
A Supercomputing API for the Grid∗

Károly Bósa† and Wolfgang Schreiner†

1. Introduction

No application can execute efficiently on the grid that is not aware of the fact that it runs in an hetero-
geneous network environment with heterogeneous nodes. We report on an ongoing work whose goal
is to develop a distributed software framework and an API for grid computing which shall empower
applications to perform scheduling decisions on their own and utilizing the information about the grid
environment in order to adapt their algorithmic structure to the particular situation. Since our solution
hides low-level grid-related execution details from the application by providing an abstract execution
model, it is able to eliminate some algorithmic challenges of nowadays grid programming.

Regard an example where a user intends to execute a tree-like multilevel parallel application on the
grid. She specifies in advance that the given application should consist of 20 processes organized
into a 3-levels tree structure. On the lowest level leaves belonging to the same parent process should
form groups such that each group contains at least 5 processes scheduled to the same local network
environment. For this specification, our software framework is able to determinate a (nearly) optimal
distribution of processes on the momentarily available grid resources and to start the processes ac-
cording to this distribution. Furthermore, our API is able to apply at runtime a corresponding mapping
between the predefined roles of processes in the specified hierarchy (global manager, local manager
and workers) and the allocated pool of grid nodes such that it minimizes the execution time.

2. Architecture

In our approach, the user assigns to each given parallel program a pre-defined schema that specifies a
preferred communication pattern of the program in heterogeneous network environments. In our sys-
tem the following kinds of communication schemas are currently employed [1]: the schema singleton
specifies a number of processes which should be scheduled to the same local network environment;
the schema groups specifies the number of processes and either the accurate size of the local groups
(the number of processes in the same local network environment) or a minimum size for the local
groups and some restriction for the number of the local groups; the schema graph is similar, but
it additionally defines edges/links between the local groups such that they describe a communication
pattern; the schema tree specifies a tree-like multilevel parallelism with the given number of processes
and the given number of tree levels, such that the sizes of the local groups located on the lowest level
(the level of leaves) are not determined but some restrictions are given for it; last but not least the
schema ring is similar to the schema graph, but the local groups always compose a ring.

∗The work described in this paper is supported by the Austrian Grid Project, funded by the Austrian BMBWK (Federal
Ministry for Education, Science and Culture) under contract GZ BMWF-10.220/0002-II/10/2007.

†Research Institute for Symbolic Computation (RISC), Johannes Kepler University,
email: Karoly.Bosa@risc.uni-linz.ac.at, Wolfgang.Schreiner@risc.uni-linz.ac.at



Legend:
TA−API = Topology−Aware API

Mapping Description

Communication Pattern

Resources and a

between Grid
Mechanism
Scheduling

...

node nnode 2

GLOBUS

node 1

MPI ProgramMPI ProgramMPI Program

MappingToRSL
Converter

RSL file

Deployment Mechanism

Communication Schema

Specification

NWS
Measured Latency

Values

TA−APITA−APITA−API

MPICH−G2

Figure 1. Overview on the Software Framework

We have already designed and implemented the first prototype version [1, 2] of our software frame-
work which is based on the pre-Web Service architecture of the Globus Toolkit and MPICH-G2 [3].
Our solution consists of three major components (see Figure 1):

Scheduling Mechanism depends on the Network Weather Service (NWS) [6], which became a de
facto standard in the grid community as a performance prediction tool. Since the NWS pro-
vides all necessary information concerning the utilizable grid resources, namely the list of the
available hosts, a forecast for the available CPU fractions on these hosts and a forecast for the
latency values in milliseconds are predicted for each pair of hosts, the user needs therefore not
know any detail of the grid architecture. Of course, in addition to these performance char-
acteristics the scheduling algorithm needs a preferred communication pattern of a particular
application the user must specify in an XML format.

Before each execution of a parallel program on the grid, the Scheduling Mechanism adapts and
maps a preferred communication pattern of the program to the available grid resources such
that it heuristically minimizes the assessed execution time. It works roughly as follows:

1. First we classify all the links between each pair of hosts according to the order of mag-
nitude of latencies. For the generated classes we assign an ascending sequence of integer
numbers (latency levels). To the class which comprises the fastest links we assign the level
1, to the next one we assign the level 2 and so forth.

2. We compose some not necessary disjoint clusters (let us call them latency clusters) from
all the given hosts such that the latency levels of the links between any two member
hosts of such a cluster cannot exceed a certain value (some of these latency clusters may
comprise some others with less maximum latency level). Furthermore each host itself is
regarded as a latency cluster with the latency level 0. The generated latency clusters are
stored in a list which is sorted according to the max. latency levels in an ascending order.

2



3. We generate all those partitioning of processes (in which processes are organized into
various local groups) which fulfil the given preferred communication pattern of a program.

4. Finally we map the generated process partitions to some latency clusters according to
some heuristic (which helps to avoid the combinatorial explosion of possibilities) and find
a reasonably efficient scheduling for the program. In the comparisons of the mappings
the algorithm takes into consideration the following characteristics: the maximum latency
level within the local groups, the absolute maximum latency level in the entire mapping,
the number of the local groups and the average latency value among the local groups.

The output of the algorithm is an XML-based mapping file (describing a mapping between the
grid resources and the given communication pattern).

Deployment Mechanism is based on the starting mechanism of the grid-enabled MPI implementa-
tion MPICH-G2 [3]. It distributes the mapping file on the corresponding grid nodes and starts
the processes of the given program on the grid according to the mapping file.

Topology-Aware API is an addition to the MPICH programming library. Its purpose is to query
mapping files and inform parallel programs how their processes are assigned to some physical
grid resources and which are the designated roles for these processes, such as: in which local
group a particular process is involved; which are the characteristics of local groups, of graphs
(e.g.: neighborhoods of a group, distance of two groups, etc.), of trees (e.g.: depth of a tree,
parent and children of a process, etc.) or of rings.

For representing the versatility of our API, we have developed a simple distributed example ap-
plication [2] which can be used to establish different kinds of the tree-like multilevel parallelism
on the grid according to a mapping file.

Our implemented supercomputing API and the Deployment Mechanism have already been tested
successfully on the grid sites altix1.jku.austriangrid.at (Altix 350) and lilli.edvz.
uni-linz.ac.at (Altix 4700). In the final version of the paper, we are going to report on the full
functionality of our completely implemented software framework.

3. Related Work and Conclusions

Obtaining high-performance on the grid requires a balance of computation and communication among
all involved resources. Currently this can be done by manually managing computations, communica-
tions and data locality using message-passing (e.g.: MPI) or remote procedure call (e.g.: GridRPC).
Although GridRPC [4] may become an OGF standard as a parallel programming interface for the
grid, but it is still based only on the Client-Server model (as any other remote procedure call APIs)
and lacks the versatility and power of message-passing based APIs.

While MPI addresses some of the challenges in high-performance grid computing, it was originally
designed only for clusters or other homogeneous network environments. A parallel programming
environment evolved for the grid must be topology-aware in that sense that it must be aware of and
exploit the characteristic of an available physical network architecture. Typical topology-aware pro-
gramming tools are e.g. MPICH-G2 [3] and MPICH-VMI [5]. Both of them are grid-enabled MPI
implementations based on the MPICH library. MPICH-G2 uses some grid services provided by the
Globus Toolkit pre-Web Service architecture. MPICH-VMI utilizes the middleware communication
layer Virtual Machine Interface (VMI).

3



Summarizing their achievements, we can say that existing topology-aware programming tools make
available the given topology information on the level of their programming API and they optimize
(only) the collective communication operations (e.g.: broadcast) with the help of the topology infor-
mation such that they minimize the usage of the slow communication channels. But they are still
not able to adapt the point-to-point communication pattern of a parallel programs to network topolo-
gies such that they achieve a nearly optimal execution time on the grid. Compared to these existing
topology-aware programming tools, the major advantages of our solution are the following:

• It takes into consideration the point-to-point pattern of a MPI parallel program and tries to fit it
to a heterogeneous grid network architecture,

• It preserves the achievements of the already existing topology-aware programming tools. This
means the topology-aware collective operations of MPICH-G2 are still available, since MPICH-
G2 serves as a basis for our software framework.

• Our system eliminates the algorithmic challenges of the high-performance programming on
the dynamic and heterogeneous grid environments. Programmers need to deal only with the
particular problems which they are going to solve (like in a homogeneous cluster environments).

• The distribution of the processes is always conformed to the loading of the network resources.

In the final version of the paper, we intend to present some comparative benchmarks between the pure
MPICH-G2 framework and our topology-aware solution.

References

[1] Karoly Bosa and Wolfgang Schreiner. Initial Design of a Distributed Supercomputing API for the
Grid. Austrian Grid Deliverable AG-D4-2-2008 1, Research Institute for Symbolic Computation
(RISC), Johannes Kepler University Linz, Austria, September 2008.

[2] Karoly Bosa and Wolfgang Schreiner. A Prototype Implementation of a Distributed Supercom-
puting API for the Grid. Austrian Grid Deliverable AG-D4-1-2009 1, Research Institute for
Symbolic Computation (RISC), Johannes Kepler University Linz, Austria, March 2009.

[3] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A Grid-Enabled Implementation of the Mes-
sage Passing Interface. Journal of Parallel and Distributed Computing (JPDC), 63(5):551–563,
May 2003.

[4] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, C. Lee, and Casanova. A GridRPC Model
and API for End-User Applications. GridRPC Working Group of Global Grid Forum, June 2007.

[5] A. Pant and H. Jafri. Communicating Efficiently on Cluster Based Grids with MPICH-VMI. In
CLUSTER ’04: Proceedings of the 2004 IEEE International Conference on Cluster Computing,
pages 23–33, Washington, DC, USA, 2004. IEEE Computer Society.

[6] Rich Wolski, Neil T. Spring, and Jim Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. Future Generation Computer
Systems, 15(5–6):757–768, 1999.

4


