
Collaborative Schema Construction using Regular Sequence Types

Jorge Coelho
ISEP & LIACC
Porto, Portugal

jcoelho@liacc.up.pt

Mário Florido
Univ. of Porto, DCC-FC & LIACC

Porto, Portugal
amf@dcc.fc.up.pt

Temur Kutsia
RISC, Johannes Kepler University

Linz, Austria
tkutsia@risc.uni-linz.ac.at

Abstract

In this paper we describe an approach to build XML
schemas in a collaborative way. The approach is based
on computing intersection between sequences of type terms
built over constants, function symbols and type symbols.
For type symbols there may be the corresponding type rules
that specify the (regular) set of term sequences the type
symbol generates. We describe the intersection algorithm,
prove its termination and correctness, illustrate it on exam-
ples and show how it can be used in collaborative schema
development.

1 Introduction

The work presented here is a new solution for the prob-
lem presented by the authors in [2]. In the previous work
the authors proposed algorithms for Collaborative Schema
Construction based on the unification of sequence variables.
The new approach presented here is based on the intersec-
tion of regular sequence types.

Main idea behind Collaborative Schema Construction is
the following: Several people are interested in producing a
common schema for XML data and each of those people
may impose some constraints on the schema structure. For
example in the SuperJournal Project [11], the goal was “to
produce a cluster of journal content to make it worth the
author submitting multimedia content and the reader doing
useful searching and browsing in the electronic field with
sufficient content that is relevant.”. SuperJournal brings a
consortium of publishers to develop models for network
publishing by gathering the content from several differ-
ent journals. The consortium members propose a desired
schema for their own domain. Collaboratively they could
unify all their schemas in one general schema which sat-
isfies everyone’s requisites. After this all the information
could be integrated in one general journal and distributed.

The integration of different schemas into a common, uni-
fied one, usually called Schema Integration, has been a

prominent area of research for the database community over
the past years [6, 9, 12]. With the widespread adoption of
XML has the standard syntax to share data, new attention
was given to schema integration for XML schemas [13, 8].
In all these previous works, schema integration means a se-
mantic integration, i.e., in the different schemas, one may
have different names for the same semantic concept, and
this semantic knowledge is used to match schemas. Thus
these works necessarily rely on domain specific informa-
tion to perform matching. In our work, we assume that
the syntax used in the different XML schemas is the same
and that the several schemas are incomplete specifications
where only some domain specific part is defined. Thus in
this paper, when we refer to collaborative schema construc-
tion we mean syntactic collaborative schema construction.

The approach we follow here is to extend regular
types [5] with sequences for typing XML documents and
use type intersection on this extension in order to obtain a
common schema. Our representation of regular types via
sets of type rules, where each type rule has a symbol in the
left hand side and a set of type term sequences in the right,
makes implementation quite simple.

The rest of the paper is organized as follows: In Section 2
we present regular types and sequences and show how they
are used together. The type intersection algorithm is pre-
sented in Section 3. Its application in Collaborative Schema
Construction is demonstrated in Section 4. Finally, we con-
clude.

2 Types and Sequences

2.1 Terms and Regular Types

The next definitions and examples introduce briefly the
notion of regular types along the lines presented in [5].

Definition 2.1 Assuming an infinite set of type symbols
and finite sets of constants and flexible arity function sym-
bols, a type term is defined as follows:

1. A constant symbol is a type term.



2. A type symbol is a type term.

3. If f is a flexible arity function symbol and each τi is a
type term, f(τ1, . . . , τn) is a type term.

We use a, b, c, d to denote constants, α, β, γ to denote type
symbols and τ to denote type terms. A term is a type term
that does not contain a type symbol. We use t for terms and
T for the set of all terms (over the given alphabet).

Definition 2.2 A type rule is an expression of the form α →
Υ where α is a type symbol and Υ is a finite set of type
terms.

Example 2.1 Let α and β be type symbols, α → {a, b} and
β → {nil, tree(β, α, β)} are type rules.

Definition 2.3 A type symbol α is defined by a set of type
rules R if there exists a type rule α → Υ ∈ R.

We assume that there is at most one rule α → Υ in R
for each α. We also assume that the set of type symbols
contains µ (the universal type) and φ (the empty type) and
no R contains rules for them.

Given a set of type rulesR and a type term τ , the regular
type [[τ,R]] (generated from τ by R), is defined as the least
set of terms satisfying the conditions:

• [[τ,R]] = {a}, if τ is a constant a.

• [[µ,R]] = T and [[φ,R]] = ∅.

• [[α,R]] = ∪α→Υ∈R,τ∈Υ[[τ,R]], if τ is α /∈ {µ, φ}.

It is easy to see that our sets of type rules are equiva-
lent to regular tree grammars [4] and types are regular tree
languages.

2.2 Sequences and Sequence types

Below our considerations will focus on finite sequences
of terms and extension of regular types to (regular) se-
quence types. We use t̃ for finite sequences of terms, τ̃
for finite sequences of type terms and denote the empty se-
quence (of terms or type terms) with ε. For readability, se-
quences are written in parentheses, like, e.g., (f(a, b), b, c)
or (f(α, b), β, c).

Definition of type rules is extended to allow type term
sequences instead of just type terms: A type rule is an
expression of the form α → Υ where α is a type sym-
bol and Υ is a finite set of finite sequences of type terms.
Respectively, the definition of sequence types extends the
one for types: Sequence types are sets of finite term se-
quences. This extension is obtained by introducing two ad-
ditional conditions that deal with sequences: [[ε,R]] = {ε}
and [[(τ, τ̃),R]] = {(t, t̃) | t ∈ [[τ,R]] and t̃ ∈ [[τ̃ ,R]]}.
Moreover, µ now generates the set of all finite sequences of
terms (over the given alphabet).

Example 2.2 If R = {α → {ε, (f(c, α), α)}, then
[[α,R]] = {ε, f(c), f(c, f(c)), . . . , (f(c), f(c)), (f(c),
f(c, f(c))), (f(c, f(c)), f(c)), . . . , (f(c), f(c), f(c)), . . .}.

Note that extending regular types with sequences must
be done together with some restrictions to avoid falling in
the domain of context-free languages which are not closed
under intersection and where testing for intersection empti-
ness is undecidable (two operations we need in our ap-
proach). Thus, we would like to forbid type rules sets
like {α → {ε, (a, α, b)}} or like {α → {ε, (a, β, b)},
β → {α}}. The restriction that we impose on the type
rule sets, informally speaking, forbids cycles (in the type
symbol dependency graph of the rules) via occurrences of
type symbols in sequences on the topmost level, which are
not the last sequence element occurrences. Examples of
rule sets satisfying this restriction are: {α → {ε, (a, β, b)},
β → {f(α)}} and {α → {ε, (a, β, b)}, β → {ε, (c, β)}}.
Under this restriction, our types denote regular languages of
term sequences (or regular hedge languages, in terminology
of [10]).

An alternative approach to denote sequences of terms
(trees, values) is to do it via regular expression types. See,
e.g. [7]. regular operators are the symbols *, +, ?, | and
the comma. For the given τ̃ , τ̃1 and τ̃2 the following table
describes regular expression types:

τ̃∗ sequence of zero or more τ̃ ’s
τ̃+ sequence of one or more τ̃ ’s
τ̃? zero or one τ̃
τ̃1 | τ̃2 τ̃1 or τ̃2

τ̃1, τ̃2 τ̃1 followed by τ̃2.

We translate regular expression types to our notation. The
translation is made accordingly to the following rules:

τ̃∗ ⇒ α∗ → {ε, (τ̃ , α∗)}
τ̃+ ⇒ α+ → {τ̃ , (τ̃ , α+)}
τ̃? ⇒ α? → {ε, τ̃}
τ̃1 | τ̃2 ⇒ α|→ {τ̃1, τ̃2}
τ̃1, τ̃2 ⇒ αseq → {(τ̃1, τ̃2)}

3 Type intersection

The intersection of types is the core of our new approach
to Collaborative Schema Construction. In this section we
present some definitions, the intersection algorithm, cor-
rectness results and examples.

We start with a function empty , that operates on a se-
quence of type terms τ̃ and a set of rules R and decides
whether [[τ̃ ,R]] = ∅. The function keeps a trail S of tried



type symbols and is defined as follows:

empty(τ̃ ,R) = empty(τ̃ ,R, ∅).
empty(τ̃ ,R, S) = False, if τ̃ ∈ {ε, µ}

empty((τ, τ̃),R, S) = empty(τ,R, S) ∧ empty(τ̃ ,R, S).
empty(φ,R, S) = True.

empty(a,R, S) = False.

empty(f(τ̃),R, S) = empty(τ̃ ,R, S).
empty(α,R, S) = True if α ∈ S.

empty(α,R, S) = ∧n
i=1 empty(τ̃i,R, S ∪ {α}),

if α → {τ̃1, . . . , τ̃n} ∈ R, α /∈ S.

The function empty is correct: If [[τ̃ ,R]] = ∅, then
empty(τ̃ ,R) = True, otherwise empty(τ̃ ,R) = False.
It follows from the correctness of a similar function applied
to general regular types in [14].

Example 3.1 empty(α, {α → {(a, α)}) = True.

Another useful function is nullable . Given a sequence of
type terms τ̃ and a set of type rules R, the function decides
whether ε ∈ [[τ̃ ,R]]. It keeps a trail S of tried type symbols
and is defined as follows:

nullable(τ̃ ,R) = nullable(τ̃ ,R, ∅).
nullable(ε,R, S) = True.

nullable((τ, τ̃),R, S) = nullable(τ,R, S)∧
nullable(τ̃ ,R, S).

nullable(µ,R, S) = True.

nullable(φ,R, S) = False.

nullable(a,R, S) = False.

nullable(f(τ̃),R, S) = False.

nullable(α,R, S) = False if α ∈ S.

nullable(α,R, S) = ∨n
i=1 nullable(τ̃i,R, S ∪ {α}),

if α → {τ̃1, . . . , τ̃n} ∈ R, α /∈ S.

It is not hard to show that nullable is correct: If
ε ∈ [[τ̃ ,R]], then nullable(τ̃ ,R) = True, otherwise
nullable(τ̃ ,R) = False.

We now present the sequence type intersection algo-
rithm. Given a set of type rules Rin and two sequences
of type terms τ̃1 and τ̃2, the algorithm returns a sequences
of type terms τ̃ and a set of type rules Rout such that
[[τ̃ ,Rout]] = [[τ̃1,Rin]] ∩ [[τ̃2,Rin]].

Algorithm 1 shows the rules. We use two global vari-
ables, R for the type rules and T for the trail that stores the
intersections already made in order to avoid cycles. When-
ever more than one case is applicable the first one is used.
The rules are formulated modulo commutativity of intersec-
tion. The letter ρ in the cases 5 and 7 stands for a type term
that is not a type symbol.

Algorithm 1: Intersection of Sequences of Type Terms

Input: τ̃1, τ̃2 and a set of type rules Rin. R is a global
variable initialized by Rin. T is a global variable
initialized by ∅. The algorithm returns either φ or a
sequence of type terms τ̃ together with the set of type
rules Rout which is the value assigned to of the global
variable R. One of the following cases apply
depending on the shape of τ̃1 and τ̃2.

1. τ̃ ∩ τ̃ = τ̃ .

2. τ̃1 ∩ τ̃2 = τ̃ , if (τ̃1, τ̃2, τ̃) ∈ T or (τ̃2, τ̃1, τ̃) ∈ T .

3. τ̃ ∩ µ = τ̃ .

4. f(τ̃1) ∩ f(τ̃2) = f(τ̃1 ∩ τ̃2).

5. (ρ1, τ̃1) ∩ (ρ2, τ̃2) = (ρ1 ∩ ρ2, τ̃1 ∩ τ̃2).

6. τ̃ ∩ ε = ε, if nullable(τ̃ , R) = True.

7. (α, τ̃1) ∩ (ρ, τ̃2) = γ, where γ is a new type symbol.
T and R are updated as follows:

T := T ∪ {(α, τ̃1), (ρ, τ̃2), γ};
Select α → Υ1 ∈ R;
Υ := ∅;
foreach τ̃ ′1 ∈ Υ1 do

τ̃ ′ := (τ̃ ′1, τ̃1) ∩ (ρ, τ̃2);
if empty(τ̃ ′, R) = False then Υ := Υ ∪ {τ̃ ′}

if Υ 6= ∅ then
R := R ∪ {γ → Υ};

else
Failure: this case is not applicable.

8. (α, τ̃1) ∩ (β, τ̃2) = γ, where γ is a new type symbol.
T and R are updated as follows:

T := T ∪ {(α, τ̃1), (β, τ̃2), γ};
Select α → Υ1 ∈ R and β → Υ2 ∈ R;
Υ := ∅;
foreach τ̃ ′1 ∈ Υ1 and τ̃ ′2 ∈ Υ2 do

τ̃ ′ := (τ̃ ′1, τ̃1) ∩ (τ̃ ′2, τ̃2);
if empty(τ̃ ′, R) = False then Υ := Υ ∪ {τ̃ ′}

if Υ 6= ∅ then
R := R ∪ {γ → Υ};

else
Failure: this case is not applicable.

9. τ̃1 ∩ τ̃2 = φ, if none of the previous case applies.

Example 3.2 Let Rin be {α → {ε, (a, α)}}. We want to
compute α∩(a, α). The case 7 applies and the result is com-
puted as follows: ε∩(a, α) = φ by case 9, (a, α)∩(a, α) =
(a, α) by case 1. Hence, the type symbol γ denotes the in-



tersection with Rout = {α → {ε, (a, α)}, γ → {(a, α)}}.

Example 3.3 Let Rin be {α → {ε, (a, α)}, β → {a,
(a, β)}} and compute α ∩ β. The case 8 applies, T be-
comes {(α, β, γ)} and the result is computed as follows:
ε∩a = φ by case 9; ε∩(a, β) = φ by case 9; (a, α)∩a = a
by case 5 (because a ∩ a = a, α ∩ ε = ε and (a, ε) is a);
and, finally, (a, α) ∩ (a, β) by case 5 becomes (a, α ∩ β)
and we should compute α ∩ β, but since (α, β, γ) ∈ T , the
case 2 gives γ on that. Hence, Υ = {a, (a, γ)} and the re-
sult is γ together with Rout = {α → {ε, (a, α)}, β → {a,
(a, β)}, γ → {a, (a, γ)}}.

Example 3.4 Let Rin be {α → {α}, β → {β}}. To com-
pute α ∩ β, we try to apply the transformation in case 8.
It introduces a new type symbol γ, adds (α, β, γ) to T and
proceeds with computing again α ∩ β. Now, the case 2 ap-
plies and we get γ. But R = Rin does not contain a rule
for γ. Therefore, empty(γ, R) = True and Υ in case 8 re-
mains empty. Therefore, the attempt of applying case 8 fails
and the case 9 finally gives α ∩ β = φ.

Example 3.5 Let Rin consist of the following type rules:

α1 → {ε, (a, α1)}
α2 → {(b, α3, α4)}
α3 → {c, (c, α3)}
α4 → {ε, (d, α4)}
α5 → {(b, α6)}
α6 → {ε, (c, α6)}

and compute the intersection l(α1, α2) ∩ l(a, a, α5). Note
that these types can be seen as the following XML types:

<!ELEMENT l(a*,b,c+,d*)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>
<!ELEMENT d (#PCDATA)>

<!ELEMENT l(a,a,b,c*)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

We go through this computation stepwise, but for sim-
plicity omit some steps. By case 4 we have that,

l(α1, α2) ∩ l(a, a, α5) = l((α1, α2) ∩ (a, a, α5))

Thus, we should compute (α1, α2) ∩ (a, a, α5), which, by
case 7, introduces a new type symbol γ1 and computes fur-
ther the following two intersections:

1. ε ∩ (a, a, α5) which results in φ.

2. (a, α1, α2) ∩ (a, a, α5) which by cases 5 and 1 results
in (a, (α1, α2) ∩ (a, α5)). For (α1, α2) ∩ (a, α5)), by
case 7 a new type symbol γ2 is introduced and the fol-
lowing intersection are to be computed:

2.1. α2 ∩ (a, α5), which results in φ.

2.2. (a, α1, α2) ∩ (a, α5) which by cases 5 and 1 results in
(a, (α1, α2)∩α5). By case 8 a new type symbol γ3 the
following intersections are to be computed:

2.2.1. (a, α1, α2) ∩ (b, α6), which leads to φ.

2.2.2. α2 ∩ (b, α6), which by case 7 introduces a new type
symbol γ4 and (b, α3, α4) ∩ (b, α6) is to be computed.
By case 5 it results in (b, (α3, α4) ∩ α6). Thus, we
compute (α3, α4) ∩ α6. By case 8 a new type symbol
γ5 is introduced and (c, α4)∩ α6 and (c, α3, α4)∩ α6

should be computed. The first one eventually leads to c
as the result, while the second one reduces to comput-
ing (α3, α4)∩α6. A new type symbol γ6 is introduced.
It is important to not that a triple ((α3, α4), α6, γ6) is
stored in T . We now have: (c, α4) ∩ α6 that gives c
as we have already seen, and (c, α3, α4)∩α6, that re-
turns by case 2 γ6 because the corresponding triple is
already in T .

Now we look what is our Rout: This is Rin ∪ {γ6 →
{c, (c, γ6)}, γ5 → {c, (c, γ6)}, γ4 → {(b, γ5)}, γ3 →
{γ4}, γ2 → {(a, γ3)}, γ1 → {(a, γ2)}}. This set and l(γ1)
are the output of the algorithm.

We can simplify the rules, getting the result l(γ1) with γ1

→ {(a, a, b, γ5)} and γ5 → {c, (c, γ5)}. It can be seen as a
representation of the following DTD:

<!ELEMENT l(a,a,b,c+)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (#PCDATA)>

Now we prove correctness of the algorithm. First, ne
need the following lemma:

Lemma 3.1 Let τ̃1 and τ̃2 be sequences of type terms and
R be a set of type rules such that each type symbol in τ̃1, τ̃2

andR has exactly one defining rule inR. If the intersection
algorithm for τ̃1 ∩ τ̃2 and Rin = R returns τ̃ and the set of
type rules Rout, then each type symbol in τ̃ and Rout has
exactly one defining rule in Rout.

Proof 3.1 It is straightforward to see that the result of in-
tersection is always a sequence of type terms. New type
symbols are only introduced in cases 7 and8 where a new
type rule for this new type symbol is introduced. For each
new symbol there is only one new type rule. Then the result
follows by induction on the number of recursive calls to the
intersection.



Theorem 3.1 (Correctness) Let τ̃1 and τ̃2 be sequences of
type terms and R be the corresponding set of type rules.
Then the intersection algorithm for τ̃1 ∩ τ̃2 and Rin = R
terminates and returns τ̃ and Rout such that [[τ̃ ,Rout]] =
[[τ̃1,Rin]] ∩ [[τ̃2,Rin]].

Proof 3.2 We prove the theorem in two steps:

Termination. During computation, the set T never con-
tains two triples (τ̃ ′1, τ̃

′
2, γ

′) (τ̃ ′′1 , τ̃ ′′2 , γ′′) such that τ̃ ′1 = τ̃ ′′1
and τ̃ ′2 = τ̃ ′′2 . From the cases 6, 7 and 8 it follows that if a
triple (τ̃ ′1, τ̃

′
2, γ

′) is in T , then both τ̃ ′1 and τ̃ ′2 belong to the
finite set S, which consists of subexpressions of the initial
τ̃1 and τ̃2, and of subexpressions of expressions occurring
in Υ in rules α → Υ ∈ Rin. Hence, the set T ′ = {(τ̃1, τ̃2) |
(τ̃ ′1, τ̃

′
2, γ

′) ∈ T} is finite. Let T̄ ′ be the complement of T ′

to the (finite) set {(τ̃ ′1, τ̃ ′2) | τ̃ ′1 ∈ S, τ̃2 ∈ S}.
By |τ̃ | we denote the size of τ̃ , i.e., its denotational

length. With each intersection problem τ̃1 ∩ τ̃2 and the cor-
responding value of T in the algorithm we associate a pair
(T̄ ′, |τ̃1|+ |τ̃2|+1), calling it the complexity measure of the
state (τ̃1, τ̃2, T ) of the algorithm. The measures are com-
pared lexicographically: The first arguments are compared
by set inclusion, the second ones - by the standard ordering
on natural numbers. We denote this ordering by < and note
that it is well-founded.

First, note that if the cases 1–3, 5, and 9 are applied, the
intersection algorithm terminates immediately. In the other
cases we compares the complexity measures of states at two
successive calls of the algorithm. The cases 4 and 5 do not
change the first component of the measure, but decrease the
second one strictly. The other two cases strictly decrease
the first component.

Hence, each case of the algorithm either terminates im-
mediately, or makes a recursive call with strictly decreased
complexity measure. Since the ordering is well-founded, the
algorithm terminates.

Correctness We should show that the transformation in
each case of the algorithm is sound. That is, if the case ap-
plies to τ̃1∩τ̃2 together with R′, and the result of application
is τ̃ together with R′′, then [[τ̃ , R′′]] = [[τ̃1, R

′]] ∩ [[τ̃2, R
′]].

For the cases 1, 2 and 3 it is straightforward. For the cases
4, 5 and 6 it follows from the definition of types and ba-
sic properties of sequence intersection. For the cases 7 and
8 one needs the definition of types and basic properties of
union and (sequence) intersection. Since these rules ex-
haust all potentially successful transformations, if none of
them are applicable then the intersection should be empty.
It justifies the case 9.

4 Application in Collaborative Schema Con-
struction

We now show how to apply the regular types intersection
to Collaborative Schema Construction. The idea is that sev-
eral people are interested in producing a common schema
for XML data and each of those people may impose some
constraints on the schema structure.

We now demonstrate our approach with an example:

Example 4.1 Three entities need to share a custom address
book document. All of them agree that the document should
have root element addrbook and one element name, and
each of them imposes other constraints in the document
content (note that places representing sequences which are
not of interest for a given entity are represented by an un-
derscore ‘ ’):

1. The document must have a sequence of zero or more
elements address after name and does not matter what
comes next. The proposed document has the simplified
structure: addrbook(name, address∗, ).

2. The document must have a sequence of one or more el-
ements email somewhere, with the simplified structure:
addrbook(name, , email+, )

3. The document must have one or more address ele-
ments after name and an optional telephone element
somewhere, with the following simplified structure:
addrbook(name, address+, , telephone?, )

These requirement can be described by the following
types rules (note that the underscores are translated to the
universal type represented by µ):

α1 → {addrbook(name, α2, µ)}
α2 → {ε, (address, α2)}
α3 → {addrbook(name, µ, α4, µ)}
α4 → {email, (email, α4)}
α5 → {addrbook(name, α6, µ, α7, µ)}
α6 → {address, (address, α6)}
α7 → {ε, telephone}

The idea is to calculate the intersection between α1, α3 and
α5. We start by calculating the intersection between α1 and
α3 and we will intersect the result with α5. We omit some
steps for the sake of clarity.

We start by case 8 of the intersection algorithm. It intro-
duces a new type symbol γ1 and calls to compute:

• addrbook(name, α2, µ)∩addrbook(name, µ, α4, µ).
It reduces to (α2, µ)∩(µ, α4, µ)). From here, α2∩µ =
α2 and µ ∩ (α4, µ) = (α4, µ). Thus we have,

γ1 → {addrbook(name, α2, α4, µ)}.



Now we compute γ1 ∩ α5. First, a new type symbol γ2 is
introduced and we get to addrbook(name, (α2, α4, µ) ∩
(α6, µ, α7). This results, on the one hand, in the intersec-
tion of α2 ∩ α6 which results in a new type symbol γ3 with
the rule γ3 → {address, (address, ε)}. On the other hand,
we need to compute the intersection (α4, µ) ∩ (µ, α7, µ).
From here, we get α4 ∩ µ = α4 and µ ∩ (α7, µ) = (α7, µ).
Hence,

γ2 → {addrbook(name, γ3, α4, α7, µ)}
γ3 → {address, (address, γ3)}
α4 → {email, (email, α4)}
α7 → {ε, telephone}

Now we can drop the universal type present on the tail since
it has no further utility. The resulting type rules are trivially
translated to the following DTD:

<!ELEMENT addrbook (name,address+,
email+,telephone?)>

<!ELEMENT name (#PCDATA)>
<!ELEMENT address (#PCDATA)>
<!ELEMENT telephone (#PCDATA)>
<!ELEMENT email (#PCDATA)>

5 Conclusion and Future Work

In this paper we presented a new approach to Collabora-
tive Schema Construction. It is based on computing inter-
section between sequences of type terms. We believe that
this new approach is simpler than the previous presented by
the authors in [2].

The implementation of these algorithms in the language
XCentric is based on the introduction of a special operator
and is described in the report available at: [3].

Our future work will be centered on continuing the in-
tegration of these techniques in the XML-processing logic
language XCentric [1].

References

[1] J. Coelho and M. Florido. XCentric: logic programming for
XML processing. In I. Fundulaki and N. Polyzotis, editors,
WIDM, pages 1–8. ACM, 2007.

[2] J. Coelho, M. Florido, and T. Kutsia. Sequence disunifica-
tion and its application in collaborative schema construction.
In M. Weske, M.-S. Hacid, and C. Godart, editors, WISE
Workshops, volume 4832 of Lecture Notes in Computer Sci-
ence, pages 91–102. Springer, 2007.

[3] J. Coelho, M. Florido, and T. Kutsia. Collaborative schema
construction using regular types: Implementation. Technical
report, University of Porto, http://www.liacc.up.
pt/˜jcoelho/CollaborativeRTImpl.pdf, 2009.

[4] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata
techniques and applications. Available from:
http://www.grappa.univ-lille3.fr/tata,
2007.

[5] P. Dart and J. Zobel. A regular type language for logic pro-
grams. In F. Pfenning, editor, Types in Logic Programming.
The MIT Press, 1992.

[6] A. Doan and A. Y. Halevy. Semantic integration research
in the database community: A brief survey. AI Magazine,
26(1):83–94, 2005.

[7] H. Hosoya and B. Pierce. Regular expression pattern match-
ing for XML. J. Functional Programming, 13(6):961–1004,
2003.

[8] D. Kensche, C. Quix, M. A. Chatti, and M. Jarke. Gerome:
A generic role based metamodel for model management. J.
Data Semantics, 8:82–117, 2007.

[9] Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner:
tuning schema matching software using synthetic scenarios.
VLDB J., 16(1):97–122, 2007.

[10] M. Murata. Extended path expressions for XML. In PODS.
ACM, 2001.

[11] D. J. Pullinger. SuperJournal Project. IOP Publishing Ltd.,
Bristol, UK, 1994.

[12] C. Quix, D. Kensche, and X. Li. Generic schema merging.
In CAiSE, pages 127–141, 2007.

[13] E. Rahm, H. Hai-Do, and S. Massmann. Matching large
XML schemas. SIGMOD Rec., 33(4):26–31, 2004.

[14] J. Zobel. Analysis of Logic Programs. PhD thesis, Depart-
ment of Computer Science, University of Melbourne, 1990.


