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Abstract. We extend first-order order-sorted unification by permitting
regular expression sorts for variables and in the domains of function
symbols. The set of basic sorts is finite. The corresponding unification
problem is infinitary. We conjecture that this unification problem is de-
cidable and give a complete unification procedure.

1 Introduction

In first-order order-sorted unification [15], the set of basic sort S is assumed to
be partially ordered, variables are of basic sorts s ∈ S and function symbols have
sorts of the form w→ s, where w is a finite word over S and s ∈ S. In this paper,
we require S to be finite and extend the framework by introducing regular ex-
pression sorts R over S, allowing variables to be of sorts R and function symbols
to have sorts R → s. Another extension is that overloading function symbols is
allowed. Under some reasonable conditions imposed over the signature accord-
ing to [7], our terms have a least sort. We call the obtained problem regular
expression order-sorted unification (REOSU) and show that it is infinitary, con-
jecture that it is decidable and give a complete unification procedure. REOSU
extends some known problems as it is shown on the diagram below, illustrating
its relations with syntactic unification (SYNU [11]), word unification (WU [13]),
order-sorted unification (OSU [15]), sequence unification (SEQU [10]), and word
unification with regular constraints (WURC [13]):

WUSYNU

WURCSEQUOSU

REOSU
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Following the arrows, from OSU one can obtain SYNU by restricting the sort
hierarchy to be empty; SEQU problems without sequence variables (i.e., with
individual variables only) constitute SYNU problems; on the other hand, WU is
a special case of SEQU with constants, sequence variables, and only one flexible
arity function symbol for concatenation; WU is also a special case of WURC
where none of the variables are constrained; from REOSU we can get OSU
(but with finitely many basic sort symbols only, because this is what REOSU
considers) if instead of arbitrary regular sorts in function domains we allow only
words over basic sorts, restrict variables to be of only basic sorts, and forbid
function symbol overloading; SEQU can be obtained if we restrict REOSU with
only one basic sort, say s, the variables that correspond to sequence variables in
SEQU have sort s∗, individual variables are of sort s, and function symbols have
the sort s∗ → s; finally, the WURC can be obtained from REOSU by the same
restriction that gives WU from SEQU and, in addition, identifying the constants
there to the corresponding sorts.

Order-sorted unification described in [12, 16] extends OSU from [15] in the
way that is not compatible with REOSU.

In this paper we are dealing with REOSU in the empty theory (i.e., the
syntactic case). As a future work, it would be interesting to see how equational
OSU [9, 8] can be extended with regular expression sorts.

The paper is organized as follows: In Sect. 2 we give basic definitions and
recall some known results. In Sect. 3 algorithms operating on sorts are given.
Sect. 4 discusses decidability issues and describes a complete unification proce-
dure. Sect. 5 concludes. Proofs can be found in the appendix.

For unification, we use the notation and terminology of [5]. For the notions
related to sorted theories, we follow [7].

2 Preliminaries

Sorts. We consider a finite set B of basic sorts, partially ordered with the relation
�. Its elements are denoted with lower case letters in sans serif font. s ≺ r means
s � r and s 6= r. Regular expression sorts (shortly, sorts) are regular expressions
over B, built in the usual way: R ::= s | 1 | R1.R2 | R1+R2 | R∗.

The set of all regular expression sorts is denoted by R. We use capital SANS
SERIF font letters for them. They define the corresponding regular language in
the standard way: [[s]] = {s}, [[1]] = {ε}, [[R1.R2]] = {(s̃1, s̃2) | s̃1 ∈ [[R1]], s̃2 ∈
[[R2]]}, [[R1+R2]] = [[R1]] ∪ [[R2]], [[R∗]] = [[R]]∗, where ε stands for the empty word.

We extend the ordering� to words of basic sorts of equal lengths by s1 · · · sn �
r1 · · · rn iff si � ri for all 1 ≤ i ≤ n. This ordering is extended to sets of words
of basic sorts, defining S1 � S2 iff for each w1 ∈ S1 there is w2 ∈ S2 such that
w1 � w2. Finally, we order the regular expression sorts with �, defining R1 � R2

iff [[R1]] � [[R2]]. If R1 � R2 and R2 � R1 then we write R1 ' R2. If R1 � R2 and
not R2 � R1, then R1 ≺ R2.

The set of all �-maximal elements in a set of sorts S ⊆ R is denoted max(S).
R is a lower bound of S if R � Q for all Q ∈ S. A lower bound G of S is the



greatest lower bound, denoted glb(S), if R � G for all lower bounds R of S. The
sort (

∑
s∈B s)∗ is the top sort and is denoted by >. Obviously, R � > for any R.

Terms. For each R we assume a countable set of variables VR such that VR1 = VR2

iff R1 ' R2 and VR1∩VR2 = ∅ if R1 6' R2. Also, we assume as a signature a family
of sets of function symbols {FR.s | R ∈ R, s ∈ B} such that FR1.s1 = FR2.s2 iff
R1.s1 ' R2.s2. Moreover, the following conditions should be satisfied:

– Monotonicity: If f ∈ FR1.s1 ∩ FR2.s2 and R1 � R2, then s1 � s2.
– Preregularity: If f ∈ FR1.s1 and R2 � R1, then there is a �-least element in

the set {s | f ∈ FR.s and R2 � R}.
– Finite overloading: For each f , the set {FR.s | f ∈ FR.s} is finite.

We say that R is a sort of x if x ∈ VR. Similarly, R.s is a sort of f if f ∈ FR.s.
Function symbols from F1.s are called constants. We use the letters a, b, c to
denote them. maxsort(f) denotes the set max({R.s | f ∈ FR.s}). We will write
f : R → s for f ∈ FR.s, a : s for a ∈ F1.s, and x : R for x ∈ VR. Setting
V ∈ ∪R∈RVR and F = ∪R∈R,s∈BFR.s, we define the set of sorted terms (or, just
terms) T (F ,V) over F and V as the least family {TR(F ,V) | R ∈ R} of sets
satisfying the following conditions:

– VR ⊆ TR(F ,V).
– TR1(F ,V) ⊆ TR2(F ,V) if R1 � R2.
– If f : R→ s and 1 � R, then f(ε) ∈ Ts(F ,V).
– If f : R → s, ti ∈ TRi

(F ,V) for 1 ≤ i ≤ n, n ≥ 1, such that R1. · · · .Rn � R,
then f(t1, . . . , tn) ∈ Ts(F ,V).

We abbreviate terms a(ε) with a.

Lemma 1. For each term t there exists a �-minimal sort R that is unique
modulo ' such that t ∈ TR(F ,V).

This �-minimal sort R is called the sort of t and is denoted by sort(t). In
the same way, the sort of a term sequence (t1, . . . , tn), n ≥ 1, is defined uniquely
modulo ' as sort(t1). · · · .sort(tn) and is denoted by sort((t1, . . . , tn)). When
n = 0, i.e., for the empty sequence, sort(ε) = 1.

The set of variables of a term t is denoted by var(t). A term t is ground if
var(t) = ∅. These notions extend to term sequences, sets of term sequences, etc.
For a basic sort s, its semantics sem(s) is the set Ts(F) of ground terms of sort
s. Semantics of a regular sort is given as a set of ground term sequences of the
corresponding sort: sem(1) = {ε}, sem(R1.R2) = {(s̃1, s̃2) | s̃1 ∈ sem(R1), s̃2 ∈
sem(R2)}, sem(R1+R2) = sem(R1)∪ sem(R2), sem(R∗) = sem(R)∗. This defini-
tion, together with the definition of � and TR(F ,V) implies that if R � Q, then
sem(R) ⊆ sem(Q).

Substitutions. A substitution is a well-sorted mapping from variables to se-
quences of terms, which is identity almost everywhere. (A singleton sequence
is identified with its sole member.) Substitutions are denoted with lower case



Greek letters, where ε stands for the identity substitution. Well-sortedness of
σ means that sort(σ(x)) � sort(x) for all x. The notions of substitution appli-
cation, term and term sequence instances, substitution composition, restriction,
and subsumption are defined in the standard way. We use postfix notation for
instances, juxtaposition for composition, and write σ ≤X ϑ for subsumption
meaning that σ is more general than ϑ on the set of variables X .

Lemma 2. For a term t, a term sequence t̃, and a substitution σ we have
sort(tσ) � sort(t) and sort(t̃σ) � sort(t̃).

Equation is a pair of term sequences, written as s̃ .= t̃. A regular expression
order sorted unification or, shortly, REOSU problem Γ is a finite set of equations
between sorted term sequences {s̃1

.= t̃1, . . . , s̃n
.= t̃n}. A substitution σ is a

unifier of Γ if s̃iσ = t̃iσ for all 1 ≤ i ≤ n. A minimal complete set of unifiers of
Γ is a set U of unifiers of Γ satisfying the following conditions:

– Completeness: For any unifier ϑ of Γ there is σ ∈ U such that σ ≤var(Γ ) ϑ.
– Minimality: If there are σ1, σ2 ∈ U such that σ1 ≤var(Γ ) σ2, then σ1 = σ2.

We also consider a closure R of a sort R, defined as follows: s =
∑

r�s r, 1 = 1,
R1.R2 = R1.R2, R1+R2 = R1+R2, R∗ = R

∗
. Closure makes operations on sorts

considered later easier.

Lemma 3. Let S,R ∈ R. Then S � R iff [[S]] ⊆ [[R]].

Corollary 1. Let S,R ∈ R. Then S ' R iff [[S]] = [[R]].

Linear Form and Split of a Regular Expression. We recall the notion of linear
form for regular expressions from [2], adapted the notation to our setting, using
the set of basic sorts B for alphabet: The pair (s,R) is called a monomial. A
linear form of a regular expression R, denoted lf (R), is a finite set of monomials
defined recursively as follows:

lf (1) = ∅ lf (R∗) = lf (R)� R∗

lf (s) = {(s, 1)} lf (R.Q) = lf (R)� Q if ε /∈ [[R]]
lf (s+r) = lf (s) ∪ lf (r) lf (R.Q) = lf (R)� Q ∪ lf (Q) if ε ∈ [[R]]

These equations involve an extension of concatenation � that acts on a linear
form and a regular expression and returns a linear form. It is defined as l�1 = l
and l � Q = {(s,S.Q) | (s,S) ∈ l,S 6= 1} ∪ {(s,Q) | (s, 1) ∈ l} if Q 6= 1.

As an example, lf (R) = {(s,R), (s, s.(s.s+r)∗), (r, (s.s+r)∗)} for R = s∗.(s.s+r)∗.
The set lf (R) is defined as {s.Q | (s,Q) ∈ lf (R)}.

Definition 1 (Split). Let S ∈ R. A split of S is a pair (Q,R) ∈ R2 such that
(1) Q.R � S and (2) if (Q′,R′) ∈ R2, Q � Q′, R � R′, and Q′.R′ � S, then
Q ' Q′ and R ' R′.

We recall the definition of 2-factorization from [6]: A pair (Q,R) ∈ R2 is a
2-factorization of S ∈ R if (1) [[Q.R]] ⊆ [[S]] and (2) if (Q′,R′) ∈ R2, [[Q]] ⊆ [[Q′]],
[[R]] ⊆ [[R′]], and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and [[R]] = [[R′]].



Lemma 4. (Q,R) is a split of S iff (Q,S) is a 2-factorization of S.

In [6] it has been shown that regular expressions admit finite factorization:
The number of left factor-right factor pairs is finite. Moreover, they can be effec-
tively computed. By the lemma above regular expressions admit finite splitting.
For instance, we can split s∗.r.r∗ into (s∗, s∗.r.r∗) and (s∗.r.r∗, r∗).

3 Algorithms for Sorts

Deciding �. If we did not have ordering on basic sorts, � would be the stan-
dard inequality for regular word expressions which can be decided, for instance,
by Antimirov’s algorithm [1] that employs partial derivatives. The problem is
PSPACE-complete, but this rewriting approach has an advantage over the stan-
dard technique of translating regular expressions into automata: With it, in some
cases solving derivations can have polynomial size, while any algorithm based
on translation of regular expressions into DFA’s causes an exponential blow-up.

In our case, we can rely on the property S � R iff [[S]] ⊆ [[R]], proved in
Lemma 3. To decide the later inclusion, we do not need to take into account
ordering on basic sorts. Hence, it can be decided by the original Antimirov’s
algorithm on S and R.

Computing Greatest Lower Bounds. A greatest lower bound of regular expres-
sions would be their intersection, if we did not have ordering on the basic sorts.
Intersection can be computed either in the standard way, by translating them
into automata, or by Antimirov & Mosses’s rewriting algorithm [3] for regu-
lar expressions extended with the intersection operator. Computation requires
double exponential time.

Here we can employ the regular expression intersection algorithm to compute
a greatest lower bound, with one modification: To compute intersection between
two alphabet letters, instead of standard check whether they are the same, we
compute the maximal elements in the set of their lower bounds. There can be
several such maximal elements. This can be easily computed based on the or-
dering on basic sorts. Then we can take the sum of these elements and it will
be their greatest lower bound. This construction allows to compute a greatest
lower bound of two regular expressions, which is unique modulo '.

An implementation of Antimirov-Mosses algorithm (see [14]) requires only
minor modification to deal with the ordering on alphabet letters (basic sorts).
Hence, for S and R we compute here glb(S,R) and we know that if Q is a regular
expression with [[Q]] = [[S]] ∩ [[R]], then glb(S,R) ' Q.3

Computing Weakening Substitutions. Now we describe an algorithm that com-
putes a substitution to weaken the sort of a term sequence towards a given sort.
The necessity of such an algorithm can be demonstrated on the simple example:
3 We say that the computation of glb fails, if the (modification of) Antimirov-Mosses

algorithm returns 0, and express it glb(S,R) = ⊥.



Assume we want to unify x and f(y) for x : s, f : R1 → s1, f : R2 → s2, y : R2.
Assume the sorts are ordered as R1 � R2, s1 � s � s2. Then we can not unify x
with f(y) directly, because sort(f(y)) = s2 6� s = sort(x). However, if we weaken
the sort of f(y) to s1, then unification is possible. To weaken the sort of f(y),
we take its instance under the substitution {y 7→ w}, where sort(w) = R1, which
gives sort(f(w)) = s1. Hence, the substitution {y 7→ w, x 7→ f(w)} is a unifier
of x and f(y), leading to the common instance f(w).

A weakening pair is a pair of a term sequence t̃ and a sort Q, written t̃ Q.
A substitution ω is called a weakening substitution of a set W of weakening pairs
iff sort(t̃ω) � Q for each t̃ Q ∈W .

The algorithm W that is supposed to compute weakening substitutions for a
given set of weakening pairs, works by applying exhaustively the following rules,
selecting a weakening pair and transforming it in all possible ways:

R-w: Remove a Weakening Pair

{t̃ Q} ∪W ;σ =⇒W ;σ if sort(t̃) � Q.

D1-w: Decomposition 1 in Weakening

{(f(t̃), s̃) Q} ∪W ;σ =⇒ {f(t̃) s, s̃ S} ∪W ;σ

if sort((f(t̃), s̃)) 6� Q, var((f(t̃), s̃)) 6= ∅, s̃ 6= ε and s.S ∈ max(lf (Q)).

D2-w: Decomposition 2 in Weakening

{(x, s̃) Q} ∪W ;σ =⇒ {x Q1, s̃ Q2} ∪W ;σ

if sort((x, s̃)) 6� Q, s̃ 6= ε and (Q1,Q2) is a split of Q.

AS-w: Argument Sequence Weakening

{f(t̃) Q} ∪W ;σ =⇒ {t̃ R} ∪W ;σ

where sort(f(t̃)) 6� Q, var(f(t̃)) 6= ∅, R.r ∈ maxsort(f), and r � Q.

V-w: Variable Weakening

{x Q} ∪W ;σ =⇒Wσ;σ{x 7→ w}
where w is a fresh variable with sort(w) = glb({sort(x),Q)}).

F1-w: Failure 1 in Weakening

{t̃ Q} ∪W ;σ =⇒ ⊥, if sort(t̃) 6� Q and var(t̃) = ∅.

F2-w: Failure 2 in Weakening

{f(t̃) Q} ∪W ;σ =⇒ ⊥,
if sort(f(t̃)) 6� Q and r 6� Q for each r with f : R→ r.

F3-w: Failure 3 in Weakening

{x Q} ∪W ;σ =⇒ ⊥, if glb({sort(x),Q}) = ⊥.

By the exhaustive search described above, a complete search tree is generated
whose branches form derivations. The branches that end with ⊥ are called failing
branches. The branches that end with ∅;ω are called successful branches and ω



is a substitution computed by W at this branch. The set of all substitutions
computed by W on the set of weakening pairs W is denoted by weak(W ). It is
easy to see that the elements of weak(W ) are variable renaming substitutions.

It is essential that the signature has the finite overloading property, which
guarantees that the rule AS-w does not introduce infinite branching. Since the
linear form and split of a regular expression are both finite, the other rules do
not cause infinite branching either. W is terminating, sound, and complete, as
the following theorems show.

Theorem 1. W is terminating.

Theorem 2. W is sound: Each ω ∈ weak(W ) is a weakening substitution of W .

Theorem 3. W is complete: For every weakening substitution ω′ of W there
exists ω ∈ weak(W ) such that ω ≤vars(W ) ω

′.

Example 1. Let W = {x  q, f(x)  s} be a weakening problem with x : r,
f : s → s, f : r → r and the sorts r1 ≺ r, r2 ≺ r, r1 ≺ q, r2 ≺ q, s ≺ r1, s ≺ r2.
Then the weakening algorithm computes weak(W ) = {{x 7→ z, w 7→ z}} where
w : r1+r2 and z : s.

Example 2. Let W = {(x, y)  s∗.r.r∗} be a weakening problem with x : q∗1.p
∗
1,

y : q∗2.p
∗
2, and the sorts s ≺ q1, s ≺ q2, r ≺ p1, r ≺ p2. Then the weakening

algorithm computes weak(W ) = {{x 7→ u1, y 7→ v1}, {x 7→ u2, y 7→ v2}} where
u1 : s∗.r.r∗, v1 : r∗, u2 : s∗ and v2 : s∗.r.r∗.

Example 3. Let W = {x q∗} be a weakening problem with x : r∗ and the sorts
s1 ≺ r, s2 ≺ r, s1 ≺ q, s2 ≺ q, p1 ≺ s1, p2 ≺ s2. Then the weakening algorithm
computes weak(W ) = {{x 7→ w}} where w : (s1+s2)∗.

4 Unification Type, Decidability and Unification
Procedure

Unification Type. Let Γre be a REOSU problem and Γseq its version without
sorts, i.e. a SEQU problem. Each unifier of Γre is either an unifier of Γseq or is
obtained from an unifier of Γseq be composing it with a weakening substitution as
follows: If σ = {x1 7→ t̃1, . . . , xn 7→ t̃n} is a unifier of Γseq, then the set of weak-
ening substitutions for σ is Ω(σ) = weak({t̃1  sort(x1), . . . , t̃n  sort(xn)}).
For each ωσ ∈ Ω(σ), σωσ is a unifier of Γre. Since SEQU is infinitary, the type
of REOSU can be either infinitary or nullary, and we show now that it is not
nullary.

Let Sseq be a minimal complete set of unifiers of Γseq and Sre be the set
containing the unifiers of Γre that are either in Sseq or are obtained by weakening
unifiers in Sre. Since {σωσ | ωσ ∈ Ω(σ)} is finite for each σ, we can assume that
Sre contains only a minimal subset of it for each σ. The set Sre is complete.
Assume by contradiction that it is not minimal. Then it contains σ′ and ϑ′ such
that σ′ ≤var(Γre) ϑ

′, i.e., there exists ϕ′ such that σ′ϕ′ =var(Γre) ϑ
′. If ϑ′ ∈ Sseq,



then we have σ′ϕ′ = σωσϕ
′ =var(Γ ) ϑ

′ for an ωσ ∈ Ω(σ), which contradicts
minimality of Sseq. If σ′ ∈ Sseq, then σ′ϕ′ =var(Γre) ϑ

′ = ϑωϑ where ωϑ ∈ Ω(ϑ).
Since ωϑ is variable renaming, σ′ϕ′ω−1

ϑ =var(Γseq) ϑ, which again contradicts
minimality of Sseq. Both σ′ and ϑ′ can not be from Sseq because Sseq is minimal.
If neither σ′ nor ϑ′ is in Sseq, then we have σωσϕ′ = σ′ϕ′ =var(Γre) ϑ

′ = ϑωϑ
and again a contradiction: σωσϕ′ω−1

ϑ =var(Γseq) ϑ.
Hence, for any Γre there is a complete set of unifiers with no two elements

comparable with respect to ≤var(Γre), which implies that Γre has a minimal
complete set of unifiers and REOSU is not nullary.

Is REOSU Decidable? In this subsection we reduce solvability of REOSU to
solvability of a unification problem in the union of two disjoint theories: word
unification with regular constraints and order-sorted syntactic unification with
finitely many sorts. Sort symbols can be shared. Each of these problems is de-
cidable [13, 16], but we do not know whether it implies decidability of REOSU.
A version with regular constraints (or an order-sorted version) of Baader-Schulz
combination method [4] would imply it, if the restrictions on the ingredient the-
ories remain as reasonable as for the unsorted case (e.g. linear constant restric-
tions). However, we are not aware of any work on such a combination method.

Here we describe solvability-preserving transformations that transform a
given REOSU problem Γ1 into a problem of the union theory. First, we use
variable abstraction on Γ1, replacing each subterm at depth 1 or deeper with
a fresh variable of the same sort. For instance, with this transformation from
Γ = {x .= f(g(y), a), g(x, f(z)) .= g(f(z), x)} we obtain a new REOSU problem
Γ2 = {x .= f(u, v), u .= g(y), v .= a, g(x,w) .= g(w, x), w .= f(z)}.

In Γ2 there can be equations of the form x
.= t such that sort(t) 6� sort(x).

If t is ground, we can immediately stop with failure. Otherwise, we weaken t
towards sort(x), apply weakening substitutions on Γ2 obtaining finitely many
instances, and repeat this step on each instance until we reach unification prob-
lems Γ 1

3 , . . . , Γ
k
3 such that each equation of the form x

.= t in them satisfies
sort(t) � sort(x). The problems where it is not possible are discarded as unsolv-
able. Γ1 is solvable iff Γ i3 is solvable for some 1 ≤ i ≤ k.

Now, Γ3’s are transformed as follows: First, we introduce a new least sort n
and a new function symbol conc : > → n. Next, we introduce new function sym-
bols f ′ : n→ s for each f : R→ s. The obtained signature is denoted by F ′. Then,
every term in Γ3 of the form f(x1, . . . , xn) is replaced by f ′(conc(x1, . . . , xn)).
The new problem is denoted with Γ4. This transformation preserves solvability:
If σ is a solution of Γ3, then Γ4 has a solution σ′, obtained from σ with the same
transformation as Γ4 was obtained from Γ3. On the other hand, if σ′ solves Γ4,
we can obtain σ from it by getting rid of conc and replacing each f ′ with f . The
obtained mapping is well-sorted and, therefore, is a substitution. It solves Γ3.

Γ4 is a unification problem over the union of two disjoint signatures: F ′ and
{conc}. The signature F ′ contains unary function symbols only, whose domain
sort is n. We have only basic sorts (not regular expression sorts) in this theory,
and they are finitely many. The theory with the signature conc can be seen as



elementary word unification problem with regular expression sorts. Hence, Γ4 is
a unification problem in the combination of two disjoint theories that share basic
sorts: One is a first-order order-sorted unification with finitely many sorts and
the other one is word unification with regular expression sorts. Decidability of
the first one follows for decidability of elementary order-sorted unification [16].
Decidability of the second one follows from decidability of word unification with
regular constraints, because one can encode the sort information as regular con-
straints over an extended alphabet. What is left to show is that the Baader-
Schulz method remains correct in the presence of regular constraints (or in the
order-sorted case). We conjecture this is true, but do not have a formal proof at
the moment of writing this paper.

Conjecture 1. REOSU is decidable.

Unification Procedure. To compute unifiers for a REOSU problem, we could
employ the SEQU unification procedure and then weaken each computed sub-
stitution. However, this is a generate and test approach that can be made better
if we tailor weakening in the unification rules. This is what we do now.

The rules for REOSU procedure below transform a pair of a unification prob-
lem and a substitution into either again such a pair.

P: Projection

Γ ;σ =⇒ Γϑ;σϑ,
for ϑ = {x1 7→ ε, . . . , xn 7→ ε} with xi ∈ var(Γ ) and 1 � sort(xi) for 1 ≤ i ≤ n.

T: Trivial

{t̃ .= t̃} ∪ Γ ;σ =⇒ Γ ;σ.

TP: Trivial Prefix

{(r̃, t̃) .= (r̃, s̃)} ∪ Γ ;σ =⇒ {t̃ .= s̃} ∪ Γ ;σ, if r̃ 6= ε and t̃ 6= s̃.

D: Decomposition

{(f(t̃), t̃′) .= (f(s̃), s̃′)} ∪ Γ ;σ =⇒ {t̃ .= s̃, t̃′
.= s̃′} ∪ Γ ;σ,

if glb({sort(f(t̃)), sort(f(s̃))}) 6= ⊥ and t̃ 6= s̃.

O: Orient

{(t, t̃) .= (x, s̃)} ∪ Γ ;σ =⇒ {(x, s̃) .= (t, t̃)} ∪ Γ ;σ, where t /∈ V.

WkE1: Weakening and Elimination 1

{(x, t̃) .= (s, s̃)} ∪ Γ ;σ =⇒ {t̃ .= s̃}ϑ ∪ Γϑ;σϑ,
where s /∈ V, x /∈ var(s), ω ∈ weak({s sort(x)}), and ϑ = ω ∪ {x 7→ sω}.

WkE2: Weakening and Elimination 2

{(x, t̃) .= (y, s̃)} ∪ Γ ;σ =⇒ {t̃ .= s̃}ϑ ∪ Γϑ;σϑ,
where ϑ = {x 7→ w, y 7→ w} for a fresh variable w whose sort sort(w) =
glb({sort(x), sort(y)}) and sort(w) 6' 1.



WkWd1: Weakening and Widening 1

{(x, t̃) .= (s, s̃)} ∪ Γ ;σ =⇒ {(z, t̃) .= s̃}ϑ ∪ Γϑ;σϑ,
if s /∈ V, x /∈ var(s), there is (r,R) ∈ lf (sort(x)) with R 6' 1, ω ∈ weak({s r}),
z is a fresh variable with sort(z) = R and ϑ = ω ∪ {x 7→ (sω, z)}.

WkWd2: Weakening and Widening 2

{(x, t̃) .= (y, s̃)} ∪ Γ ;σ =⇒ {(z, t̃) .= s̃}ϑ ∪ Γϑ;σϑ,
where (S,R) is a split of sort(x) such that R 6' 1, w is a fresh variable with
sort(w) = glb({S, sort(y)}) and sort(w) 6' 1, z is a fresh variable with sort(z) =
R, and ϑ = {x 7→ (w, z), y 7→ w}.

WkWd3: Weakening and Widening 3

{(x, t̃) .= (y, s̃)} ∪ Γ ;σ =⇒ {(z, t̃) .= s̃}ϑ ∪ Γϑ;σϑ,
where (S,R) is a split of sort(y) such that R 6' 1, w is a fresh variable with
sort(w) = glb({S, sort(x)}) and sort(w) 6' 1, z is a fresh variable with sort(z) =
R, and ϑ = {x 7→ w, y 7→ (w, z)}.

Note that sort(w) 6' 1 in WkWd2 and WkWd3 implies that in those rules
S 6' 1.

We denote this set of transformation rules with T.

Theorem 4 (Soundness). The rules in T are sound.

To solve an unification problem Γ , we create the initial pair Γ ; ε and first
apply the projection rule to it in all possible ways. From each obtained problem
we select and equation and apply the other rules exhaustively to that selected
equation, developing the search tree in a breadth-first way. If no rule applies, the
problem is transformed ⊥. The obtained procedure is denoted by P(Γ ). Branches
in the search tree form derivations. The derivations that end with ⊥ are failing
derivations. The derivations that end with ∅;ϕ are successful derivations. The
set of all ϕ’s at the end of successful derivations of P(Γ ) is called the computed
substitution set of P(Γ ) and is denoted by comp(P(Γ )). From Theorem 4 by
induction on the length of derivations one can prove that every ϕ ∈ comp(P(Γ ))
is a unifier of Γ .

One can observe that under this control, variables are replaced with ε only
at the projection phase. In particular, no variable introduced in intermediate
stages gets eliminated with ε or replaced by a variable whose sort is 1.

Theorem 5 (Completeness). Let Γ be a REOSU problem with a unifier ϑ.
Then there exists σ ∈ comp(P(Γ )) such that σ ≤var(Γ ) ϑ.

Note that the set comp(P(Γ )), in general, is not minimal.4

4 However, if in the rules WkE1 and WkE2 the substitution ω is selected from a minimal
subset of the corresponding weakening set, one can show that comp(P(Γ )) is almost
minimal. (Almost minimality is defined in [10]). We do not go into the details here.



5 Conclusion

We studied unification in order-sorted theories with regular expression sorts.
We showed how it generalizes some known unification problems, conjectured its
decidability and gave a complete unification procedure. As the language can
model quite naturally DTD and in some extent, XML Schema, one can see
a possible application (perhaps of its fragments) in the area related to XML
processing.
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A Proofs of Lemmas and Theorems

Lemma 1. For each term t there exists a �-minimal sort R that is unique
modulo ' such that t ∈ TR(F ,V).

Proof. By structural induction. Let t be a variable x ∈ VR. Assume x ∈ TQ(F ,V)
for some Q. It implies that x ∈ VQ′ with Q′ � Q. Then x ∈ VR∩VQ′ , which implies
R ' Q′. Hence, R is the unique �-minimal sort modulo ' with x ∈ TR(F ,V).

If t is a constant, the lemma follows from the monotonicity condition.
If t = f(t1, . . . , tn), then, by the induction hypothesis, each ti has the �-

minimal sort Ri, 1 ≤ i ≤ n, that is unique modulo '. Let f : Q → q such that
R1. · · · .Rn � Q. By preregularity, there exists a �-least s such that f : S→ s
and R1. · · · .Rn � S. Hence, s is the �-minimal sort such that t ∈ Ts(F ,V). ut

Lemma 2. For a term t, a term sequence t̃, and a substitution σ we have
sort(tσ) � sort(t) and sort(t̃σ) � sort(t̃).

Proof. We prove sort(tσ) � sort(t) by induction on term structure. If t is a
variable, then the lemma follows from the definition of substitution. If t = f(ε)
then it is obvious. If t = f(t1, . . . , tn), n ≥ 1, then by the induction hypoth-
esis sort(tiσ) � sort(ti) for each 1 ≤ i ≤ n. Therefore, sort((t1, . . . , tn)σ) �
sort(t1, . . . , tn) which, by the definition of sorted terms, implies that sort(tσ) =
sort(f(t1, . . . , tn)σ) � sort(f(t1, . . . , tn)) = sort(t).

To prove sort(t̃σ) � sort(t̃), we use induction on the length of t̃. If the length
is 0, then the lemma is obvious. Otherwise, let t̃ be (t, t̃′). By the case above we
have sort(tσ) � sort(t). By the induction hypothesis we get sort(t̃′σ) � sort(t̃′).
Therefore, sort(t̃σ) = sort((t, t̃′)σ) � sort((t, t̃′)) = sort(t̃). ut

Lemma 3. Let S,R ∈ R. Then S � R iff [[S]] ⊆ [[R]].

Proof. For any Q ∈ R and v ∈ [[Q]], let v↓Q := {w ∈ [[Q]] | w � v}. By the
definition of closure, we have that {max(v↓Q) | v ∈ [[Q]]} = [[Q]]. Now, we can
reason as follows: S � R iff [[S]] � [[R]] iff {max(v↓S) | v ∈ [[S]]} � {max(v↓R) |
v ∈ [[R]]} iff [[S]] ⊆ [[R]]. ut

Lemma 4. (Q,R) is a split of S iff (Q,S) is a 2-factorization of S.

Proof. (Q,R) is a split of S iff (1) Q.R � S and (2) if (Q′,R′) ∈ R2, Q � Q′, R �
R′, and Q′.R′ � S, then Q ' Q′ and R ' R′. By Lemma 3, these conditions are
equivalent to (1’) [[Q.R]] ⊆ [[S]] and (2’) if (Q′,R′) ∈ R2, [[Q]] ⊆ [[Q′]], [[R]] ⊆ [[R′]],
and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and [[R]] = [[R′]]. It is not hard to see that (1’)
and (2’) are the same as saying that (Q,S) is a 2-factorization of S. ut

Theorem 1. The algorithm W is terminating.

Proof. The complexity measure of a weakening pair t̃  Q is 1 + the denota-
tional length of t̃, and the complexity measure of a set W of weakening pairs
is the multiset of the complexity measures of its constituent weakening pairs.



The multiset extension of the standard ordering on nonnegative integers is well-
founded. The first five rules in W strictly decrease the measure for the sets they
operate on, and the failure rules cause immediate termination. Hence, W is ter-
minating. ut

Theorem 2. The algorithm W is sound: Every ω ∈ weak(W ) is a weakening
substitution of W .

Proof. It is enough to show that if a rule in W transforms W1;σ into W2;σϑ
and ϕ is a weakening substitution for W2, then ϑϕ is a weakening substitution
for W1. For R-w, Lemma 2 implies it. For D1-w it follows from two facts: First,
if s.S ∈ max(lf (Q)) then s.S � Q, and second, �-monotonicity of concatenation:
If R1 � Q1 and R2 � Q2 then R1.R2 � Q1.Q2. For D1-w it follows from �-
monotonicity of concatenation and from the definition of split. For AS-w, it
is implied by the definition of maxsort , for V-w by the definition of glb and
Lemma 2. ut

Theorem 3. The algorithm W is complete: For every weakening substitution
ω′ of W there there exists ω ∈ weak(W ) such that ω ≤vars(W ) ω

′.

Proof. We construct the desired derivation recursively. The initial pair is W ; ε.
Assume that Wi;σi belongs to the derivation. Then there exists ϕ such that
σiϕ =var(W ) ω

′. Moreover, ϕ is a weakening substitution of Wσi and Wi. We
want to extend the derivation with Wi+1;σi+1 such that σi+1 ≤var(W ) ω

′. Let
r̃  Q be the selected weakening pair in Wi. If sort(r̃) � Q, we proceed with
R-w. If sort(r̃) 6� Q, we have several cases depending on the shape of r̃:

– r̃ = (f(t̃), s̃), s̃ 6= ε. r̃ is not ground, otherwise ϕ would not be its weakening
substitution. We select s.S ∈ max(lf (Q)) such that sort(f(t̃)ϕ) � s and
sort(s̃ϕ) � Q and proceed with D1-w. Then ϕ is a weakening substitution
of Wi+1 and σi+1 = σi ≤var(W ) ω

′.
– r̃ = (x, s̃), s̃ 6= ε. We select a split (Q1,Q2) of Q such that sort(xϕ) � Q1 and

sort(s̃ϕ) � Q2 and continue with D2-w. Again, ϕ is a weakening substitution
of Wi+1 and σi+1 = σi ≤var(W ) ω

′.
– r̃ = f(t̃). r̃ is not ground, otherwise ϕ would not be its weakening substitu-

tion. We select R and s such that R.r ∈ maxsort(f), r � Q, and sort(t̃ϕ) � R.
Such R and r exist, because ϕ weakens Wi. Then we continue with the rule
AS-w. ϕ is a weakening substitution of Wi+1 and σi+1 = σi ≤var(W ) ω

′.
– r̃ = x. Then there exists w with sort(w) = glb(sort(x),Q) such that ϕ =
{x 7→ w}ϕ′. We select such a w and continue derivation with V-w and the
substitution ϑ = {x 7→ w}. Then ϕ′ is a weakening substitution of Wi+1 and
σi+1 = σiϑ ≤var(W ) ω

′.

Hence, we constructed the desired extension in all the cases. Since the algo-
rithm is terminating, the derivation reaches a success end ∅;ω with the property
ω ≤vars(W ) ω

′. ut

Theorem 4 (Soundness). The rules in T are sound.



Proof. It is easy to to check for each rule in T that if it performs a transformation
Γ, σ =⇒ ∆,σϑ and ϕ is a unifier of ∆, then ϑϕ is a unifier of Γ . ut

Theorem 5 (Completeness). Let Γ be a REOSU problem with a unifier ϑ.
Then there exists σ ∈ comp(P(Γ )) such that σ ≤var(Γ ) ϑ.

Proof. We construct recursively the derivation that computes σ. The initial pair
in the derivation is Γ ; ε and ε ≤var(Γ ) ϑ. To choose a proper extension, we find
all x ∈ var(Γ ) with xϑ = ε and make the projection step with the substitution
σ1 whose domain consists of these x’s only. Obviously, σ1 ≤var(Γ ) ϑ.

Now assume Γn;σn belongs to the derivation. Then σn ≤var(Γ ) ϑ, i.e., there
exists ϕ such that xσnϕ = xϑ for all x ∈ var(Γ ). Moreover, it is easy to see that
ϕ is a unifier of both Γσn and Γn and xϕ 6= ε for any x. We want to extend the
derivation with Γn+1, σn+1 such that σn+1 ≤var(Γ ) ϑ. Let t̃ .= s̃ be the selected
equation in Γn and represent Γn as {t̃ .= s̃} ∪ Γ ′n. Then we have the following
cases:

1. t̃ and s̃ are either identical, or have identical nonempty prefixes, or their
first elements are nonvariable terms with the same head. Then Γn+1;σn+1 is
obtained by the rules T, TP, or D, respectively. Hence, σn+1 = σn ≤var(Γ ) ϑ.

2. The first element of s̃ is a variable x, while t̃ does not start with a variable.
Then we apply the rule O and get σn+1 = σn ≤var(Γ ) ϑ.

3. The first element of t̃ is a variable x, while s̃ does not start with a variable.
Since ϕ is a unifier of Γn and does not map x to ε, we have either xϕ = sϕ
or xϕ = (sϕ, s̃′) where s is the first element of s̃ and s̃′ 6= ε. In the first
case, sort(sϕ) � sort(x), i.e., ϕ involves weakening of sort(s) to sort(x). We
single out this weakening substitution ω from ϕ and extend the derivation
with the rule WkE1 and substitution ω ∪ {x 7→ sω}. In the second case
we have sort(sϕ).sort(s̃′) � sort(x). Since sort(s) is basic sort, there exists
(r,R) ∈ lf (R) such that sort(sϕ) � r and sort(s̃′) � R. Hence, ϕ involves
weakening of of sort(s) to r. Therefore, extracting the weakening substitution
ω from ϕ, we extend the derivation by WkWd1 and ω∪{x 7→ (sω, z)}, where
z is fresh with sort(z) = R. In either case σn+1 ≤var(Γ ) ϑ.

4. The first element of t̃ is a variable x and the first element of t̃ is another
variable y. There are the following alternatives: xϕ = yϕ, xϕ = (yϕ, s̃′), or
yϕ = (xϕ, t̃′), where s̃′ 6= ε and t̃′ 6= ε. In the first case, ϕ also involves
weakening for x and y and we proceed with WkE2 with the corresponding
weakening substitution. In the second case sort(yϕ) � S and sort(s̃′) � R
for a split (S,R) of sort(x). We choose such a split and proceed with the rule
WkWd2 together with a properly chosen substitution {x 7→ (w, z), y 7→ w}.
The third case is analogous to the second one. In all the cases we have
σn+1 ≤var(Γ ) ϑ.

The second step is to show that this sequence terminates. We define inductively
the size of a term t, sequence of terms t̃, and a substitution σ with respect to a
substitution ϑ as follows: |x|ϑ = 0, if xϑ = ε, otherwise |x|ϑ = 1. |f(t̃)|ϑ = |t̃|ϑ+2,
|(t1, . . . , tn)|ϑ = |t1|ϑ + · · · + |tn|ϑ, and |σ|ϑ =

∑
x∈dom(σ) |xσ|ϑ, where dom(σ)



is the domain of σ. Given Γ and ϑ, we define the size of Γi;σi as the quadruple
|Γi;σi| = (k, l,m, n) where

– k is the number of distinct variables in Γi;
– l = |ϑ|ε − |σi|var(Γ )|ϑ, where σi|var(Γ ) is the restriction of σi on the set of

variables on Γ ;
– m is the multiset ∪t̃ .=s̃∈Γi

{|t̃|ϑ, |s̃|ϑ};
– n is the number of equations of the form (t, t̃) .= (x, s̃), t /∈ V in Γi.

The sizes are compared lexicographically. The ordering is well-founded.
The projection rule is applied only once and does not increase the size of the

unification problem/substitution pairs it operates on. The other rules strictly
decrease the size: T, TP, D decrease m and do not increase k and l. O decreases
n without increasing the others. WkE1 and WkE2 decrease k. WkWd1, WkWd2,
and WkWd3 decrease l and do not increase k. Hence, the derivation we have
constructed above terminates. ut


