) has exactly (` + 1) zeros: β2k−1 ∈
(

(2k − 1)π

2`+ 1
,

2kπ

2`+ 1

)
, k =

1, . . . , `, and β2`+1 = π.
3. The zeros of se(α) and ce(α) interlace, namely

0 = β0 < β1 < β2 < . . . < β2`−1 < β2` < β2`+1 = π.

The total number of zeros (either zeros of se or zeros of ce) is (2`+ 2).
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Proof. To prove the statement for se we proceed as in Lemma A.4. Since the intervals(
2kπ

2`+ 1
,
(2k + 1)π

2`+ 1

)
are disjoint, and se has ` zeros in (0, π], we only need to show that

se(α) changes sign in each interval. For k = 1, . . . , ` we calculate

se

(
2kπ

(2`+ 1)

)
= sin kπ + d sin

(2`− 1)(kπ)

2`+ 1

= d sin

(
kπ − 2kπ

2`+ 1

)
= −d cos kπ sin

2kπ

2`+ 1
= (−1)k+1d sin

2kπ

2`+ 1

se

(
(2k + 1)π

(2`+ 1)

)
= sin

(2k + 1)π

2
+ d sin

(2`− 1)(2k + 1)π

2(2`+ 1)

= (−1)k + d sin

(
(2k + 1)π

2
− (2k + 1)π

2`+ 1

)
= (−1)k + d sin

(2k + 1)π

2
cos

(2k + 1)π

2`+ 1
= (−1)k[1 + d cos

(2k + 1)π

2`+ 1
].

Since 0 < d < 1 we conclude that se(α) changes sign in every interval. Obviously also
se(0) = 0, and hence se(α) has exactly (`+ 1) zeros in the interval [0, π].

Next, to prove the statement for the zeros of ce(α), we argue analogously as in proving the
second part of Lemma A.4 to show that ce cannot have more than (`+ 1) zeros in [0, π]. To

check that ce changes sign in each of the intervals

(
(2k − 1)π

2`+ 1
,

2kπ

2`+ 1

)
, is straightforward,

and analogous to what we did for se(α). That the ordering of the zeros of ce(α) and se(α)
stated in item 3. holds is also verified in a fashion similar to the proof of item 3. of
Lemma A.4. �
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