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Abstract – In this letter we propose discrete wave turbulence (DWT) as a counterpart of classical
statistical wave turbulence (SWT). DWT is characterized by resonance clustering, not by the size
of clusters, i.e. it includes, but is not reduced to, the study of low-dimensional systems. Clusters
with integrable and chaotic dynamics co-exist in different sub-spaces of the k-space. NR-diagrams
are introduced, a graphical representation of an arbitrary resonance cluster allowing to reconstruct
uniquely dynamical system describing the cluster. DWT is shown to be a novel research field in
nonlinear science, with its own methods, achievements and application areas.
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Introduction. – In the years between 1960 and 1990
a great volume of research has been performed in the area
of wave interactions [1], a comprehensive account of theory
and experiment can be found in [2]. The notion of a wave
kinetic equation was introduced [3]. Using some statis-
tical assumptions, general methods for deriving kinetic
equations and their stationary solutions (energy spectra)
were developed and statistical wave turbulence (SWT)
theory was founded [4], with finite-size effects left aside.
Their preliminary studies were performed in [5,6], where
it was established that nonlinear resonances are divided
into dynamically independent, non-intersecting clusters.
Explicit constructing of resonance clustering became a
challenge of great intricacy, because no analytical methods
for solving resonance conditions were known (the problem
in its general form is equivalent to Hilbert’s 10th prob-
lem [7]). Brute-force computer computations do not help
either, while integers to be dealt with are too big. The
problem has been recently solved [8]. For a complete reso-
nance set, classical resonance curves [9] are not anymore
a suitable representation. Instead, representation by a
hyper-graph on a plane was introduced in [10] (for 3-wave
systems), which allows to extract uniquely the dynamical
system describing each cluster. The study of resonant clus-
tering yielded a model of laminated turbulence [11] which
gives a kinematic explanation of co-existence of STW and
DWT in turbulent wave systems. These and other results,
both for 3- and 4-wave systems, are reviewed below, as
well as their physical relevance and application areas.

(a)E-mail: lena@risc.uni-linz.ac.at

Why are predictions of SWT theory often not

corroborated? – The SWT theory assumes weak nonlin-
earity, randomness of phases and infinite-box limit, i.e.
the resonance broadening Ω is greater than the spacing δω
between adjacent wave modes

Ω> (∂ω/∂k)2π/L, (1)

where L is the box size. Additionally, the existence of
an inertial interval (k0, k1) is assumed, where energy
input and dissipation are balanced. If k≫ k1, dissipation
suppresses the nonlinear dynamics (see fig. 1, the upper
panel). If k≪ k0, finite-size effects take place which are
due to boundary conditions and should be regarded
separately.
In the last decade, this standard view proved to be

incomplete while finite-size effects are well observable
within the inertial interval ([12–14], etc.). As was shown
in [11], this is due to the notorious small-divisor problem:
each small divisor leaves a gap in the power spectrum,
shown as an empty circle in fig. 1, lower panel. The
radius R of each circle can be computed using the Thue-
Siegel-Roth theorem [15] for a big class of dispersion
functions, which covers various types of water waves,
oceanic planetary waves, drift waves in laboratory plasma
etc. Gaps corresponding to exact and quasi-resonances
are shown by yellow squares. Some gaps (blue diamonds)
correspond to discrete modes that do not take part
in resonances and just keep their initial energy on the
corresponding time-scale [5]. Accordingly, for 3- and
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Fig. 1: (Colour on-line) Schematic representation of classical
SWT (upper panel) and both SWT and DWT (lower panel).
Here E, k and (k0, k1) are notations for energy, wave number
and inertial interval correspondingly.

4-wave resonance conditions taken in the form

ω1+ω2 = ω3+Ω, k1+k2 = k3, and (2)

ω1+ω2 = ω3+ω4+Ω, k1+k2 = k3+k4, (3)

correspondingly, 3 types of solutions of (2), (3) must be
distinguished:

I: exact resonances, Ω = 0;

II: quasi-resonances, 0<R�Ω� (∂ω/∂k)2π/L;

III: approximate interactions, Ω≫ (∂ω/∂k)2π/L.

Types I and II are the subject of DWT theory while Type
III is covered by SWT theory. Resonance clusters of the
first two types include low-dimensional systems but are
not reduced to them: some clusters consist of hundreds
or even thousands connected triads or quartets. These
considerations justify the two-layer model of laminated
turbulence, consisting of discrete and continuous (statis-
tical) layers, presented in [11], where the notion of DWT
was first introduced.

Exact resonances. – Minimal possible clusters in
three- and four-wave systems are triads and quartets
correspondingly, they are called primary clusters. Cluster
of arbitrary structure can be constructed from primary
clusters, as well as its dynamical system. All constructions
below for concreteness are presented for 2D-wave vectors.

Resonance clustering in three-wave systems. To
construct complete resonance clustering in a given spec-
tral place, three consequent steps have to be performed.
At the first step, each resonant mode with wave vector

k= (m,n) is presented by a node of the two-dimensional

integer lattice (m,n) and every three nodes constituting
a solution of (2) are connected by lines. The resulting
graph is called geometrical structure (see [10], fig. 1, upper
panel).
At the second step, topological structure is extracted,

which consists of all connected components found in
the geometrical structure. Primary clusters are shown as
triangles and their dynamical systems have standard form

Ḃ1 =ZB
∗

2B3, Ḃ2 =ZB
∗

1B3, Ḃ3 =−ZB1B2, (4)

differing only in magnitudes of the coupling coefficient Z.
Due to Hasselmann’s criterion of nonlinear wave instabil-
ity [16], dynamical properties of the ω3-mode with the
highest frequency differ from those with smaller frequen-
cies. We follow [17] denoting ω3-mode as A-mode and two
other as P-modes.
At the third step, a hyper-graph with marked arcs,

is constructed whose (hyper-)vertexes are triangles
constructed at the previous step (see fig. 2, upper panel).
To simplify graphical presentation for bigger clusters, we
propose a NR-diagram presentation (NR for nonlinear
resonance), without letters and arrows but with two types
of half-edges instead: bold lines for A-mode and dotted
lines for P-mode (see fig. 2, lower panel).
Given a NR-diagram, the corresponding dynamical

system is constructed by coupling 4, 3 or 2 systems of
the form (4) and equaling appropriate Bi and Bj . For
instance, the dynamical system of the two-triad cluster
shown in fig. 2 (it is unique, up to the change of indices
1↔ 2 and 4↔ 5) reads

⎧
⎪⎪⎨
⎪⎪⎩

Ḃ1 =ZB
∗

2B3, Ḃ2 =ZB
∗

1B3, Ḃ3 =−ZB1B2,

Ḃ4 = Z̃B
∗

5B6, Ḃ5 = Z̃B
∗

4B6, Ḃ6 =−Z̃B4B5, ⇒

B1 =B4 (PP-connection), B3 =B5 (AP-connection)

{
Ḃ1 =ZB

∗

2B3+ Z̃B
∗

3B6, Ḃ2 =ZB
∗

1B3,

Ḃ3 =−ZB1B2+ Z̃B
∗

1B6, Ḃ6 =−Z̃B1B3.

We have studied resonance clustering in data sets
computed for various 2D-wave systems (different types of
water waves, oceanic and atmospheric planetary waves,
drift waves, etc.) in the model spectral domain |m|,
|n|� 103. In average, about 80–90% of all clusters consist
of only one or two connected triads, though bigger clusters
of a few thousand connected triads were also observed.
Some clusters have integrable dynamics [18,19], depending
on coupling coefficients Z and/or on initial conditions
and/or connection type, while dynamics of other clusters
is chaotic.
A fact of the major importance is: chaotic behavior

is observable already in the systems consisting of two
triads (AA-connection via one vertex, Z/Z̃ = 0.75, work in
progress). On the other hand, clusters of special form may
be integrable for arbitrary finite number of triads [19]. This
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Fig. 2: (Colour on-line) Examples of clusters in a 3-wave system. Upper panel: topological structures of each cluster. Lower
panel: NR-diagrams of the clusters shown in the upper panel.

Fig. 3: (Colour on-line) Examples of clusters in 4-wave systems. Left: topological representation of a quartet. Middle:
NR-diagram of a V-scale-scale cluster. Right: NR-diagram of a mixed cascade cluster, with one E-angle-scale, one VD-scale-scale
and two V-scale-angle connections.

means that clusters with chaotic and integrable dynamics
co-exist, in different sub-spaces of the k-space.
Summarizing, an arbitrary cluster appearing in a

3-wave systems can be represented by a NR-diagram with
1 type of vertices and two types of half-edges: bold lines
(A-connection) and dotted lines (P-connection). Each
edge identifies then connection types AA, AP or PP.
The presentation is sufficient to reconstruct uniquely the
dynamical system of an arbitrary cluster.

Resonance clustering in four-wave systems. Any
3-wave resonance generates energy transport over the
scales in the k-space; this is not the case for 4-wave
systems where three types of energy transport are
observed: a) over scales, b) over angles, and c) mixed
cascades, including both scale and angle resonances [15].
Correspondingly, our NR-diagram representation of
a 4-wave system has two types of vertices —circles
for angle resonances and squares for scale resonances.
Another important dynamical difference between 3- and
4-wave systems is that for quartets, no generic criterion
of instability is known [16]; however, for the special case
of ω1 = ω2 or ω3 = ω4, the 3-wave criterion can be used,
of course. To keep information about the vertices corre-
sponding to the terms on the left and right side of (3),
in geometrical representation each quartet consists of
two edges (bold lines) connecting vertices from the same
side of (3) and two diagonals (dashed lines). Accordingly,
in NR-diagram representation, connections are possible
via a vertex (a single bold line), edge (double bold line),
edge-diagonal (double, bold and dashed line), diagonal-
diagonal (double, dashed and dashed line), notated
as V-, E-, ED- and DD-connections correspondingly

(see fig. 3). Notice that connection types A and P in a
3-wave system, shown in corresponding NR-diagrams,
define dynamical characteristics of a connection. In a
4-wave system, connection types V, E and D do not hold
dynamical information in the general case, only in some
particular cases.

Diagrams for DWT vs. diagrams for SWT. –

Various diagram techniques, beginning with Feynman
diagrams, are widely used for description of STW.
NR-diagram is a tool to represent DWT; main differences
between these two types of diagrams can be formulated as
follows. 1) In a Feynman diagram each vertex represent
a particle, which corresponds to a single wave in the
topological representation of a cluster, while in NR-
diagram vertexes are primary clusters —resonant triads
or quartets, depending on the order of resonance in the
wave system under consideration. 2) Only a sum of all
Feynman diagrams represents possible interactions of a
given particle with other particles. On the contrary, one
NR-diagram represents completely a resonance cluster.
3) A Feynman diagram does not allow computing the
amplitudes of the scattering process, it only gives a
contribution corresponding to one term in the perturba-
tion expansion. On the contrary, NR-diagram allows to
reconstruct uniquely dynamical system whose solutions
are the amplitudes of resonance cluster.

Energy transport in DWT. – The two-layer
model of laminated turbulence gives only a kinematic
explanation for the generic co-existence of SWT and
DWT. Numerical simulations with Hamiltonian dynami-
cal equations [14] demonstrate the same. But we do not
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know anything about dynamical mechanisms underlying
this co-existence. The problems to cope with are the
following: in SWT, energy flow is described by energy
spectra k−a which, in particular, means that a) waves
with wavelengths of the same order also have energies of
the same order; b) the magnitude of the initial energy
of the system, E0, is not important —only the fact that
E0 = const is used; and c) wave phases are random.
Statements a)–c) do not hold in DWT. Indeed, in many
3-wave systems waves with wavelengths of order k and
k2 can interact resonantly (“relaxed” locality, [6]), in
4-wave systems waves with arbitrarily big difference in
wavelengths can resonate (no locality, [8]). This means
that the magnitudes of mode energies are not defined
by the scales in the k-space but by the initial values of
modes energies and phases. The importance of phases in
low-dimensional systems has been realized long ago [20],
but no analytical expression for phases was known. The
most compact expressions for energy and phase evolution
in DWT regimes presently known to us read

Emode(T )∼
1

μ

[
∞∑

i=0

q(2i+1)/2

1− q2i+1
sin(2i+1)π

T − t0
τ

]2
, (5)

cot |ϕ(T )| ∼
q

Z3τ3

∞∑

i=0

qi

1− q2i+1
sin(2i+1)π

T − t0
τ

×

∞∑

j=0

(2j+1) qj

1− q2j+1
cos(2j+1)π

T − t0
τ
, (6)

where Emode is the energy of a resonant mode in
a 3-wave system and ϕ is the dynamical phase [18] which
is a combination of initial phases corresponding to the
resonance conditions (2). Here Z is the coupling coefficient
from (4) and depends only on wave numbers; μ, τ, t0 and q
are known expressions, including elliptic integrals, elliptic
functions, their nomes and modula. They depend on wave
numbers, initial energy and initial energy distribution
within a triad: not only E0 is important but also the
part of it contained in each mode. Expressions similar
to (5), (6) can probably be obtained for a 4-wave system,
along the lines given in [21]. An important fact is that
for a fixed resonant triad and fixed initial conditions,
Z, μ, τ, t0, q are constants, i.e. (5), (6) can be used directly
for computing exactly energy and phase evolution of
modes in primary clusters. These formulas can also be
used for computing approximately energy and phase
evolution in clusters of more general structure (for further
discussion see [22], chapt. 4).

Summary

– Phillips pointed out in [23] that SWT theory has
reached its limitations and “new physics, new mathe-
matics and new intuition is required” for understand-
ing discrete effects in turbulent wave systems. DWT
theory provides reliable description of these effects

and is indeed a natural counterpart to the classi-
cal SWT. In particular, this means that the classical
notion of wave interactions is not sufficient and might
even be misleading for describing a generic turbulent
wave system while it does not allow to distinguish
between discrete and statistical regimes. Notions of
exact resonances, quasi-resonances and approximate
interactions should be used.

– DWT is characterized by clustering, and not by the
number of modes in particular clusters which can be
fairly big. This means that, though chaotic dynamics
can be accounted for in DWT, it cannot be generally
described by kinetic equations: each cluster has its
own independent dynamics, sometimes integrable,
sometimes not. Clusters of a given form generate
persisting patterns that are observable in laboratory
experiments ([24], gravity water waves) and are found
in measured data ([25], atmospheric planetary waves).
Their existence might give a better explanation of
such well-known phenomena as the Benjamin-Feir
instability [26] (for a discussion, see [27]) or freak
waves (work in progress).

– Numerical simulations [28] show (for gravity water
waves) that interactions of types I and II are observ-
able on the linear time scale, not on the time scale
O(t/ǫ4) as predicted by SWT theory. This indicates
that DWT theory might provide a more appropriate
foundation for a short-term forecasts.

– In some physical systems, only SWT is observable [29]
(on-site measurements of tidal currents), in others
—only DWT [12] (laboratory experiments). Co-
existence of SWT and DWT has been demonstrated
in numerical experiments [14] (gravity water waves)
where this regime was called mesoscopic wave turbu-
lence. Including additional physical parameters could
yield the transition from SWT to DWT [30] (capil-
lary water waves, with and without rotation). Fluid
mechanics examples do not exhaust the application
areas of DWT, which include (similar to classical
SWT) biology, medicine, astronomy, chemistry,
sociology, etc. Presently, the problem of utmost
importance is to obtain a better understanding of
the SWT⇄DWT energy transport.

∗ ∗ ∗
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