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Zusammenfassung
Eine  wichtige  Aufgabe  beim automatischen  Beweisen  stellt  Rechnen  mit  "beliebig,  aber  festen"
Konstanten dar. Diese Art des Mittelschulbeweisens tritt im Inneren der meisten Beweise auf. Die
vorliegende  Arbeit  stellt  einen  automatischen  Beweiser  vor,  der  auf  diese  Berechnungen  mit
Symbolen spezialisiert ist. Für das Rewriting der Zielformel verwendet der Beweiser Gleichungen
und  Äquivalenzen  aus  der  Wissensbasis.  In  allen  Formeln  sind  Allquantoren  und  ausgewählte
logische  Operatoren  erlaubt.  Spezielle  Syntaxelemente  unterstützen  Fallunterscheidungen  und
Sequenz-Variablen.  Der  Beweiser  verwendet  eine  spezialisierte  Methode  für  das  Beweisen  von
Gleichungen und eine wichtige Funktion ist das Beweisen mit expliziter Fallunterscheidung. Eine
Erweiterung erlaubt auch Induktionsbeweise für einige vordefinierte Strukturen.

Zusätzlich  zur  Implementierung  des  Beweisers  in  Mathematica  gibt  es  ein  Programm,  das  den
Ablauf  des Beweisers verfolgt  und ein Protokoll  des Beweises erzeugt.  Da der  Quellcode dieses
Überwachungsprogramms getrennt  vom Quellcode  des  Beweisers  ist,  sind auch unterschiedliche
Ausgabeformate  möglich.  Wichtiger  jedoch  ist,  dass  ein  Benutzer  den  Quellcode  des  Beweisers
inspizieren kann ohne dass technische Details zur formatierten Ausgabe die Logik des Beweisers
verschleiern.

Die  Motivation  für  diesen  Beweiser  liegt  im  Ausbau  des  Theorema–Systems.  Das  Ziel  ist  eine
Umgebung,  in  der  neue  Beweiser  in  der  gleichen  Sprache  wie  Theoreme  formuliert  werden
können.  Der Vorteil  liegt  auf  der  Hand,  denn mit  bereits  bestehenden Beweisern können Fakten
über  neue  Beweiser  bewiesen  werden.  Damit  ist  es  möglich  eine  ganze  Hierachie  von  formal
geprüften Beweisern aufzubauen. Für so ein Beweisen von Beweisern ist es notwendig struturelle
Induktion  über  Terme  und  Formeln  an  den  Anfang  zu  stellen.  Der  Ausgangsbeweiser  in  einer
Hierachie  braucht  aber  Berechnungen  in  vielen  Beweisteilen.  Diese  Aufgabe  kann  der  vorlieg-
ende Beweiser für Symbolisches Rechnen übernehmen.



Abstract
An  important  task  in  automated  theorem  proving  is  computing  with  "arbitrary  but  fixed"  con-
stants. This kind of highschool proving occurs in the main part of most proofs. The current mas-
ter's  thesis  presents  an  automated  prover  that  focuses  on  such  computations  with  symbols.  The
prover  uses  equalities  and  equivalences  in  the  knowledge  base  to  rewrite  a  goal  formula.  In  all
formulae there may be universal quantifiers and some selected logical connectives. Special syntax
elements support case distinctions and sequence variables. The prover uses a specialized method
for proving equalities and an important feature is proving by cases. An extension allows induction
over some predefined domains. 

Additionally to the prover implementation in Mathematica, there is a tracer that prints a protocol
of the proof flow. Since the code for this tracer is separated from the prover, there may be more
than  one  tracer  with  different  output.  But  more  important  is  that  a  user  can  inspect  the  code  of
prover without being confused by technical details for generating some nice output.

The  main  motivation  for  this  prover  is  a  new extension of  the  Theorema  system.  The aim is  an
environment  for  defining new prover  in the same language as  theorems.  The advantage is  clear,
existing prover may prove facts of a new one, for example the correctness. Using this it is possi-
ble  to  build  up  a  hierarchy  of  formally  checked  provers.  For  such  reasoning  about  reasoners  a
starting point needs induction on the structure of terms and formulae. A first prover in the hierar-
chy  will  need  computations  with  symbols  in  many  proof  branches.  This  may  be  done  by  the
current Symbolic Computation Prover.
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1 Introduction

1.1 Motivation

In  (formal)  reasoning  about  formulae  there  are  some  computations  with  symbols  in  nearly  every
proof [Buch04]. Computation means applying an algorithm on some input data. That input data may
be numbers or other objects, depending on the algorithm. We call computation "Symbolic Computa-
tion"  if  the  input  may  contain  uninterpreted  constants  for  example  "arbitrary  but  fixed"  constants
used in the proof of universally quantified formulae. Computations of that kind are necessary in most
formal proofs. In automated theorem proving it is useful to have a program which is able to do that.
The current master thesis presents such a program for symbolic computation (see section 2). 

Bruno Buchberger [Buch04] describes in his "proving by intermediate principles" that starting with a
simple  prover  a  hierarchy  of  provers  can  be  built  up  in  a  formal  proven  way.  For  that  "Reasoning
about Reasoners" [Buch08] it is necessary to do inductive proofs over the structure of logical formu-
lae.  In  each  proving  branch  again  symbolic  computation  is  necessary  to  prove  that  branch.  In  the
Theorema  project it is planed to incorporate such a prover in the next version.  Reasoning about the
structure  of  logical  terms  needs  a  distinction  between  terms  in  the  language  and  terms  that  are  the
objective of reasoning. An approach for incorporating this is "Reflection" [GiBu07].

1.2 Theorema

The Theorema  project [Tma97, Tma98, Tma99a, Tma99b, Tma00a, Tma00b, Tma00c] founded and
headed by Bruno Buchberger has the objective to develop a system for doing mathematics including
reasoning. It  supports input in traditional mathematical  form and output in natural  language as well
as in an interactive way (see [Buch00]) .  Proving and computing is combined in one single system.
Automated provers for different specific domains support natural style deduction. 

The system is implemented in Mathematica  [Wolf03] and it  is called Theorema,  too. It  uses for the
command language Mathematica  and user language is  a subset  of higher order predicate logic.  The
user language is independent of Mathematica syntax and supports different input forms especially for
quantifiers.  A  quantifier  may  be  entered  in  multiline  style  with  multiple  variables,  different  ranges
and additional constraints.

Currently all  automated theorem provers of Theorema  are directly implemented in Mathematica.  In
this programming language it is difficult to inspect an implementation automatically. In the future the
provers will be written in the Theorema user language as algorithms on formulae. That will allow the
user to add new reasoners. But more important is the fact, that it will be possible to prove theorems
about  these  reasoners.  With  that  reasoning about  reasoners  all  provers  can  be  proven  correct  and  a
hierarchy  of  proven  provers  can  be  constructed.  Symbolic  Computation  together  with  structural
induction as  metaprover  is  able to define  and verify  all  higher  level prover  like full  predicate  logic
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prover (also alternating quantifiers), solvers (correspond to existential quantifier) and special domain
prover for Groebner Basis, set theory, etc. [Buch08].

The Symbolic Computation prover will be embedded in such a structural induction prover in one of
the  next  Theorema  versions.  The  implementation  of  the  Symbolic  Computation  prover  is  indepen-
dent of the current Theorema  to be adaptable enough for future versions. Nevertheless the prover is
harmonized with Theorema and has a similar user language.

1.3 Details of the Problem

The  scope  of  this  thesis  contains  the  Symbolic  Computation  prover  (SC  prover),  a  first  extension
with induction and a possibility of printing some intermediate results. Due to experiences from case
studies some of the requirements for the prover changed during the phase of development. The listed
demands in this section describe the final version.

The  SC  prover  has  to  derive  that  a  given  formula  is  a  logical  consequence  of  a  given  knowledge
base.  All  occurring  formulae  are  in  a  subset  of  predicate  logic.  The  language  to  formalize  these
formulae  is  a  subset  of  the  user  language  of  Theorema  [Tma00a].  The  language  is  restricted  to
equalities, equivalences, conjunctions,  implications,  case distinctions, and universal quantifiers. It  is
sufficient  to  support  quantifiers  with  a  single  variable  and  neither  with  condition  nor  with  a  range
restriction. But the quantifiers may include sequence variables (see [Kuts02, KuBu05]).

The prover  should  handle  the language constructs  in  an  appropriate  way  and simplify  the goal  for-
mula as far as possible. The innermost kernel of the SC prover should use rewriting to derive a true
goal  formula.  The  proofs  should  be  done  in  a  natural  (human  like)  way.  The  range  of  the  proving
power of the SC prover corresponds to high school proving. Computations with "arbitrary but fixed"
constants and knowledge bases with equalities and equivalences are applied already in high school.

As  implementation  platform  Mathematica  [Wolf03]  is  chosen,  because  Theorema  is  based  on  it
[Tma97] and Mathematica has a powerful rewriting engine [Buch96a]. Important for the implementa-
tion is that the source code is coded as simple as possible and easy to understand. The reason for that
is that  the prover does not  implement a logic,  but  the source code of the prover describes the logic
[Buch04].  A  consequence  is  that  the  prover  should  do  the  proofs  but  there  should  be  no  output  of
intermediate results, because that would cause a more complicated source code and it is difficult for a
reader to distinguish code for the proving algorithm and the output generating. But this distinction is
essential  because  a  user  has  to  trust  the  prover  (like  he  trusts  a  logic)  and  the  correctness  of  the
prover – in an informal sense – can be checked only by inspection. On the other hand it is important
for  the  practical  use  of  a  proving  algorithm to  have  a  possibility  to  inspect  a  proof.  Especially  for
analyzing  failed  proof  attempts  that  is  necessary.  That  leads  to  a  separated  program  for  output
generation.

Even if the prover is part of the Theorema project the implementation is done independently from the
current version of Theorema,  to  prevent dependences to provers of the old generation.  The integra-
tion in the new version of Theorema is future work [Buch08].
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1.4 Structure of the Thesis

Section 2  describes  the  Symbolic  Computation  prover  in  detail.  It  defines  an  input  language  and  it
explains  how  different  kinds  of  formulae  are  handled  by  the  prover.  The  commented  source  is
located in the appendix and describes the implementation details. 

A first extension of the SC prover is the induction prover which is treated in section 3.  This prover
shows how to extend the SC prover with additional features.

The prover is not able to produce output of intermediated results. Section 4  shows how such output
may  be  generated.  A special  feature of  Mathematica  allows  doing this  without  adapting  the  source
code of the prover. The source code is again in the appendix.

Some case studies in section 5  show how the prover may be used in application. Section 6  summa-
rizes the thesis and section 7 lists the references.

The appendix contains the source code of the two packages: the Prover and the ProofTracer.

1.5 Notation

Mathematica  commands  and  names  of  variables  and  options  and  symbols  of  the  user  language  are
written in bold font:

SCProver

Output created by Mathematica commands is written in a light weight style:

Proved

Input in Mathematica and output of the execution is presented in this form:

SCProver ThmPlus1, DefPlus1, DefPlus2

Failed
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2 Symbolic Computation Prover

2.1 Design

The Symbolic Computation prover (SC prover)  proves formulae mainly by rewriting technics com-
bined  with  logical  transformations  from natural  deduction.  Formulae used  as  goal  or  in  the  knowl-
edge base are predicate logic formulae. They may be quantified by universal quantifiers, but existen-
tial quantifiers are not supported. Quantified variables may be single variables or sequence variables
[KuBu05].  In  the  knowledge  base  there  is  a  special  feature  for  supporting  case  distinctions.  For
proving in inductive domains some special proving rules may be embedded in the SC prover. This is
done for natural numbers and related inductive domains in section 3.

The general proving strategy of SC prover is to reduce the goal by straight forward reductions first.
Then on  the  reduced  goal  rewriting  is  applied.  If  case  distinctions  appear  in  the  rewritten  goal,  the
prover tries to verify a case or eliminate invalid cases. If rewriting fails and there are case distinctions
left a proof by cases is performed. The rewriting process handles equalities separately.

The prover  is  called from the external  point  of  view with one goal formulae and a knowledge base
which  is  a  list  of  formulae.  Some options  may  control  the  execution  flow of  the  prover.  There  are
four  options.  Two for  proving  by  cases:  ProveByCases  and  PBCLevel;  and  one  for  rewriting:
MaxNumberOfRewritingSteps .  The last option is used by the induction prover. It may enable
or  disable  proving  by  induction.  For  further  details  on  the  options  see  the  description  below in  the
corresponding subsections or in the commented source code (see section A.2).

Internally the prover allows handling a list of goal formulae for rewriting. Only the goal reduction is
restricted  to  a  single  goal  formula.  The  goal  formulae  are  treated  as  alternative  goals.  Hence,  it  is
sufficient if one of these formula is true. In case of an equality there are lists of formulae allowed on
both sides of the equality. They are also considered as alternatives: The equality is true, if a formula
of  the  left  hand  side  is  equal  to  a  formula  of  the  right  hand  side.  This  feature  is  important  for  the
rewriting engine of  the prover.  It  allows the engine to apply the rewriting rules in a arbitrary order
without loss of information. 
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2.1.1 User Language for Terms and Formulae

The  terms  and  formulae  which  are  input  for  the  SC  prover  are  Mathematica  terms.  Mathematica
includes  some  knowledge  about  various  symbols,  e.g.  Plus.  The  prover  must  not  use  this  knowl-
edge if for instance somebody wants to prove the commutativity of addition over natural numbers. In
order  to  prevent  formulae  from applying  Mathematica  knowledge  onto  them it  is  necessary  to  use
new symbols which have no knowledge within Mathematica.  A possible way to do this is  to add a
prefix  to  the  symbols  name.  In  Theorema  [BuWi98]  this  is  done  by  adding  the  prefix  "™",  e.g.
™Plus.  This is a new symbol and there is no meaning within Mathematica.  The SC prover will be
embedded  into  Theorema  in  future;  therefore  the  approach  of  Theorema  is  used  for  this  prover.
Theorema also supports input and output in traditional mathematical style [Tma98]; this will not be
used within the SC prover.

Most symbols appearing within terms can be chosen by the user with the restriction above. But there
are  also  some symbols  which  have already  some meaning  within  the  prover.  The  symbol  ™Equal
represents  an  equality.  ™Iff  is  an  equivalence.  ™Not  means  negation.  ™Implies  stands  for  an
implication.  ™And  means  conjunction.  ™ForAll  represents  the  universal  quantifier.
™CaseDistinction  indicates  a  case  distinction.  The  Mathematica  symbol  True  is  used  as  the
boolean value true. For more details on the usage of these symbols e.g. the arity see the source code
(see section A.2).

A case distinction allows definitions for several cases. It is a list of terms with conditions. One term
together with a condition is called a case. A condition is a formula. A term will be used, if the corre-
sponding condition is true and the conditions of all previous cases are false. A case distinction may
occur as outermost symbol or on the right hand side (= second argument) of an equality (™Equal) or
an equivalence (™Iff). But it must not appear in other subexpressions or as outermost symbol. It is
possible to built up If–Then–Else by case distinction.

Some additional  symbols  are indicated by the prefix "•".  Symbols  with  this  prefix  are reserved for
special use only and must not appear as user symbols in formulae. There is •case which represents
a case within a ™CaseDistinction. Internally the symbol •fix is used for "arbitrary but fixed"
constants. The induction prover uses the symbol •ind.

Sequence  variables  [KuBu05]  allows  defining  functions  with  variable  arity.  The  symbol  •seq
indicates such sequence variables.

2.1.2 Goal Reduction

Goal reduction  tries  to  simplify  the goal  as far  as possible.  Some goal formulae may be reduced to
true  immediately:  True,  ™Equal[expr,expr],  ™Iff[expr,expr]  and
™Implies[™Not[True], expr] for arbitrary expressions expr. Further reductions are related
to implications, equivalences and universal quantifiers. 
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Instead  of  proving  an  implication  it  is  equivalent  to  assume the  premise  and  prove  the  conclusion.
Hence the prover adds the premise to the knowledge base and continues proving with the conclusion
as new goal formula (see Deduction Theorem [Mend66]).

A conjunction  of  formulae is  proved by proving each formula separately.  If  the proof  of  a  formula
fails  then  the  whole  proof  fails  immediately.  Any  formula  that  is  already  proven  is  added  to  the
knowledge base for the proof of the next formulae.

An universal quantifier in the goal formula will be reduced by applying an Arbitrary–But–Fixed rule.
Therefore the bound variable in the quantified formula will be replaced by a new constant ("arbitrary
but  fixed")  and  the  prover  tries  to  prove  this  simpler  goal.  For  bound  variables  over  an  inductive
domain the prover tries proving by induction. For further details on induction see section 3.

Instead  of  proving  an  equivalence  both  corresponding  implications  will  be  proved:  The  prover
assumes the left hand side formula and proves the right hand side formula and vice versa.  

For  all  other  kinds  of  formulae  in  the  goal  rewriting  will  be  started.  Equalities  will  be  proved  by
rewriting each side of the equality individually. The equality is true if both sides rewrite to identical
terms. 

If there is a case distinction in the goal then the prover tries to prove one of the cases before rewrit-
ing.  If  this  is  not  successful  a  proof  by  cases  is  done.  This  is  not  affected  by  the  prover  option
ProveByCases.

2.1.3 Transformation of a Knowledge Base to Rewriting Rules

Before  starting  a  rewriting  process  the  rewriting  rules  will  be  generated.  Therefore  the  knowledge
base will be transformed into a list of rules.  In order to gain more rules out of the available knowl-
edge  the  formulae  will  be  simplified  first.  Simpler  formulae  generate  simpler  patterns  and  simpler
patterns match easier in the rewriting process. From each of these simplified formulae exact one rule
is generated. 

The  simplification  process  handles  universal  quantifiers  in  combination  with  conjunctions  and
implications.  The  conjunctions  are  moved  out  of  the  quantifiers  and  implications  are  moved  under
the  quantifiers,  if  this  is  possible.  Implications  are  moved  into  conjunctions  too.  Formulae  in  the
knowledge base that have a case distinction as outmost symbol are split into implications.

In the prover the set of formulae in knowledge base used as a conjunction of these formulae, there-
fore  it  is  possible  to  split  a  formula with  a  conjunction  as  outermost  symbol  into  several  formulae.
More  formulae  allows generating  more  rules,  therefore  splitting  is  used.  Implications  will  be  trans-
lated into a special kind of case distinctions. Moving implications under a quantifier or a conjunction
simplifies  the  conclusion  of  the  implication.  As  a  consequence  the  generated  rewriting  rule  gets
simpler.

The  process  of  generating  rewriting  rules  treats  one  formula  after  the  other.  Equalities  and  equiva-
lences result in rules which replace the left hand side by the right hand side. For universal quantified
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formulae the bound variable will be replaced by a variable pattern, which will be instantiated later in
the rewriting process. Sequence variables result in a special pattern.

If  a  formula  contains  a  case  distinction  then  nothing  special  has  to  be  done  for  this  formula.  The
formula  is  translated  like  a  formula  without  a  case  distinction.  The  special  treatment  will  be  done
later in the rewriting process.

Implications  are  transformed  into  a  case  distinction  with  only  one  case.  The  case  condition  is  the
premise of the implication and the conclusion is used as the case formula itself.

Negated  formulae  are  translated  into  rules  which  rewrite  the  positive  formula  into  ™Not[True].
Formulae with double negations will be reduced first. 

An arbitrary formula which does not match one of the rules above will be used as a rule that rewrites
the entire formula into True.

2.1.4 Rewriting a Formula

The rewriting  process starts  with  only one goal  formula,  but  the process is  designed for handling a
list  of  goal  formulae.  This  feature  is  used  internally  to  handle  several  branches  of  rewriting  in  one
rewriting step and by Proof–By–Cases (see subsection 2.1.7).  In addition to a list of rewriting rules
the process needs a knowledge base. This knowledge base is necessary for recursive prover calls in
case of conditional rewriting. The process is done within a big loop which terminates if the formula
True is found, no new formula could be derived or a proof by cases was done. Additionally the loop
is  limited  by  a  counter  to  avoid  infinitely  many  rewriting  steps.  This  is  controlled  by  the  prover
option MaxNumberOfRewritingSteps.

Within the loop first  all,  new formulae which can be derived from the old formulae by the rules in
one stroke will be generated. If one of these formulae is already the formula True, then the goal is
proved. Otherwise, if there were applied conditional rules, the algorithm tries to prove the conditions
in  order  to  eliminate  cases  (see  subsection  2.1.6)  and  derive  new  formulae.  Again  if  one  of  these
formulae is True then the proof (or the subproof, if the proof was split) is successfully done. If there
are some conditions that are neither proved nor disproved, a proof by cases is started and the loop is
aborted. Proving by cases may be disabled or limited by the user.  After that  all  formulae with case
conditions that have conditions with failed proof attempts are removed from the list of goal formulae.

In  future  versions  of  the  prover  the  strategy  of  applying  a  proof  by  cases  immediately  may  be
replaced by a more sophisticated strategy.

If the proof is not finished, the next rewriting step is done by the next loop iteration. Only the new
formulae of the previous iteration are used to derive more new formulae. This avoids multiple applica-
tions of a rule on a certain formula. So every formula gets exactly one chance to get rewritten by a
present rule.

Technically  the  rewriting  step  itself  is  done  by  applying  all  matching  rules  on  each  of  the  current
formulae. For every formula and every rule all matching positions are located and the rule is applied
on each of this positions. The application is done by instantiating all variables of the rule and replac-
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ing the old term by the new term. If the new term contains a case distinction then in every case the
replacement is done separately. Hence a case distinction would never occur in a subterm.

2.1.5 Rewriting an Equality

For rewriting an equality a specialized loop of rewriting steps is used. Instead of rewriting the entire
formula the terms of each side of the equality will be rewritten separately. Therefore the exit condi-
tion of the rewriting loop has to be different. The equality is true if a term occurs on both sides of the
equality.

In each loop iteration rewriting is applied on the terms of the left hand side first to derive new terms.
Then the  new terms are compared with  the terms on the right  hand side.  If  a  term appears  on  both
sides the loop is aborted and "Proved" is returned. Otherwise if there were conditional rules used to
rewrite  terms  on  the  left  hand  side  the  conditions  of  the  cases  are  tried  to  prove  or  disprove.  This
elimination of cases (see subsection 2.1.6) may find new unconditional terms. Again the truth of the
equality  is  checked  by  comparison  of  the  terms  on  both  sides  of  the  equation.  Next  the  right  hand
side is treated in the same way as it was done with the left hand side. 

If  there  are  unproved  conditional  rewriting  steps  left  at  the  end  of  an  iteration,  a  proof  by  cases  is
done like in the general case for arbitrary formulae. Otherwise the next iteration is started. Similar to
the general case only the new terms of each side will be used for rewriting in the next iteration.

2.1.6 Proving a Case or Eliminating Cases

If conditional  rules are used for rewriting a formula, the conditions of one case has to be proved in
order  to  get  an  unconditional  formula.  Unconditional  formulae  or  terms  can  be  used  for  simple
rewriting. To use a certain case it is necessary to prove the condition of that case and to disprove the
conditions  of  all  cases  above  (see  REF  CODE:  Syntax).  Therefore  a  loop  over  all  conditions  is
performed. 

For  each  condition  the  prover  is  called  recursively  to  prove  or  to  disprove  the  condition  formula.
Disproving is  done by proving the negation of a goal.  If  the condition can be proved then the loop
aborts because no other case can be valid. If the condition is disproved then this case can be removed
from the list of cases and the next condition will be handled. If the prover is neither able to prove nor
to disprove the condition of a case, then this case remains for a possible proof by cases.

The elimination of cases returns the formula of a case which condition was proved. If no case could
be determined, then the remaining cases will be return as a valid formula with case distinction. Cases
with disproved conditions are removed from this case distinction.
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2.1.7 Proof By Cases

A proof by cases is done, if in the rewriting process after applying a conditional rule no case can be
verified by the prover. The rewriting process chooses the first formula where some cases are left after
a elimination of cases.  This strategy may be extended by a more sophisticated algorithm in a future
version.

The  prover  option  ProveByCases  allows  disabling  the  mechanism  of  proving  by  cases  for  a
prover call. With the option PBCLevel  the number of proofs by cases can be limited in depth. For
example, if PBCLevel = 2  then proving by cases is deactivated after the proof is split into cases
for the second time.

A requirement for a proof by cases is that the defined cases together cover all possible cases. This is
guaranteed by claiming that the condition of the last case is the formula True.  In other words, it is
necessary that case distinction has an "otherwise" or default case.

Technically  the  proof  is  split  into  branches.  Each  case  is  proved independently.  The conditions  for
the  current  case  are  added  to  the  knowledge  base  and  the  rewriting  process  is  started  again.  The
additional knowledge causes some new rewrite rule. With this rules it is possible to prove at least the
conditions for the current case. The rewriting process will apply the conditional rule which induced
the proof by cases again on the goal. But now the prover is able to prove the condition and gets an
unconditional formula.

If for a case the goal could not be rewritten to True, then the proof by cases fails immediately. If the
goal can be proved in all cases, then the goal is proved.
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2.2 Implementation

The  implementation  in  Mathematica  is  done  within  a  package.  This  creates  a  new  namespace  and
allows  using  private  functions  and  symbols.  Only  the  external  interface  is  reachable  by  the  user.
Using the feature of packages it is possible to ensure that the internal implementation is not affected
by other computations in the current user session. 

For executing the code of the prover no other packages are necessary. Currently there are no depende-
cies of the implementation to the code of Theorema. In later versions the code may be embedded into
Theorema in order to use some facilities provided there. 

As usual in Mathematica a package is loaded by the command:

Needs "SC`ProverKernel`" ;

Note that the package file must be in a subdirectory named 'SC' of a directory listed in the Mathemat-
ica variable $Path.

For  the  source  code  with  implementation  notes  see  appendix:  package  SC`TrustedKernel.  (REF
source code)

2.3 Limitations and Possible Extensions

Currently there are some limitations. The prover can only handle formulae with a single case distinc-
tion. Nested case distinctions and combined case distinctions need some preparation. In general it is
possible to extend the prover for formulae of this kind. But it would be better to use a preprocessor to
do this before. Otherwise the code of the prover gets more difficult to understand.

The  algorithm  to  choose  a  case  distinction  for  splitting  into  branches  is  currently  very  simple.  It
chooses just the first occurring candidate. The prover will get more powerful but also much slower if
every possible set of branches is tried. Some future research may find a better algorithm for combin-
ing power and low runtime complexity.

While proving case branches the prover starts rewriting without using the fact that there is already a
rewriting  rule  which  matches  for  sure:  The  rule  that  induced  the  latest  split.  Currently  the  prover
searches again for all matching rules and finds surprisingly at least the said rule. It would be better to
apply this rule immediately. From a theoretical point of view there is no difference because the rule
gets applied in any case.  But it  would decrease the runtime because a subproof is necessary to find
the appropriate case of the rule again.  The reason why this feature is not  implemented yet is that it
would either need some more variables to transfer the rule to the function where it is needed or use
some  stack  managing  functions  from  Mathematica  (e.g.  Sow  and  Reap)  which  are  difficult  to
understand for people who are not so well trained in Mathematica.

For the integration into Theorema it would be necessary to use a preprocessor to simplify the quanti-
fier generated by the Theorema  input parser.  There are already some internal routines to do at least
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parts  of  this  job  (see  SimplifyQuantifier  in  package  Theorema`Provers`
PredicateLogic`Auxiliary` ).  Especially  the  syntax  elements  for  induction  (see  section  3)
needs  some  extra  regards.  All  other  elements  of  the  user  language  are  already  in  compatible  with
Theorema.

2.3.1 Technical Details for the Integration in Theorema

There are some slight differences to Theorema  syntax.  The universal quantifier ™ForAll  has only
two arguments: the symbol of the bound variable and the bound formula. In Theorema quantifier has
three arguments: a list containing variables with ranges, a condition formula, and the bound formula.
A translation from the SC prover syntax to Theorema syntax may be like this:

™ForAll x_, formula_ →

™ForAll •Range •simpleRange x , True, formula

The  reverse  translation  does  not  work  for  the  general  case,  but  most  universal  quantified  formulae
may be translated after simplifying the formula.  The condition has to be moved into the formula as
an implication and some special ranges have to be converted to simple ranges. Theorema has already
a  function  to  do  this:  SimplifyQuantifier  (see  package  Theorema`Provers`
PredicateLogic`Auxiliary` ). If there is more than one variable then the formula has to be
converted into some nested quantified formulae with only one variable each.

Another  difference  is  related  to  the induction.  In  Theorema  there  is  no  special  syntax for  inductive
domains  yet.  This  may  be  added  as  a  new range  object  for  inductive  variables  or  determined  from
some special domains as range.
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3 Induction Prover

3.1 Inductive Domains

For  inductive  defined  domains  it  is  a  great  enhancement  to  use  the  possibility  of  proving  by  the
induction  principle.  It  allows  using  more  knowledge  if  some formula  should  be  proven  for  all  ele-
ments in the inductive domain. Hence a bigger set of formulae is provable by the prover [Buch96b].

Inductive domains are defined by one or more base elements and one ore more constructors. In some
literature, like in [GoJu98],  the basis elements are called blocks  and a constructor operator.  In gen-
eral, inductive domains satisfy the induction law [GoJu98, 1.1.9.]:

If
every base element satisfies the property P, and 
every constructor preserves the property P,

then
every element of the inductive domain satisfies the property P.

To  keep  the  prover  simple,  only  two  kinds  of  inductive  domains  are  currently  implemented.  Other
kinds may be added in the future in the same way. The first type is restricted to domains with only
one base element and one constructor. A well known example for this kind is the domain of natural
numbers with base element "0" and constructor "succ", the successor function. The second type is for
all inductive domains with a strict partial order. The set of natural numbers is also an example for this
kind  (with  usual  "less  than"  ordering  relation).  Another  example  is  the  domain  of  lists  with  "less
than" order on the list length.

Proving  by  induction  is  an  additional  technique  for  proving  formulae with  universal  quantifiers  (in
addition to the "arbitrary but fixed" technique of predicate logic), which is valid only for universally
quantified formulae over inductive domains.  Hence it  is natural to embed this as a special case into
the  SC  prover.  The  application  of  the  induction  principle  is  controlled  by  the  prover  option
Induction. 

Proving  by  induction  is  a  special  case  for  proving  formulae  with  universal  quantifier.  Hence  it  is
natural to embed this as a special case into the SC prover. The application of the induction principle
is controlled by the prover option Induction. 

The  language  used  in  the  prover  is  an  untyped  version  of  predicate  logic.  It  is  the  similar  to  the
version in Theorema [Tma00a]. Hence, the prover can not check types on the level of syntax. So in
the  rewriting  algorithm does  not  perform checks  on  the  domain  of  the  variable  before  rewriting.  If
there  are  different  kinds  of  inductive  domains  in  a  theory  or  if  inductive  domains  are  mixed  with
non–inductive domains then the user has to make sure that invalid applications of some knowledge
are not possible. This can be done by introducing additional condition in the formulae. That is why
the prover treats bound variables in the knowledge whether they are over inductive domains or not.
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3.2 Additional Syntax Elements For Formulae

It  is  necessary for the prover  to know which bound variables belong to an inductive domain. Since
there are different kinds of inductive domains the prover also needs some more information about the
domain  itself.  Both  is  satisfied  by  adding  a  new syntax  element  for  inductive  domains.  The syntax
element •ind indicates that a variable is bound over an inductive domain. To distinguish the differ-
ent kinds of inductive domains the prover expects in one case the base element and the unary construc-
tor  as  formula  symbols.  In  the  other  case  it  expects  only  the  symbol  for  the  ordering  relation  as  a
binary function.

Warning: Note that the prover uses this symbol as proving hint in goal formulae only. If it occurs in
the knowledge base it is ignored by the prover.

For more details on this symbol see the source code (see section A.2).

3.3 Implementation

The implementation of the induction prover is completely embedded into the SC prover (REF source
code). There are two definitions for the special cases of universal quantified formulae together with
some  auxiliary  functions  for  the  induction  base  and  the  induction  step.  Some  other  auxiliary  func-
tions  are  used  from the  SC prover.  The  coded  version  covers  complete  induction  [BuLi81,  p.  180]
and course of value induction [BuLi81, p. 184].

The new syntax element for the variables over inductive domains forces may also occur in the knowl-
edge base. Hence it is necessary to extend the process of generating of the rewrite rules. This is done
by removing the •ind indicator and use it as an usual bound variable.

3.3.1 How to Add Further Domains?

It  is  possible  to  add further  inductive domains with  different  structure.  This  can not  be done in the
user  language.  It  is  necessary  to  program  some  lines  of  Mathematica  code.  Four  steps  have  to  be
done:

è Define a syntax pattern •ind[symbol,...] different from existing inductive domains.

è Add a definition in the prover for this syntax pattern.

è In this definition call the prover for all sub goals.

è Extend the existing proof tracer definitions (see section 4)
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4 Practical Aspects: Proof Tracer

4.1 Motivation and Design

The SC prover contains the implementation of the necessary logical transformation steps. It is able to
return  "Proved"  if  a  proof  was  successful  or  "Failed"  otherwise.  But  there  is  no  additional
output, why a proof succeeds or fails. For the practical use of a prover it is necessary to have some
tools to inspect the failed proofs.  On the other hand the implementation of a prover with additional
output gets more difficult  to read, because some parts of the code are only for producing a more or
less nice output. Since the code of the prover describes the built in logic of the prover, it is important
to have a well structured and as simple as possible source code. 

One  way  to  bring  these  oppositional  demands  together  is  to  have  two  different  source  codes:  One
without output generation and another with it. By the way this makes it more difficult to maintain the
code. All changes of the prover source code have to be done twice. A new problem occurs: How one
can ensure that both implementations behave in the same way?

Another  way  to  solve  this  problem is  very  natural:  If  there  is  a  machine  which  should  be  checked
why no product  is  generated,  everybody would  try  to  look at  the machine while  it  is  working.  The
same  strategy  may  be  used  in  software  development:  Let  the  program  run  within  an  environment
which allows monitoring the execution flow and protocolling the executed steps.

Mathematica  is an interpreted programming language and it has such an environment to monitor the
execution.  Therefore  the  proof  finding  can  be  done  by  the  SC  prover  and  the  output  generation  is
done by a monitoring algorithm. So it is possible to use the SC prover without any changes and there
is a facility to inspect the failed proofs.

The use of the original SC prover has the big advantage that if the SC prover works correctly then the
proof tracer at least returns the correct result, even if there are bugs in the proof tracer. Such bugs can
affect the proof output only, but not the result of the proof. 

There are still dependencies between the prover and the proof tracer, but they are only in one direc-
tion. Modifications of the prover implementation forces usually changes in the proof tracer, because
it depends on the source code of the prover. On the other hand modifications of the proof tracer can
be done independently of the prover. It is easily conceivable that there are different proof tracers for
one prover. E.g. one produces just simple text output, another generates a full Theorema proof object
which can be displayed as a written proof or view by focus windows [Buch00].

In the current version of ProofTracer the output is done only as simple text output and formulae and
terms  are  displayed  in  the  internal  user  language.  Using  the  features  of  Theorema  allows  printing
formulae  in  traditional  mathematical  style.  E.g.  the  variable  is  printed  below the  quantifier  and  the
ususal symbols like " and fl are used [Tma98].
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4.2 Implementation

In Mathematica  a  program is  nothing else then a  Mathematica  expression which will  be evaluated.
The command Trace  allows to  get all  intermediate steps  of  the evaluation. For the proof tracer the
related command TraceScan  is  used. This command evaluates two functions on every intermediate
expression  of  certain  pattern.  One  function  before  the  expression  is  evaluated,  the  other  after  the
evaluation. This gives the opportunity generate some kind of a proof while the prover is running.

Like the implementation of the prover the proof tracer is implemented within its own package. The
package consists of two main parts. First there is the interface for external caller. The main function
calls the original SC prover wrapped by TraceScan. It handles also the options for the prover and the
tracer.  The parameter of  TraceScan define which expressions should be monitored and which func-
tions will be called while the evaluation.

The second part reflects the implementation of the SC prover. For most definitions in the SC prover
there  are corresponding definitions in  the  proof  tracer.  The same order  of  the  definitions  simplifies
the maintenance of the source code.

The proof  tracer  prints  immediately  an  output  to  the current  notebook.  For  better  readability  of  the
output  the  lines  have an  indent  depending on the  depth  of  the  proof.  At  some points,  e.g.  if  a  sub-
proof is done, the proof tracer goes one level deeper in the proof. This is done in the proof tracer only
and has nothing to do with the SC prover itself.

In the appendix there is the source code with comments on some technical issues (see section A.3).
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5 Case Studies
In  this  section  the  functionality  of  the  SC prover  with  induction  is  present  by  some examples.  The
definitions  and  details  on  theory  exploration  in  this  theory  can  be found  in  [Tma99a].  An example
with automated lemmata generation in Theorema is given in [Tma99b].

Before the SC prover and the proof tracer are available in Mathematica  the corresponding packages
have to be loaded:

Needs "SC`ProverKernel`" ;
Needs "SC`Tracer`" ;

5.1 Natural Numbers: Commutativity of Addition

5.1.1 Definition of Plus

The usual addition of natural numbers is defined in this way [Shoe73, p.22]:

"
x

x + 0 = 0

"
x,y

x + y+ = x + y +

where x and y are natural numbers and x+denotes the successor of x. The infix notation x + y denotes
the application of the binary function Plus to x and y: Plus x, y

This function Plus has some interesting properties like commutativity:

"
x,y

x + y = y + x

This  property  can  be  shown  by  the  SC  prover  with  induction.  First  translate  the  formulae  into  the
syntax (see ) of the SC prover:

DefPlus1 = ™ForAll x, ™Equal ™Plus x, 0 , x ;
DefPlus2 =

™ForAll x, ™ForAll y, ™Equal ™Plus x, s y , s ™Plus x, y ;

5.1.2 Theorem:  Commutativity of Plus

In the formula of the theorem •ind indicates that the variables x and y are from an inductive domain
with base element 0 and constructor s (successor):

ThmPlus1 = ™ForAll •ind x, 0, s ,
™ForAll •ind y, 0, s , ™Equal ™Plus x, y , ™Plus y, x ;
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Now the SC prover is called with the theorem:

SCProver ThmPlus1, DefPlus1, DefPlus2

Failed

5.1.3 Proving with SC Prover and Proof Tracer

Since  the  proof  fails  we  have  to  find  out  why.  Therefore  we  can  use  the  proof  tracer;  the  call  is
similar to the call of the SC prover:

SCProof ThmPlus1, DefPlus1, DefPlus2

0 : Proof of:
™ForAll •ind x, 0, s , ™ForAll •ind y, 0, s , ™Equal ™Plus x, y , ™Plus y, x

0 : Prove by induction:
™ForAll •ind x, 0, s , ™ForAll •ind y, 0, s , ™Equal ™Plus x, y , ™Plus y, x

0 : Prove base case: ™ForAll •ind y, 0, s , ™Equal ™Plus 0, y , ™Plus y, 0

1 : Prove by induction: ™ForAll •ind y, 0, s , ™Equal ™Plus 0, y , ™Plus y, 0

1 : Prove base case: ™Equal ™Plus 0, 0 , ™Plus 0, 0

2 : This formula is true: ™Equal ™Plus 0, 0 , ™Plus 0, 0

1 : Assume induction hypotheses : ™Equal ™Plus 0, •fix y, 1 , ™Plus •fix y, 1 , 0
and prove induction step : ™Equal ™Plus 0, s •fix y, 1 , ™Plus s •fix y, 1 , 0

2 : Rewrite both sides of the equality:
™Plus 0, s •fix y, 1 ™Plus s •fix y, 1 , 0

2 : Rewrite lhs : ™Plus 0, s •fix y, 1 to s ™Plus 0, •fix y, 1

2 : Rewrite rhs : ™Plus s •fix y, 1 , 0 to s •fix y, 1

2 : Rewrite lhs : s ™Plus 0, •fix y, 1 to s ™Plus •fix y, 1 , 0

2 : Rewrite lhs : s ™Plus •fix y, 1 , 0 to s •fix y, 1

2 : The term s •fix y, 1
appears on both sides of the equality, hence the equality is true.

0 : Assume induction hypotheses :
™ForAll •ind y, 0, s , ™Equal ™Plus •fix x, 1 , y , ™Plus y, •fix x, 1
and prove induction step :
™ForAll •ind y, 0, s , ™Equal ™Plus s •fix x, 1 , y , ™Plus y, s •fix x, 1

1 : Prove by induction:
™ForAll •ind y, 0, s , ™Equal ™Plus s •fix x, 1 , y , ™Plus y, s •fix x, 1

1 : Prove base case: ™Equal ™Plus s •fix x, 1 , 0 , ™Plus 0, s •fix x, 1

2 : Rewrite both sides of the equality:
™Plus s •fix x, 1 , 0 ™Plus 0, s •fix x, 1

2 : Rewrite lhs : ™Plus s •fix x, 1 , 0 to s •fix x, 1

2 : Rewrite rhs : ™Plus 0, s •fix x, 1 to s ™Plus 0, •fix x, 1

Failed
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Now we can see what happens. First the induction on x  begins. In the base case x = 0 the induction
on y is done. The base case y = 0 is simply true because both sides of the equation are identical. Next
is the induction step: Assume the property for y and prove it for s y .  After some rewriting steps of
the left and the right hand side again identical formulae are found. This finishes the base x = 0.

The  induction  step  for  s x  starts  also  with  an  induction  on  y.  But  the  base  case  y = 0  fails.  The
prover is unable to rewrite the formula:

0 + x1
+    to   x1

+

This leads to the idea to introduce a lemma which just allows this rewriting step:

"
x

0 + x = x

LemmaPlus1 = ™ForAll •ind x, 0, s , ™Equal ™Plus 0, x , x ;

Try to prove this lemma:

SCProver LemmaPlus1, DefPlus1, DefPlus2

Proved

The  lemma  is  valid;  hence  we  can  add  it  to  the  knowledge  base  and  try  the  proof  of  the  theorem
again:

SCProof ThmPlus1, DefPlus1, DefPlus2, LemmaPlus1

The  beginning  of  the  proof  is  the  same as  before,  let's  starting with  the  induction  step  x  to
s x :

0 : Assume induction hypotheses :
™ForAll •ind y, 0, s , ™Equal ™Plus •fix x, 1 , y , ™Plus y, •fix x, 1
and prove induction step :
™ForAll •ind y, 0, s , ™Equal ™Plus s •fix x, 1 , y , ™Plus y, s •fix x, 1

1 : Prove by induction:
™ForAll •ind y, 0, s , ™Equal ™Plus s •fix x, 1 , y , ™Plus y, s •fix x, 1

1 : Prove base case: ™Equal ™Plus s •fix x, 1 , 0 , ™Plus 0, s •fix x, 1

2 : Rewrite both sides of the equality:
™Plus s •fix x, 1 , 0 ™Plus 0, s •fix x, 1

2 : Rewrite lhs : ™Plus s •fix x, 1 , 0 to s •fix x, 1

2 : Rewrite rhs : ™Plus 0, s •fix x, 1
to s •fix x, 1 , s ™Plus 0, •fix x, 1

2 : The term s •fix x, 1
appears on both sides of the equality, hence the equality is true.

1 : Assume induction hypotheses :
™Equal ™Plus s •fix x, 1 , •fix y, 1 , ™Plus •fix y, 1 , s •fix x, 1
and prove induction step :
™Equal ™Plus s •fix x, 1 , s •fix y, 1 , ™Plus s •fix y, 1 , s •fix x, 1

2 : Rewrite both sides of the equality:
™Plus s •fix x, 1 , s •fix y, 1 ™Plus s •fix y, 1 , s •fix x, 1
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2 : Rewrite lhs : ™Plus s •fix x, 1 , s •fix y, 1
to s ™Plus s •fix x, 1 , •fix y, 1

2 : Rewrite rhs : ™Plus s •fix y, 1 , s •fix x, 1
to s ™Plus s •fix y, 1 , •fix x, 1

2 : Rewrite lhs : s ™Plus s •fix x, 1 , •fix y, 1
to s ™Plus •fix y, 1 , s •fix x, 1

2 : Rewrite lhs : s ™Plus •fix y, 1 , s •fix x, 1
to s s ™Plus •fix y, 1 , •fix x, 1

Failed

Now the induction step on x fails again. The induction base y = 0 works fine with the lemma, but the
induction step of y fails. The prover is unable to rewrite this equation:

y1 + x1
+ + = y1

+ + x1
+

A second lemma will help:

"
x,y

x+ + y = x + y +

LemmaPlus2 = ™ForAll x, ™ForAll •ind y, 0, s ,
™Equal ™Plus s x , y , s ™Plus x, y ;

Note  that  the  variable  x  is  not  declared  as  a  inductive  variable  although  it  is  one.  In  this  case  it  is
sufficient to do induction on y only. But induction on x is also possible.

SCProver LemmaPlus2, DefPlus1, DefPlus2

Proved

The lemma is true, so add it to the knowledge base:

SCProver ThmPlus1, DefPlus1, DefPlus2, LemmaPlus1, LemmaPlus2

Proved

... and the proof is done.

5.2 Natural Numbers: Multiplication

This case study presents some theorems about multiplication of natural numbers. They are all proven
by  the  SC  prover  with  induction.  The  focus  of  this  case  study  is  on  building  up  a  theory  without
logical  steps.  Failed  proof  attempts  and  details  on  theory  exploration  are  omitted  here.  We present
only  the  theorems  and  lemmata  in  traditional  mathematical  style  and  translated  into  user  language.
The  prover  is  called  with  these  formulae,  but  no  output  with  ProofTracer  is  generated.  The  proofs
have similar style as in the case study above, but the occurring formulae are longer.
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5.2.1 Definition of Times

First we define the operation Times as the usual multiplication on the natural numbers [Shoe73,p.22]:

"
x

x * 0 = 0

"
x,y

x * y+ = x * y + x

DefTimes1 = ™ForAll x, ™Equal ™Times x, 0 , 0 ;
DefTimes2 = ™ForAll x,

™ForAll y, ™Equal ™Times x, s y , ™Plus ™Times x, y , x ;

5.2.2 Associativity of Plus 

For some properties of the multiplication the associativity of the addition is necessary.

"
x,y,x

x + y + z = x + y + z

ThmPlus2 = ™ForAll x, ™ForAll •ind y, 0, s , ™ForAll z,
™Equal ™Plus ™Plus x, y , z , ™Plus x, ™Plus y, z ;

SCProver ThmPlus2, DefPlus1, DefPlus2, ThmPlus1

Proved

Let's have a look on the proving flow:

SCProof ThmPlus2, DefPlus1, DefPlus2, ThmPlus1

0 : Proof of: ™ForAll x, ™ForAll •ind y, 0, s ,
™ForAll z, ™Equal ™Plus ™Plus x, y , z , ™Plus x, ™Plus y, z

0 : Take •fix x, 1 arbitrary but fixed and prove: ™ForAll •ind y, 0, s ,
™ForAll z, ™Equal ™Plus ™Plus •fix x, 1 , y , z , ™Plus •fix x, 1 , ™Plus y, z

0 : Prove by induction: ™ForAll •ind y, 0, s ,
™ForAll z, ™Equal ™Plus ™Plus •fix x, 1 , y , z , ™Plus •fix x, 1 , ™Plus y, z

0 : Prove base case:
™ForAll z, ™Equal ™Plus ™Plus •fix x, 1 , 0 , z , ™Plus •fix x, 1 , ™Plus 0, z

1 : Take •fix z, 1 arbitrary but fixed and prove:
™Equal ™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 , ™Plus •fix x, 1 , ™Plus 0, •fix z, 1

1 : Rewrite both sides of the equality:
™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 ™Plus •fix x, 1 , ™Plus 0, •fix z, 1

1 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 to
™Plus •fix x, 1 , •fix z, 1 , ™Plus •fix z, 1 , ™Plus •fix x, 1 , 0 ,
™Plus ™Plus 0, •fix x, 1 , •fix z, 1

1 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus 0, •fix z, 1 to
™Plus •fix x, 1 , ™Plus •fix z, 1 , 0 , ™Plus ™Plus 0, •fix z, 1 , •fix x, 1

1 : Rewrite lhs : ™Plus •fix x, 1 , •fix z, 1 ,
™Plus •fix z, 1 , ™Plus •fix x, 1 , 0 , ™Plus ™Plus 0, •fix x, 1 , •fix z, 1
to ™Plus •fix z, 1 , •fix x, 1 , ™Plus •fix z, 1 , ™Plus 0, •fix x, 1
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1 : Rewrite rhs :
™Plus •fix x, 1 , ™Plus •fix z, 1 , 0 , ™Plus ™Plus 0, •fix z, 1 , •fix x, 1
to ™Plus •fix x, 1 , •fix z, 1 , ™Plus ™Plus •fix z, 1 , 0 , •fix x, 1

1 : The term ™Plus •fix x, 1 , •fix z, 1
appears on both sides of the equality, hence the equality is true.

0 : Assume induction hypotheses :
™ForAll z, ™Equal ™Plus ™Plus •fix x, 1 , •fix y, 1 , z ,
™Plus •fix x, 1 , ™Plus •fix y, 1 , z

and prove induction step : ™ForAll z, ™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 , z ,
™Plus •fix x, 1 , ™Plus s •fix y, 1 , z

1 : Take •fix z, 1 arbitrary but fixed and prove:
™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1 ,
™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1

1 : Rewrite both sides of the equality:
™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1
™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1

1 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1
to ™Plus s ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1 ,
™Plus •fix z, 1 , ™Plus •fix x, 1 , s •fix y, 1 ,
™Plus ™Plus s •fix y, 1 , •fix x, 1 , •fix z, 1

1 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1
to ™Plus •fix x, 1 , ™Plus •fix z, 1 , s •fix y, 1 ,
™Plus ™Plus s •fix y, 1 , •fix z, 1 , •fix x, 1

1 : Rewrite lhs : ™Plus s ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1 ,
™Plus •fix z, 1 , ™Plus •fix x, 1 , s •fix y, 1 ,
™Plus ™Plus s •fix y, 1 , •fix x, 1 , •fix z, 1
to ™Plus s ™Plus •fix y, 1 , •fix x, 1 , •fix z, 1 ,
™Plus •fix z, 1 , s ™Plus •fix x, 1 , •fix y, 1 ,
™Plus •fix z, 1 , ™Plus s •fix y, 1 , •fix x, 1

1 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus •fix z, 1 , s •fix y, 1 ,
™Plus ™Plus s •fix y, 1 , •fix z, 1 , •fix x, 1
to ™Plus •fix x, 1 , s ™Plus •fix z, 1 , •fix y, 1 ,
™Plus ™Plus •fix z, 1 , s •fix y, 1 , •fix x, 1

1 : Rewrite lhs : ™Plus s ™Plus •fix y, 1 , •fix x, 1 , •fix z, 1 ,
™Plus •fix z, 1 , s ™Plus •fix x, 1 , •fix y, 1 ,
™Plus •fix z, 1 , ™Plus s •fix y, 1 , •fix x, 1
to s ™Plus •fix z, 1 , ™Plus •fix x, 1 , •fix y, 1 ,
™Plus •fix z, 1 , s ™Plus •fix y, 1 , •fix x, 1

1 : Rewrite rhs : ™Plus •fix x, 1 , s ™Plus •fix z, 1 , •fix y, 1 ,
™Plus ™Plus •fix z, 1 , s •fix y, 1 , •fix x, 1
to s ™Plus •fix x, 1 , ™Plus •fix z, 1 , •fix y, 1 ,
™Plus s ™Plus •fix z, 1 , •fix y, 1 , •fix x, 1 ,
™Plus •fix x, 1 , s ™Plus •fix y, 1 , •fix z, 1

1 : Rewrite lhs : s ™Plus •fix z, 1 , ™Plus •fix x, 1 , •fix y, 1 ,
™Plus •fix z, 1 , s ™Plus •fix y, 1 , •fix x, 1
to s ™Plus •fix z, 1 , ™Plus •fix y, 1 , •fix x, 1 ,
s ™Plus ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1

1 : Rewrite rhs : s ™Plus •fix x, 1 , ™Plus •fix z, 1 , •fix y, 1 ,
™Plus s ™Plus •fix z, 1 , •fix y, 1 , •fix x, 1 ,
™Plus •fix x, 1 , s ™Plus •fix y, 1 , •fix z, 1
to s ™Plus •fix x, 1 , ™Plus •fix y, 1 , •fix z, 1 ,
s ™Plus ™Plus •fix z, 1 , •fix y, 1 , •fix x, 1 ,
™Plus s ™Plus •fix y, 1 , •fix z, 1 , •fix x, 1
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1 : Rewrite lhs : s ™Plus •fix z, 1 , ™Plus •fix y, 1 , •fix x, 1 ,
s ™Plus ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1
to s ™Plus •fix x, 1 , ™Plus •fix y, 1 , •fix z, 1 ,
s ™Plus ™Plus •fix y, 1 , •fix x, 1 , •fix z, 1

1 : The term s ™Plus •fix x, 1 , ™Plus •fix y, 1 , •fix z, 1
appears on both sides of the equality, hence the equality is true.

Proved

We see that the proof is done in a way like humans will do. First induction is applied and then in the
base case as well as in the induction step case the rewriting engine of the SC prover finds identical
terms on both sides of the equality.

5.2.3 Associativity of Plus - Alternative Proof with Double Induction

The  proof  of  associativity  in  the  section  above  uses  the  commutativity  of  ™Plus.  It  is  possible  to
proof associativity without further knowledge. But in this case nested induction is necessary.

ThmPlus2a =

™ForAll x, ™ForAll •ind y, 0, s , ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus x, y , z , ™Plus x, ™Plus y, z ;

We define the theorem again, but this time we declare induction for the variables y and z.

SCProver ThmPlus2a, DefPlus1, DefPlus2

Proved

The proof was successful. We look at the proof:

SCProof ThmPlus2a, DefPlus1, DefPlus2

0 : Proof of: ™ForAll x, ™ForAll •ind y, 0, s ,
™ForAll •ind z, 0, s , ™Equal ™Plus ™Plus x, y , z , ™Plus x, ™Plus y, z

0 : Take •fix x, 1 arbitrary but fixed and prove:
™ForAll •ind y, 0, s , ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus •fix x, 1 , y , z , ™Plus •fix x, 1 , ™Plus y, z

0 : Prove by induction: ™ForAll •ind y, 0, s , ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus •fix x, 1 , y , z , ™Plus •fix x, 1 , ™Plus y, z

0 : Prove base case: ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus •fix x, 1 , 0 , z , ™Plus •fix x, 1 , ™Plus 0, z

1 : Prove by induction: ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus •fix x, 1 , 0 , z , ™Plus •fix x, 1 , ™Plus 0, z

1 : Prove base case:
™Equal ™Plus ™Plus •fix x, 1 , 0 , 0 , ™Plus •fix x, 1 , ™Plus 0, 0

2 : Rewrite both sides of the equality:
™Plus ™Plus •fix x, 1 , 0 , 0 ™Plus •fix x, 1 , ™Plus 0, 0

2 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , 0 , 0 to ™Plus •fix x, 1 , 0

2 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus 0, 0 to ™Plus •fix x, 1 , 0
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2 : The term ™Plus •fix x, 1 , 0
appears on both sides of the equality, hence the equality is true.

1 : Assume induction hypotheses :
™Equal ™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 , ™Plus •fix x, 1 , ™Plus 0, •fix z, 1
and prove induction step : ™Equal ™Plus ™Plus •fix x, 1 , 0 , s •fix z, 1 ,
™Plus •fix x, 1 , ™Plus 0, s •fix z, 1

2 : Rewrite both sides of the equality: ™Plus ™Plus •fix x, 1 , 0 , s •fix z, 1
™Plus •fix x, 1 , ™Plus 0, s •fix z, 1

2 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , 0 , s •fix z, 1 to
s ™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 , ™Plus •fix x, 1 , s •fix z, 1

2 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus 0, s •fix z, 1
to ™Plus •fix x, 1 , s ™Plus 0, •fix z, 1

2 : Rewrite lhs :
s ™Plus ™Plus •fix x, 1 , 0 , •fix z, 1 , ™Plus •fix x, 1 , s •fix z, 1 to
s ™Plus •fix x, 1 , •fix z, 1 , s ™Plus •fix x, 1 , ™Plus 0, •fix z, 1

2 : Rewrite rhs : ™Plus •fix x, 1 , s ™Plus 0, •fix z, 1
to s ™Plus •fix x, 1 , ™Plus 0, •fix z, 1

2 : The term s ™Plus •fix x, 1 , ™Plus 0, •fix z, 1
appears on both sides of the equality, hence the equality is true.

0 : Assume induction hypotheses :
™ForAll •ind z, 0, s , ™Equal ™Plus ™Plus •fix x, 1 , •fix y, 1 , z ,
™Plus •fix x, 1 , ™Plus •fix y, 1 , z

and prove induction step : ™ForAll •ind z, 0, s ,
™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 , z ,
™Plus •fix x, 1 , ™Plus s •fix y, 1 , z

1 : Prove by induction:
™ForAll •ind z, 0, s , ™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 , z ,
™Plus •fix x, 1 , ™Plus s •fix y, 1 , z

1 : Prove base case: ™Equal
™Plus ™Plus •fix x, 1 , s •fix y, 1 , 0 , ™Plus •fix x, 1 , ™Plus s •fix y, 1 , 0

2 : Rewrite both sides of the equality: ™Plus ™Plus •fix x, 1 , s •fix y, 1 , 0
™Plus •fix x, 1 , ™Plus s •fix y, 1 , 0

2 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , s •fix y, 1 , 0 to
™Plus s ™Plus •fix x, 1 , •fix y, 1 , 0 , ™Plus •fix x, 1 , s •fix y, 1

2 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus s •fix y, 1 , 0
to ™Plus •fix x, 1 , s •fix y, 1

2 : The term ™Plus •fix x, 1 , s •fix y, 1
appears on both sides of the equality, hence the equality is true.

1 : Assume induction hypotheses :
™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1 ,
™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1

and prove induction step : ™Equal ™Plus ™Plus •fix x, 1 , s •fix y, 1 ,
s •fix z, 1 , ™Plus •fix x, 1 , ™Plus s •fix y, 1 , s •fix z, 1

2 : Rewrite both sides of the equality:
™Plus ™Plus •fix x, 1 , s •fix y, 1 , s •fix z, 1
™Plus •fix x, 1 , ™Plus s •fix y, 1 , s •fix z, 1

2 : Rewrite lhs : ™Plus ™Plus •fix x, 1 , s •fix y, 1 , s •fix z, 1
to s ™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1 ,
™Plus s ™Plus •fix x, 1 , •fix y, 1 , s •fix z, 1

2 : Rewrite rhs : ™Plus •fix x, 1 , ™Plus s •fix y, 1 , s •fix z, 1
to ™Plus •fix x, 1 , s ™Plus s •fix y, 1 , •fix z, 1
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2 : Rewrite lhs : s ™Plus ™Plus •fix x, 1 , s •fix y, 1 , •fix z, 1 ,
™Plus s ™Plus •fix x, 1 , •fix y, 1 , s •fix z, 1
to s ™Plus s ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1 ,
s ™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1

2 : Rewrite rhs : ™Plus •fix x, 1 , s ™Plus s •fix y, 1 , •fix z, 1
to s ™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1

2 : The term s ™Plus •fix x, 1 , ™Plus s •fix y, 1 , •fix z, 1
appears on both sides of the equality, hence the equality is true.

Proved

The prover  takes  variable  x  arbitrary  but  fixed.  First  induction  is  applied  for  the  variable  y  and  in
each case – base case and induction step – induction is applied for the variable z.

5.2.4 Commutativity of Times 

"
x,y

x * y = y * x

ThmTimes1 = ™ForAll •ind x, 0, s ,
™ForAll y, ™Equal ™Times x, y , ™Times y, x ;

For the proof of commutativity we will need some lemmata, similar to the lemmata for the addition.
They  can  be  found  again  by  inspection  the  failed  proofs.  How  they  are  found  is  described  in
[Tma99a].

"
x

0 * x = 0

"
x,y

x+ * y = x * y + y

LemmaTimes1 = ™ForAll •ind x, 0, s , ™Equal ™Times 0, x , 0 ;
LemmaTimes2 = ™ForAll x, ™ForAll •ind y, 0, s ,

™Equal ™Times s x , y , ™Plus ™Times x, y , y ;

SCProver LemmaTimes1, DefTimes1, DefTimes2, DefPlus1

Proved

SCProver LemmaTimes2,
DefTimes1, DefTimes2, DefPlus1, DefPlus2, ThmPlus1, ThmPlus2

Proved

SCProver ThmTimes1,
DefTimes1, DefTimes2, LemmaTimes1, LemmaTimes2

Proved

Since the prover was able to prove the theorems we do not look on the details of the proofs. Neverthe-
less it is possible to do so.
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5.2.5 Distributivity of Plus and Times 

"
x,y,z

x * y + z = x * y + x * z

"
x,y,z

x + y * z = x * z + y * z

ThmDistLeft = ™ForAll x, ™ForAll y, ™ForAll •ind z, 0, s ,
™Equal ™Times x, ™Plus y, z ,
™Plus ™Times x, y , ™Times x, z ;

ThmDistRight = ™ForAll x, ™ForAll y, ™ForAll z,
™Equal ™Times ™Plus x, y , z ,
™Plus ™Times x, z , ™Times y, z ;

ThmDist = ThmDistLeft;

(Left) Distributivity is provable by using the definitions and the associativity of ™Plus:

SCProver ThmDistLeft,
DefTimes1, DefTimes2, DefPlus1, DefPlus2, ThmPlus2

Proved

Right distributivity is provable by using left distributivity and commutativity of ™Times:

SCProver ThmDistRight, ThmTimes1, ThmDistLeft

Proved

Here is the proof:
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SCProof ThmDistRight, ThmTimes1, ThmDistLeft

0 : Proof of: ™ForAll x, ™ForAll y,
™ForAll z, ™Equal ™Times ™Plus x, y , z , ™Plus ™Times x, z , ™Times y, z

0 : Take •fix x, 1 arbitrary but fixed and prove: ™ForAll y, ™ForAll z,
™Equal ™Times ™Plus •fix x, 1 , y , z , ™Plus ™Times •fix x, 1 , z , ™Times y, z

0 : Take •fix y, 1 arbitrary but fixed and prove:
™ForAll z, ™Equal ™Times ™Plus •fix x, 1 , •fix y, 1 , z ,
™Plus ™Times •fix x, 1 , z , ™Times •fix y, 1 , z

0 : Take •fix z, 1 arbitrary but fixed and prove:
™Equal ™Times ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1 ,
™Plus ™Times •fix x, 1 , •fix z, 1 , ™Times •fix y, 1 , •fix z, 1

0 : Rewrite both sides of the equality:
™Times ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1
™Plus ™Times •fix x, 1 , •fix z, 1 , ™Times •fix y, 1 , •fix z, 1

0 : Rewrite lhs : ™Times ™Plus •fix x, 1 , •fix y, 1 , •fix z, 1
to ™Times •fix z, 1 , ™Plus •fix x, 1 , •fix y, 1

0 : Rewrite rhs :
™Plus ™Times •fix x, 1 , •fix z, 1 , ™Times •fix y, 1 , •fix z, 1
to ™Plus ™Times •fix x, 1 , •fix z, 1 , ™Times •fix z, 1 , •fix y, 1 ,
™Plus ™Times •fix z, 1 , •fix x, 1 , ™Times •fix y, 1 , •fix z, 1

0 : Rewrite lhs : ™Times •fix z, 1 , ™Plus •fix x, 1 , •fix y, 1
to ™Plus ™Times •fix z, 1 , •fix x, 1 , ™Times •fix z, 1 , •fix y, 1

0 : Rewrite rhs :
™Plus ™Times •fix x, 1 , •fix z, 1 , ™Times •fix z, 1 , •fix y, 1 ,
™Plus ™Times •fix z, 1 , •fix x, 1 , ™Times •fix y, 1 , •fix z, 1
to ™Plus ™Times •fix z, 1 , •fix x, 1 , ™Times •fix z, 1 , •fix y, 1

0 : The term ™Plus ™Times •fix z, 1 , •fix x, 1 , ™Times •fix z, 1 , •fix y, 1
appears on both sides of the equality, hence the equality is true.

Proved

5.2.6 Associativity of Times 

"
x,y,x

x * y * z = x * y * z

ThmTimes2 = ™ForAll x, ™ForAll y, ™ForAll •ind z, 0, s ,
™Equal ™Times ™Times x, y , z , ™Times x, ™Times y, z ;

SCProver ThmTimes2, DefTimes1, DefTimes2, ThmDistLeft

Proved

As we can see associativity of ™Times is a consequence of the distributivity.
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5.3 Correctness of Square and Multiply Algorithm

The exponentiation  of  natural  numbers is  defined in  a  recursive  way.  The runtime of computing xn

needs  in  the  native  way  n  multiplications.  In  application,  mainly  in  cryptography,  this  might  be  to
long especially if there are big numbers involved. Fortunately there exists more efficient ways to do
this.  One  basic  method  is  the  well  known  "Square  and  Multiply"  algorithm which  gets  along  with
approximately 2 * log n  multiplications [Gord98, Knut81]. 

In this case study we will give a proof of the fact that the algorithm gives correct results. We will use
some  facts  which  we  will  not  prove  from  definitions;  we  will  restrict  our  work  to  the  main  proof
which is based on some lemmata. This proof shows the capabilities of the prover in relation to case
distinctions.

5.3.1 Definitions in Theorema User Language

First  we  give  definitions,  the  theorem  and  the  necessary  knowledge  in  Theorema  user  language
[Tma98].  This  is  not necessary for proving with SC prover;  nevertheless the syntax is more natural
and hence easier to read. It may also help to formalize the formulae in the user language of SC prover.

For executing the following definitions in Mathematica it is necessary to load Theorema: 

Needs "Theorema`" ;

The first definition defines the usual exponentiation in a recursive way and it uses a case distinction.
The function for exponentiation is called E: 

Definition "Def E",

∀
x,n

 E x, n =
1 ⇐ n = 0
x ∗E x, pre n ⇐ otherwise

It  uses  some  implicit  knowledge  which  was  not  used  in  the  previous  case  studies  about  natural
numbers. We assume that there are already definitions for the constant 1,which is equal to s[0],and
the function symbol pre[n],which should denote the predecessor. There is no need for an explicit
definition in the later proof, because the implicit knowledge about this symbols given in the defini-
tions is sufficient.

Next  we define  the  new algorithm. The essential  difference is  that in  case of  an even exponent the
computation can be speeded up by squaring the basis x and halving the exponent n. Square, Half
and is–even  are again implicit defined functions respective a predicate. There knowledge is given
by later defined lemmata. The function for the square and multiply algorithm is called exp:
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Definition "Def exp",

∀
x,n

 exp x, n =

1 ⇐ n = 0
exp Square x , Half n ⇐ is–even n
x∗exp x, pre n ⇐ otherwise

The correctness theorem for this algorithm is obvious.  We have to check if  the result  of both func-
tions E and exp are equal for every input. We do not care about termination in this case study; hence
the theorem is actually about partial correctness.

Theorem "exp=E",

∀
x,n

exp x, n = E x, n

;

For proving this theorem there is  some knowledge about the occurring symbols  necessary. We will
add  this  knowledge  by  defining  three  lemmata,  which  we  will  not  prove  in  the  scope  of  this  case
study. There validity is nearly obvious and can be proven more or less from the definitions. Assum-
ing that a suitable axiomatization is used.

Lemma "1", ∀
n

pre n < n n ≠ 0

Lemma "2", ∀
n

Half n < n n ≠ 0

Lemma "3", ∀
x,n

is–even n ⇒ E x, n = E Square x , Half n

As one  might  recognize,  the  third  lemma provides  the  essential  fact  for  the  correctness  of  the  new
algorithm.

Theorema  allows  showing  the  stored  data  by  calling  the  definition  again  without  formula.  For
example:

Lemma "1"

•lma 1, •range , True, •flist •lf , ∀
n

pre n < n n ≠ 0

Now we can look at the last part – the formula – in so called input form. This is provided by Mathe-
matica and it shows an alternative syntax for manual input:

Lemma "1" 4, 1, 2 InputForm

™ForAll[•range[•simpleRange[•var[n]]], True, 
 ™Iff[™Less[pre[•var[n]], •var[n]], 
  ™Not[™Equal[•var[n], 0]]]]

This input form is similar to the user language of SC prover and may be used as basis for translation.
The  universal  quantifier  has  a  simpler  syntax  and  bound  variables  are  not  wrapped  by  the  symbol
•var in the user language.
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5.3.2 Translation into SC Prover User Language

Now  we  give  all  formulae  in  the  user  language  of  SC  prover.  For  details  on  the  syntax  see  user
language. The meaning of the formulae was already described in the section above.

defE = ™ForAll x, ™ForAll n, ™Equal ™E x, n , ™CaseDistinction
•case 1, ™Equal n, 0 ,
•case ™Times x, ™E x, pre n , True

;

defExp =

™ForAll x, ™ForAll n, ™Equal exp x, n , ™CaseDistinction
•case 1, ™Equal n, 0 ,
•case exp ™Square x , ™Half n , is–even n ,
•case ™Times x, exp x, pre n , True

;

theorem = ™ForAll •ind n, ™Less ,
™ForAll x, ™Equal exp x, n , ™E x, n ;

Lemma1 = ™ForAll n, ™Iff ™Less pre n , n , ™Not ™Equal n, 0 ;

Lemma2 =

™ForAll n, ™Iff ™Less ™Half n , n , ™Not ™Equal n, 0 ;

Lemma3 = ™ForAll x, ™ForAll n, ™Implies is–even n ,
™Equal ™E x, n , ™E ™Square x , ™Half n ;

We collect the formulae of the knowledge base. This makes it easier to use later.

KB = defE, defExp, Lemma1, Lemma2, Lemma3 ;

5.3.3 Proof

The prover is called with the goal formula and the knowledge. 

SCProver theorem, KB

Failed

Since there are case distinctions in the goal, a proof by case might be helpful. So we allow the prover
to do this by activating the option ProveByCases:

SCProver theorem, KB, ProveByCases → True

Proved

This was successful. We are interested in the proof flow. So we call the prover wrapped by the proof
tracer. The proof is a little bit long, but it shows well how the prover works.
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Note: In front of each line there is a number which gives to the "depth" in the proof. This is not used
by the prover,  but  it  is  generated by the proof tracer  to recognize the structure of proof easier.  Sub
proofs always increase the depth.

SCProof theorem, KB, ProveByCases → True

0 : Proof of: ™ForAll •ind n, ™Less , ™ForAll x, ™Equal exp x, n , ™E x, n

0 : Prove by Course–of–Values–Induction:
™ForAll •ind n, ™Less , ™ForAll x, ™Equal exp x, n , ™E x, n

0 : Assume induction hypotheses :
™ForAll n, ™Implies ™Less n, •fix n, 1 , ™ForAll x, ™Equal exp x, n , ™E x, n

0 : And prove induction step :
™ForAll x, ™Equal exp x, •fix n, 1 , ™E x, •fix n, 1

0 : Take •fix x, 1 arbitrary but fixed and prove:
™Equal exp •fix x, 1 , •fix n, 1 , ™E •fix x, 1 , •fix n, 1

0 : Rewrite both sides of the equality:
exp •fix x, 1 , •fix n, 1 ™E •fix x, 1 , •fix n, 1

0 : Rewrite lhs : exp •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E •fix x, 1 , •fix n, 1 , ™Less •fix n, 1 , •fix n, 1 ,
™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case exp ™Square •fix x, 1 , ™Half •fix n, 1 , is–even •fix n, 1 ,
•case ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1 , True

1 : Try to prove these case conditions: ™Less •fix n, 1 , •fix n, 1

1 : Prove Disprove: ™Less •fix n, 1 , •fix n, 1

2 : Rewrite this formula: ™Less •fix n, 1 , •fix n, 1

2 : Rewrite this formula: ™Not ™Less •fix n, 1 , •fix n, 1

1 : Proof of sub goal failed: ™Less •fix n, 1 , •fix n, 1

1 : No case was proven.

1 : Try to prove these case conditions:
™Equal •fix n, 1 , 0 , is–even •fix n, 1 , True

1 : Prove Disprove: ™Equal •fix n, 1 , 0

2 : Rewrite both sides of the equality: •fix n, 1 0

2 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

1 : Proof of sub goal failed: ™Equal •fix n, 1 , 0

1 : Prove Disprove: is–even •fix n, 1

2 : Rewrite this formula: is–even •fix n, 1

2 : Rewrite this formula: ™Not is–even •fix n, 1

1 : Proof of sub goal failed: is–even •fix n, 1

1 : Prove Disprove: True

2 : This formula is true: True

1 : Sub goal proved: True
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1 : No case was proven completely, the remaining case conditions may be used
for proving by cases: ™Equal •fix n, 1 , 0 , is–even •fix n, 1 , True

0 : Rewrite rhs : ™E •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E ™Square •fix x, 1 , ™Half •fix n, 1 ,
is–even •fix n, 1 , ™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1 , True

1 : Try to prove these case conditions: is–even •fix n, 1

1 : Prove Disprove: is–even •fix n, 1

2 : Rewrite this formula: is–even •fix n, 1

2 : Rewrite this formula: ™Not is–even •fix n, 1

1 : Proof of sub goal failed: is–even •fix n, 1

1 : No case was proven.

1 : Try to prove these case conditions: ™Equal •fix n, 1 , 0 , True

1 : Prove Disprove: ™Equal •fix n, 1 , 0

2 : Rewrite both sides of the equality: •fix n, 1 0

2 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

1 : Proof of sub goal failed: ™Equal •fix n, 1 , 0

1 : Prove Disprove: True

2 : This formula is true: True

1 : Sub goal proved: True

1 : No case was proven completely, the remaining case
conditions may be used for proving by cases: ™Equal •fix n, 1 , 0 , True

0 : Proof by cases of: exp •fix x, 1 , •fix n, 1 ™E •fix x, 1 , •fix n, 1

0 : Using these cases:
™Equal •fix n, 1 , 0 , ™Not ™Equal •fix n, 1 , 0 , is–even •fix n, 1 ,
™Not ™Equal •fix n, 1 , 0 , ™Not is–even •fix n, 1

0 : Proving case: ™Equal •fix n, 1 , 0

1 : Rewrite lhs : exp •fix x, 1 , •fix n, 1 to exp •fix x, 1 , 0 ,
™CaseDistinction •case ™E •fix x, 1 , •fix n, 1 , ™Less •fix n, 1 , •fix n, 1 ,
™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case exp ™Square •fix x, 1 , ™Half •fix n, 1 , is–even •fix n, 1 ,
•case ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1 , True

2 : Try to prove these case conditions: ™Less •fix n, 1 , •fix n, 1

2 : Prove Disprove: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite formula: ™Less •fix n, 1 , •fix n, 1
to ™Less 0, •fix n, 1 , ™Less •fix n, 1 , 0

3 : Rewrite formula: ™Less 0, •fix n, 1 , ™Less •fix n, 1 , 0 to ™Less 0, 0

3 : Rewrite this formula: ™Not ™Less •fix n, 1 , •fix n, 1

3 : Rewrite formula: ™Not ™Less •fix n, 1 , •fix n, 1
to ™Not ™Less 0, •fix n, 1 , ™Not ™Less •fix n, 1 , 0
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3 : Rewrite formula:
™Not ™Less 0, •fix n, 1 , ™Not ™Less •fix n, 1 , 0 to ™Not ™Less 0, 0

2 : Proof of sub goal failed: ™Less •fix n, 1 , •fix n, 1

2 : No case was proven.

2 : Try to prove these case conditions:
™Equal •fix n, 1 , 0 , is–even •fix n, 1 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite lhs : •fix n, 1 to 0

3 : The term 0 appears on both sides of the equality, hence the equality is true.

2 : Sub goal proved: ™Equal •fix n, 1 , 0

2 : This term will be used: 1

1 : Rewrite rhs : ™E •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E ™Square •fix x, 1 , ™Half •fix n, 1 ,
is–even •fix n, 1 , ™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1 , True , ™E •fix x, 1 , 0

2 : Try to prove these case conditions: is–even •fix n, 1

2 : Prove Disprove: is–even •fix n, 1

3 : Rewrite this formula: is–even •fix n, 1

3 : Rewrite formula: is–even •fix n, 1 to is–even 0

3 : Rewrite this formula: ™Not is–even •fix n, 1

3 : Rewrite formula: ™Not is–even •fix n, 1 to ™Not is–even 0

2 : Proof of sub goal failed: is–even •fix n, 1

2 : No case was proven.

2 : Try to prove these case conditions: ™Equal •fix n, 1 , 0 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite lhs : •fix n, 1 to 0

3 : The term 0 appears on both sides of the equality, hence the equality is true.

2 : Sub goal proved: ™Equal •fix n, 1 , 0

2 : This term will be used: 1

1 : The term 1 appears on both sides of the equality, hence the equality is true.

1 : Case proved.

0 : Proving case: ™Not ™Equal •fix n, 1 , 0 , is–even •fix n, 1

1 : Rewrite lhs : exp •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E •fix x, 1 , •fix n, 1 , ™Less •fix n, 1 , •fix n, 1 ,
™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case exp ™Square •fix x, 1 , ™Half •fix n, 1 , is–even •fix n, 1 ,
•case ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1 , True
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2 : Try to prove these case conditions: ™Less •fix n, 1 , •fix n, 1

2 : Prove Disprove: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Not ™Less •fix n, 1 , •fix n, 1

2 : Proof of sub goal failed: ™Less •fix n, 1 , •fix n, 1

2 : No case was proven.

2 : Try to prove these case conditions:
™Equal •fix n, 1 , 0 , is–even •fix n, 1 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: ™Equal •fix n, 1 , 0

2 : Prove Disprove: is–even •fix n, 1

3 : Rewrite this formula: is–even •fix n, 1

3 : Rewrite formula: is–even •fix n, 1 to True

2 : Sub goal proved: is–even •fix n, 1

2 : This term will be used: exp ™Square •fix x, 1 , ™Half •fix n, 1

1 : Rewrite rhs : ™E •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E ™Square •fix x, 1 , ™Half •fix n, 1 ,
is–even •fix n, 1 , ™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1 , True

2 : Try to prove these case conditions: is–even •fix n, 1

2 : Prove Disprove: is–even •fix n, 1

3 : Rewrite this formula: is–even •fix n, 1

3 : Rewrite formula: is–even •fix n, 1 to True

2 : Sub goal proved: is–even •fix n, 1

2 : This term will be used: ™E ™Square •fix x, 1 , ™Half •fix n, 1

2 : Try to prove these case conditions: ™Equal •fix n, 1 , 0 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: ™Equal •fix n, 1 , 0

2 : Prove Disprove: True
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3 : This formula is true: True

2 : Sub goal proved: True

2 : This term will be used: ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1

1 : Rewrite lhs :
exp ™Square •fix x, 1 , ™Half •fix n, 1 to ™CaseDistinction •case
™E ™Square •fix x, 1 , ™Half •fix n, 1 , ™Less ™Half •fix n, 1 , •fix n, 1 ,

™CaseDistinction •case 1, ™Equal ™Half •fix n, 1 , 0 ,
•case exp ™Square ™Square •fix x, 1 , ™Half ™Half •fix n, 1 ,
is–even ™Half •fix n, 1 , •case ™Times ™Square •fix x, 1 ,
exp ™Square •fix x, 1 , pre ™Half •fix n, 1 , True

2 : Try to prove these case conditions: ™Less ™Half •fix n, 1 , •fix n, 1

2 : Prove Disprove: ™Less ™Half •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Less ™Half •fix n, 1 , •fix n, 1

3 : Rewrite formula:
™Less ™Half •fix n, 1 , •fix n, 1 to ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal proved: ™Less ™Half •fix n, 1 , •fix n, 1

2 : This term will be used: ™E ™Square •fix x, 1 , ™Half •fix n, 1

2 : Try to prove these case conditions:
™Equal ™Half •fix n, 1 , 0 , is–even ™Half •fix n, 1 , True

2 : Prove Disprove: ™Equal ™Half •fix n, 1 , 0

3 : Rewrite both sides of the equality: ™Half •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal ™Half •fix n, 1 , 0

2 : Proof of sub goal failed: ™Equal ™Half •fix n, 1 , 0

2 : Prove Disprove: is–even ™Half •fix n, 1

3 : Rewrite this formula: is–even ™Half •fix n, 1

3 : Rewrite this formula: ™Not is–even ™Half •fix n, 1

2 : Proof of sub goal failed: is–even ™Half •fix n, 1

2 : Prove Disprove: True

3 : This formula is true: True

2 : Sub goal proved: True

2 : No case was proven completely, the
remaining case conditions may be used for proving by cases:
™Equal ™Half •fix n, 1 , 0 , is–even ™Half •fix n, 1 , True

1 : The term ™E ™Square •fix x, 1 , ™Half •fix n, 1
appears on both sides of the equality, hence the equality is true.

1 : Case proved.

0 : Proving case: ™Not ™Equal •fix n, 1 , 0 , ™Not is–even •fix n, 1
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1 : Rewrite lhs : exp •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E •fix x, 1 , •fix n, 1 , ™Less •fix n, 1 , •fix n, 1 ,
™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case exp ™Square •fix x, 1 , ™Half •fix n, 1 , is–even •fix n, 1 ,
•case ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1 , True

2 : Try to prove these case conditions: ™Less •fix n, 1 , •fix n, 1

2 : Prove Disprove: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Less •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Not ™Less •fix n, 1 , •fix n, 1

2 : Proof of sub goal failed: ™Less •fix n, 1 , •fix n, 1

2 : No case was proven.

2 : Try to prove these case conditions:
™Equal •fix n, 1 , 0 , is–even •fix n, 1 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: ™Equal •fix n, 1 , 0

2 : Prove Disprove: is–even •fix n, 1

3 : Rewrite this formula: is–even •fix n, 1

3 : Rewrite formula: is–even •fix n, 1 to ™Not True

3 : Rewrite this formula: ™Not is–even •fix n, 1

3 : Rewrite formula: ™Not is–even •fix n, 1 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: is–even •fix n, 1

2 : Prove Disprove: True

3 : This formula is true: True

2 : Sub goal proved: True

2 : This term will be used: ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1

1 : Rewrite rhs : ™E •fix x, 1 , •fix n, 1 to
™CaseDistinction •case ™E ™Square •fix x, 1 , ™Half •fix n, 1 ,
is–even •fix n, 1 , ™CaseDistinction •case 1, ™Equal •fix n, 1 , 0 ,
•case ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1 , True

2 : Try to prove these case conditions: is–even •fix n, 1

2 : Prove Disprove: is–even •fix n, 1

3 : Rewrite this formula: is–even •fix n, 1

3 : Rewrite formula: is–even •fix n, 1 to ™Not True

3 : Rewrite this formula: ™Not is–even •fix n, 1

5   Case Studies 35



3 : Rewrite formula: ™Not is–even •fix n, 1 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: is–even •fix n, 1

2 : This term will be used: ™E ™Square •fix x, 1 , ™Half •fix n, 1

2 : Try to prove these case conditions: ™Equal •fix n, 1 , 0 , True

2 : Prove Disprove: ™Equal •fix n, 1 , 0

3 : Rewrite both sides of the equality: •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal disproved: ™Equal •fix n, 1 , 0

2 : Prove Disprove: True

3 : This formula is true: True

2 : Sub goal proved: True

2 : This term will be used: ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1

1 : Rewrite lhs : ™Times •fix x, 1 , exp •fix x, 1 , pre •fix n, 1 to
™CaseDistinction •case ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1 ,
™Less pre •fix n, 1 , •fix n, 1 ,

™CaseDistinction •case ™Times •fix x, 1 , 1 , ™Equal pre •fix n, 1 , 0 ,
•case ™Times •fix x, 1 , exp ™Square •fix x, 1 , ™Half pre •fix n, 1 ,
is–even pre •fix n, 1 , •case
™Times •fix x, 1 , ™Times •fix x, 1 , exp •fix x, 1 , pre pre •fix n, 1 , True

2 : Try to prove these case conditions: ™Less pre •fix n, 1 , •fix n, 1

2 : Prove Disprove: ™Less pre •fix n, 1 , •fix n, 1

3 : Rewrite this formula: ™Less pre •fix n, 1 , •fix n, 1

3 : Rewrite formula:
™Less pre •fix n, 1 , •fix n, 1 to ™Not ™Equal •fix n, 1 , 0

3 : Rewrite formula: ™Not ™Equal •fix n, 1 , 0 to ™Not ™Not True

3 : Rewrite formula: ™Not ™Not True to True

2 : Sub goal proved: ™Less pre •fix n, 1 , •fix n, 1

2 : This term will be used: ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1

2 : Try to prove these case conditions:
™Equal pre •fix n, 1 , 0 , is–even pre •fix n, 1 , True

2 : Prove Disprove: ™Equal pre •fix n, 1 , 0

3 : Rewrite both sides of the equality: pre •fix n, 1 0

3 : Rewrite this formula: ™Not ™Equal pre •fix n, 1 , 0

2 : Proof of sub goal failed: ™Equal pre •fix n, 1 , 0

2 : Prove Disprove: is–even pre •fix n, 1

3 : Rewrite this formula: is–even pre •fix n, 1
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3 : Rewrite this formula: ™Not is–even pre •fix n, 1

2 : Proof of sub goal failed: is–even pre •fix n, 1

2 : Prove Disprove: True

3 : This formula is true: True

2 : Sub goal proved: True

2 : No case was proven completely, the
remaining case conditions may be used for proving by cases:
™Equal pre •fix n, 1 , 0 , is–even pre •fix n, 1 , True

1 : The term ™Times •fix x, 1 , ™E •fix x, 1 , pre •fix n, 1
appears on both sides of the equality, hence the equality is true.

1 : Case proved.

0 : All cases proved.

Proved

At depth {0} we can see that there is first a course of values induction. While rewriting the equality
by the definitions no valid case can be found. Hence a proof by cases is tried. Three cases have to be
proven individually:

n = 0
n ∫ 0 is–even n
n ∫ 0 Ÿ is–even n

In each case rewriting of both sides of the equality is used in order to obtain identical terms on both
sides. 

Each  time  a  case  distinction  occurs  in  a  term the  prover  tried  to  prove  one  of  the  case  conditions.
This leads to several failing supervise. Nevertheless in the end the prover is able to prove each case
successfully.

Aside  the  failing  sub  proofs  –  they  are  usually  omitted  by  humans  –  the  proof  is  very  natural  and
similar to proofs made by humans.
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6 Summary and Outlook

6.1 Other Systems

In the project HOL Light, a system implemented in ML especially OCaml, there are some powerful
proof  tools  [Harr09].  The  user  language  is  a  simple  typed  lambda  calculus.  Similar  to  our  system
there  are  some  built–in  inference  rule,  but  additionally  there  is  a  big  set  of  knowledge  built  in.  A
tactics language is for the proof assistant. There is also a tactics for induction.

The  SPIKE system uses  an  inductionless  induction  for  proving  in  equational  theories  as  well  as  in
conditional theories [BKR95]. They use a mechanism to generated lemmata and reduce the  problem
of  proving  and  disproving  to  algebraic  simplification.  There  is  no  need  for  explicit  induction.  The
algorithm  finds  the  necessary  cases  to  prove  implicitly.  This  approach  is  claimed  to  be  fast  and
reduces the need of lemmata. The main difference to our project is that the proofs are not found in a
human like style. 

ACL2  supports  some  kind  of  meta  reasoning,  which  is  similar  to  the  reasoning  about  resoners
[HKK+05].  It  uses  first-order  logic  with  first-order  reasoning  and  it  includes  conditional  rewriting.
Some extensions allows mathematical induction and meta reasoning. The logic in our work is stron-
ger because it is not restricted to first-order.

6.2 Summary and Future Work

The  Symbolic  Computation  prover  is  already  able  to  prove  a  set  of  theorems.  The  most  important
logical connectives are built–in and the user language offers some powerful language constructs like
case  distinctions  and  sequence  variables.  The  first  extension  with  induction  for  natural  numbers  –
and related inductive domains – shows the capability to extend the prover for reaching new domains.
At this link an induction on logical terms will start to be able to do reasoning about reasoners.

Printing a log of the proof flow is a first approach for inspection a proof generated by SC prover. The
idea of  monitoring  the  execution  of  the  program allows a  genuine view on the work of  the prover.
The  implementation  of  the  prover  stays  clear  and  transparent.  There  is  a  strict  distinction  between
proving and generating an output of the proof.

Both,  the  prover  as  well  as  the  proof  tracer  are  a  basis  for  further  research.  The next  steps may be
embedding the prover into the new Theorema  system and adding another proof tracer that is able to
generate an entire Theorema proof object. This will allow printing the proof in a natural language. A
pretty  printer  of  Theorema  ensures  a  traditional  style  for  formulae and  all  other  tools  of  Theorema
will be accessible like interactive proof notebooks [Tma99a] and focus windows for proof inspection
[Buch00].
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As further work for introducing reasoning about reasoners the prover needs the implementation of an
induction  rule  for  terms  and  formulae.  This  requires  already  the  existence  of  reflection  in  the  user
language. Therefore some theoretical and practical problems need to be solved.

For  embedding  the  user  language  of  the  prover  in  user  language  of  Theorema  there  are  only  some
smaller changes to do.  Some syntax translations with respect to quantifiers are already described in
section  2.3,  for  details  see  the  next  subsction.  Others  related  to  induction  need  more  attention.  A
concept  for  tagging  variables  over  inductive  domains  is  necessary  for  applying  the  induction  rule
only  on  these  variables.  Especially  if  there  are  different  types  of  inductive  domains a  distinction  is
essential.

For improving the proving power and a speed up a more sophisticated choice of cases may help. This
enhanced "proving by cases" is described also in section 2.3. 
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Appendix

A.1 Some Mathematica commands

For an implementation in Mathematica  there are many built  in commands in use.  In the case of the
SC prover the source code describes the logic that is used for proving. Therefore it is necessary for a
reader to understand at least  some parts of the underlying programming language. Hence we give a
short  overview on some Mathematica  commands.  A complete  description of  all  Mathematica  com-
mands is given in [Wolf03] or online in [Wolf09]. At the end of the implementation of the SC prover
there is a list with all Mathematica commands used by the prover.

In general Mathematica evaluates expressions in cells after pressing Ctrl+Return or Enter (Numpad).
Expressions are  build  up  by  a  head symbol,  for  example a  function name,  and a  sequence of  argu-
ments wrapped by square brackets: f[1,2]

For some expressions there are so-called traditional form representations which are more natural. For
example Plus[5,7] and 5+7 represent the same expression. If Mathematica  has some defini-
tions for  the symbols  in an evaluated expression it  applies them and tries to simplify it. 5+7 gets
evaluated to 12.

For declaring new functions this is done by delayed evaluation. The syntax for this is:

functionname arg1_, arg2__ := expr;

This  defines  a  function  called  functionname  with  some  arguments.  Arguments  are  marked  by
blanks. The name before the blank gives the name of the argument. A single blank stands for a single
value. A double blank matches to one or more arguments and a triple blank may also be empty. If an
expression  matches  this  pattern  of  arguments  then  the  expression  expr  will  be  evaluated.  More
sophisticated patterns are also possible. The pattern arg1_Integer  matches only values with head
symbol  Integer.  It  is  also  helpful  to  use  combined  patterns  like  {arg1_Integer,
arg2_Complex}. This matches to a list containing exactly two arguments, the first needs to be an
integer, the second a complex number.

Additional constraints for the function may be entered like this:

functionname arg1_, arg2__ ; constraint := expr;

This function definition matches only if the constraint is fulfilled (returns True).

To  use  compound  expressions  there  are  different  block  elements  available.  Two  expressions  are
separated by a semicolon (;). Two often used possibilities are the commands Module  and Block.
Module[{vars},  expr]  allows  having  local  variables.  All  variables  declared  in  vars  gets
replaced by an unique symbol while an evaluation of expr.  This allows calling functions recursive
without overwriting values in local variables. By contrast Block[{vars}, expr] has also local
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variables, but they have the values of global variables (with the same name). They are just saved at
the  beginning  of  an  evaluation  and  restored  at  the  end.  This  allows  the  use  of  a  local  version  of
global variable.

Important constructs in Mathematica  are lists  and sequences.  A list has the head symbol List  and
may  be  entered  with  curly  brackets.  The  elements  are  separated  by  colons  (,).  Lists  are  not  sorted
and may contain  duplicates  and nested lists.  Sequences are similar,  but  they are flattened automati-
cally. A Sequence is usually used in an argument list. 

There are many functions for handling lists. Most of them are self-explanatory like Reverse which
returns  a  list  in  reversed  order.  DeleteCases  removes  elements  from  a  list  which  match  the
pattern in the second argument.  Map[f, list]  applies the function f  at  each element in the list
and returns a list with all results. Apply[f, {a,b,c}] returns f[a,b,c], the list elements are
the  arguments  of  the  function  f.  Fold[f,x,{a,b,c}]  applies  the  function  f  recursively:
f[f[f[x,a],b],c].  Most  of  the  commands  for  lists  work  also  for  arbitrary  expressions  in  an
analogous way.

Another  important  category  of  commands  is  related  with  replacing.  Replace[expr,  a→b]
replaces  in  the  expression  expr  the  symbol  a  by  b  at  the  first  occurring  position.
Replace[expr,  a→b]  replaces  all  occurrences  of  a  in  expr.  This  command  may  also  be
entered as expr/.a→b.

For further commands and more details we refer to the Mathematica Documentation [Wolf09].
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A.2 Commented Source Code of Package

Kernel for 
Symbolic Computation Prover

Package Description

This  package  contains  the  implementation  of  the  prover  kernel  for  SCProver  (Symbolic
Computation).

BeginPackage "SC`ProverKernel`" ;

Other packages are not required for this prover. For details about the used functions of Mathematica's
System` package see Used Commands and Symbols of Mathematica..

Exported Symbols

SCProver: Usage and Options

Clear SCProver ;
SCProver::usage =

"SCProver G,K applies rewriting for proving of the
goal `G` w.r.t. the knowledge base `K`, but does
not produce a proof object.\nNote that a slightly
different syntax than in Theorema is used.";

Options SCProver = ProveByCases → False, PBCLevel → ∞,
MaxNumberOfRewritingSteps→ 7, Induction → True ;

ProveByCases::usage = "ProveByCases activates
or deactivates proving by cases for rewriting.";

PBCLevel::usage = "PBCLevel controls the depth
of recursive Prove–By–Cases branches.";

MaxNumberOfRewritingSteps::usage = "MaxNumberOfRewritingSteps
bounds the number of rewriting steps.";

Induction::usage = "Induction enables the
proving–by–induction feature."
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Syntax Elements for Terms and Formulae

All  terms  in  the  user  language  that  is  given to  the  prover  have  to  be Mathematica  expressions  and
fulfil these two properties:

1) Each (Mathematica) symbol is a term, if and only if there are no definitions (knowledge) about
it within Mathematica.

Note: Symbol names starting with "•" are reserved for symbols, which are not terms, but they
may be part of terms  (see below).

2) n be an integer. If f, t1, …, tn are terms then this is a term: 
f t1, …, tn

A formula is a term that is either true or not true.

Note,  that  it  is  possible  to  use  the  Mathematica  symbols  True  and  False.  They  do  not  have
definitions,  because  they  are  just  symbols.  They  represent  the  Boolean  truth  values  in  many
Mathematica functions, but this depends only on the definition of this functions. Therefore they can
be used.

In order to ensure Mathematica  symbols without any Mathematica  knowledge it  is recommended to
use symbol names with prefix "™" like this is done in Theorema. Symbols with prefix "•" should be
avoided by the user since some of them are used by the prover internally.

The following symbols are used within this prover and they have already some semantics. They must
not be used in other ways than defined in this section:

Clear ™Equal, ™Iff, ™Not, ™Implies, ™ForAll,
™And, ™CaseDistinction, •case, •ind, •seq, •fix ;

Terms and formulae with predefined semantics

Let n be an integer, let f1, f2, …, fn  be formulae, let t1, t2  be terms and let s be a symbol. 
Then these are formulae:

True "boolean truth value true"
™Not f1 "negation of f1"

™Implies f1, f2 "f1 implies f2"
™Equal t1, t2 "t1 is equal to t2"
™Iff f1, f2 "f1 is equivalent to f2"

™And f1, …, fn "conjunction of f1, …, fn"
™ForAll s, f1 "universal quantifier with bound variable s"

Universal quantifiers are allowed with one variable only. There is no predefined syntax for existential
quantifier.
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Case Distinction

Let n be an integer, let t1, …, tn  be terms and let c1, …, cn  be formulae. Then this is a term:

™CaseDistinction •case t1, c1 , •case t2, c2 , … , •case tn, cn

with the semantics:

If c1 is true, then the whole term is equal to t1.
If ™And ™Not c1 , c2  is true, then the whole term is equal to t2.
…
If ™And ™Not c1 , …, ™Not cn−1 , cn  is true, then the whole term is equal to tn.

Case  distinctions  may  occur  as  formula  or  as  one  sub  term of  ™Equal  or  ™Iff.  But  they  are  not
allowed in other sub terms. Nested case distinctions are not permitted. 

Induction

Let s be a symbol, f be a formula, and  base, succ be terms. Then this is a formula:

™ForAll •ind s, base, succ , f

with the semantics:

s  is  a  bound  variable  over  an  inductive  domain  with  base  element  base  and  successor
function succ. 

Course of Values Induction

Let s be a symbol, f a formula, and ordering a term. Then this is a formula:

™ForAll •ind s, ordering , f

with the semantics:

s is a bound variable over an inductive domain ordered by ordering. 

Sequence variable

Let s be a symbol and f a formula, then this is a symbol

•seg s

and this is a formula: 

™ForAll •seg s , f

with the semantics:
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•seg s  is a bound sequence variable and it is different from s. A sequence variable may be
instatiated by some values (a sequence of values) or even by no value. 

Fixed constant

 Let s be a symbol and n an integer, then this is a symbol

•fix s, n

This symbol is used for internally created constants ("arbitrary but fixed") and should not be used by
the user. Integers are used here as set of symbols only. 

Note that integers are not part of the user language. They are used only as symbols for description.

Further Symbols

Return Values

¢Proved = "Proved";
¢Disproved = "Disproved";
¢Failed = "Failed";

Implementation

Begin

All definitions from now on are private. This means they are (usually) not visible to the user.

Begin "`Private`" ;

Symbols used for global variables in the package. They contain the prover options and they are used
for each prover call individually.

Clear $ProveByCases, $PBCLevel,
$MaxNumberOfRewritingSteps, $Induction ;

Prover for External Use: SCProver

External Call with Options

This handles the external call from Mathematica by the user. The options given by the user are stored
in global variables. If an option is not declared, the program will take the predefined value.
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SCProver goal_, KB_List, options___ :=

Block $ProveByCases, $PBCLevel,
$MaxNumberOfRewritingSteps, $Induction ,
$ProveByCases, $PBCLevel,
$MaxNumberOfRewritingSteps, $Induction =

ProveByCases, PBCLevel, MaxNumberOfRewritingSteps,
Induction . options . Options SCProver ;

Prover goal, KB

Implementation note:

Defining the variables for the options within a Block[]  environment make them visible globally
but  they  are  restored  with  the  old  values  after  executing   the  block.  This  would  allow  recursive
calls with different options. 

Prover

Implementation

Internally the prover is called Prover. It assumes that the options are stored in the global variables.

Final Goals

Some cases of trivial goals:

Prover ™Equal expr_, expr_ , KB_ := ¢Proved

Prover ™Iff expr_, expr_ , KB_ := ¢Proved

Prover True, KB_ := ¢Proved

Implication

Implications are usually proved by assuming the premise and proving the conclusion. This is done by
appending the premise to the knowledge base and calling the prover recursively with the conclusion
as new goal.
In  order  to  prevent  some  trivial  cases  of  contradictory  knowledge  bases  the  proof  is  finished
successfully if the premise is ™Not[True]. Note, that the prover is not able to find a contradiction
in the knowledge base because all proving steps are performed on the goal only.

KB, A ¢ B
KB ¢ A ⇒ B

Proved
KB ¢ ™Not True ⇒ B

Prover ™Implies ™Not True , B_ , KB_ := ¢Proved;
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Prover ™Implies A_, B_ , KB_ := Prover B, Append KB, A

Conjunction

The  proof  of  a  conjunction  is  done  by  proving  each  sub  formulae  separately.  If  a  sub  formula  was
proved, this formula can be used as knowledge for proving further formulae. If the proof of a sub goal
fails then the whole proof fails immediately. 

KB ¢ f1 KB, f1 ¢ f2 … KB, f1, …fn − 1 ¢ fn
KB ¢ f1 f2 … fn

Prover ™And forms__ , KB_ := Module kb = KB, ret ,
Scan

ret = ProveSubgoal #, kb ;
If ret =!= ¢Proved, Return ¢Failed ;
AppendTo kb, # ;

∗ Add formula of this branch to knowledge base∗

&, forms ;
ret
;

Implementation note:

Scan[f, l] calls the function f with each element of the list l separately one after the other. In
contrast to Map, no result list will be generated by Scan. This is more efficient in this application.
The execution of Scan can be broken immediately by calling Return.
(...)& defines a (pure) function with one parameter #. The advantage of this construction is that
the scope of the variables used inside the function is the same as the scope of the function.

Proving a sub goal is just a recursive call of the prover.

Clear ProveSubgoal ;
ProveSubgoal form_, KB_ := Prover form, KB ;

Induction

A proof by induction is performed by proving the base case and by proving the induction step. If the
proof of  the induction base fails  then the whole proof fails immediately.  The proof of the induction
step contains a universal quantified goal. This is be proven by using an arbitrary but fixed constant.
See also the next section.

Note:  The  following  code  for  induction  is  taken  from  the  package
Theorema`Provers`Induction`NIP`,  original  version  by  Bruno  Buchberger  [Buch96a],  and
modified.
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Prover ™ForAll •ind v_, base_, succ_ , formula_ , KB_ ;
$Induction := Module vFix, ret ,
ret = InductionBase formula, v, base, KB ;
If ret =!= ¢Proved, Return ret ;

∗ Do induction step only if induction base was proved ∗

vFix = ArbitraryButFixedConstant v, formula, KB ;
InductionStep formula, v, succ, vFix, KB

Implementation note:

Module ensures local variables even if the prover is called recursively.

Proving the induction base is done by replacing the variable in the goal formula by the base element.

Clear InductionBase ;
InductionBase formula_, v_, base_, KB_ :=

Prover ReplaceVariable formula, v → base , KB ;

The  induction  step  is  performed  by  assuming  the  formula  for  an  arbitrary  value  and  proving  the
formula with the successor of the value.

Clear InductionStep ;
InductionStep formula_, v_, succ_, vFix_, KB_ :=

Prover ReplaceVariable formula, v → succ vFix ,
Prepend KB, ReplaceVariable formula, v → vFix ;

Course of values induction assumes the formula for all values less than a certain value and proves the
formula for that value.

Prover ™ForAll •ind v_, ordering_ , formula_ , KB_ ;
$Induction := Module vFix ,
vFix = ArbitraryButFixedConstant v, formula, KB ;
Prover ReplaceVariable formula, v → vFix , Prepend KB,

™ForAll v, ™Implies ordering v, vFix , formula

If proving by induction is disabled then the proving hint •ind is removed. 

Prover ™ForAll •ind v_, ___ , formula_ , KB_ ;
¬ TrueQ $Induction := Prover ™ForAll v, formula , KB

Universal Quantifier - Arbitrary But Fixed

The bound variable is replaced by a new constant which is arbitrary but fixed.

Prover ™ForAll v_, f_ , KB_ := Prover ReplaceVariable
f, v → ArbitraryButFixedConstant v, f, KB , KB
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For creating a new symbol, that repesents the new constant, a special syntax element is used. Like in
Theorema  •fix[s,n]  is used, where s is the symbol of the variable which is replaced by the new
constant  and  n  is  an  integer  to  make  sure  that  the  symbol  neither  occurs  in  the  goal  nor  in  the
knowledge base. The integer n is used as a symbol in the term and has no further properties. 

Clear ArbitraryButFixedConstant ;
ArbitraryButFixedConstant variable_, formulae_, KB_ :=

•fix variable, Max 0,
Cases formulae, KB , •fix variable, i_ i, 1, ∞ + 1 ;

Implementation note:

Cases  searches for other fixed constants in the goal formula and the knowledge base. Only fixed
constants of the same variable name are interesting, they are replaced by the corresponding integer.
The new constant gets the successor of the greatest integer. If there is no fixed constant, the integer
will be 1. In this case, Cases returns an empty list and Max returns 0.

Proving Equivalence

Proving  equivalence  is  done  by  proving  both  corresponding  implications:  "from  left  to  right"  and
"from right to left". If the first proof fails, the second branch is skipped because the whole proof fails.

KB ¢ A ⇒ B KB ¢ B ⇒ A
KB ¢ A B

Prover ™Iff lhs_, rhs_ , KB_ :=

Module ret ,
ret = ProveIffLeftToRight lhs, rhs, KB ;
If ret ≠ ¢Proved, Return ret ;
ProveIffRightToLeft lhs, rhs, KB

Implementation note:

Module ensures local variables even if the prover is called recursively.

Each branch is proven by a recursive call of the prover with the corresponding impilcation in the goal.

Clear ProveIffLeftToRight ;
ProveIffLeftToRight lhs_, rhs_, KB_ :=

Prover ™Implies lhs, rhs , KB

Clear ProveIffRightToLeft ;
ProveIffRightToLeft lhs_, rhs_, KB_ :=

Prover ™Implies rhs, lhs , KB
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Proving an Equality by Rewriting

For proving an equality both sides will be rewritten until both are identical or no rules can be applied.
If there is a case distinction in the goal then the prover tries to prove a case. If this fails then a proof
by case is done. This is done also if proving by case is disabled for rewriting by the prover variable
ProveByCases. For further details see Rewriting an Equality. 

If the case distinction is on the left hand side of the equality then sides are swapped. If there are case
distinctions on both sides the proof fails. This case is not allowed by syntax. 

Prover ™Equal lhs_™CaseDistinction, rhs_™CaseDistinction ,
KB_ ; lhs =!= rhs := ¢Failed;

Prover ™Equal cd_™CaseDistinction, rhs_ , KB_ :=

Prover ™Equal rhs, cd , KB ;

Prover ™Equal lhs_, cd_™CaseDistinction , KB_ :=

Module rhs = cd , termPBC ,
rhs = ProveAllCaseConditions rhs, KB ;
If Length rhs 0, Return ¢Failed ;
If ¬ FreeQ rhs, ™CaseDistinction ,
termPBC = ChooseCaseDistinction rhs ;
If Length termPBC 0, Return ¢Failed ;
ProveGoalByCases ™Equal lhs , rhs , KB, termPBC, 0 ,

∗ else ∗

RewriteEquality lhs , rhs, GenerateRWRules KB , KB

Prover ™Equal lhs_, rhs_ , KB_ :=

RewriteEquality lhs , rhs , GenerateRWRules KB , KB

Proving a Case Distinction by Rewriting

For  proving  a  case  distinction  is  similar  to  rewriting  by  a  conditional  rule.  First  the  prover  tries  to
prove  a  case.  If  this  fails  a  proof  by  cases  is  done  (independently  of  the  prover  option
ProveByCases). For further details see Rewriting a Predicate.
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Prover formula_™CaseDistinction, KB_ :=

Module form = formula , formPBC ,
form = ProveAllCaseConditions form, KB ;
If Length form 0, Return ¢Failed ;
If ¬ FreeQ form, ™CaseDistinction ,
formPBC = ChooseCaseDistinction form ;
If Length formPBC 0, Return ¢Failed ;
ProveGoalByCases form, KB, formPBC, 0 ,

∗ else prove the unconditional predicate ∗

Prover form First, KB

Proving a Predicate by Rewriting

In  case  of  an  arbitrary  predicate  –  no  previous  definitions  matched –  also  rewriting  will  be used  to
receive True.

Prover formula_, KB_ ;
¬ MemberQ ™Equal, ™Iff, ™Implies, ™ForAll , Head formula :=

RewriteFormula formula , GenerateRWRules KB , KB
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Rewriting

Rewriting

Rewriting assumes a list of formulae to rewrite, a list of rewrite rules and the current knowledge base
for  some  sub  proofs.  The  optional  parameter  step  is  used  only  for  limiting  the  total  number  of
rewriting steps.

Note: Goal formulae are expected as list of formulae. It is sufficient to prove only one of these
formulae:
G1, G2, …, Gn ª G1 G2 … Gn

For equalities two lists of terms are used instead of a list of equalities. The equality is true if a
term occurs in both lists:

L1, L2 …, Ln = R1, R2 …, Rm ª
L1 = R1 L1 = R2 … L1 = Rm L2 = R1 L2 = R2 … Ln = Rm

Rewriting a Predicate - an Arbitrary Formula

The  next  function  applies  the  rewriting  steps  on  the  list  of  goal  formulae  and  compares  all  new
formulae with True. Within a loop the following steps are done:

è Creating  new  formulae  by  rewriting  the  current  goal  formulae.  Only  formulae  different  from
the  previous  ones  are  treated  further.  Therefore,  the  variable  allForm  contains  a  list  of  all
formulae which occurred already in the rewriting process. 

è If no new formula was found then the loop breaks and the proof fails.

è Checking if the formula True is found. In this case the loop breaks and the proof succeeds.

è If conditional rules were used in the last rewriting step, then proving of the case conditions is
tried. After that, a search for the formula True is done again.

è If  some conditions  could  not  be  proven  in  the last  step  then a proof  by  cases is  tried.  This  is
controlled  by  proving  options  stored  in  global  variables.  If  there  are  possible  candidates  for
proving by cases, proofs by cases are enabled by the options, and the maximum depth of proof
branches  is  not  reached  then  the  rewriting  is  continued  in  each  branch  independently.
Otherwise all formulae with unproven conditions are removed from the list of goals.

è At last the all remaining new formulae are appended to the list allForm.

A.2 Kernel for Symbolic Compuation Prover 52



RewriteFormula form0_List, rules_, KB_, step_: 1 :=

Module allForm = form0, form = form0, ret, formPBC ,
ret = Do

∗ transform form and compare with True ∗

form = RewriteAllNew form, allForm, rules, rules ;

∗ break if no new formula was found ∗

If Length form 0, Return Null ;

If IsTrue form , Return ¢Proved ;

∗ check for conditional
rewriting steps ™CaseDistinction appears ∗

If ¬ FreeQ form, ™CaseDistinction ,
form = ProveAllCaseConditions form, KB ;
If IsTrue form , Return ¢Proved ;
;

If ¬ FreeQ form, ™CaseDistinction ,
∗ try proving by cases ∗

formPBC = ChooseCaseDistinction form ;
If formPBC =!= && $ProveByCases && $PBCLevel > 0 ,
Return ProveGoalByCases

RemoveDuplicates Join allForm,
DeleteCases form, _™CaseDistinction ,

KB, formPBC, i
;

;
∗ remove all remaining ™CaseDistinction ∗

form = DeleteCases form, _™CaseDistinction ;
;

allForm = Join allForm, form ;

, i, step, $MaxNumberOfRewritingSteps ;

If ret === Null, ¢Failed, ret
;
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Implementation note:

The  Do-loop  is  controlled  by  the  global  variable  $MaxNumberOfRewritingSteps  and  the
optional parameter step. The loop variable i runs from step to the upper bound. The parameter
step is used to pass the number of already done steps along to each case of a proof by cases. This
ensures  that  the  maximal  number  of  rewrite  steps  cannot  be  exceeded even  if  a  proof  by  cases is
done.
A Do-loop returns Null after the upper bound is reached. Hence, if the variable ret is identical to
Null  the proof has failed. If the loop is aborted (with a Return command) then the argument of
the Return command is returned.

The auxiliary function IsTrue  checks if a goal formula is already True.  This is done on the level
of list elements by the Mathematica function MemberQ.

Clear IsTrue ;
IsTrue form_List := MemberQ form, True ;

Rewriting an Equality

For rewriting equalities, it is more powerful to rewrite both sides of the equation separately until the
term on the left hand side is identical to the term on the right hand side. By supporting lists of terms
on  both  sides  of  the  equation  instead  of  just  two  terms  it  is  possible  to  handle  many  rewriting
branches  in  parallel.  In  addition,  the  order  of  application  becomes  irrelevant  because  all  kinds  of
order will be tried and if the result is independent of the order the branches will coincide after some
steps. The equation is proven if a term occurs on both sides of the equality.

The algorithm is adapted from the case of arbitrary predicates, but the main strategy is the same. The
main  difference  is  that  both  sides  of  the  equation  are  rewritten  alternately  and  independently.  To
avoid unnecessary steps there are checks whether the equation is already true after each step. If after a
round  of  rewriting  some  conditional  terms  are  remaining,  then  a  proof  by  case  is  tried  like  in  the
general case for rewriting arbitrary predicates. That depends also on prover options.

Clear RewriteEquality ;
RewriteEquality LHS_List, RHS_List, rules_, KB_, step_: 1 :=

Block $PBCLevel = $PBCLevel ,
Module allLHS = LHS,
allRHS = RHS, lhs = LHS, rhs = RHS, ret, termPBC ,
ret = Do

∗ transform lhs and compare with rhs ∗

lhs = RewriteAllNew lhs, allLHS, rules, rules ;
If Length lhs > 0,
If IsEqual lhs, allRHS , Return ¢Proved ;

∗ check for conditional
rewriting steps ™CaseDistinction appears ∗

If ¬ FreeQ lhs, ™CaseDistinction ,
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lhs = ProveAllCaseConditions lhs, KB ;
If IsEqual lhs, allRHS , Return ¢Proved ;
;
;

∗ transform rhs and compare with lhs ∗

rhs = RewriteAllNew rhs, allRHS, rules, rules ;
If Length rhs > 0,
If IsEqual Join allLHS, lhs , rhs , Return ¢Proved ;

∗ check for conditional
rewriting steps ™CaseDistinction appears ∗

If ¬ FreeQ rhs, ™CaseDistinction ,
rhs = ProveAllCaseConditions rhs, KB ;
If
IsEqual Join allLHS, lhs , rhs , Return ¢Proved ;
;
;

If ¬ FreeQ lhs, rhs , ™CaseDistinction ,
∗ try proving by cases ∗

termPBC = ChooseCaseDistinction Join lhs, rhs ;
If termPBC =!= && $ProveByCases && $PBCLevel > 0 ,
Return ProveGoalByCases

™Equal
RemoveDuplicates Join allLHS,
DeleteCases lhs, _™CaseDistinction ,

RemoveDuplicates Join allRHS,
DeleteCases rhs, _™CaseDistinction

,
KB, termPBC, i

;
;

∗ remove all remaining ™CaseDistinction ∗

lhs = DeleteCases lhs, _™CaseDistinction ;
rhs = DeleteCases rhs, _™CaseDistinction ;
;

∗ break if no new term was found ∗

If Length lhs + Length rhs 0,
Return Null ;
;

allLHS = RemoveDuplicates Join allLHS, lhs ;
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allRHS = RemoveDuplicates Join allRHS, rhs ;

, i, step, $MaxNumberOfRewritingSteps ;

If ret === Null, ¢Failed, ret

;

The auxiliary function IsEqual  checks if  at  least  one term of the left-hand-side is  identical  to the
right-hand-side. This is done by intersecting the corresponding lists of formulae.

Clear IsEqual ;
IsEqual lhs_List, rhs_List :=

Length Intersection lhs, rhs > 0;

Proving of Case Conditions

Proving case conditions is the first attempt to handle conditional rewriting rules or rules that are split
into cases.  After applying such a rule a ™CaseDistinction term is generated. The functions in
this subsection try to prove the condition of one case in order to simplify this term to this case. The
proofs are done by a recursive call  of  the prover.  This  means that the whole power of the prover is
used in the sub proofs and proofs of conditions may occur in these sub proofs again.

Proving Case Conditions of All Case Distinctions

This function applies proving of case conditions at all formulae with ™CaseDistinction.

Clear ProveAllCaseConditions ;
ProveAllCaseConditions term_List, KB_ := Module cd ,
cd = Map ProveCaseConditions KB ,
Cases term, _™CaseDistinction ;

cd = DeleteCases cd, ;
RemoveDuplicates
Join DeleteCases term, _™CaseDistinction , cd

Implementation note:

Defining local variables within a Module  is necessary due to the possibility of a recursive call of
the algorithm within a sub proof.

Cases selects all terms with head symbol ™CaseDistinction. Map applies the unary function
ProveCaseConditions[KB][_]  on  each  term  selected  by  Cases.  Note,  that  Mathematica
allows  defining  a  function  where  the  function  name  is  not  a  single  symbol  but  a  function  with
parameters.  Map  only  allows  unary  functions,  but  a  proof  of  cases  conditions  depends  on  the
condition  itself  and  the  available  knowledge  base.  Therefore  the  expression
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ProveCaseConditions[KB]  is  a  unary  function,  but  it  depends  on  the  KB.  This  expression
can  be  seen  as  a  prover  that  has  included  a  certain  knowledge  base  and  this  prover  is  applied  to
some terms.

The second line deletes terms if they have neither a proven case nor there is a default case, which is
necessary  for  proving  by  cases.  In  the  last  line  the  lists  of  terms  are  joined  and  duplicates  are
removed.

Proving a Case Condition or Eliminating Some

This function tries to prove one of the cases for a given case distinction. Since the semantics of a case
distinction  depends  on  the  order  of  the  cases  (see  Syntax  Elements  for  Terms  and  Formulae)  one
condition after the other is handled. The algorithm tries to prove or disprove each condition formula.
If it was possible to prove a condition formula then the following cases are not relevant any more and
the loop can be aborted. If a condition formula was disproved then this case can be removed and the
iteration for the next case follows. Removing a case is implemented by not appending it to the list of
remaining cases. 

After  all  necessary  condition  formulae  are  proved  or  disproved,  the  result  can  be  generated.  It
depends on the remaining cases. If the list of remaining cases is empty then for one case the condition
formula was proven and all previous condition formulae were disproved. Hence, this case can be used
and the term of this case is returned.

If at least one condition formula was neither proved nor disproved then there are remaining cases. If
the  last  handled  condition  formula  was  proved  (or  simply  True  for  a  default  case),  then  the  last
proven case is added with condition True.  This means that this is the new default case for the new
case distinction. The term with a case distinction is returned.

If the last handled condition formulae was not proven – no matter it was disproved or not – then there
is  no  default  case.  Hence  a  proof  by  cases  is  not  possible  because the  given cases  do  not  cover  all
possible cases. Therefore, an empty term is returned.

A.2 Kernel for Symbolic Compuation Prover 57



Clear ProveCaseConditions ;
ProveCaseConditions KB_ cases_™CaseDistinction :=

Module ret, remainingCases = , caseNo = 0 ,
While caseNo < Length cases ,
caseNo++;
ret = SCProveDisprove cases caseNo, 2 , KB ;
If ret == ¢Proved, Break ;
If ret =!= ¢Disproved, AppendTo remainingCases, caseNo ;
;

If Length remainingCases > 0,
remainingCases = cases remainingCases ;

∗ add the first proved case with condition True ∗

If ret ¢Proved,
AppendTo remainingCases, •case cases caseNo, 1 , True ,

∗ else:
The last condition was neither proven nor True,

hence proving by cases does not work,
because there is no default case! ∗

Return ;
;
∗ return the list of remaining cases,
e.g. for proving by cases ∗

Return remainingCases ,
∗ else: return term of the proved case ∗

Return cases caseNo, 1
;
;

Implementation note:

The While-loop effectively iterates over all cases. The condition formula of a case is assumed to
be  the  second  element  in  a  •case  object.  cases caseNo,2  gives  access  to  the  second
element of the case with the number caseNo. Break[] aborts a loop immediately.

If the result is an empty term this is indicated by returning an empty list {}.  The calling function
(ProveAllCaseConditions) will delete those empty lists later.

Recursive Prover Call (Extended by Disproving)

SCProveDisprove  proves  or  disproves  a  goal.  It  is  used  for  proving  case  conditions.  A  goal  is
disproved, if the negation of the goal is proven. Proving the negation is tried only if the positive goal
was not proven.
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Clear SCProveDisprove ;
SCProveDisprove goal_, KB_ := Module ret ,

ret = Prove goal, KB ;
If ret =!= ¢Proved,
ret = Disprove goal, KB ;
If ret == ¢Proved, ret = ¢Disproved ;
;
ret
;

Proving a goal simply means calling the prover with this goal.

Clear Prove ;
Prove goal_, KB_ := Prover goal, KB ;

Disproving is done by calling the prover with the negation of the goal. If the goal is already a negated
formula then the outermost negation is just removed in order to avoid unnecessary double negation.

Clear Disprove ;
Disprove ™Not goal_ , KB_ := Prover goal, KB ;
Disprove goal_, KB_ := Prover ™Not goal , KB ;

Proving By Cases

Proving by cases splits a proof into several branches. The branches depend on the case conditions of a
chosen  case  distinction.  ChooseCaseDistinction  selects  a  case  distinction;  currently  the  first
possible  case  distinction  is  chosen.  ProveGoalByCases  performs  the  actual  split  and
ProveCase  proves  a  branch  by  rewriting.  It  is  sufficient  to  do  rewriting  because  other  logical
simplifications were already done before a proof by cases is started.

Choosing a Case Distinction

ChooseCaseDistinction  selects  the  first  possible  case  distinction.  This  may  be  extended  in
future versions  to  a  more sophisticated  selection  algorithm.  Case distinctions  without  a  default  case
(syntax pattern: •case[_,True]) are excluded because the prover cannot ensure that all  possible
cases are covered. 

Clear ChooseCaseDistinction ;
ChooseCaseDistinction forms_List := Block cand ,

cand =

Cases forms, ™CaseDistinction ___, •case _, True , 1, 1 ;
If Length cand > 0, First cand ,
;
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Proving a Goal by Cases

ProveGoalByCases  splits  a  proof  into  several  branches.  For  each  case  in  the  given  case
distinction the algorithm generates a branch with all assumptions and proves the goal formula. If no
case distinction is given, then the proof fails. If a branch cannot be proven then the whole proof fails
and the following branches will not be executed.

Clear ProveGoalByCases ;
ProveGoalByCases formula : _™Equal _List, KB_, , step_ :=

¢Failed; ProveGoalByCases formula : _™Equal _List,
KB_, cases_™CaseDistinction, step_ :=

Block $PBCLevel = $PBCLevel − 1 ,
Module asml, ret = ¢Failed ,
asml = GenerateAssumptions cases ;
Scan

ret = ProveCase formula, KB, #, step ;
If ret =!= ¢Proved, Return ¢Failed ;
&, asml ;

ret

;

Implementation note:

The Block  environment  is  used to change a global  variable and reset  it  afterwards.  The variable
$PBCLevel  controls the depth of nested proofs by cases. If the value is zero or less then proving
by  cases  will  be  disabled.  The  Module  environment  defines  local  even  for  recursive  calls.  For
implementation notes on Scan and (...)& see Conjunction.

Proving a Case

For  proving  a  case  first  the  assumptions  for  this  case  will  be  joined to  the  knowledge base  and  the
rewriting algorithm will be started. For equalities the specialized version of rewriting is used.
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Clear ProveCase ;
ProveCase ™Equal lhs_List, rhs_List , KB_, case_, step_ :=

Module curKB ,
curKB = Join case, KB ;
RewriteEquality lhs,
rhs, GenerateRWRules curKB , curKB, step
;

ProveCase form_List, KB_, case_, step_ :=

Module curKB ,
curKB = Join case, KB ;
RewriteFormula form, GenerateRWRules curKB , curKB, step
;

Generating Assumptions

This  algorithm  takes  a  case  distinction  and  creates  lists  of  assumptions.  For  each  case  a  list  of
assumptions is generated. As described in Syntax Elements for Formulae the full condition to choose
a  certain  case  is  that  the  case  condition  of  this  case  is  fulfilled  and  for  all  all  previous  cases  the
negated case conditions are fulfilled.

Clear GenerateAssumptions ;
GenerateAssumptions cases_™CaseDistinction :=

Block conds, neg = , asml = ,
conds = Most Apply List, Map Last, cases ;

∗ list of conditions, last one is ' True' ∗

Scan
AppendTo asml, Append neg, # ;
AppendTo neg, NegateFormula # ;
&, conds ;

AppendTo asml, neg ; ∗ add the last case ∗

asml
;

Implementation note:

cases  is  a  ™CaseDistinction  structure  of  •cases[formula,  condtion].  conds
contains a list of formulae, the case conditions. This list is generated by taking the last (= second)
element  of  each  •case  pair:  Map[Last,  cases].  The  Apply  command  changes  the
™CaseDistinction  structure  to  a  Mathematica  list.  The  Most  command  removes  the  last
condition,  which  has  to  be  the  formula  True  anyway.  This  was  checked  earlier  by
ChooseCaseDistinction .  The variable neg  collects the negations of the conditions and the
variable asml collects the assumption lists for all cases. The assumption list for one case contains
the condition for this case and the negated conditions of the previous cases.
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For impementation notes on Scan and (...)& see Conjunction.
For  the  last  case  the full  condition is  the negation of  all  case conditions except  the last  condition
which has to be True.

Negating a Formula

NegateFormula returns the negation of a formula and avoids double negation.

Clear NegateFormula ;
NegateFormula ™Not formula_ := formula;
NegateFormula formula_ := ™Not formula ;
NegateFormula := ;

∗ a special case for RewriteTerm: an empty term ∗

Rewriting Tools

In this section the core functions for the actual rewriting are defined. They apply usually on formulae
in the goal. For the special case of rewriting an equality the functions of this section are appleid to the
terms of both sides. So they apply on terms too.

Transforming a Set of Terms by Application of All Matching Rewriting Rules

RewriteAllNew  rewrites  all  terms  and  formulae  in  goals  but  returns  only  terms  that  do  not
occur  in  oldgoals.  Hence,  the  returned  terms  are  new  ones.  There  is  an  exception  for  case
distinctions. If  a case distinction is in the goal formula then this formula is returned also like a new
formula. Each new term is generated by applying one rule. There are no recursive applications. The
rules  from  rulesOutermost  are  applied  to  an  entire  term  and  rules  from  rulesSubterms
rewrite sub terms only. Each rule is tried on each term on each matching position. Note that currently
both lists of rules have identical content.

Clear RewriteAllNew ;
RewriteAllNew , ___ := ;
RewriteAllNew _, _, , , ___ := ;
RewriteAllNew goals_, oldgoals_,

rulesOutermost_, rulesSubterms_ := Module res ,
res = Map RewriteGoal rulesOutermost, rulesSubterms , goals ;

res = Flatten res, 2 ;
∗ remove unnecessary layers of lists ∗

res = DeleteCases res, ; ∗ remove empty terms ∗

res = RemoveDuplicates res ; ∗ remove duplicates ∗

Complement res, DeleteCases oldgoals, _™CaseDistinction
∗ return only new terms ∗

;
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Implementation note:

Map  applies the function RewriteGoal  on each term in the goal. For further notes on Map  and
functions of functions see Prove All Case Conditions.

RewriteGoal  applies  each  rule  on  a  goal  and  uses  the  corresponding function  for  rewriting.  But
for case distinctions in the goal formula no rewriting is applied.

Clear RewriteGoal ;
RewriteGoal __ goal_™CaseDistinction := goal;
RewriteGoal rulesOutermost_, rulesSubterms_ goal_ := Join

Map RewriteSubterm goal , rulesSubterms ,
Map RewriteTerm goal , rulesOutermost

RewriteSubterm  searches for all possible sub term matches of the left hand side of the rule in the
given goal formula or term. For each matching position a new term is generated by rewriting.

Clear RewriteSubterm ;
RewriteSubterm goal_ rule_ := Module pos ,

pos =

Position goal . ™CaseDistinction ___ → ™CaseDistinction,
rule 1 , 0, ∞ ;

pos = DeleteCases pos, ;
Map RewriteByRule goal, rule, # &, pos

RewriteTerm  checks whether the rule matches the entire term. If it is so, the term is rewritten by
the rule. For a negated goal formula the check is performed on the negated formula as well as on the
positive formula. If there is a double negation at the outermost position of a goal formula then this is
removed instead of applying the rule. The rule will get a chance in the next round of rewriting.
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Clear RewriteTerm ;
RewriteTerm ™Not ™Not goal_ rule_ := goal;
RewriteTerm ™Not goal_ rule_ :=

If MatchQ ™Not goal , rule 1 ,
RewriteByRule ™Not goal , rule, EntireExpression ,

∗ else rewrite within the negation ∗

If MatchQ goal, rule 1 ,
RewriteByRule ™Not goal , rule, 1 ,

∗ else: no matching ∗

;
RewriteTerm goal_ rule_ :=

If MatchQ goal, rule 1 ,
RewriteByRule goal, rule, EntireExpression ,

Rewriting a Term by a Conditional Rule

RewriteByRule  applies  a  certain  rule  on  a  term at  a  specified  position.  In  case  of  rewriting  the
entire  term  this  behaves  like  an  unconditional  rule.  For  conditional  rules  a  new  case  distinction  is
generated and in each case the rule is applied at the given position.

Clear RewriteByRule ;
RewriteByRule term_, rule : lhs_ → ™CaseDistinction __•case ,

EntireExpression := ReplaceAt term, rule, EntireExpression ;

RewriteByRule term_, rule : lhs_ → ™CaseDistinction __•case ,
pos_ := Module cases, t, c ,
cases = Replace Extract term, pos , rule ;
cases = ReplaceAll cases,
•case t_, c_ → •case ReplacePart term, t, pos , c ;

cases
;

Implementation note:

Implementation note:
The  Mathematica  environment  Module  is  used  to  get  unique  symbols  for  t  and  c.  The  first
Replace  command applies the rule on the sub term at position pos. After that the local variable
cases  contains  a  ™CaseDistinction  structure  with  all  patterns  are  filled  properly.  In  the
second  line  the  entire  term  is  wrapped  around  each  case  term.  This  is  done  by  ReplacePart.
ReplaceAll transforms one •case after the other.
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Rewriting a Term by an Unconditional Rule

In  case  of  an  unconditional  rule  RewriteByRule  is  more  or  less  a  call  of  the  Mathematica
Replace command. 

RewriteByRule term_, rule_, pos_ := ReplaceAt term, rule, pos ;

Low-level Rewriting Tools

These  auxiliary  functions  work  directly  on  the  Mathematica  expressions  and  extend  some
Mathematica commands.

Removing Duplicates

This function removes all duplicates without sorting the elements, e.g. like Mathematica Union.
The Implementation is taken of Mathematica Help / Command Reap. The original function is called
UnsortedUnion.

Clear RemoveDuplicates ;
RemoveDuplicates x_ := Reap Sow 1, x , _, #1 & 2 ;

Applying a Rule at a Certain Position

ReplaceAt works like Mathematica Replace  but it replaces at a certain position. Replace  only
applies a rule at the top position.

Clear ReplaceAt ;
ReplaceAt::usage = "ReplaceAt expr, rule,

pos applies rule on expr only at position pos.";
ReplaceAt expr_, r : _Rule _RuleDelayed , EntireExpression :=

Replace expr, r ;
ReplaceAt expr_, r : _Rule _RuleDelayed , pos_ :=

ReplacePart expr, Replace Extract expr, pos , r , pos ;

Symbol EntireExpression (Extends Mathematica Extract and ReplacePart)

The  Mathematica  functions  Extract  and  ReplacePart  are  extended  to  be  able  to  process  the
parameter EntireExpression instead of a position.

Clear EntireExpression ;
EntireExpression::usage = "EntireExpression is a

symbol used by ReplaceAt, Extract, ReplacePart";
Extract expr_, EntireExpression ^:= expr;
ReplacePart expr_, new_, EntireExpression ^:= new;

A.2 Kernel for Symbolic Compuation Prover 65



Implementation note:

UpSetDelayed (^:=)  defines  a  so  called  upvalue.  It  allows  assigning  a  definition  to  another
symbol  than  the  head  symbol.  In  this  case  the  functions  Extract  and  ReplacePart  are
protected  from  Mathematica.  Therefore  the  definitions  are  assigned  to  the  symbol
EntireExpression.  Every  time  Extract  is  called  with  EntireExpression,  this
definition will be used by Mathematica. In Mathematica  upvalue definitions have a higher priority
than usual (downvalue) definitions. 

Generating Rules

Generating Rewrite Rules

GenerateRWRules  transforms  a  knowledge  base  (a  list  of  formulae)  into  a  list  of  rewrite  rules.
These  rules  are  Mathematica  rules.  Before  each  formula  is  translated  into  a  formula  the  induction
variables  are  removed  (RemoveInduction)  and  the  knowledge  base  is  simplified
(SimplifyKnowledgeBase ). After the rule generation all invalid rules are deleted and the valid
ones are returned to the caller. 

Clear GenerateRWRules ;
GenerateRWRules::usage =

"GenerateRWRules KB returns a list of rewrite rules."
GenerateRWRules KB_List := Block rules ,

rules = Map GenerateRule,
SimplifyKnowledgeBase RemoveInduction KB ;

DeleteCases rules,
;

Removing Induction

RemoveInduction  replaces the syntax construct for induction variables by a simple variable with
the same name. This simplifies the following formula handling.

Clear RemoveInduction ;
RemoveInduction KB_List :=

ReplaceAll KB, •ind x_, ___ → x ;

Simplifying a Knowledge Base

SimplifyKnowledgeBase simplifies one formula after the other by SimpFormula.

Clear SimplifyKnowledgeBase ;
SimplifyKnowledgeBase l_ := Map SimpFormula, l ;
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Quantifiers, Implications and Conjunctions

Quantifiers  are  moved  out  from  an  implication,  but  they  are  moved  into  conjunctions.  If  the
conclusion  of  an  implication  is  a  conjunction  then  the  implication  is  spilt  into  a  conjunction  of
implications.  Conjunctions  at  outermost  position  are  spilt  into  a  list  of  formulae.  This  is  possible
because the knowledge base is treated as a conjunction of all contained formulae. 

Examples of some simplifications:
"
x

C x fl "
y

P x, y ö "
x

"
y

C x fl P x, y

C fl "
y

P y ö "
y

C fl P y

C fl A B ö C fl A C fl B
"
x

P x Q R x ö "
x

P x , "
x

Q , "
x

R x

Clear SimpFormula ;
SimpFormula ™ForAll x_, formula_ , vars___ :=

SimpFormula formula, vars, x ;
SimpFormula formula : ™And ___ , vars___ :=

Apply Sequence, Map SimpFormula #1, vars &, formula ;
SimpFormula ™Implies condition_, True , vars___ := Sequence ;
SimpFormula

™Implies condition_, ™ForAll x_, formula_ , vars___ :=

SimpFormula ™Implies condition, formula , vars, x ;
SimpFormula ™Implies condition_, formula : ™And ___ ,

vars___ :=

SimpFormula Map ™Implies condition, #1 &, formula , vars ;
SimpFormula formula_, vars___ :=

Fold ™ForAll #2, #1 &, formula, Reverse vars ;

Implementation note:

The  function  SimpFormula  is  called  with  one  parameter,  which  is  the  formula  that  should  be
simplified.  Internally  optional  parameters  at  the  end  are  used  to  collect  bound  variables.  The
function will be called recursively to go through the whole depth of the formula. 

If the formula is a universal quantifier then the quantifier is removed and in the recursive function
call  the  bound  variable  is  stored  as  an  additional  parameter  at  the end  of  the  parameter  list.  This
allows collecting all bound variable.

If  the  formula  is  a  conjunction  then  the  formula  is  split  into  a  sequence  of  formulae.  For  each
formula  SimpFormula  is  called  recursively  with  the  collected  bound  variables.  Note  that  the
Mathematica  syntax  (..)&  defines  a  (pure)  function  with  parameter  #1,  #2  and  so  on.  Map
would map this function on each formula inside formula and Apply transforms the head symbol
™And into Sequence.
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If  the  formula  is  an  implication  and  the  conclusion  is  a  universal  quantified  formula  then  the
implication is  moved under  the quantifier.  This  is  done by a recursive call  of  SimpFormula  on
the  implication  without  the  quantifier  and  appending  the  bound  variable  to  the  collected  list  of
variables.

If the formula is an implication and the conclusion is a conjunction then the implication is applied
to  each  part  of  the  conjunction.  After  that  the  conjunction  is  split  by  a  recursive  call  of
SimpFormula.

If  SimpFormula  gets  an  arbitrary  formula  then  the  innermost  formula  is  reached  and  the
quantifiers are reconstructed in the same order as before. Unused bound variables may occur in this
formula,  they  will  be  ignored  later  in  the  rule  generation  process.  Note  that  later  the  function
GenerateRule  will collect all bound variables again. But to avoid a dependency between these
two implementations SimpFormula returns a syntactical correct formula.

Case Distinction

If  a  case  distinction  appears  in  the  knowledge  base  as  outermost  symbol,  it  is  translated  into  some
implications. Each case leads to an implication. Note that later each implication is transformed into a
case distinction, which is different to the original case distintion. This allows conditional rewriting.

Examples:
f1 › c1 # c1 fl f1

f1 ì c1

f2 ì c2

…
fn ì True

#

c1 fl f1
Ÿ c1 c2 fl f2

…
Ÿ c1 … Ÿ cn-1 fl fn

SimpFormula ™CaseDistinction •case form_, cond_ , vars___ :=

SimpFormula ™Implies cond, form , vars ;

SimpFormula cd_™CaseDistinction, vars___ :=

Apply Sequence, MapThread
SimpFormula ™Implies If Length #1 > 1,

Apply ™And, #1 , First #1 , First #2 , vars &,
GenerateAssumptions cd , Apply List, cd

;

Implementation note:

If there is only one case then the translation is simple. In all other cases it is a little bit tricky. The
premises  of  the  implications  are  built  by  GenerateAssumptions[cd] .  For  each  case  an
implication  is  generated  and  SimpFormula  is  called  recursively.  Depending  on  the  number  of
conditions a conjunction of the conditions is generated.
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In  more  details:  MapThread  maps  a  function  on  some  lists  of  arguments.  It  runs  over  all  lists
simultaneously and takes one element of each list. The first call takes the first element of each list,
the second call the second elements and so on. Therefore all lists must have equal length. The first
parameter  list  is  a  list  of  all  assumptions  generated  from  the  case  distinction
(GenerateAssumptions[cd] ).  The  second  list  contains  all  cases.  The  expression
Apply[List,cd]  just changes the head symbol from ™CaseDistinction  to List  because
MapThread  needs  this.  Then  for  each  case  the  pure  function  defined  in  (...)&  is  called  with
two parameters. The first parameter #1 is taken from the first list and contains a list of conditions.
The second parameter  #2  contains a  •case  object  with  two elements:  The formula for  this  case
and  the  condition.  If  the  first  parameter  (=  condition  formulae)  contains  more  than  one  element
then  a  conjunction  of  this  formulae  is  generated  by  Apply[™And,#1].  Otherwise  just  the  first
element (it is the only one) is taken by First[#1]. The result of this If statement is the premise
for the implication. From the second parameter #2  only the first element (= case formula) is used
for the conclusion: First[#2].

Generating a Rule

GenerateRule  contains  the  main  definitions  for  the  rule  generation  process.  Depending  on  the
pattern of the given formula a specific rewriting rule is generated.  

Clear GenerateRule ;
GenerateRule::usage =

"GenerateRule formula returns a rule which performs
the replacement defined by the given formula.";

Equality and Equivalence

Equalities and equivalences are used to rewrite the term on the left hand side by the term on the right
hand  side.  If  such  formulae  are  universal  quantified,  then  the  bound  variables  are  replaced  by
patterns. In order to be able to fill in all blanks of the pattern later in the rewrite process the function
CheckVariableOccurrence  checks if all variables of the right hand side term occur also on the
left hand side. Otherwise this formula is skipped.

GenerateRule ™Equal P_, Q_ := P → Q ;
GenerateRule ™Iff P_, Q_ := P → Q ;

GenerateRule ™ForAll x_, eq : ™Iff ™Equal P_, Q_ ;
CheckVariableOccurrence P, Q, x :=

ReplaceVariableByPattern P → Q, x ;
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Implementation note:

(eq:™Iff|™Equal)[P_,Q_]  defines a pattern with alternative head. The head symbol may be
either ™Iff or ™Equal. For a certain call the symbol is stored in the local variable eq and may be
used  in  the  function  body.  This  allows  handling  two  syntactical  similar  formulae  with  only  one
definition.

The next definition handles multiple quantified variables like this:

"
x

"
y

f x, y = g x, y        

™ForAll x, ™ForAll y, ™Equal f x, y , g x, y

Therefore a formula with more than one quantifier in a row is translated internally to a formula with
only one quantifier, but this quantifier supports a list of variables. 

∗ collect all bound variables: ∗

GenerateRule ™ForAll x_List, ™ForAll y_, f_ :=

GenerateRule ™ForAll Append x, y , f  ;
GenerateRule ™ForAll x_, ™ForAll y_, f_ :=

GenerateRule ™ForAll x, y , f  ;

GenerateRule ™ForAll v_List, eq : ™Iff ™Equal P_, Q_ ;
CheckVariableOccurrence P, Q, v :=

ReplaceVariableByPattern P → Q, v ;

Implementation note:

The first two definitions collect the variables. The third one generates the rule for the formula after
checking the occurrence of the variables. P is rewritten by Q.

Case Distinction

Most  formulae  containing  ™CaseDistinction  need  no  special  handling.  They  are  treated  like
unconditional formulae. Some simplifications are done previously in SimplifyKnowledgeBase ,
especially if a case distinction appears as outermost symbol.

If  a  case  distinction  appears  on  the  left  hand  side  of  an  equality  or  an  equivalence  the  terms  are
swapped to the other side. But this makes no sense if both sides contain case distinctions. In this case
the formula is used exceptionally for rewriting from right to left, because the other way is much more
difficult to match.

GenerateRule eq : ™Iff ™Equal
lhs_™CaseDistinction, rhs : Except ™CaseDistinction :=

GenerateRule eq rhs, lhs ;
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Implementation note:

The  pattern  rhs:Except[™CaseDistinction]  matches  all  expressions  except  these  ones
with head symbol ™CaseDistinction. The content of the pattern is stored in rhs.

Implication

If  a  formula  contains  an  implication  then  this  implication  is  translated  into  an  equivalence  with
™CaseDistinction formula with only one case. Examples:

C fl A = B # A =
B › C

C fl A # A ñ
True › C

 

So A is rewritten by B resp. True only if the prover is able to prove C.

GenerateRule ™Implies C_, eq : ™Iff ™Equal A_, B_ :=

GenerateRule eq A, ™CaseDistinction •case B, C ;

GenerateRule ™Implies C_, A_ :=

GenerateRule ™Iff A, ™CaseDistinction •case True, C ;

GenerateRule
™ForAll v_, ™Implies C_, eq : ™Iff ™Equal A_, B_ :=

GenerateRule ™ForAll v,
eq A, ™CaseDistinction •case B, C ;

GenerateRule ™ForAll v_, ™Implies C_, A_ :=

GenerateRule
™ForAll v, ™Iff A, ™CaseDistinction •case True, C ;

Negation

Transformation of some negated formulae to logically equivalent formulae:
Ÿ Ÿ A # A

Ÿ A # A ñ Ÿ True
 

GenerateRule ™Not ™Not F_ := GenerateRule F ;

GenerateRule ™Not F_ := GenerateRule ™Iff F, ™Not True ;

Other Formulae

… are rewritten by True:
"
x

A # "
x

A ñ True

A # A ñ True
 

GenerateRule ™ForAll x_, F_ :=

GenerateRule ™ForAll x, ™Iff F, True ;
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GenerateRule f_ := GenerateRule ™Iff f, True ;

The last  defintion  is  a  fallback  for  formulae  which  do  not  match  any  other  definition.  This  ensures
that for each formula a rule is generated. 

Pattern for Variables

ReplaceVariableByPattern  returns a rule where variables are replaced by labelled blanks on
the left hand side and by the labels on the right hand side. VariablePattern  returns a pattern for
a  simple  variable  or  a  sequence  variable.  The  pattern  contains  conditions  to  prevent  invalid
instantiations (see ValidInstance).

Clear ReplaceVariableByPattern ;
ReplaceVariableByPattern::usage =

"ReplaceVariableByPattern rule,x
replaces x in rule by a labelled blank.";

ReplaceVariableByPattern P_ → Q_, vars_List :=

Fold ReplaceVariableByPattern, P → Q, vars ;
ReplaceVariableByPattern P_ → Q_, x_ := Module t, rule ,

rule = x → VariablePattern x, t ;
ReplaceVariable P, rule → ReplaceVariable Q, x → t
;

Implementation note:

Fold  applies  a  binary  function  (ReplaceVariableByPattern )  on  the  expression  P→Q
recursively and adds as second parameter an element from the list vars.
Example:

Fold[f,expr,{x,y,z}] = f[f[f[expr,x],y],z]

The  Module  environment  in  ReplaceVariableByPattern  ensures  unique  symbols  for  t.
So each variable can be replaced by a unique symbol.

Off RuleDelayed::"rhs"  ;
∗ This prevents some unnecessary warnings. ∗

Clear VariablePattern ;
VariablePattern::usage =

"VariablePattern defines the pattern for
a simple variable or a sequence variable.";

VariablePattern x_, t_ := If IsSequenceVar x ,
Pattern t, ___?ValidInstance ,
Pattern t, _?ValidInstanceSeqFree
;

On RuleDelayed::"rhs"  ; ∗ It enables warnings again. ∗
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Implementation note:

Off[…]  suppresses  some  warnings  while  loading  the  package.  Otherwise  warnings  are  printed
because Blanks appear within a function body which is not usual and in most cases an input error.
But in this case Blanks are necessary to generate patterns for rewrite rules. On[…]  restores the
warning mechanism again.

IsSequenceVar returns True if a variable is a sequence variable.
The  code  of  IsSequenceVar  is  taken  from Theorema`Language`Syntax`Core`IsSequenceFree  and
modified.

IsSequenceVar x___ := ¬ FreeQ x , •seq _ , 1 ;

ValidInstance

ValidInstance  and  ValidInstanceSeqFree  check  the  validity  of  an  instantiation  for  a
pattern.
The first check prevents some matches of internal structure to function terms.

Example:
An arbitrary but fixed constant •fix[x,0] occurs in a formula P[•fix[x,0]].
Without a check the pattern P[f_[t___ ]] would match, but this pattern should only match
to formulae like P[f[t,s]].

A  second  check  prevents  sequence  variables  from  matching  to  a  simple  pattern  (only  for
ValidInstanceSeqFree).

Clear ValidInstance ;
ValidInstance::usage =

"ValidInstance checks the validity of a pattern.";
ValidInstance •seq = False;
ValidInstance •fix = False;
ValidInstance •ind = False;
ValidInstance _ = True;

Clear ValidInstanceSeqFree ;
ValidInstanceSeqFree::usage = "ValidInstanceSeqFree

checks the validity of a non–sequence pattern.";
ValidInstanceSeqFree •seq ___ := False;
ValidInstanceSeqFree x_ := ValidInstance x ;
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ReplaceVariable

ReplaceVariable  performs  the  actual  replacement  of  a  variable  by  a  pattern.  The  algorithm
ensures that constants •fix and sequence variables •seq are not replaced by a simple variable.

Clear ReplaceVariable ;
ReplaceVariable formula_, rule : •seq _ → _ :=

ReplaceAll formula, f : •fix __ → f, rule ;
ReplaceVariable formula_, rule : _ → _ := ReplaceAll

formula, f : •fix __ → f, f : •seq __ → f, rule ;

Implementation note:

The Mathematica  ReplaceAll  applies  only  one  rule  to  an  expression.  Therefore  the additional
rules, which do effectively nothing, prevent the replacement in sub expression of •fix and •seq.

CheckVariableOccurrence

CheckVariableOccurrence  checks if  all  variables in v,  which appear in the term on the right
hand side also appear in the left hand side term. •fix constants are removed because only variables
are  interesting  for  this  check.  Each  variable  is  tested  separately  by
CheckOneVariableOccurrence . Simple variables and sequence variables may have a common
variable  symbol  but  they  are  different  as  variables.  Therefore  in  case  of  a  simple  variable  it  is
necessary to remove all  sequence variables with the same before the test, because the check is done
by  pattern  matching  with  FreeQ.  For  sequence  variables  such  a  removal  is  not  necessary  because
simple variables would not match the pattern of a sequence variable.

Clear CheckVariableOccurrence ;
CheckVariableOccurrence lhs_, rhs_, v_ :=

CheckOneVariableOccurrence
ReplaceAll lhs, rhs , •fix __ → v ;

CheckVariableOccurrence lhs_, rhs_, v_List :=

Apply And, Map CheckOneVariableOccurrence
ReplaceAll lhs, rhs , •fix __ → , v ;

Clear CheckOneVariableOccurrence ;
CheckOneVariableOccurrence lhs_, rhs_ •seq v_ :=

¬ FreeQ lhs, v FreeQ rhs, v ;
CheckOneVariableOccurrence lhs_, rhs_ v_ :=

¬ FreeQ lhs . •seq v → , v FreeQ rhs . •seq v → , v ;

Implementation note:

CheckOneVariableOccurrence[…][…]  has  a  function  as  head  symbol.  For  details  see
Prove All Case Conditions.
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End

End ;

EndPackage ;

This  ends  the  definition  of  the  package.  The  code  in  the  next  line  allows  loading  the  package
immediately:

Get "SC`ProverKernel`"
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Used Commands and Symbols of Mathematica

This  section  lists  alphabetically  ordered  all  commands  and  symbols  from the  Mathematica  package
System`. This package is loaded automatically by Mathematica  and enables the main functionality
of Mathematica. For more details on these commands and symbols see Mathematica help.

Commands and Symbols with Short Form

These commands are used mainly in prefix, post fix and infix notation. In most cases these notations
are more natural and hence easier to read.

Alternatives Pattern
And && PatternTest

Blank _ Plus
BlankNullSequence ___ ReplaceAll
BlankSequence __ Rule

CompoundExpression ; RuleDelayed
Condition ; SameQ
Equal Sequence

Function & Set
Greater > SetDelayed
Increment ++ Slot
Infinity ∞ String
List Subtract

MessageName :: Unequal
Not ¬ UnsameQ
Part UpSetDelayed

Symbols

False, True

Commands

AppendTo, Apply, Begin, BeginPackage, Block, Break, Cases,
Clear, Clear, DeleteCases, Do, End, EndPackage, Extract,
First, Flatten, Fold, FreeQ, Head, If, Intersection,
Join, Length, Map, MapThread, MatchQ, Max, MemberQ,
Module, Most, Needs, Off, On, Options, Prepend, Reap,
Replace, ReplacePart, Return, Reverse, Scan, Sow, While
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A.3 Commented Source Code of Package

Proof Tracer for 
Symbolic Computation Prover

Package Description

This package contains the implementation of a tracer for SCProver (Symbolic Computation Prover).

BeginPackage "SC`Tracer`",
"SC`ProverKernel`", "Utilities`FilterOptions "̀ ;

Utilities`FilterOptions` is needed for FilterOptions.

The package SC`ProverKernel`  contains the implementation of the corresponding prover.  This
tracer  allows  printing  some output  while  the  prover  is  running.  This  documents  the  proof  flow and
allows inspecting a proof even if the proof fails.

Exported Symbols

SCProof: Usage and Options

Clear SCProof ;
SCProof::usage =

"SCProof G,K calls SCProver G,K and generates
additionally a simple output of the proof flow.";

Options SCProof = trPrintRules → False ;
trPrintRules::usage =

"trPrintRules controls the output of rewriting rules."

Implementation

Begin

Begin "`Private`" ;
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The  private  variable  $curDepth  stores  the  current  depth  of  the  proof.  Some  proof  steps  may
increase the depth. It will be used for a better structured output of the proof flow. $trPrintRules
stores  the  value  of  the  corresponding  tracer  option.  $trSKIP  is  used  only  for  developing  and
debugging the tracer. 

$curDepth = 0;
Clear $trPrintRules ;

$trSKIP = False ; ∗ a variable used for debugging purpose ∗

Implementation note:

The  initialization  of  the  global  variable  has  no  effect  on  the  tracer;  they  will  get  valid  values  in
each call.  Except  the variable $trSKIP,  which is  for  debugging only:  the value of this variable
will not be changed later.

Tools

Print command

This function generates an output with Mathematica Print. For better imagination of the proof flow
the variable $curDepth controls the indent and the value is printed in front of the output.

Clear trPrint ;
trPrint out___ := Print StringJoin Table " ", $curDepth ,

$curDepth , ": ", Sequence @@ DeleteCases out , Null ;

Implementation note:

StringJoin[Table[" ",{$curDepth}]] generates the indent.
Sequence@@DeleteCases[{out},Null] removes Null values from the output.

Proof Tracer: SCProof

Implementation

The  main  function  handles  the  options  and  calls  the  prover  within  a  TraceScan  command.  This
command calls the functions tr before an expression of the prover is evaluated and trRes after the
evaluation. The list TracedSymbols  filters the expressions for which the functions tr and trRes
are called. This is not mandatory but it simplifies the development and maintenance of the tracer.
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SCProof goal_, KB_, opts___ :=

Block $curDepth = 0, $trPrintRules ,
Module ret ,
$trPrintRules = trPrintRules .
Join FilterOptions SCProof, opts , Options SCProof ;

trPrint "Proof of: ", goal ;
ret = TraceScan tr,
SCProver goal, KB, FilterOptions SCProver, opts ,
Evaluate
Alternatives @@ # ___ & @ TracedSymbols , trRes ;

ret

Implementation note:

The Block command allows defining values for variables. The old value will be restored after the
execution. Option handling uses FilterOptions and the default values for the options.

TracedSymbols  contains  a  list  of  symbols,  #[___]&/@  generates  a  function  pattern  for  each
symbol. E.g. the pattern generated from symbol s is s[___]. Alternatives@@  converts the list
of patterns into alternative patterns. The function Evaluate  executes the code immediately, even if
a function has the attribute HoldFirst,  HoldRest,  or  HoldAll.  TraceScan  has the attribute
HoldAll  to suppress the excution of all parameters; therefore Evaluate  is necessary to compute
the alternative patterns. 

Example: 
If TracedSymbols  contains {s1,s2,s3}  then the third parameter of TraceScan  looks
like this:

s1 ___ s2 ___ s3 ___

Such a pattern matches function calls like of s1[p1,p2] or s3[].
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TracedSymbols =

SC`ProverKernel`Private`Prover,
SC`ProverKernel`Private`RewriteEquality,
SC`ProverKernel`Private`RewriteFormula,
SC`ProverKernel`Private`RewriteAllNew,
SC`ProverKernel`Private`IsEqual,
SC`ProverKernel`Private`ProveSubgoal,
SC`ProverKernel`Private`InductionBase,
SC`ProverKernel`Private`InductionStep,
SC`ProverKernel`Private`ProveIffLeftToRight,
SC`ProverKernel`Private`ProveIffRightToLeft,

SC`ProverKernel`Private`ProveAllCaseConditions,
SC`ProverKernel`Private`ProveCaseConditions ___ ,
SC`ProverKernel`Private`SCProveDisprove,
SC`ProverKernel`Private`Prove,
SC`ProverKernel`Private`Disprove,
SC`ProverKernel`Private`ProveGoalByCases,
SC`ProverKernel`Private`ProveCase
;

The  function  tr  and  trRes  are  called  for  a  certain  pattern  only  if  there  is  an  entry  in
TracedSymbols  for this pattern. Note that each symbol will be extended to a function pattern. The
function  ProveCaseConditions[___][___]  has  two  parameter  sequences,  therefore  it  is
necessary  to  append  one  already  in  this  list.  Most  of  the  symbols  in  TracedSymbols  are  in  the
Private`  context of the package for SCProver.  Hence, they are not visible outside this context.
Therefore  it  is  necessary  to  specify  the  entire  symbol  name  including  the  context.  For  more
information on contexts see Mathematica Help.

Tracer

Implementation of tr and trRes

tr  and  trRes  are  called  for  every  expression  which  occurs  while  executing  SCProver.  Each
expression  is  wrapped  by  HoldForm  in  order  to  prevent  the  expression  from being simplified  and
executed by Mathematica. Private symbols from other packages need the full symbol name including
the context. For an expression expr  with the result res  the definitions of tr and trRes  look like
this:

tr HoldForm expr := ...
trRes HoldForm expr , res := ...

expr and res are usually pattern with blanks.
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The  implementation  of  both  functions  is  done  analogous  to  the  definitions  in  the  package
ProverKernel.  In most cases the function body is only a call of trPrint  with a certain output
text.

Clear tr, trRes ;

Final Goals

tr HoldForm SC`ProverKernel`Private`Prover
™Equal expr_, expr_ , KB_List :=

trPrint "This formula is true: ", ™Equal expr, expr ;

tr HoldForm SC`ProverKernel`Private`Prover
™Iff expr_, expr_ , KB_List :=

trPrint "This formula is true: ", ™Iff expr, expr ;

tr HoldForm SC`ProverKernel`Private`Prover True, KB_List :=

trPrint "This formula is true: ", True ;

Implication

tr HoldForm SC`ProverKernel`Private`Prover
™Implies ™Not True , B_ , KB_ :=

trPrint "From 'False' everything can be concluded,
hence this formula is true: ", ™Implies False, B ;

tr HoldForm
SC`ProverKernel`Private`Prover ™Implies A_, B_ , KB_ :=

trPrint "Assume: ", A, "\n and prove: ", B ;

No output  for  the  next  Prover  call  (This  expression  occurs  before  parameter  KB  is  evaluated  and
without this definition the line before would be called twice):

tr HoldForm SC`ProverKernel`Private`Prover _, Append __ :=

Null;

Conjunction

tr HoldForm
SC`ProverKernel`Private`Prover ™And forms__ , KB_ :=

trPrint "Prove the conjunction by proving
each part separately: ", forms ;

trRes HoldForm
SC`ProverKernel`Private`Prover ™And forms__ , KB_ ,
¢Proved := trPrint "All sub goals proved." ;
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tr HoldForm SC`ProverKernel`Private`ProveSubgoal
form_, _Symbol := Null;

tr HoldForm
SC`ProverKernel`Private`ProveSubgoal form_, KB_ :=

trPrint "Prove sub goal: ", form ; $curDepth++ ;

trRes HoldForm SC`ProverKernel`Private`ProveSubgoal
form_, _Symbol , _ := Null;

trRes
HoldForm SC`ProverKernel`Private`ProveSubgoal form_, KB_ ,
¢Proved := $curDepth−−; trPrint "Sub goal proved.

Add the formula to the knowledge base: ", form ;

trRes
HoldForm SC`ProverKernel`Private`ProveSubgoal form_, KB_ ,
¢Failed := $curDepth−−;
trPrint "Proof of sub goal failed. Abort the proof." ;

Implementation note:

If  the  second  parameter  of  ProveSubgoal  is  a  symbol,  then  this  expression  contains  an
unevaluated  variable  for  KB.  This  expression  occurs  before  the  parameter  KB  is  evaluated.  After
evaluation of KB the expression matches another definition hence only one output is generated. 

Induction

tr HoldForm SC`ProverKernel`Private`Prover
™ForAll •ind v_, base_, succ_ , formula_ , KB_ ;

SC`ProverKernel`Private`$Induction:=

trPrint "Prove by induction: ",
™ForAll •ind v, base, succ , formula ;

tr HoldForm SC`ProverKernel`Private`InductionBase
formula_, v_, base_, KB_ :=

trPrint "Prove base case: ", formula . v → base ;
$curDepth++ ;

trRes HoldForm SC`ProverKernel`Private`InductionBase
formula_, v_, base_, KB_ , result_ := $curDepth−− ;

A.3 Proof Tracer for Symbolic Compuation Prover 82



tr HoldForm SC`ProverKernel`Private`InductionStep
formula_, v_, succ_, vFix_•fix, KB_ :=

trPrint "Assume induction hypotheses : ",
formula . v → vFix,
"\nand prove induction step : ", formula . v → succ vFix ;
$curDepth++ ;

trRes HoldForm SC`ProverKernel`Private`InductionStep formula_,
v_, succ_, vFix_•fix, KB_ , result_ := $curDepth−− ;

Implementation note:

The  prover  uses  induction  only  if  the  prover  variable
SC`ProverKernel`Private`$Induction  is  True.  Hence  the  tracer  has  to  check  this
condition before printing an output. 

Course of values induction

tr HoldForm SC`ProverKernel`Private`Prover
™ForAll •ind v_, ordering_ , formula_ , KB_ ;

SC`ProverKernel`Private`$Induction:= Module vFix ,
trPrint "Prove by Course–of–Values–Induction: ",
™ForAll •ind v, ordering , formula ;

vFix = SC`ProverKernel`Private`ArbitraryButFixedConstant
v, formula, KB ;

trPrint "Assume induction hypotheses : ",
™ForAll v, ™Implies ordering v, vFix , formula ;

trPrint "And prove induction step : ", formula . v → vFix
;

Implementation note:

The  tracer  has  to  check  the  prover  variable  SC`ProverKernel`Private`$Induction
again.  The  assignment  of  the  local  variable  vFix  uses  the  same  function  call  as  the  prover.
Therefore  it  gets  the  same  value,  but  it  is  computed  a  second  time  without  being  monitored  by
TraceScan. 

If proving by induction is disabled then no output should be generated. 

tr HoldForm SC`ProverKernel`Private`Prover
™ForAll •ind v_, ___ , formula_ , KB_ ;

¬ TrueQ SC`ProverKernel`Private`$Induction := Null
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Universal Quantifier - Arbitrary But Fixed

tr HoldForm SC`ProverKernel`Private`Prover
™ForAll v_, f_ , KB_ := Module const ,

const = SC`ProverKernel`Private`ArbitraryButFixedConstant
v, f, KB ;

trPrint "Take ", const , " arbitrary but fixed and prove: ",
f . v → const ;
;

No output for the next prover call:

tr HoldForm SC`ProverKernel`Private`Prover
_ . _ → SC`ProverKernel`Private`ArbitraryButFixedConstant

__ , _ := Null;

Proving Equivalence

tr HoldForm
SC`ProverKernel`Private`Prover ™Iff lhs_, rhs_ , KB_ :=

trPrint "For proving equivalence, it is
sufficient to prove both directions: "

tr HoldForm SC`ProverKernel`Private`ProveIffLeftToRight
lhs_, rhs_, KB_ :=

trPrint "Prove from left to right => : ",
™Implies lhs, rhs ; $curDepth++ ;

tr HoldForm SC`ProverKernel`Private`ProveIffRightToLeft lhs_,
rhs_, KB_ := trPrint "Prove from right to left <= : ",
™Implies rhs, lhs ; $curDepth++ ;

trRes HoldForm SC`ProverKernel`Private`ProveIffLeftToRight
lhs_, rhs_, KB_ , result_ :=

$curDepth−− ;

trRes HoldForm SC`ProverKernel`Private`ProveIffRightToLeft
lhs_, rhs_, KB_ , result_ :=

$curDepth−− ;
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Rewriting a Predicate

tr HoldForm SC`ProverKernel`Private`RewriteFormula
formula_List, rules_List, kb_ :=

trPrint "Rewrite this formula: ", formula,
If $trPrintRules === True,
"\nUsing these rules: " <> ToStringPrivate rules
;

Rewriting an Equality

tr HoldForm SC`ProverKernel`Private`Prover ™Equal
lhs_™CaseDistinction, rhs_™CaseDistinction , KB_ ;

lhs =!= rhs := trPrint "Equalities with case distinctions
on both sides are not supported. The proof fails." ;

tr HoldForm SC`ProverKernel`Private`Prover
™Equal cd_™CaseDistinction, rhs_ , KB_ :=

trPrint "Using the symmetry of equality: Swap
left hand side and right hand side." ;

tr HoldForm SC`ProverKernel`Private`Prover
™Equal lhs_, cd_™CaseDistinction , KB_ := Null;

tr HoldForm SC`ProverKernel`Private`RewriteEquality
lhs_, rhs_, rules_List, kb_ :=

trPrint "Rewrite both sides of the equality: ",
lhs, " ", rhs,
If $trPrintRules === True,
"\nUsing these rules: " <> ToStringPrivate rules
;

tr HoldForm SC`ProverKernel`Private`IsEqual
lhs_List, rhs_List := Block i ,

i = Intersection lhs, rhs ;
If Length i > 0,
trPrint "The term ", First i , " appears on both sides

of the equality, hence the equality is true." ;
;
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Proving of Case Conditions

tr HoldForm SC`ProverKernel`Private`ProveCaseConditions KB_
cases_™CaseDistinction := $curDepth++;

trPrint "Try to prove these case conditions: ",
# 2 & @ List @@ cases ; ;

trRes
HoldForm SC`ProverKernel`Private`ProveCaseConditions KB_
cases_™CaseDistinction , result_™CaseDistinction :=

trPrint "No case was proven completely, the remaining
case conditions may be used for proving by cases: ",
# 2 & @ List @@ result ;

$curDepth−− ;

trRes
HoldForm SC`ProverKernel`Private`ProveCaseConditions KB_
cases_™CaseDistinction , :=

trPrint "No case was proven." ; $curDepth−− ;

trRes
HoldForm SC`ProverKernel`Private`ProveCaseConditions KB_
cases_™CaseDistinction , result_ :=

trPrint "This term will be used: ", result ; $curDepth−− ;

Recursive Prover Call (Extended by Disproving)

tr HoldForm SC`ProverKernel`Private`SCProveDisprove
™CaseDistinction ___ __ , KB_ := Null;

tr HoldForm SC`ProverKernel`Private`SCProveDisprove
goal_, KB_ :=

trPrint "Prove Disprove: ", goal ; $curDepth++; ;

trRes HoldForm SC`ProverKernel`Private`SCProveDisprove
goal : ™CaseDistinction ___ __ , KB_ , result_ := Null;

trRes HoldForm SC`ProverKernel`Private`SCProveDisprove
goal_, KB_ , ¢Proved :=

$curDepth−−; trPrint "Sub goal proved: " , goal ; ;
trRes HoldForm SC`ProverKernel`Private`SCProveDisprove

goal_, KB_ , ¢Disproved :=

$curDepth−−; trPrint "Sub goal disproved: " , goal ; ;
trRes HoldForm SC`ProverKernel`Private`SCProveDisprove

goal_, KB_ , result_ :=

$curDepth−−; trPrint "Proof of sub goal failed: " , goal ; ;
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Proving By Cases

Proving a Goal by Cases

tr HoldForm SC`ProverKernel`Private`ProveGoalByCases
™Equal lhs_List, rhs_List , KB_,
cases_™CaseDistinction, step_ :=

trPrint "Proof by cases of: " , lhs, " ", rhs ;
trPrint " Using these cases: " ,
SC`ProverKernel`Private`GenerateAssumptions cases ;

tr HoldForm SC`ProverKernel`Private`ProveGoalByCases formula :
_™Equal _List, KB_, cases_™CaseDistinction, step_ :=

trPrint "Proof by cases of: " , formula,
"\nUsing these cases: " ,
SC`ProverKernel`Private`GenerateAssumptions cases ;

trRes HoldForm SC`ProverKernel`Private`ProveGoalByCases
formula_, KB_, cases_™CaseDistinction, step_ ,

¢Proved := trPrint "All cases proved." ;
trRes HoldForm SC`ProverKernel`Private`ProveGoalByCases

formula_, KB_, cases_™CaseDistinction, step_ , ¢Failed :=

trPrint "Failed to prove at least one case." ;
trRes HoldForm SC`ProverKernel`Private`ProveGoalByCases

formula_, KB_, cases_™CaseDistinction, step_ , result_ :=

trPrint "Proving all cases: ", result ;

Proving a Case

tr HoldForm SC`ProverKernel`Private`ProveCase
goal_™CaseDistinction , KB_, case_, step_ :=

trPrint "Proving case: ", case ; $curDepth++;
trPrint "Goal formula: ", goal ; ;

The first case appears only if a case distinction was in the goal formula already before rewriting.

tr HoldForm SC`ProverKernel`Private`ProveCase
_, KB_, case_, step_ :=

trPrint "Proving case: ", case ; $curDepth++ ;
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trRes HoldForm SC`ProverKernel`Private`ProveCase
_, KB_, case_, step_ , ¢Proved :=

trPrint "Case proved." ; $curDepth−− ;
trRes HoldForm SC`ProverKernel`Private`ProveCase

_, KB_, case_, step_ , ¢Failed :=

trPrint "Proof of this case failed." ; $curDepth−− ;
trRes HoldForm SC`ProverKernel`Private`ProveCase

_, KB_, case_, step_ , result_ :=

trPrint "Proof result: ", result ; $curDepth−− ;

Rewriting Tools

The  output  generation  for  RewriteAllNew  is  a  little  bit  tricky.  The  function  is  called  at  three
different positions, but the evaluated parameters have identical patterns. So the output depends on the
name of the variable used in the parameter. Therefore the parameter goals  needs to be a Symbol.
In  this  case  the  unevaluated  variable  goals  contains  the  symbol  name  of  the  variable  used  in  the
original function call. The function GetRWSide generates a text depending on the symbol name.

For  the  output  the  value  of  goals  is  needed.  To  get  this  value,  a  special  effect  of  tracing  is  used.
While  the  function  trRes  is  evaluated,  the  execution  of  the  traced  function  SCProver  is
interrupted.  Evaluating  the  symbol  stored  in  goals  returns  the  value  of  the  symbol.  Using  the
variable  goals  will  immediately  return  the  value  even  if  in  the  function  pattern,  which  contains
HoldForm, a Symbol  is claimed. Hence, for getting the symbol name in goals  it is necessary to
wrap it by HoldForm.

trRes HoldForm SC`ProverKernel`Private`RewriteAllNew goals_,
oldgoals_, rulesOutermost_, rulesSubterms_ , := Null;

trRes
HoldForm SC`ProverKernel`Private`RewriteAllNew goals_Symbol,
oldgoals_, rulesOutermost_, rulesSubterms_ , new_List :=

If goals =!= new,
trPrint "Rewrite " <> GetRWSide LocalName HoldForm goals <>

": ", goals, " to ", new
;

The function GetRWSide  returns a text depending on the symbol name. If the symbol name is "lhs"
or "rhs" then the function RewriteAllNew was called while rewriting an equality. In this case the text
should denote the side of the equation that was rewritten. In all other cases a formula was rewritten.

Clear GetRWSide ;
GetRWSide "lhs" = " lhs ";
GetRWSide "rhs" = " rhs ";
GetRWSide _ = "formula";
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The  auxiliary  function  LocalName  removes  the  context  of  the  symbol  and  the  identifier  for
uniqueness.  The  returned  string  contains  only  the  symbol  name  like  it  is  used  in  the  package  for
SCProver.

Clear LocalName ;
LocalName s_HoldForm :=

StringReplace ToStringPrivate s , "$" ∼∼ __ → "" ;

Default Case for tr

This  prints  an  output  only  if  the  debugging  variable  $trSKIP  is  true.  This  may  be  used  for
debugging the tracer.

tr t___ := If $trSKIP, trPrint "SKIP: ", t ;

Tools

Symbol names are handier if they do not contain the full context. Therefore this function removes the
private context from a given string.

Clear ToStringPrivate ;
ToStringPrivate s_String :=

StringReplace s, "SC`ProverKernel`Private "̀ → "" ;
ToStringPrivate expr_ := ToStringPrivate ToString expr ;

End

End ;

EndPackage ;

This ends the definition of the package. 

The code in the next line allows loading the package immediately:

Get "SC`ProverKernel`"
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Example for TraceScan

This gives a simple example for using TraceScan. It shows the order of the function calls.

Clear trBefore, trAfter ;
trBefore expr_ := Print "Before: ", expr ;
trAfter expr_, result_ :=

Print "After: ", expr, " −> ", result ;

TraceScan trBefore, f f 1 + 2 , f ___ , trAfter

Before: f f 1 + 2

Before: f 1 + 2

Before: f 3

After: f 3 −> f 3

After: f 1 + 2 −> f 3

Before: f f 3

After: f f 3 −> f f 3

After: f f 1 + 2 −> f f 3

f f 3

Note,  that  Print  removes  the  wrapped  HoldForm  before  printing  the  expression  without
evaluating it.
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