
This is a preliminary version of a paper
that will appear in Electronic Proceedings
in Theoretical Computer Science.

c© B. Dundua, T. Kutsia, M. Marin
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Strategies in PρLog

Besik Dundua
RISC, JKU Linz, Austria

bdundua@risc.uni-linz.ac.at

Temur Kutsia
RISC, JKU Linz, Austria

kutsia@risc.uni-linz.ac.at

Mircea Marin
University of Tsukuba, Japan

mmarin@cs.tsukuba.ac.jp

PρLog is an experimental extension of logic programming with strategic conditional transformation
rules, combining Prolog with ρLog calculus. The rules perform nondeterministic transformations on
hedges. Strategies provide a control on rule applications in a declarative way. In this short paper we
give an overview on programming with strategies in PρLog and demonstrate how rewriting strategies
can be expressed.

1 Introduction

PρLog (pronounced Pē-rō-log) is an experimental tool that extends logic programming with strategic
conditional transformation rules, combining Prolog with ρLog calculus [9]. ρLog deals with hedges,
transforming them by conditional rules. Transformations are nondeterministic and may yield several
results. Strategies provide a control on rule applications in a declarative way. The rules apply matching
to the whole input hedge (or, if it is a single term, apply at the top position). Four different types
of variables give the user flexible control on selecting terms in hedges (via individual and sequence
variables) or subterms in terms (via function and context variables). As a result, the obtained code is
usually quite short and declaratively clear. We tried to provide as little as possible hard-wired features1

to give the user a freedom in experimenting with different choices.
PρLog inference mechanism is essentially the same as SLDNF-resolution, multiple results are gen-

erated via backtracking, its semantics is compatible with semantics of normal logic programs [8] and,
hence, Prolog was a natural choice to base PρLog on: The inference mechanism comes for free, as well
as the built-in arithmetic and many other useful features of the Prolog language. Prolog code can be used
freely within PρLog programs. Following Prolog, PρLog is also untyped, but values of sequence and
context variables can be constrained by regular hedge or tree languages. We do not elaborate on this
feature here.

Programming with rules has been experiencing a period of growing interest since the nineties when
rewriting logic [10] and rewriting calculus [3] have been developed and several systems and languages
(ASF-SDF [12], CHR [6], Claire [2], ELAN [1], Maude [4], Stratego [13], just to name a few) emerged.
The ρLog calculus has been influenced by the ρ-calculus [3] as also its name suggests, but there are
some significant differences: ρLog adopts logic programming semantics (clauses are first class concepts,
rules/strategies are expressed as clauses), uses top-position matching, and employs four different kinds
of variables. Consequently, PρLog (based on ρLog) differs from ELAN (based on ρ-calculus). Also,
ELAN is a mature system with a very efficient compiler while PρLog is an experimental extension of
Prolog implemented in Prolog itself. From the architecture point of view, PρLog is closer to another
mature system, CHR, because both extend the host language (in this case, Prolog) in a declarative way.
CHR extends it with the rules to handle constraints that are the first class concept there.

1Probably the most notable such feature is the leftmost-outermost term traversal strategy the matching algorithm uses, but
it can also be easily modified since the corresponding Prolog code is open: Exchanging the order of clauses would suffice. The
user can also program different traversal strategies pretty easily inside PρLog.

http://creativecommons.org
http://creativecommons.org/licenses/by-nc-nd/3.0/

2 Strategies in PρLog

The goal of this short paper is to give an overview of PρLog and, in particular, show how it uses
strategies. First, we discuss syntax of PρLog (Sect. 2), then list some of the strategies from the library
with a brief explanation (Sect. 3), and show how user-defined strategies can be introduced. We illustrate
this on the examples of defining rewriting strategies in PρLog (Sect. 4). One can see that the code there
is quite short and readable, and it also demonstrates expressiveness of PρLog.

2 Preliminaries

PρLog is essentially based on the language of ρLog [9], extending Prolog with it. Here we use the PρLog
notation for this language, writing its constructs in typewriter font. The expressions are built over the
set of functions symbols F and the sets of individual, sequence, function, and context variables. These
sets are disjoint. PρLog uses the following conventions for the variables names: Individual variables start
with i_ (like, e.g. i_Var for a named variable or i_ for the anonymous variable), sequence variables
start with s_, function variables start with f_, and context variables start with c_. The symbols in F ,
except the special constant hole, have flexible arity. To denote the symbols in F , PρLog basically
follows the Prolog conventions for naming functors, operators, and numbers.

Terms t and hedges h are constructed in a standard way: t ::= i_X | hole | f(h) | f_X(h) | c_X(t)
and h ::= t | s_X | eps | h1,h2, where eps stands for the empty hedge and is omitted whenever it appears
as a subhedge of another hedge. a(eps) and f_X(eps) are often abbreviated as a and f_X. Context
is a term with a single occurrence of hole. A context can be applied to a term, replacing the hole by
that term. Substitution maps individual variables to (hole-free) terms, sequence variables to (hole-free)
hedges, function variables to function symbols, and context variables to contexts (all but finitely many
individual, sequence, and function variables are mapped to themselves, all but finitely many context
variables are mapped to themselves applied to the hole). In [7], an algorithm to solve matching equations
in the language just described has been introduced. Two hedges may have zero, one, or more (finitely
many) matchers.

A ρLog atom (ρ-atom) is a triple consisting of a term st (a strategy) and two hole-free hedges h1
and h2, written as st :: h1 ==> h2. Intuitively, it means that the strategy st transforms the hedge
h1 to the hedge h2. (We will use this, somehow sloppy, but intuitively clear wording in this paper.) Its
negation is written as st :: h1 =\=> h2. A ρLog literal is a ρ-atom or its negation. A PρLog clause
is either a Prolog clause, or a clause of the form st :: h1 ==> h2 :- body (in the sequel called a
ρ-clause) where body is a (possibly empty) conjunction of ρ- and Prolog literals. A PρLog program is a
sequence of PρLog clauses and a query is a conjunction of ρ- and Prolog literals. A restriction imposed
on clause and queries is that no ρLog variables can occur in Prolog clauses and no Prolog variables occur
in ρ-clauses. When a Prolog literal appears in a body of a ρ-clause, or in a query with a ρ-literal, then
the only variables that the Prolog literal may contain are the ρLog individual variables. (When it comes
to evaluating such Prolog literals, the individual variables there are converted into Prolog variables.)

Both a program clause and a query should satisfy a syntactic restriction, called well-modedness, to
guarantee that each execution step is performed using matching (which is finitary in our language) and
not unification (whose decidability is not known2). Well-modedness for PρLog programs extends the
same notion for logic programs [5]: A mode for the relation ·:: · ==> · is a function that defines the
input and output positions respectively as in(·:: · ==> ·) = {1,2} and out(·:: · ==> ·) = {3}. A mode is
defined (uniquely) for a Prolog relation as well. A clause is moded if all its predicate symbols are moded.
We assume that all ρ-clauses are moded. As for the Prolog clauses, we require modedness only for those

2It subsumes context unification whose decidability is a long-standing open problem [11].

B. Dundua, T. Kutsia, M. Marin 3

ones that define a predicate that occurs in the body of some ρ-clause. If a Prolog literal occurs in a query
in conjunction with a ρ-clause, then its relation and the clauses that define this relation are also assumed
to be moded.

Before defining well-modedness, we introduce the notation vars(E) for a set of variables occurring
in expression E, and vars(E,{p1, ..., pn}) = ∪n

i=1vars(E|pi), where E|pi is the standard notation for a
subexpression of E at position pi. The symbol Van stands for the set of anonymous variables. A ground
expression contains no variables. Then well-modedness of queries and clauses are defined as follows:

Definition 1 A query L1, . . . ,Ln is well-moded iff it satisfies the following conditions for each 1≤ i≤ n:

• vars(Li, in(Li))⊆ ∪i−1
j=1vars(Lj,out(Lj))\Van.

• If Li is a negative literal, then vars(Li,out(Li))⊆ ∪i−1
j=1vars(Lj,out(Lj))∪Van.

• If Li is a ρLog literal, then its strategy term is ground.

A clause L0:-L1, . . . ,Ln is well-moded, iff the following conditions are satisfied for each 1≤ i≤ n:

• vars(Li, in(Li))∪ vars(L0,out(L0))⊆ ∪i−1
j=0vars(Lj,out(Lj))\Van.

• If Li is a negative literal, then vars(Li,out(Li))⊆ ∪i−1
j=1vars(Lj,out(Lj))∪Van∪ vars(L0, in(L0)).

• If L0 and Li are ρLog literals with the strategy terms st0 and sti, respectively, then vars(sti)⊆
vars(st0).

PρLog allows only well-moded program clauses and queries. There is no restriction on the Prolog
clauses if the predicate they define is not used in a ρ-clause. For well-moded programs and queries,
PρLog uses Prolog’s depth-first inference mechanism with the leftmost literal selection in the goal. If
the selected literal is a Prolog literal, then it is evaluated in the standard way. If it is a ρ-atom of the form
st :: h1 ==> h2, then PρLog finds a (renamed copy of a) program clause st’ :: h1’ ==> h2’ :-
body such that st′ matches st and h1′ matches h1 with a substitution σ . Then, it replaces the selected
literal in the query with the conjunction of bodyσ and a literal that forces matching h2 to h2′σ , applies σ

to the rest of the query and continues. Success and failure are defined in the standard way. Backtracking
allows to explore other alternatives that may come from matching the (input positions in the) selected
query literal to the (input positions in the) head of the same program clause in a different way, or to the
(input positions in the) head of another program clause. Negative ρ-literals are processed by the standard
negation-as-failure rule.

3 Strategic Programming

Strategies can be combined to express in a compact way many tedious small step transformations. These
combinations give more control on transformations. PρLog provides a library of several predefined
strategy combinators. Most of them are standard. The user can write her own strategies in PρLog or
extend the Prolog code of the library. Some of the predefined strategies and their intuitive meanings are
the following:

• id transforms a hedge in itself and never fails.

• compose(st1,st2, . . . ,stn), n ≥ 2, first transforms the input hedge by st1 and then transforms
the result by compose(st2, . . . ,stn) (or by st2, if n = 2). Via backtracking all possible results can
be obtained. Fails if either st1 or compose(st2, . . . ,stn) fails.

• choice(st1, . . . ,stn), n≥ 1, returns a result of a successful application of some sti to the input
hedge. It fails if all sti’s fail. By backtracking it can return all outputs of all sti applications.

4 Strategies in PρLog

• first_one(st1, . . . ,stn), n≥ 1, selects the first sti that does not fail and returns only one result
of its application to the input hedge. It fails if all sti’s fail. It’s variation, first_all, returns via
backtracking all the results of the application of sti to the input hedge.

• nf(st) computes a normal form of the input hedge with respect to st. Never fails. Backtracking
returns all normal forms.

• iterate(st,N) starts transforming the input hedge with st and returns a result (via backtracking
all the results) obtained after N iterations.

• map1(st) maps st to each term in the input hedge and returns the result hedge. Backtracking
generates all possible output hedges. st should operate on a single term and not on an arbitrary
hedge. Fails if st fails on at least one term from the input hedge. map is a variation where the
single-term restriction is removed.

• interactive takes a strategy from the user, transforms the input hedge by it and waits for the
further user instruction (another strategy to be applied to the result hedge or to finish).

• rewrite(st) applies to a single term (not to an arbitrary hedge) and rewrites it by st (which also
applies to a single term). Via backtracking it is possible to obtain all the rewrites. The input term
is traversed in the leftmost-outermost manner. Note that rewrite(st) can be easily implemented
inside PρLog:
rewrite(i_str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-

i_str :: i_Redex ==> i_Constractum.

Due to lack of space, we can not bring here examples that demonstrate these strategies. The users can
define own strategies in a program either by writing clauses for them or using abbreviations like, e.g.,
prove := nf(first_one(success, inference_step, failure)) for a simple (propositional)
proof procedure, which abbreviates the clause (that can work on hedges of sequents):

prove :: s_X ==> s_Y :-
nf(first_one(success, inference_step, failure)) :: s_X ==> s_Y.

Of course, the strategies success, inference_step, failure etc., operating on hedges of sequents,
have to be provided.

4 Implementing Rewriting Strategies

Leftmost-Outermost and Outermost Rewriting. As mentioned above, the rewrite strategy tra-
verses a term in leftmost outermost order to rewrite subterms. For instance, if the strategy strat is
defined by the rules strat :: f(i_X) ==> g(i_X) and strat :: f(f(i_X)) ==> i_X, then for
the goal rewrite(strat) :: h(f(f(a)),f(a)) ==> i_X we get, via backtracking, four instanti-
ations for the variable i_X, in this order: h(g(f(a)),f(a)), h(a,f(a)), h(f(g(a)),f(a)), and
h(f(f(a)),g(a)). If we want to obtain only one result, then it is enough to add the cut predicate in
the goal: rewrite(strat) :: h(f(f(a)),f(a)) ==> i_X,! returns only h(g(f(a)),f(a)). On
the other hand, if we want to get all the results of leftmost-outermost rewriting, we have to find the first
redex and rewrite it in all possible ways (via backtracking), ignoring all the other redexes:

rewrite_left_out(i_str) :: c_Context(i_Redex) ==> c_Context(i_Contractum) :-
i_str :: i_Redex ==> i_, !,
i_str :: i_Redex ==> i_Contractum.

B. Dundua, T. Kutsia, M. Marin 5

The goal rewrite_left_out(strat) :: h(f(f(a)),f(a)) ==> i_X gives two instantiations
for i_X: h(g(f(a)),f(a)) and h(a,f(a)).

To return all the results of outermost rewriting we find an outermost redex and rewrite it. Backtrack-
ing returns all the results for all outermost redexes.

rewrite_out(i_str) :: i_X ==> i_Y :-
i_str :: i_X ==> i_, !,
i_str :: i_X ==> i_Y.

rewrite_out(i_str) :: f_F(s_1,i_X,s_2) ==>f_F(s_1,i_Y,s_2) :-
rewrite_out(i_str) :: i_X ==> i_Y.

The goal rewrite_out(strat) :: h(f(f(a)),f(a)) ==> i_X gives three answers, in this or-
der: h(g(f(a)),f(a)), h(a,f(a)), and h(f(f(a)),g(a)).

Leftmost-Innermost and Innermost Rewriting. Implementation of innermost strategy in PρLog is
slightly more involved than the implementation of outermost rewriting. It is not surprising since the
outermost strategy takes an advantage of the PρLog built-in term traversal strategy. We could have
modified the PρLog source by simply changing the order of two rules in the matching algorithm to give
preference to the rule that descends deep in the term structure. It would change the term traversal strategy
from leftmost-outermost to leftmost-innermost. Another way would be to build term traversal strategies
into PρLog (like it is done in ELAN and Stratego, for instance) that would give the user a possibility
to specify the needed traversal inside a PρLog program. However, here our aim is demonstrate that
rewriting strategies can be implemented quite easily inside PρLog. For the outermost strategy it has
already been shown. As for the innermost rewriting, if we want to obtain only one result by leftmost-
innermost strategy, we first check whether any argument of the selected subterm rewrites. If not, we
try to rewrite the subterm and if we succeed, we cut the alternatives. The way how matching is done
guarantees that the leftmost possible redex is taken:

rewrite_left_in_one(i_str) :: c_Ctx(f_F(s_Args)) ==> c_Ctx(i_Contractum) :-
rewrites_at_least_one(i_str) :: s_Args =\=> i_,
i_str :: f_F(s_Args) ==> i_Contractum, !.

rewrites_at_least_one(i_str) :: (s_,i_X,s_) ==> true :-
rewrite(i_str) :: i_X ==> i_, !.

To get all results of leftmost-innermost rewriting, we check whether the selected subterm is an inner-
most redex. If yes, the other redexes are cut off and the selected one is rewritten in all possible ways:

rewrite_left_in(i_str) :: c_Context(f_F(s_Args)) ==> c_Context(i_Contractum) :-
rewrites_at_least_one(i_str) :: s_Args =\=> i_,
i_str :: f_F(s_Args) ==> i_, !,
i_str :: f_F(s_Args) ==> i_Contractum.

If strat is the strategy defined in the previous section, then we have only one answer for the
goal rewrite_left_in(strat) :: h(f(f(a)),f(a)) ==> i_X: the term h(f(g(a)),f(a)). The
same term is returned by rewrite_left_in_one.

Finally, rewrite_in computes all results of innermost rewriting via backtracking:

6 Strategies in PρLog

rewrite_in(i_str) :: f_F(s_Args) ==> i_Y :-
rewrites_at_least_one(i_str) :: s_Args =\=> i_,
i_str :: f_F(s_Args) ==> i_Y.

rewrite_in(i_str) :: f_F(s_1,i_X,s_2) ==> f_F(s_1,i_Y,s_2) :-
rewrite_in(i_str) :: i_X ==> i_Y.

The goal rewrite_in(strat) :: h(f(f(a)),f(a)) ==> i_X returns two instantiations of i_X:
h(f(g(a)),f(a)) and h(f(f(a)),g(a)).

5 Concluding Remarks

We gave a brief overview on strategies in PρLog and showed how rewriting strategies can be compactly
and declaratively implemented. PρLog extends Prolog with transformation rules over hedges, controlled
by strategies, and is available for downloading from

http://www.risc.uni-linz.ac.at/people/tkutsia/software.html.

References
[1] P. Borovansky, C. Kirchner, H. Kirchner, P. E. Moreau, and M. Vittek. Elan: A logical framework based on

computational systems. ENTCS, 4, 1996.
[2] Y. Caseau, F.-X. Josset, and F. Laburthe. Claire: combining sets, search and rules to better express algorithms.

Theory Pract. Log. Program., 2(6):769–805, 2002.
[3] H. Cirstea and C. Kirchner. The rewriting calculus - Part I and II. Logic Journal of the IGPL, 9(3), 2001.
[4] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer, and J. F. Quesada. Maude: specification

and programming in rewriting logic. Theor. Comput. Sci., 285(2):187–243, 2002.
[5] P. Dembinski and J. Maluszynski. AND-parallelism with intelligent backtracking for annotated logic pro-

grams. In 2nd IEEE Symposium on Logic Programming, pages 29–38, 1985.
[6] T. Frühwirth. Theory and practice of constraint handling rules. J. Log. Program, 37(1–3):95–138, 1998.
[7] T. Kutsia and M. Marin. Matching with regular constraints. In G. Sutcliffe and A. Voronkov, editors, LPAR05,

volume 3835 of LNAI, pages 215–229. Springer, 2005.
[8] J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 2nd edition, 1987.
[9] M. Marin and T. Kutsia. Foundations of the rule-based system ρlog. Journal of Applied Non-Classical

Logics, 16(1-2):151–168, 2006.
[10] N. Martı́-Oliet and J. Meseguer. Rewriting logic: Roadmap and bibliography. Theor. Comput. Sci.,

285(2):121–154, 2002.
[11] RTA List of Open Problems. Problem #90. Are context unification and linear second order unification decid-

able? http://rtaloop.mancoosi.univ-paris-diderot.fr/problems/90.html, 2009.
[12] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,

L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF + SDF meta-environment:
A component-based language development environment. In CC’01, volume 2027 of LNCS, pages 365–370.
Springer, 2001.

[13] E. Visser. Stratego: A language for program transformation based on rewriting strategies. In RTA’01, volume
256 of LNCS. Springer, 2001.

	Introduction
	Preliminaries
	Strategic Programming
	Implementing Rewriting Strategies
	Concluding Remarks

