How to Write Postconditions with Multiple Cases

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

November 19, 2009

Abstract

We investigate and compare the two major styles of writing program/function postconditions with multiple cases: as conjunctions of implications or as disjunctions of conjunctions. We show that both styles not only have different syntax but also different semantics and pragmatics and give recommendations for their use.

The specification of a program/function F typically consists of two parts: a precondition I on the input (state) and a postcondition O that relates the input (state) of the program/function to its output (state). The requirement on the correctness of the program is then

$$
\forall x, y: I(x) \wedge y=F(x) \Rightarrow O(x, y)
$$

i.e. for any input x satisfying I (we call this a legal input) the function F must return a result y which is related to x by $O(x, y)$.

However, there may be different kinds of legal inputs, for which F yields different kinds of output. Without loss of generality, let us assume, there are two kinds of inputs denoted by conditions P_{1} and P_{2} and correspondingly two kinds of outputs related to the inputs by conditions Q_{1} and Q_{2}. Now there are two obvious choices: to define O, either as

$$
O_{1}(x, y): \Leftrightarrow\left(P_{1}(x) \Rightarrow Q_{1}(x, y)\right) \wedge\left(P_{2}(x) \Rightarrow Q_{2}(x, y)\right)
$$

or as

$$
O_{2}(x, y): \Leftrightarrow\left(P_{1}(x) \wedge Q_{1}(x, y)\right) \vee\left(P_{2}(x) \wedge Q_{2}(x, y)\right)
$$

Naturally, the question arises which of the two choices shall be preferred?
This question is apparently a problem of propositional logic (rather than predicate logic), thus we rewrite the choices as

$$
\begin{aligned}
O_{1} & : \Leftrightarrow \quad\left(P_{1} \Rightarrow Q_{1}\right) \wedge\left(P_{2} \Rightarrow Q_{2}\right) \\
O_{2} & : \Leftrightarrow \quad\left(P_{1} \wedge Q_{1}\right) \vee\left(P_{2} \wedge Q_{2}\right)
\end{aligned}
$$

	$\overline{Q_{1} Q_{2}}$	$\overline{Q_{1}} Q_{2}$	$Q_{1} \overline{Q_{2}}$	$Q_{1} Q_{2}$
$\overline{P_{1} P_{2}}$	\times	\times	\times	\times
$\overline{P_{1}} P_{2}$		\otimes		\otimes
$P_{1} \overline{P_{2}}$			\otimes	\otimes
$P_{1} P_{2}$		\bigcirc	\bigcirc	\otimes

Figure 1: Truth Table (\times for O_{1}, ○ for O_{2}, \otimes for both $)$
and depict in Figure 1 the truth values of O_{1} and O_{2} for all possible truth values of $P_{1}, P_{2}, Q_{1}, Q_{2}$ (there \bar{F} denotes the negation of condition F and $F G$ denotes the conjunction of conditions F and G). We see that both and O_{1} and O_{2} have different truth ranges and that no interpretation is stronger than the other one: only O_{1} is true if both P_{1} and P_{2} are false and only O_{2} is true, if both P_{1} and P_{2} and one of Q_{1} and Q_{2} are true.

One possibility to reconcile both interpretations is to restrict the truth range of both O_{1} and O_{2} to the second and third line of Figure 1, i.e., to those cases where exactly one of P_{1} and P_{2} is true:

$$
\left(P_{1} \vee P_{2}\right) \wedge \neg\left(P_{1} \wedge P_{2}\right) \models O_{1} \equiv O_{2}
$$

In other words, if we demand that the conditions P_{1} and P_{2} decompose the space of legal inputs (those satisfying precondition I) disjointly, then both postconditions O_{1} and O_{2} are equivalent.

However, we may also explicitly add constraints to O_{1} and O_{2} such that the resulting interpretations coincide yielding the formulas

$$
\begin{aligned}
& O_{1} \wedge\left(P_{1} \vee P_{2}\right) \\
& O_{2} \wedge \neg\left(P_{1} \wedge P_{2}\right)
\end{aligned}
$$

i.e. we either add to O_{1} the demand that P_{1} and P_{2} must cover the whole space of legal inputs or add to O_{2} the demand that P_{1} and P_{2} must not overlap. We then have

$$
\begin{aligned}
O_{1} \wedge\left(P_{1} \vee P_{2}\right) & \Leftrightarrow O_{2} \wedge \neg\left(P_{1} \wedge P_{2}\right) \\
O_{1} \wedge\left(P_{1} \vee P_{2}\right) & \Rightarrow O_{2} \\
O_{2} \wedge \neg\left(P_{1} \wedge P_{2}\right) & \Rightarrow O_{1}
\end{aligned}
$$

i.e. adding the constraints to both O_{1} and O_{2} yields equivalent results, adding the constraint to only one of O_{1} or O_{2} yields a result that is stronger than O_{2} respectively O_{1}.

What is a consequence of above investigations?

1. If P_{1} and P_{2} do not decompose the space of legal inputs disjointly, then O_{1} respectively O_{2} should be extended by an additional constraint:

- O_{1} should be extended by the constraint $P_{1} \vee P_{2}$
- O_{2} should be extended by the constraint $\neg\left(P_{1} \wedge P_{2}\right)$

2. If P_{1} and P_{2} decompose the space of legal inputs disjointly, i.e. if we have

$$
\left(P_{1} \vee P_{2}\right) \wedge \neg\left(P_{1} \wedge P_{2}\right)
$$

then it is not necessary to add a constraint and both O_{1} and O_{2} are equivalent.

From this, it seems that none of O_{1} or O_{2} should be a priori preferred over each other. However, there are two reasons why the situation is actually not completely symmetric: First, in the case of n condition pairs P_{i}, Q_{i} $(i=1 \ldots n)$, the constraint for O_{1} becomes

$$
P_{1} \vee P_{2} \vee \ldots \vee P_{n}
$$

(i.e. a disjunction of n formulas) while the constraint for O_{2} becomes

$$
\neg\left(P_{1} \wedge P_{2}\right) \wedge \neg\left(P_{1} \wedge P_{3}\right) \wedge \ldots \wedge \neg\left(P_{n-1} \wedge P_{n}\right)
$$

(i.e. a conjunction of $n \cdot(n-1)$ formulas) which is cumbersome to write.

Second, assume a situation where a specifier erroneously believes that some conditions $P_{i}(i=1 \ldots n)$ decompose the legal input space disjointly and thus does not add an explicit constraint:

1. In the case of O_{1}, for a legal input for which none of the P_{1} holds, any output becomes legal (for O_{2}, no output is legal).
2. In the case of O_{2}, for a legal input for which multiple P_{i} hold, the output must only satisfy any of the corresponding Q_{i} (for O_{1}, all Q_{i} must be satisfied).

The first kind of "underspecification" error is certainly more "dangerous" than the second one.

Taking these two considerations into account, we recommend:

1. Either to use the form O_{1} and add explicit constraints as shown above:

$$
\begin{aligned}
& \left(P_{1} \Rightarrow Q_{1}\right) \wedge \ldots \wedge\left(P_{n} \Rightarrow Q_{n}\right) \wedge \\
& \left(P_{1} \vee P_{2} \vee \ldots P_{n}\right)
\end{aligned}
$$

2. (Only) if the constraints seem redundant and explicitly adding them seems too cumbersome, use O_{2} :

$$
\left(P_{1} \wedge Q_{1}\right) \vee \ldots \vee\left(P_{n} \wedge Q_{n}\right)
$$

However, then one should be aware, that from this specification, Q_{i} is not a consequence of $P_{i}($ for $i=1 \ldots n)$.

If nothing else, above discussion should at least have clarified the features/differences of both specification formats.

