
How to Write Postconditions

with Multiple Cases

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria

November 19, 2009

Abstract

We investigate and compare the two major styles of writing pro-
gram/function postconditions with multiple cases: as conjunctions of
implications or as disjunctions of conjunctions. We show that both
styles not only have different syntax but also different semantics and
pragmatics and give recommendations for their use.

The specification of a program/function F typically consists of two parts:
a precondition I on the input (state) and a postcondition O that relates the
input (state) of the program/function to its output (state). The requirement
on the correctness of the program is then

∀x, y : I(x) ∧ y = F (x) ⇒ O(x, y)

i.e. for any input x satisfying I (we call this a legal input) the function F
must return a result y which is related to x by O(x, y).

However, there may be different kinds of legal inputs, for which F yields
different kinds of output. Without loss of generality, let us assume, there are
two kinds of inputs denoted by conditions P1 and P2 and correspondingly
two kinds of outputs related to the inputs by conditions Q1 and Q2. Now
there are two obvious choices: to define O, either as

O1(x, y) :⇔ (P1(x) ⇒ Q1(x, y)) ∧ (P2(x) ⇒ Q2(x, y))

or as
O2(x, y) :⇔ (P1(x) ∧Q1(x, y)) ∨ (P2(x) ∧Q2(x, y))

Naturally, the question arises which of the two choices shall be preferred?
This question is apparently a problem of propositional logic (rather than

predicate logic), thus we rewrite the choices as

O1 :⇔ (P1 ⇒ Q1) ∧ (P2 ⇒ Q2)
O2 :⇔ (P1 ∧Q1) ∨ (P2 ∧Q2)

1



Q1Q2 Q1Q2 Q1Q2 Q1Q2

P1P2 × × × ×
P1P2 ⊗ ⊗
P1P2 ⊗ ⊗
P1P2 # # ⊗

Figure 1: Truth Table (× for O1, # for O2, ⊗ for both)

and depict in Figure 1 the truth values of O1 and O2 for all possible truth
values of P1, P2, Q1, Q2 (there F denotes the negation of condition F and
FG denotes the conjunction of conditions F and G). We see that both and
O1 and O2 have different truth ranges and that no interpretation is stronger
than the other one: only O1 is true if both P1 and P2 are false and only O2

is true, if both P1 and P2 and one of Q1 and Q2 are true.
One possibility to reconcile both interpretations is to restrict the truth

range of both O1 and O2 to the second and third line of Figure 1, i.e., to
those cases where exactly one of P1 and P2 is true:

(P1 ∨ P2) ∧ ¬(P1 ∧ P2) |= O1 ≡ O2

In other words, if we demand that the conditions P1 and P2 decompose the
space of legal inputs (those satisfying precondition I) disjointly, then both
postconditions O1 and O2 are equivalent.

However, we may also explicitly add constraints to O1 and O2 such that
the resulting interpretations coincide yielding the formulas

O1 ∧ (P1 ∨ P2)
O2 ∧ ¬(P1 ∧ P2)

i.e. we either add to O1 the demand that P1 and P2 must cover the whole
space of legal inputs or add to O2 the demand that P1 and P2 must not
overlap. We then have

O1 ∧ (P1 ∨ P2) ⇔ O2 ∧ ¬(P1 ∧ P2)
O1 ∧ (P1 ∨ P2) ⇒ O2

O2 ∧ ¬(P1 ∧ P2) ⇒ O1

i.e. adding the constraints to both O1 and O2 yields equivalent results,
adding the constraint to only one of O1 or O2 yields a result that is stronger
than O2 respectively O1.

What is a consequence of above investigations?

1. If P1 and P2 do not decompose the space of legal inputs disjointly, then
O1 respectively O2 should be extended by an additional constraint:

2



• O1 should be extended by the constraint P1 ∨ P2

• O2 should be extended by the constraint ¬(P1 ∧ P2)

2. If P1 and P2 decompose the space of legal inputs disjointly, i.e. if we
have

(P1 ∨ P2) ∧ ¬(P1 ∧ P2)

then it is not necessary to add a constraint and both O1 and O2 are
equivalent.

From this, it seems that none of O1 or O2 should be a priori preferred
over each other. However, there are two reasons why the situation is actually
not completely symmetric: First, in the case of n condition pairs Pi, Qi

(i = 1 . . . n), the constraint for O1 becomes

P1 ∨ P2 ∨ . . . ∨ Pn

(i.e. a disjunction of n formulas) while the constraint for O2 becomes

¬(P1 ∧ P2) ∧ ¬(P1 ∧ P3) ∧ . . . ∧ ¬(Pn−1 ∧ Pn)

(i.e. a conjunction of n · (n− 1) formulas) which is cumbersome to write.
Second, assume a situation where a specifier erroneously believes that

some conditions Pi (i = 1 . . . n) decompose the legal input space disjointly
and thus does not add an explicit constraint:

1. In the case of O1, for a legal input for which none of the P1 holds, any
output becomes legal (for O2, no output is legal).

2. In the case of O2, for a legal input for which multiple Pi hold, the
output must only satisfy any of the corresponding Qi (for O1, all Qi

must be satisfied).

The first kind of “underspecification” error is certainly more “dangerous”
than the second one.

Taking these two considerations into account, we recommend:

1. Either to use the form O1 and add explicit constraints as shown above:

(P1 ⇒ Q1) ∧ . . . ∧ (Pn ⇒ Qn) ∧
(P1 ∨ P2 ∨ . . . Pn)

2. (Only) if the constraints seem redundant and explicitly adding them
seems too cumbersome, use O2:

(P1 ∧Q1) ∨ . . . ∨ (Pn ∧Qn)

However, then one should be aware, that from this specification, Qi is
not a consequence of Pi (for i = 1 . . . n).

If nothing else, above discussion should at least have clarified the features/differences
of both specification formats.

3


