
Austrian Grid

Austrian Grid

Report on the Second Prototype of a Distributed
Supercomputing API for the Grid

Document Identi�er: AG-D4-2-2009_1.pdf
Status: Public
Workpackage: 4
Partners: Research Institute for Symbolic Computation (RISC)
Lead Partner: RISC
WP Leaders: Wolfgang Schreiner (RISC)

1

Austrian Grid

Delivery Slip
Name Partner Date Signature

From
Veri�ed by
Approved by

Document Log
Version Date Summery of changes Author
1 28.09.2009 Initial Version K. Bosa, W. Schreiner

2

Report on the Second Prototype
of a Distributed

Supercomputing API for the Grid

Karoly Bosa
Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz

{Karoly.Bosa, Wolfgang.Schreiner}@risc.uni-linz.ac.at

September 24, 2009

Report on the Second Prototype of a

Distributed Supercomputing API for the Grid

Károly Bósa Wolfgang Schreiner

September 24, 2009

Abstract

We participate in the Austrian Grid Phase 2 within the frame of

the activity “Grid Research”. We deal with development of a dis-

tributed programming tool for grid computing which shall empower

applications to perform scheduling decisions on their own, utilizing

the information about the grid environment in order to adapt the al-

gorithmic structure to the particular situation. Our goal is to design

and implement a software framework and an API that can be used

for developing grid-distributed parallel programs without leaving the

level of the language in which the core application is written. The

planned solution will be able to eliminate some algorithmic challenges

of nowadays grid programming. In this paper, we report on the second

prototype of our topology-aware software system extended with the

description of our newly developed scheduling algorithm.

1 Introduction

No application can execute efficiently on the grid that is not aware of the
fact that it runs in an heterogeneous network environment with heteroge-
neous nodes. We report on an ongoing work whose goal is to develop a
distributed software framework and an API for grid computing which shall
empower applications to perform scheduling decisions on their own and uti-
lizing the information about the grid environment in order to adapt their
algorithmic structure to the particular situation. Since our solution hides
low-level grid-related execution details from the application by providing an
abstract execution model, it is able to eliminate some algorithmic challenges
of nowadays grid programming.

Regard an example where a user intends to execute a tree-like multi-
level parallel algorithmic solution on the grid. She specifies in advance that

1

the given application should consist of 20 processes organized into a 3-levels
tree structure. On the lowest level leaves belonging to the same parent pro-
cess should form groups such that each group contains at least 5 processes
scheduled to the same local network environment. For this specification, our
software framework is able to determinate a (nearly) optimal distribution of
processes on the momentarily available grid resources and to start the pro-
cesses according to this distribution. Furthermore, our API is able to apply at
runtime a corresponding mapping between the predefined roles of processes
in the specified hierarchy (global manager, local manager and workers) and
the allocated pool of grid nodes such that it minimizes the execution time.

In [3] we outlined our idea, discussed the design of our software frame-
work with some implementation issues and presented the first version of our
Topology-Aware API. Then in [4] we reported on the implemented and func-
tioning first prototype of our software system. Furthermore, we described the
finalized API and explained the source code of a simple distributed exam-
ple application which can be used to establish different kinds of the tree-like
multilevel parallelism on the grid and which represents well the versatility of
our API.

Now we report on an updated architecture of our software system, which
contains some modifications and extensions in addition to the first prototype
version [4]: Section 2 gives a short overview about the up-to-date software
architecture. In Section 3, we focus on our newly developed scheduling algo-
rithm which is currently under implementation and which is the last missing
key component of our software framework. Section 4 deals with the extended
execution framework of our system. Finally Appendix A describes a new ex-
ample application which presents how to perform MPI collective operations
among some single processes and some local groups of processes (this kind of
structure was introduced by our communication schema based programming
solution).

2 The Up-to-Date Architecture

In our approach, the user assigns to each given parallel program a pre-defined
schema that specifies a preferred communication pattern of the program in
heterogeneous network environments. In our system the following kinds of
communication schemas are currently employed [3]: the schema singleton
specifies a number of processes which should be scheduled to the same local
network environment; the schema groups specifies the number processes and
either the accurate size of the local groups (the number of processes in the
same local network environment) or a minimum size for the local groups

2

Legend:
TA−API = Topology−Aware API

Mapping Description

Communication Pattern

Resources and a

between Grid
Mechanism
Scheduling

...

node nnode 2

GLOBUS

node 1

MPI ProgramMPI ProgramMPI Program

MappingToRSL
Converter

RSL file

Deployment Mechanism

Communication Schema

Specification

NWS
Measured Latency

Values

TA−APITA−APITA−API

MPICH−G2

Figure 1: Overview on the Software Framework

and some restriction for the number of the local groups; the schema graph
is similar, but it additionally defines edges/links between the local groups
such that they describe a communication pattern; the schema tree specifies
a tree-like multilevel parallelism with the given number of processes and the
given number of tree levels, such that the size of the local groups located on
the lowest level (the level of leaves) are not determined but some restriction
are given for it; last but not least the schema ring is similar to the schema
graph, but the local groups always compose a ring.

The second prototype of our software framework is still based on the pre-
Web Service architecture of the Globus Toolkit [2] and MPICH-G2 [5]. Our
solution consists of three major components (see Figure 1):

Scheduling Mechanism depends on the Network Weather Service (NWS)
[6], which became a de facto standard in the grid community as a
performance prediction tool. According to the forecasts values provided
by NWS, the Scheduling Mechanism finds a nearly optimal mapping
between the specified communication schema and the available grid
resources.

Before the execution of a parallel program on the grid, the Scheduling
Mechanism adapts and maps the preferred communication pattern of

3

the program to the available grid resources such that it heuristically
minimizes the assessed execution time. The output is an XML-based
mapping file (describing a mapping between the network topology and
the given communication pattern) for the Deployment Mechanism and
the Topology-Aware API. The algorithm applied by the Scheduling
Mechanism is described in detail in Section 3. The final version of
the second prototype will contain an implementation of the presented
algorithm.

Deployment Mechanism is based on the starting mechanism of the grid-
enabled MPI implementation MPICH-G2 [5]. In contrast to the pre-
vious version of our software framework, we do not use anymore any
Resource Specification Language (RSL) script for starting programs
which contained redundant information compared with the mapping
file. Now we use the mapping file for this purpose, too. The Deploy-
ment Mechanism distributes the mapping file on the corresponding grid
nodes and starts the processes of the given program on the grid accord-
ing to the mapping file. For the description how to use this tool, see
Section 4.

Topology-Aware API [4] is an addition to the MPICH programming li-
brary. Its purpose is to query mapping files and inform parallel pro-
grams how their processes are assigned to some physical grid resources
and which are the designated roles for these processes, such as: in which
local group a particular process is involved; which are the characteris-
tics of local groups, of graphs (e.g.: neighborhoods of a group, distance
of two groups, etc.), of trees (e.g.: depth of a tree, parent and children
of a process, etc.) or of rings.

For representing the versatility of our API, we have developed some
simple distributed example applications, see [4] and Appendix A.

Our supercomputing API and the Deployment Mechanism have already
been tested successfully on the grid sites lilli.edvz.uni-linz.ac.at (Al-
tix 4700) and altix1.jku.austriangrid.at (Altix 350).

3 The Scheduling Algorithm

The task of the Scheduling Mechanism is to find a partitioning of processes
based on the given schema which can be mapped nearly optimally to the
available hardware resources.

4

0.0

0.11

0.13

0.0

11.2

11.2 11.2

11.2
.
..

.

..

. . .

. . .
.

.
.

H1

H1

H2

H2

H10

H10

Forecast for latencyTcp

H6

H8

H5

H7

H1

H3 H4

H2

H9

H10

2nd Step: Generating all Possible
Process Distribution

− 1 alternative for 1 group:

16

 9
10
11
12 4

 5
 6
 7

16

 8 8

 8 8

 4 4 4 4

 4 4

Legend:
Latency Cluster Level 0 (Level of Hosts)
Latency Cluster Level 1

Latency Cluster Level 3
Latency Cluster Level 2

Max. Group Latency Level

2

2

2
2

1
1

1
1

1

. . .

1

1

1

. . .

Output:Input:

1st Step: Composing Latency Clusters

Input:

GROUPS(16, 4, 1)

Output:

− 5 alternatives for 2 groups:

− 4 alternatives for 3 groups:

− 1 alternative for 4 groups:

processes
processes
processes
processes
processes

 8 processes
 7 processes
 6 processes
 6 processes

processes

 4
 5
 6
 5 5

 4
 4
 4

3rd Step: Mapping Process Distributions
and Latency Clusters

Hosts

processes

Hosts H1 H2 H4 H5 H6 H7 H8 H9H3 H10

4.0 4.0 4.02.0 2.0 2.0 2.0 2.0 2.0 2.0

H1, H2, H3, H4, H5 H6, H712 4

H1, H2, H3, H4, H5 H9

H1, H2, H3, H4, H5 H10

H1, H2, H4 H5, H6, H7, H8

H1, H2, H3 H5, H6, H7, H8

H1, H2, H3 H9, H10

H1, H2, H4 H9, H10

H5, H6, H7, H8 H9, H10

 4 4

Distribution

.

H1 H9 H10 H2, H3

H1 H9 H10 H5, H6

H1 H9 H10 H2, H4

Forecast for
Available CPUs

H1, H2, H3, H4, H5, H6, H7

Input (Schema):

.

among the Groups
Avg. Latency

. . .

Absolute Max. Latency Level

2

3
3

2

3
3

2

. . .

3

3

3

2 0ms

0.92ms

11.2ms
11.2ms

11.1ms

3

1.12ms
11.2ms
11.2ms

1.05ms

10,17ms

10.21ms

10.24ms

4th Step: Choose the Best Mapping

Figure 2: The Scheduling Algorithm

This mechanism expects as input the list of hosts, an up-to-date forecast
for the available CPU fractions on these hosts, an up-to-date forecast for the
latency values in milliseconds predicted for each pair of hosts and finally the
schema which specifies the preferred communication pattern of a program.
The first three are provided by the Network Weather Service while the last
one is given by the user in an XML format.

Figure 2 presents how the scheduling algorithm maps a given “groups”
schema (with 16 processes which can be organized some local groups whose
sizes are not less than 4) to a particular grid infrastructure consisting of 10
hosts (there are 3 hosts with 4 CPUs respectively, the others have only 2).

5

3.1 The Scheduling Algorithm in Details

The algorithm applied by the Scheduling Mechanism works as follows (in the
case of the schema type “groups”):

1. Classification of Latency Values: First, we classify the given la-
tency values according to their order of magnitude. This classification
is performed with the help of a particular factor we call the Laten-
cyClassFactor (=4, empirically determined value). We compose dis-
tinct classes from the latency values started with the absolute mini-
mum latency value such that in a class the values cannot be greater
than the product of the absolute minimum latency value and of the
LatencyClassFactor raised to the subsequent power (started with 1).
For the generated classes we assign an ascending sequence of integer
numbers (latency levels). To the class which comprises the fastest links
we assign the level 1, to the next one we assign the level 2 and so forth.

2. Composing Latency Clusters: Then we introduce the notion of
latency clusters. A latency cluster consists of some hosts such that the
latency levels of the links between any two member hosts of such a
cluster cannot exceed a certain value. Such latency clusters have the
following properties:

• Each host itself is a latency cluster with level 0.

• Latency clusters need not be distinct (two or more latency clusters
may have intersection, e.g.: within a LAN a link is already used
intensively between two hosts; in this case this link may have
higher latency level than the others in the LAN, therefore, two
latency clusters are created within this LAN, see the hosts H3 and
H4 in the first step on Figure 2).

• A latency cluster may contain other latency clusters with less max-
imum latency levels.

• For each latency cluster, we keep track the sum of the available
CPU fractions of the hosts contained by the latency cluster.

We determine all possible latency clusters and store them in a list
which is sorted according to maximum latency levels in ascending or-
der. Furthermore the latency clusters that have the same maximum
latency level are sorted according to the number of the available CPUs
in descending order in the list.

6

The first and the second (current) steps are independent from any given
schema and they can hence be performed before the user intends to
schedule a program with its communication schema.

3. Generating Process Partitions: We determine all those process
partitions (where processes are organized into various local groups)
which fulfil the given communication schema and store them in a list
(see the second step in Figure 2).

4. Mapping Latency Clusters and Process Partitions: Now we find
the optimal mapping for each group in every process partition. The
groups which are parts of the same process partition are mapped in a
descending order according to their size (greater groups mapped ear-
lier). Since the list of latency clusters is ordered (first ascending order
according the maximum latency level then descending order according
to the available CPUs) we always start the search at the beginning
of this list and choose the first latency cluster for a group which fits
(such that the size of the group is less than or equal to number of the
available CPUs in the latency cluster.

But if a group can be mapped to more than one latency cluster which
have the same maximum latency level then we also generate all the
mapping alternatives (the reason for this that we attempt to find the
mapping in which the groups are located closest to each other in terms
of latency).

(Remark: One can ask why we do not simply map all processes to
the first fitting latency cluster in the list instead of the mapping of
the generated partitions of processes. The answer is that the topology
of such a latency cluster may not be the optimal for the preferred
communication pattern specified by the given schema. Of course we
prefer to choose a mapping comprising less number of local groups, see
step 5).

5. Choosing the Best Mapping: This step can be regarded as a part
of the previous step and it must be performed every time after a new
alternative mapping was generated. We always compare the newly
generated mapping with the mapping which was the best so far. We
always store only the current best mapping. The comparison is based
on the following conditions:

• We choose the mapping where the maximum latency level of the
local groups is smaller;

7

• if the maximum latency levels of the local groups in the two map-
pings are equal then, we choose the mapping where the absolute
maximum latency level is smaller;

• if the absolute maximum latency levels of the two mappings are
equal, then we choose the mapping which consists of less number
of local groups;

• ultimately if both mappings consists of the same number of local
groups, then we choose the mapping where the average latency of
the links among the local groups is less (see Figure 2).

3.2 Differences in the Case of the Schema “Graph”

In the case of the schema “graph” the algorithm is slightly different because
the number of groups and their sizes are fixed by the given schema. So in this
case we deal only with one possible process partition and we can therefore
skip the third step of the algorithm and we did not compare in the last step
which mapping alternatives contain less number of local groups.

Additionally since the schema ”graph” specifies edges of a graph (which
are pre-defined connections among the local groups), in the comparison of the
mapping alternatives (in step 5) instead of the absolute maximum latency
level and average latency value of all connections among the groups we apply
the maximum latency level of and average latency value of the pre-defined
connections among the groups (except if no edges are defined by the schema,
because in this case we assume we have a fully connected graph which is the
same implicit assumption as in the case of the schema “groups”).

3.3 Differences in the Case of the “Tree” and the “Ring”

Schemas

In case of the schema “tree” and the schema“ring” the algorithm slightly
differs from the description presented in Section 3.1 as well. Although the
number and the sizes of the local groups are not specified in advance, but each
possible partition contains pre-defined connections among its local groups.
Hence, we apply the maximum latency level and average latency value of the
pre-defined connections among the groups in the comparison in the last step
(instead of absolute maximum latency level and average latency value of all
connections among the groups).

Furthermore, in the case of trees we take into account that the local
managers should be scheduled together with the corresponding leaf groups
(mapped to the same latency cluster).

8

3.4 Disadvantage of the Algorithm

The algorithm assumes that on each host of a grid architecture an NWS
sensor runs and the latency is measured among all sensors pairwise. This all-
to-all network sensor communication would consume a considerable amount
of resources (both on the individual host machines and on the interconnection
network). For instance, the most common way to measure the end-to-end
performances in a grid architecture comprising 15 hosts is to periodically con-
duct the 152−15 = 210 network probes required to match all possible sensor
pairs [6]. This problem can be overcome with a careful, network topology
dependent configuration of the Network Weather Service (by establishing a
corresponding clique hierarchy).

4 Execution Framework “taagrun”

The software tool “taagrun” is the implementation of the Deployment Mech-
anism described in Section 2 and it is based on the starting mechanism of
the grid-enabled MPI implementation MPICH-G2 [5]. It is located under
the directory bin in the tree hierarchy of the software package. It expects
an XML-based mapping file as an argument and starts an application on the
grid according to the content of the mapping file (executable name, location,
grid resources, distribution of processes, etc) in two steps:

• First, it distributes the mapping file into the directory /tmp on all the
specified grid machines,

• Then, it generates an RSL script from the mapping file and with the
help of this script it starts the application on the grid via MPICH-G2.

If the mapping file does not specify any grid resources within the XML tag
topology, the program attempts to execute the given application on the
localhost. Additionally, the user can apply the argument -dumprsl:

taagrun -dumprsl <mapping_file.xml>

In this case the program only generates a RSL script from the given
mapping file and prints it out on the standard output.

4.1 How to Execute the Example Programs

The current distribution of our software framework comprises three example
programs which are located under directory examples (the “Easy to Use”
deployment procedure [4] deploys and compiles these sources, too):

9

apiTest It simply presents the usage of the statements of our API in succes-
sion (the output depends on the given mapping file). The program can
be started by the command “../../bin/taagrun test.xml” from its
directory.

broadcastExample It sends broadcast messages round in a ring between
neighbor groups in two steps (the ring is always composed from some
groups of processes and its structure is described in the given mapping
file). In the first step the root of every even group (local groups with
even group rank) sends broadcast to all elements of its right neigh-
bor group. In the second step the root of every odd group (local
groups with odd group rank) sends broadcast to all elements of its
right neighbor group. The program can be started by the command
“../../bin/taagrun ringWith6Groups.xml” from its directory. The
complete source code of this example is described together with some
additional information and comments in Appendix A.

tree This program establishes a tree structure of processes where numerous
tasks are distributed by the root process (via the non-leaf processes),
elaborated by the leaf processes and finally the results of task are col-
lected by the root (via the non-leaf processes again). The program
works in case of various tree structures with 2, 3, 4, ... any levels de-
pending what kind of tree structure is described in the mapping file.
The program can be started by the command “../../bin/taagrun
treeWith3levelsOnlocalhost.xml” from its directory. The complete
source code of this example is described together with some additional
information and comments in [4].

Of course every example can be executed with different mapping files.
The XML-based mapping files should be written directly by the user at the
moment. In a later project phase, these XML files will be automatically
generated by the Scheduling Mechanism [3].

Acknowledgement

The work described in this paper is partially supported by the Austrian
Grid Project [1], funded by the Austrian BMBWK (Federal Ministry for
Education, Science and Culture) under contract GZ 4003/2-VI/4c/2004.

10

Appendix

A Example How to Use MPI Collective Op-

eration among Groups and Processes

The following example program presents how to perform MPI collective op-
erations among local groups and single processes, too. The source code dis-
cussed below is an corrected and updated version of the one presented in [3].
This program was tested with different number of processes on the grid sites
altix1.jku.austriangrid.at (Altix 350) and lilli.edvz.uni-linz.ac.at

(Altix 4700).
This program is an artificial example that assumes its processes parti-

tioned to even number of local groups which compose a ring. Such a com-
munication pattern can be specified by the schema ring [3] as follows:

RING{nrOfProcs, minSizeOfGroups, 2}

In the first two arguments the number of processes and the minimum size
of the local groups is given. The third argument is a restriction for the
scheduling mechanism such that its value must always be a divisor of the
number of the local groups (in our example this third argument is 2 because
the program requires even number of local groups).

The program sends broadcast messages round in the ring between neigh-
bor groups in two steps:

• In the first step the root process of every even group (local group with
even group rank) sends a broadcast to all elements of its right neighbor
group.

• In the second step the root process of every odd group (local group with
odd group rank) sends a broadcast to all elements of its right neighbor
group.

Since we apply MPICH-G2 as an underlying software architecture, the
performed broadcast operations are topology aware [5], too.

001: #include <stdlib.h>

002: #include <stdio.h>

003: #include <string.h>

004: #include <mpi.h>

005: #include <taag.h>

11

006: #define MSG_SIZE 160

007: #define XML_DEFAULT "ringWith6Groups.xml"

008: void create_message(int rank, int grp, char* s) {

009: sprintf(s,"MESSAGE FROM P%d (from G%d)",rank, grp);

010: }

011: void process_message(int step, int rank, int grp, char* s) {

012: printf("IN STEP %d: P%d (from G%d) RECEIVED: \"%s\".\n",

step, rank, grp, s);

013: }

014: int main(int argc, char *argv[]) {

015: int nrProcs, rc, flag;

016: int rank, localRootRank, remoteRootRank;

017: int grpRank, leftGrpRank, rightGrpRank;

018: MPI_Comm mpiComm1, mpiComm2;

019: MPI_Group mpiGrp1, mpiGrp2;

020: char buff[MSG_SIZE];

021: rc = MPI_Init(&argc,&argv);

022: if (rc != MPI_SUCCESS) {

023: printf("Error starting MPI program.\n");

024: MPI_Abort(MPI_COMM_WORLD, rc);

025: }

026: MPI_Comm_size(MPI_COMM_WORLD,&nrProcs);

027: MPI_Comm_rank(MPI_COMM_WORLD,&rank);

028: if (argc > 1) {

029: rc = TAAG_Init(argv[1]);

030: }

031: else {

032: rc = TAAG_Init(XML_DEFAULT);

033: }

034: if (rc != TAAG_SUCCESS) {

035: fprintf(stderr,"Error (code %d) initializing the TAAG

structure on process %d.\n", rc, rank);

036: MPI_Finalize();

12

037: return rc;

038: } //if

039: TAAG_Ring_isRing(&flag);

040: if (!flag) {

041: fprintf(stderr, "Error (code %d) the given schema is

NOT a ring.\n", TAAG_ERR_SCHEMA);

042: TAAG_Free();

043: MPI_Finalize();

044: return TAAG_ERR_SCHEMA;

045: } //if

046: TAAG_Group_rank(rank, &grpRank);

047: TAAG_Ring_right(grpRank, &rightGrpRank);

048: TAAG_Ring_left(grpRank, &leftGrpRank);

049: /******************* First Step *************************/

050: if (grpRank % 2 == 0) { //even group rank

051: TAAG_Group_element(grpRank, 0, &localRootRank);

052: TAAG_Group_MPIGroup(1, &localRootRank, 1, &rightGrpRank,

&mpiGrp1);

053: if (rank == localRootRank) create_message(rank, grpRank,

buff);

054: } //if

055: else { //odd group rank

056: TAAG_Group_element(leftGrpRank, 0 , &remoteRootRank);

057: TAAG_Group_MPIGroup(1, &remoteRootRank, 1, &grpRank,

&mpiGrp1);

058: } //else

059: //MPI_Comm_create is a collective operation

060: MPI_Comm_create(MPI_COMM_WORLD, mpiGrp1, &mpiComm1);

061: //sending/receiving broadcast from the root of each even

//groups to all element of its right neighbor

062: if (mpiComm1 != MPI_COMM_NULL) { /* not every process is

involved in the broadcast */

063: MPI_Bcast(buff, MSG_SIZE, MPI_CHAR, 0, mpiComm1);

064: process_message(1, rank, grpRank, buff);

065: }

13

066: /******************* Second Step *************************/

067: if (grpRank % 2 == 1) { //odd group rank

068: TAAG_Group_element(grpRank, 0, &localRootRank);

069: TAAG_Group_MPIGroup(1, &localRootRank, 1, &rightGrpRank,

&mpiGrp2);

070: if (rank == localRootRank) create_message(rank, grpRank,

buff);

071: } //if

072: else { //even group rank

073: TAAG_Group_element(leftGrpRank, 0 , &remoteRootRank);

074: TAAG_Group_MPIGroup(1, &remoteRootRank, 1, &grpRank,

&mpiGrp2);

075: } //else

076: //MPI_Comm_create is a collective operation

077: MPI_Comm_create(MPI_COMM_WORLD, mpiGrp2, &mpiComm2);

078: //sending/receiving broadcast from the root of each odd

//groups to all element of its right neighbour

079: if (mpiComm2 != MPI_COMM_NULL) { /* not every process is

involved in the broadcast */

080: MPI_Bcast(buff, MSG_SIZE, MPI_CHAR, 0, mpiComm2);

081: process_message(2, rank, grpRank, buff);

082: }

083: if (mpiComm1 != MPI_COMM_NULL) MPI_Comm_free(&mpiComm1);

084: if (mpiComm2 != MPI_COMM_NULL) MPI_Comm_free(&mpiComm2);

085: MPI_Group_free(&mpiGrp1);

086: MPI_Group_free(&mpiGrp2);

087: TAAG_Free();

088: MPI_Finalize();

089: return 0;

090: }

Comments:

lines 001–005 comprise the required includes.

14

line 006 defines the constant MSG SIZE, which is the maximum size of the
MPI messages.

line 007 defines the constant XML DEFAULT, which is a filename. This file
name is used if no command line argument is given for the program.

lines 008–010 define a function called create message which generates a
string. The string will be sent in a broadcast.

lines 011–013 define a function called process message which writes out
its string argument together with some additional information on the
standard output.

lines 028–033 allocate and initialize the corresponding data structures ac-
cording to the mapping file comprised by the given file.

line 039 checks whether the given mapping file describes a program struc-
ture “ring”.

line 046 determines the rank of the group in which the current process is
involved.

line 047 determines the rank of the right neighbor group of the current
group.

line 048 determines the rank of the left neighbor group of the current group.

First Step:

lines 050-054 are executed only on the processes of EVEN local groups.

line 052 composes a MPI group on each process of every EVEN local group,
which comprises the root process (the first element) of the current
group and all processes of the right neighbor group (the order of the
processes in the created MPI group is always the following: first the
given processes in the given order, then the processes of the given group
the given order).

line 053 generates a string message on the root process of the current group.

lines 055-058 are executed only on the processes of ODD local groups.

line 057 composes a MPI group on each process of every ODD local group,
which comprises all processes of the current group and the root process
(the first element) of the left neighbor group.

15

line 059 establishes some MPI communicators according to the previously
created MPI groups from the MPI COMM WORLD. Attention, the
statement MPI Comm create is a collective operation (concerning the
communicator given in its first argument), therefore, all processes must
perform it even those of them which are not involved in the created MPI
groups.

lines 062-065 check whether the current process involved in the given com-
municator. If it is, then a broadcast is performed within this commu-
nicator (from its first process to its all processes) and the received
message will be displayed by the function process message.

Second Step:

lines 067-071 are executed only on the processes of ODD local groups.

line 069 composes a MPI group on each process of every ODD local group,
which comprises the root process (the first element) of the current group
and all processes of the right neighbor group.

line 070 generates a string message on the root process of the current group.

lines 072-075 are executed only on the processes of EVEN local groups.

line 074 composes a MPI group on each process of every EVEN local group,
which comprises all processes of the current group and the root process
(the first element) of the left neighbor group.

line 077 establishes some MPI communicators according to the previously
created MPI groups from the MPI COMM WORLD. Attention, the
statement MPI Comm create is a collective operation (concerning the
communicator given in its first argument), therefore, all processes must
perform it even those of them which are not involved in the created MPI
groups.

lines 079-082 check whether the current process involved in the given com-
municator. If it is, then a broadcast is performed within this commu-
nicator (from its first process to its all processes) and the received
message will be displayed by the function process message.

lines 083-086 free the created MPI structures (MPI groups and MPI com-
municators).

line 087 deallocates the data structures applied by our software framework.

16

References

[1] Austrian Grid Project Home Page. http://www.austriangrid.at.

[2] Globus Toolkit. http://www.globus.org/toolkit/.

[3] Karoly Bosa and Wolfgang Schreiner. Initial Design of a Distributed
Supercomputing API for the Grid. Austrian Grid Deliverable AG-D4-2-
2008 1, Research Institute for Symbolic Computation (RISC), Johannes
Kepler University Linz, Austria, September 2008.

[4] Karoly Bosa and Wolfgang Schreiner. A Prototype Implementation of a
Distributed Supercomputing API for the Grid. Austrian Grid Deliverable
AG-D4-1-2009 1, Research Institute for Symbolic Computation (RISC),
Johannes Kepler University Linz, Austria, March 2009.

[5] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled
Implementation of the Message Passing Interface. Journal of Parallel
and Distributed Computing (JPDC), 63(5):551–563, May 2003.

[6] Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather
Service: A Distributed Resource Performance Forecasting Service for
Metacomputing. Future Generation Computer Systems, 15(5–6):757–768,
1999.

17

