
Preliminary Proceedings

Automated Specification
and Verification of

Web Systems

WW √ ‘09
Fifth International Workshop

July 17, 2009

Castle of Hagenberg, Austria

Demis Ballis and Temur Kutsia (Eds.)

Preface

This report contains the pre-proceedings of the 5th International Workshop on
Automated Specification and Verification of Web Systems (WWV’09), held at
the Research Institute for Symbolic Computation (RISC), Castle of Hagenberg
(Austria) on July 17, 2009. The previous editions of the WWV series took place
in Siena (2008), Venice (2007), Paphos (2006), and Valencia (2005).

WWV’09 provided a common forum for researchers from the communities of
Rule-based programming, Automated Software Engineering, and Web-oriented
research, in order to facilitate the cross-fertilization and the advancement of
hybrid methods that combine the three areas.

The Program Committee of WWV’09 collected three reviews for each paper
and held an electronic discussion during April 2009 which has led to the selection
of 10 regular papers. In addition to the selected papers, the scientific program
included two invited lectures by François Bry from the Ludwig Maximilian Uni-
versity of Munich (Germany), and Axel Polleres from the National University
of Ireland, Galway (Ireland). We would like to thank them for having accepted
our invitation.

We would also like to thank all the members of the Program Committee
and all the referees for their careful work in the review and selection process.
Many thanks to all authors who submitted papers and to all conference partici-
pants. We gratefully acknowledge all the institutions and corporations who have
supported this event.

Castle of Hagenberg Demis Ballis and Temur Kutsia
July 2009 WWV’09 Editors

Workshop Organization

Program Committee

Maŕıa Alpuente Technical University of Valencia, Spain
Demis Ballis University of Udine, Italy
Wlodzimierz Drabent IDA, Linköping University, Sweden

IPI PAN, Polish Academy of Sciences, Poland
Santiago Escobar Technical University of Valencia, Spain
Moreno Falaschi University of Siena, Italy
Mário Florido University of Porto, Portugal
Temur Kutsia Johannes Kepler University Linz, Austria
Massimo Marchiori University of Padova, Italy
Mircea Marin University of Tsukuba, Japan
Catherine Meadows Naval Research Laboratory, USA
Rosario Pugliese University of Florence, Italy
I.V. Ramakrishnan Stony Brook University, USA
Antonio Vallecillo University of Malaga, Spain

Local Organization

Temur Kutsia
Wolfgang Schreiner

External Reviewers

Faisal Ahmed Mauricio Alba-Castro Jose Almeida Michele Baggi
Federico Banti Artur Boronat Linda Brodo Nestor Catano
Jorge Coelho Asiful Islam Daniel Romero Francesco Tiezzi
Alicia Villanueva

Sponsoring Institutions

• Land Oberösterreich
• Johannes Kepler University Linz
• Bundesministerium für Wissenschaft und Forschung

(Austrian Federal Ministry of Science and Research)

Table of Contents

Linked Broken Data? (invited talk) . 1
Axel Polleres

Social Media in Sciences (invited talk) . 3
François Bry

Certified Web Services in Ynot . 5
Ryan Wisnesky, Gregory Malecha, Greg Morrisett

Towards a Framework for the Verification of UML models of services 21
Federico Banti, Francesco Tiezzi, Rosario Pugliese

Analyzing a Proxy Cache Server Performance Model with the
Probabilistic Model Checker PRISM . 37

Tamas Berczes, Gabor Guta, Gabor Kusper, Wolfgang Schreiner, Janos
Sztrik

Verification of Web Content: A Case Study on Technical Documentation . 53
Christian Schönberg, Mirjana Jaksic, Franz Weitl, Burkhard Freitag

A Query Language for OWL based on Logic Programming 69
Jesus M. Almendros-Jimenez

Obtaining accessible RIA UIs by combining RUX-Method and SAW 85
Marino Linaje, Adolfo Lozano-Tello, Juan Carlos Preciado, Fernando
Sanchez-Figueroa, Roberto Rodŕıguez

Automatic Functional and Structural Test Case Generation for Web
Applications based on Agile Frameworks . 99

Boni Garćıa, Juan C. Dueñas, Hugo A. Parada G.

Benchmarking and improving the accessibility of Norwegian
municipality web sites . 115

Morten Goodwin Olsen, Annika Nietzio, Mikael Snaprud, Frank Fardal

A Rule-based Approach for Semantic Consistency Management in Web
Information Systems Development . 129

Francisco J. Lucas, Fernando Molina, Ambrosio Toval

Slicing microformats for information retrieval . 145
J. Guadalupe Ramos, Josep Silva, Gustavo Arroyo, Juan Carlos Solorio

Linked Broken Data?

Axel Polleres

Digital Enterprise Research Institute, National University of Ireland, Galway?

axel.polleres@deri.org,
Home page: http://www.polleres.net/

Abstract. The Semantic Web idea is about to grow up. By efforts such
as the Linked Open Data initiative, resources like Wikipedia, movie &
music databases, news archives, online citation indexes, social networks
but also product catalogues and reviews are becoming available in struc-
tured form as RDF using common ontologies and we finally find ourselves
at the edge of a Web of Data becoming reality. Emerging standards such
as OWL, RIF and SPARQL shall allow us to reason and ask structured
queries on this data, but – as we will see – the novel Web of Data is still
brittle. In this talk we will report about our experiences when reasoning
about Web data at large scale. In the first part of this talk, we will outline
the ideas of linked data, and briefly introduce RDF, OWL and SPARQL
by examples taken from the Web. We will then report about experiences
when applying rule-based OWL reasoning on Web data: sound and com-
plete reasoning techiques soon reach their limits when fired at real Web
data and we have to cut back to still arrive at reasonable inferences. Our
experiments also have revealed common mistakes when publishing linked
data for which we provide a preliminary validation service. We will wrap
up our findings with a discussion of open challenges.

References

1. Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable authoritative owl reason-
ing for the web. International Journal on Semantic Web and Information Systems,
5(2), 2009.

2. Renaud Delbru, Axel Polleres, Giovanni Tummarello, and Stefan Decker. Context
dependent reasoning for semantic documents in Sindice. In Proceedings of the 4th
International Workshop on Scalable Semantic Web Knowledge Base Systems (SSWS
2008), Karlsruhe, Germany, October 2008.

? The presented results are based on and extending joint work with Aidan Hogan,
Andreas Harth, Renaud Delbru, Giovanni Tummarello and Stefan Decker [1, 2].
This work was funded by Science Foundation Ireland (SFI) under the project
SFI/08/CE/I1380 (Lion-2).

1

2

Social Media in Sciences

François Bry

Institute for Informtics, Ludwig-Maximilian University of Munich, Germany
Email: bry@lmu.de,

Home page: http://www.pms.ifi.lmu.de/mitarbeiter/bry/

Abstract. Social media such as digital networks, wikis, social tagging
platforms and blogs are now firmly established in our everydays life. So-
cial media have begun to enter the workplace of many, in particular of
scientists. This presentation first casts a glance at today’s widespread
social media, then look at these media from various angles, successively
addressing the social vision they are underpinned with, their character-
isitics, and analyses of the social media phenomenon. In a second part,
this presentation addresses the emerging use of social media in sciences.
First, this bubbling and fast changing field is introduced by a few charac-
teristic madia. Then, personal, admitedly subjective, views are proposed
on the kind of social media suceptible of becoming popular in sciences.
Basedon these views, research issues related to such media are suggested.
Finally, research activities the speaker is involved in related to social me-
dia for sciences and technology are presented.

3

4

Certified Web Services in Ynot

Ryan Wisnesky, Gregory Malecha, and Greg Morrisett

Harvard University
{ryan, gmalecha, greg}@cs.harvard.edu

Abstract. In this paper we demonstrate that it is possible to imple-
ment certified web systems in a way not much different from writing
Standard ML or Haskell code, including use of imperative features like
pointers, files, and socket I/O. We present a web-based course gradebook
application developed with Ynot, a Coq library for certified imperative
programming. We add a dialog-based I/O system to Ynot, and we extend
Ynot’s underlying Hoare logic with event traces to reason about I/O be-
havior. Expressive abstractions allow the modular certification of both
high level specifications like privacy guarantees and low level properties
like memory safety and correct parsing.

1 Introduction

In this paper we demonstrate that it is possible to implement certified web sys-
tems in a way not much different from writing Standard ML or Haskell code, in-
cluding use of imperative features like pointers, files, and socket I/O. We present
a web-based course gradebook application developed with Ynot [18], a Coq [1]
library for certified, general-purpose, imperative programming.

Our specification of application behavior, imperative application implemen-
tation, and certification that the implementation meets the specification are all
written in the dependently-typed, higher-order λ-calculus of inductive construc-
tions (CIC) [1]. Ynot links user code with an imperative extension to the Coq
proof assistant, resulting in an executable web server. We add a dialog-based [12]
I/O system to Ynot, and we extend Ynot’s underlying Hoare logic with event
traces [3] to reason about I/O behavior. Expressive abstractions allow the mod-
ular certification of both high level specifications like privacy guarantees and
low level properties like memory safety and correct parsing. The proof that the
application meets its specification has been developed semi-automatically and
interactively during development, imposes no runtime overhead, and can be ver-
ified in minutes by a several-hundred-line CIC typechecker.

We give an overview of the course gradebook server in Section 2 and describe
Ynot in Section 3. Our I/O library is described in Section 4. The certified impera-
tive implementation is discussed in Section 5, followed by a comparison to related
tools in Section 6. We conclude with lessons learned and thoughts on future work.
The source code is included in the Ynot distribution at ynot.cs.harvard.edu.

5

2 Overview

Our goal is to build a simple, web-based course gradebook that allows students,
teaching assistants, and professors the ability to read, edit, and statistically
aggregate grades in a privacy-respecting way. We use a traditional three-tiered
web application architecture with role-based privacy, a persistent backend data
store, an application logic layer, and a presentation component [19].

We specify the store using a purely functional implementation of a minimal
subset of SQL, including basic select, project, update, insert, and delete com-
mands. We have implemented an imperative store using a pointer-based data
structure, but this detail is isolated from the rest of the system by higher-order
separation logic [20]. External databases may also be used this way.

The application logic specifies the behavior of the gradebook using high-level
domain-specific concepts like grades, assignments, and sections. For instance, the
specification states that students should not be allowed to see each other’s grades.
Imperative implementations are proven correct with respect to this model.

To users, the gradebook application appears as a regular HTML-based web-
site, with commands sent to the application using HTTP. The application server
parses HTTP requests by compiling input PEG grammars [8] to packrat parsing
computations in a certified way [15]. An executable webserver is generated by
extraction from Coq to OCaml [1].

3 Ynot

In this section we introduce Ynot by means of increasingly comprehensive ex-
amples. We begin with helloworld:

Definition helloworld : Cmd empty (fun _ : unit => empty) :=

printStringLn "Hello World".

Imperative computations (also called commands) like printStringLn have Cmd
types; Cmd is analogous to the IO monad in Haskell and is indexed by pre- and
post-conditions as in Hoare Type Theory [17]. Ynot allows non-terminating re-
cursion, and post-conditions are partial correctness assertions. Hence helloworld
is a computation whose pre-condition is that the heap is empty, and whose post-
condition is that the computation, if it doesn’t diverge, returns a unit and ensures
that the heap is empty.

The heap is accessed through the traditional new, read, write, free commands,
which we reason about using separation logic [20]. Their types are:

Definition SepNew (T : Type) (v : T) : Cmd empty (fun p => p --> v).

Definition SepFree (T : Type) (p : ptr)

: Cmd (Exists v :@ T, p --> v) (fun _ : unit => empty).

(* SepRead is also written ! *)

6

Definition SepRead (T : Type) (p : ptr) (P : T -> hprop)

: Cmd (Exists v :@ T, p --> v * P v) (fun v => p --> v * P v).

(* SepWrite is also written ::= *)

Definition SepWrite (T T’ : Type) (p : ptr) (v : T’)

: Cmd (Exists v’ :@ T, p --> v’) (fun _ : unit => p --> v).

Pre- and post-conditions are predicates over the heap (hprops). A :@ indi-
cates the type of an existential quantifier. The p --> v represents the hprop that
p points to v. For example, when SepNew is run in the empty heap with argument
v, it returns a pointer1 to v. SepFree is the inverse: it takes a valid pointer and
frees it, hence the post-condition is the empty heap. Note that SepFree’s type
does not mean that the entire heap is empty, only that the portion of the heap
referred to by the pre-condition is empty – this is characteristic of the small-
footprint approach of separation logic. Pointers in Ynot are not explicitly typed,
so the SepWrite function allows changing the type of the value pointed to by P.
The * is separation logic conjunction, indicating that the heap can be split in to
two disjoint portions that satisfy each conjunct. SepRead’s type indicates that
to read p, p must point to some v; the additional parameter P can be used to
dependently describe the heap around p, and is useful for proof automation but
not strictly required.

As in Haskell, commands are sequenced through monadic binding. Intuitively,
binding two computations c1 and c2 means running c1 and then running c2
using the result of c1 as input: we write this as v <- c1; c2 v, and as c1 ;; v2
when c1’s output is ignored. Binding requires us to prove that the pre-condition
of c2 is a logical consequence of the post-condition of c1. In general, we write
imperative code first and then prove the correctness of sequencing afterward,
using a Coq tactic called refine. For example, the following program swaps the
values of two pointers:

Definition swap (p1 p2 : ptr) (v1 : [nat]) (v2 : [nat]) :

Cmd (v1 ~~ v2 ~~ p1 --> v1 * p2 --> v2)

(fun _ : unit => v1 ~~ v2 ~~ p1 --> v2 * p2 --> v1).

refine (fun p1 p2 =>

v1 <- ! p1 <@> (v2 ~~ p2 --> v2);

v2 <- ! p2 <@> _ ;

p1 ::= v2 ;; {{ p2 ::= v1 }});

sep inst auto.

Qed.

The type of swap expresses that swap takes as arguments two pointers and two
computationally irrelevant natural numbers such that the first pointer points
to the value of the first and analogously for the second. If swap terminates,
then the first pointer will point to the second value and the second will point
to the first value. The [-] marks a parameter as computationally irrelevant.
Such parameters only serve specification purposes and do not affect runtime
1 Ynot does not allow unrestricted pointer arithmetic, so pointers are essentially ref-

erences/locations.

7

behavior; they are erased during compilation. Irrelevant values must be explicitly
unpacked: v1 has type [nat], but inside the v1∼∼ it can be treated as a nat.

The swap function itself is similar to a typical pointer-swapping function but
includes extra information to help us prove partial correctness. refine generates
proof obligations, which we here discharge using Ynot’s built in separation logic
tactic, sep. Within the refine, <@> is a use of separation logic’s frame rule,
which allows us to describe the portion of the heap that a computation doesn’t
use. In this example, for instance, we need to know that p2 points to v2 before
and after p1 is read. This fact can actually be inferred automatically, but we
write it out here for sake of explanation. In the following line, the indicates
that the framing condition should be inferred. Finally, the {{-}} indicates that
the type of the final write may need its pre-condition strengthened and its post-
condition weakened to match the overall type of swap.

The memory correctness properties of our implementation, such as absence of
null pointer dereferences and memory leaks, are statically guaranteed at compile-
time. For example, consider the following erroneous program:

Definition leak : Cmd empty (fun _ : unit => empty).

refine (v <- SepNew 1 ; {{ Return tt }}).

Because the heap contains 1 after the call to New but the return type of leak
states that the heap should be empty, refine generates a false obligation:

v --> 1 ==> empty

We achieve modularity in Ynot by defining abstract interfaces for imperative
components so that many implementations can be used. Consider the following
interface and implementation of a simple counter:

Module Type Counter.

Parameter T : Type. (* type of implementation *)

Definition M := nat. (* type of logical model *)

Parameter rep : T -> M -> hprop. (* heap representation *)

Parameter inc : forall (t : T) (m : [M]),

Cmd (m ~~ rep t m) (fun _ : unit => m ~~ rep t (m + 1)).

End Counter.

Module CounterImpl : Counter.

Definition T := ptr.

Definition rep (t : T) (m : M) := t --> m.

...

End CounterImpl.

T is the type of the imperative implementation, which corresponds to a pointer
for this implementation. M is the logical model for the data structure, in this case
a natural number which is the current value in the counter. The rep function
relates, through an hprop, the state of the imperative implementation to logical
model. The forall keyword indicates a dependent function type: inc’s post-
condition depends on m. The module type hides everything but the logical model,
providing an abstraction barrier for users of the module.

8

4 Files, Sockets, and Traces

We have extended Ynot with an axiomatic networking and file I/O library based
on the OCaml Unix library. Just as we record the effect of memory operations
using separation logic, we record the effects of I/O actions using a trace [3]:

Axiom Action : Set.

Definition Trace := list Action.

Axiom traced : Trace -> hprop.

Our type of Actions is open [14], allowing library users to define additional I/O
events. Traces are defined as lists for convenience, and we will only be reasoning
about finite trace fragments.

We include file and socket operations such as read, write, accept, etc.. The
UDP send operation, for instance, is exposed as (List cons is written as :: in
Coq):

Axiom SockAddr : Set.

Axiom Sent : SockAddr -> SockAddr -> list ascii -> Action.

Axiom send : forall (local remote : SockAddr)

(s : list ascii) (tr : [Trace]),

Cmd (tr ~~ traced tr)

(fun _ : unit => tr ~~ traced (Sent local remote s :: tr)).

We do not formally verify our OCaml code, which for the most part delegates to
Unix functions. For instance, we do not verify the implementation of the TCP
state machine, although it is possible to do so [2].

Traces can be reasoned about using temporal logics [6]; however, for simplic-
ity, we reason about them directly using inductive Coq definitions. For instance,
the following Coq datatype specifies correct, properly echoed, traces of an echo
server:

Inductive echoes (local : SockAddr) : Trace -> Prop :=

| NilEchoes : echoes local nil

| ConsEchoes : forall remote s past, echoes local past ->

echoes local (Sent local remote s :: Recd local remote s :: past).

Here each | indicates a data constructor. This definition expresses that the
empty trace is allowable (NilEchoes), and that if some trace past is allowable,
then additionally echoing back a single request is also allowable (ConsEchoes).
The | symbol is also used in match expressions that eliminate inductive types.

4.1 Certified Application Servers

Many web systems, including our gradebook server, can be structured as com-
putations that an application server executes repeatedly. Such web applications
can be programmed using event loops in the style of dialogs [12], and our I/O li-
brary contains support for proving such systems correct with respect to a trace [3]

9

semantics. At a minimum, an application iteration is defined by an invariant-
preserving Ynot function that is runnable in the initial world of an empty heap
and empty trace. For instance, the type of an echo application is:

Definition echo_iter_t local := forall (tr : [Trace]),

Cmd (tr ~~ traced tr * [echoes local tr])

(fun _ : unit => tr ~~ Exists r :@ Trace,

traced (r ++ tr) * [echoes local (r ++ tr)]).

The [] notation is overloaded here to indicate “pure” propositions which do not
mention the heap. List concatenation is written ++. A computation of this type,
when repeated any number of times, beginning in the initial world, always gen-
erates a trace that is in echoes. An example echo implementation that conforms
to the above specification is:

Definition echo (local : SockAddr) : echo_iter_t local.

unfold echo_iter_t; refine (fun local tr =>

x <- recv local tr <@> _ ;

{{ send local (fst x) (snd x) (tr ~~~

(Recd local (fst x) (snd x) :: tr)) <@> _ }});

rsep fail auto.

Qed.

We have written out the intermediate state of the trace history (using an irrel-
evant value unpacking operation ∼∼∼), but such states can often be inferred.

We have implemented a number of UDP, TCP, and SSL application servers.
In each case their types ensure that they only run applications that preserve
some notion of partial correctness. The simplest, the forever server, repeats a
given computation forever. The implementation of forever is half a dozen lines,
does not require a single line of manual proof, and includes the post-condition
that the server never halts.

5 The Application

In this section we describe the gradebook application specification, our imper-
ative implementation of it, and the proof that the implementation meets the
specification. We begin with the purely functional specification of the gradebook
itself (Section 5.1). We then describe the entire deployed application server start-
ing from the backend and working toward the user. We start with the data store
(Section 5.2) which provides the data manipulation operations we use in our im-
perative implementation (Section 5.3). From there, we show how the application
can be deployed using our application server (Section 5.4). We conclude with
an explanation of the frontend (Section 5.5) in which we focus on parsing user
requests. It is helpful to keep in mind that every imperative component must be
related to a purely functional model.

10

5.1 Application Logic

In this section we define the specification of our application. We begin by defining
the configuration of a course:

Definition Section := nat.

Definition Password := nat.

Definition Grade := nat.

Definition Assignment := nat.

Record Config : Set := mkCfg {

students, tas, profs : list ID;

sections : list (ID * Section);

hashes : list (ID * Password);

totals : list Grade

}.

We are using natural numbers for our basic types, but abstract types can also be
used. Configurations are specified to have a number of properties; for example,
all students, teaching assistants and professors must have a password. These
properties are given by a Coq definition:

Definition correct_cfg (cfg : Config) := forall id,

(In id (students cfg) \/ In id (tas cfg) \/ In id (profs cfg) ->

exists hash, lookup id (hashes cfg) = Some hash) /\ ...

The actual grades are modeled by a list (ID * list Grade). Like with
the configuration, we define a predicate gb inv to ensure the integrity of the
grade data. Among other things, this specifies that grade lists must always be
the length of the totals list given in the configuration, each grade must be less
than the associated maximum permissible, and each student must have an entry.

The gradebook application manages a single course by processing user com-
mands, updating the grades if necessary, and returning a response. The available
commands are given by a Coq datatype:

Inductive Command : Set :=

| SetGrade : ID -> PassHash -> ID -> Assignment -> Grade -> Command

| GetGrade : ID -> PassHash -> ID -> Assignment -> Command

| Average : ID -> PassHash -> Assignment -> Command.

The meaning of the commands is given by a pure Coq function mutate that
maps a Command, Config, and list (ID * list Grade) to a new list (ID *
list Grade) and a response:

Inductive Response : Set :=

| ERR_NOTPRIVATE : Response | ERR_BADGRADE : Response

| ERR_NOINV : Response | OK : Response | RET : Grade -> Response.

There are numerous ways to define the desired gradebook behavior, but using a
total function makes the application easy to deploy with our application server.

Privacy is enforced using simple role based access control; private is a predi-
cate that defines when commands are privacy respecting, and non-private queries
are specified to return ERR NOTPRIVATE:

11

Definition isProf (cfg: Config) (id: ID) (pass: Password) :=

In id (profs cfg) /\ lookup id (hashes cfg) = Some pass.

...

Definition private (cfg : Config) (cmd : Command) : Prop :=

match cmd with

| SetGrade id pass x _ _ => isProf cfg id pass \/ taFor cfg id pass x

| GetGrade id pass x _ => isProf cfg id pass \/ taFor cfg id pass x

\/ (id = x /\ isStudent cfg id pass)

| Average id pass _ => isProf cfg id pass \/ isStudent cfg id pass

\/ isTa cfg id pass

end.

We have proved a number of theorems about this specification, like that
mutate preserves gb inv and will not return ERR NOINV when gb inv holds. To
help make the proofs more tractable, we implemented a number of automated
proof search tactics tailored to this model.

5.2 Data Store

The backend data store of the gradebook server is a simplified relational database.
We first give a functional specification of the store, and then prove that our im-
perative implementation meets this specification. Logically, a Store is modeled
by a list of Tuple n defined by the following Coq datatype:

Fixpoint Tuple (n: nat) : Type :=

match n with

| 0 => unit

| S n’ => (nat * Tuple n’)

end.

Definition Table n : Type := list (Tuple n).

For simplicity we are storing only natural numbers, and we specify only a small
subset of the functionality of SQL, including select, update, project, and delete.
For instance, selection is modeled logically by:

Definition WHERE := Tuple n -> bool. (* ‘‘where’’ clause *)

Fixpoint select (wh : WHERE) (rows : Table) : Table :=

match rows with

| nil => nil

| a :: r => if wh a then a :: select wh r else select wh r

end.

Our purely functional model has expected properties, like:

Theorem select_just : forall tbl tbl’ wh, select wh tbl = tbl’ ->

(forall tpl, In tpl tbl’ -> wh tpl = true /\ In tpl tbl).

Theorem select_all : forall tbl tbl’ wh, select wh tbl = tbl’ ->

(forall tpl, In tpl tbl -> wh tpl = true -> In tpl tbl’).

12

Persistence is reflected in the store interface by the simple requirement that
serialization and deserialization be inverses:

Parameter serial : Table n -> string.

Parameter deserial : string -> option (Table n).

Parameter serial_deserial : forall (tbl : Table n),

deserial (serial tbl) = Some tbl.

Parameter serialize : forall (r : t) (m : [Table n]),

Cmd (m ~~ rep r m) (fun str:string => m ~~ rep r m * [str = serial m]).

Parameter deserialize : forall (r : t) (s : string),

Cmd (rep r nil)

(fun m : option [Table n] =>

match m with

| None => rep r nil * [None = deserial s]

| Some m => m ~~ rep r m * [Some m = deserial s]

end).

We have implemented the store using an abstract linked-list. The linked-list
has a several imperative implementations, including one using pointers to list
segments. We found the linked-list’s effectful fold operation particularly useful.

5.3 Certified Implementation

Based on the specification given in Section 5.1, a certified implementation of our
gradebook meets the following interface:

Module Type GradeBookAppImpl.

Parameter T : Set.

Parameter rep : T -> (Config * list (ID * (list Grade))) -> hprop.

Parameter exec : forall (t : T) (cmd : Command)

(m : [Config * list (ID * (list Grade))]),

Cmd (m ~~ rep t m * [gb_inv (snd m) (fst m) = true])

(fun r : Response => m ~~ [r = fst (mutate cmd m)] *

rep t (snd (mutate cmd m)) * [gb_inv (snd m) (fst m) = true]).

End GradeBookAppImpl.

Note that the exec computation is invariant preserving, can only be run when
the invariant is satisfied, and faithfully models mutate. For convenience, we
keep the course configuration in memory at runtime, and we parameterize our
implementation by an abstract backend store:

Module GradeBookAppStoreImpl (s : Store) : GradeBookAppImpl.

Definition T := (Config * s.T).

In trying to write rep, we immediately encounter an impedance mismatch be-
tween our logical gradebook model (based on list (ID * list Grade)) and
the table based model of the store (based on Tuples). Following the 3-tier
web application model, we define an object-relational mapping [13] between the
domain-specific objects of students, grades, etc., and the relational store:

13

Module GradesTableMapping.

Fixpoint Tuple2List’ n : Tuple n -> list Grade :=

match n as n return Tuple n -> list Grade with

| 0 => fun _ => nil

| S n => fun x => (fst x) :: (Tuple2List’ n (snd x))

end.

Definition Tuple2List n (x : Tuple (S n)) :=

match x with

| (id, gr) => (id, Tuple2List’ n gr)

end.

Fixpoint Table2List n (x : Table (S n)) : list (ID * list Grade) :=

match x with

| nil => nil

| a :: b => Tuple2List n a :: Table2List n b

end.

End GradesTableMapping.

The list to table direction is similar. Other data models, such as with three-tuples
(id, assignment, grade), require different mappings, but regardless of the choice
of data model and mapping we must prove that the mapping is an isomorphism
from the logical model to the data model:

Theorem TblMTbl_id : forall l c, store_inv1 l c = true ->

Table2List (length (totals c))

(List2Table l (length (totals c))) = l.

Isomorphism is actually an overly strong requirement, but it helps simplify rea-
soning. With the mapping to the data model done, we can define the concrete
imperative representation:

Definition rep (cfg, t) (cfg’, gb) :=

[cfg = cfg’] * s.rep t (List2Table gb)

The imperative implementation consists of a runtime configuration cfg and a
handle to an imperative store t, which rep relates to the logical gradebook
model. rep states that the runtime configuration (cfg) is identical to the logical
model’s configuration (cfg’), and that the imperative gradebook’s state (t) is
isomorphic to the logical model’s (List2Table gb). The complete imperative
implementation consists of hundreds of lines of code, proofs, and tactics, so we
can only give highlights here. The implementation of retrieving a grade, omitting
some definitions, is:

Definition F_get user pass id assign m t :

Cmd (m ~~ rep t m * [store_inv (snd m) (fst m) = true] *

[private (fst t) (GetGrade user pass id assign) = true])

(fun r : Response => m ~~ [store_inv (snd m) (fst m) = true] *

[r = fst (mutate (GetGrade user pass id assign) m)] *

rep t (snd (mutate (GetGrade user pass id assign) m))).

refine (fun user pass id assign m t =>

14

res <- s.select (snd t) (get_query id (fst t))

(m ~~~ List2Table (snd m)

(length (totals (fst t)))) <@> _ ;

match nthget assign res as R

return nthget assign res = R -> _ with

| None => fun pf => {{ !!! }}

| Some w => fun pf =>

match w as w’ return w = w’ -> _ with

| None => fun pf2 => {{ Return ERR_BADGRADE }}

| Some w’ => fun pf2 =>

{{ Return (RET w’)

<@> (m ~~ [fst t = fst m] *

[store_inv (snd m) (fst t) = true] *

[private (fst t) (GetGrade user pass id assign) = true])}}

end (refl_equal _)

end (refl_equal _)).

The intuition here is that we fist run a get query over the store s, which results
in a table res. Because the gradebook invariant holds, res contains a single
tuple of the requested student’s grades. nthget returns None if the input table
is empty, so we mark this branch as impossible (!!!). We then project out
the desired grade, returning an error if there is no such requested assignment.
The proof script for this function is almost completely automated and consists
almost entirely of appeals to sep and uses of purely logical theorems about the
application model. For instance, a typical proof about the specification is:

Theorem GetGrade_private_valid : forall (T : Type) x (t : Config * T)

user pass id assign, fst t = fst x

-> store_inv (snd x) (fst x) = true

-> private (fst t) (GetGrade user pass id assign) = true

-> nthget assign (select (get_query id (fst t))

(List2Table (snd x) (length (totals (fst t))))) <> None

This theorem states that if the get command is privacy respecting, then the
student has a grade. The other operations are implemented analogously.

5.4 Deploying to an Application Server

To deploy our application using our read-parse-execute-prettyprint application
server we must implement:

Module Type App.

Parameter Q : Set. (** type of app’s input *)

Parameter R : Set. (** type of app’s output *)

Parameter T : Set. (** type of imperative app *)

Parameter M : Type. (** type of logical app model *)

Parameter rep : T -> M -> hprop. (** app representation invariant *)

15

(** the functional model of the application *)

Parameter func : Q -> M -> (R * M).

Parameter appIO : Q -> M -> (R * M) -> Trace.

(** the app implementation *)

Parameter exec : forall (t : T) (q : Q) (m : [M]) (tr : [Trace]),

Cmd (tr ~~ m ~~ rep t m * traced tr)

(fun r : R => tr ~~ m ~~ let m’ := snd (func q m) in

[r = fst (func q m)] *

rep t m’ * traced (appIO q m (r,m’) ++ tr)).

This interface requires a functional application model (func), and allows the
application to transparently perform I/O operations by wrapping the desired
sequence in the appIO trace. The gradebook application only performs I/O on
startup and shutdown, and so it meets this interface trivially. (Startup and
shutdown are straightforward, so we do not discuss them.) The application server
also requires a parser and frontend, which are defined by the following functions
and discussed in the following subsection:

Parameter grammar : Grammar Q.

Parameter parser : parser_t grammar.

Parameter printer : R -> list ascii.

Parameter err : parse_err_t -> list ascii.

With these definitions in place, we can describe the traces of a correct ap-
plication implementation, which we do using an inductive datatype in the same
way we specified correctness for the echo server (Section 4). Either the input
request parsed correctly, and the result was sent to the application for process-
ing and the response returned to the user, or the parse failed and an error was
returned.

5.5 Frontend

The frontend parses inputs into Commands and converts application Responses
into text. For instance, we have implemented a raw-sockets frontend by using
our packrat PEG parser and straightforwardly printing responses. We have also
implemented an HTML frontend as an application transformer: given an appli-
cation, the HTML frontend passes along certain HTTP fields to the application
and converts responses to HTML output. Several screen shots of the application
running with a minimal skin are given in Figure 1.

The HTTP server uses a packrat PEG parser written in Ynot to parse HTTP
requests. The parser is implemented as a certified compiler [15]: given a specifi-
cation consisting of a PEG grammar and semantic actions, the parser creates an
imperative computation that, when run over an arbitrary imperative character
stream, returns a result that agrees with the specification. To make the parsing
efficient, the packrat algorithm employed by the resultant imperative computa-
tion uses a sophisticated caching strategy which is implemented using imperative
hashtables. We may also write our own parsers against the parser interface.

16

Query AVG [alice apass] hw1 Submit Query

Result: 67

Query SET [paul badpass] alice hw1 80 Submit Query

Error: Not Private

Fig. 1. Screenshots of the gradebook running in Mozilla Firefox.

5.6 Evaluation

Figure 2 describes the breakdown of proofs, specifications, and imperative code
in our certified components. Program code is Haskell-ish code that has a direct
analog in the executed program (e.g. F get). Specs are model definitions but
not proofs (e.g. gb inv). Proofs counts all proofs (e.g. select just) and tactic
definitions. Overhead gives the ratio of proofs to program code and the time
column indicates proof search and checking time on a 2Ghz Core 2 laptop with
2GB RAM. We have made no attempt to optimize any of these numbers. These
totals do not include the base Ynot tactics and data structures that we use,
which include an imperative hashtable, stream, and segmented linked list.

Program Specs Proofs Overhead Time (m:s)

Packrat PEG Parser 269 184 82 .3 0:55
Store 113 154 99 .88 0:23

Gradebook Application 119 231 564 4.74 0:32
HTTP-SSL-TCP Application Server 223 414 231 1.04 1:21

Other I/O Library 90 76 90 1 0:05

Fig. 2. Numbers of lines of different kinds of code in the imperative components

The ratios of overhead vary, but the application stands out as having the
largest proof burden. This is primarily because we opted to directly reason about
sets as permutation-equivalence classes of ordered lists which have no duplicate
elements, instead of using a set library like [7]. As a result, details of our set
implementation have complicated our proofs. We found that in general, Ynot’s
separation logic tactics were able to succesfully isolate reasoning about the heap,
reducing the problem of certification to a straightforward but non-trivial Coq
programming task. For a more detailed discussion of engineering proofs with
Ynot, see [5].

6 Related Work

Our approach to building certified web systems is to prove them correct by
construction at development time. Alternatively, pre-existing applications can be

17

certified to be free of certain errors through static analysis. In [10], for instance,
the authors rule out SQL injection attacks for a large fragment of PHP using
an information flow analysis to ensure that tainted application inputs are never
used in SQL queries without first being checked for validity. Their notion of
correctness is the absence of certain classes of errors; with Ynot we can prove
correctness with respect to an arbitrary logical model of application behavior,
which may itself specify the absence of injection attacks. And although we have
specified our logical gradebook model in Coq, specifications can be developed
using special-purpose tools such as [11]. Moreover, in Ynot, reasoning is modular:
interfaces themselves guarantee correctness properties; in [10], the entire program
must be analyzed. Finally, automated static checking is often unsound and prone
to false positives.

Jahob [21] is similar to Ynot. It allows users to write effectful Java code,
which is automatically verified against a programmer specified logical model
by a combination of automated theorem provers. Jahob does not use separation
logic for reasoning about memory and requires a significantly larger trusted code
base than Ynot. To the best of our knowledge, Jahob has never been used to
certify a system like ours.

7 Conclusion

We learned a number of lessons in building our certified gradebook server. The
first is the importance of the logical specification of application behavior. Even
the most beautiful imperative algorithm will be difficult to certify if its functional
model is difficult to reason about. And perhaps just as important is knowing
what the specification does not capture. For instance, our networking library
does not capture timeout and retry behavior and we do not model filesystem
behavior, making certain applications difficult or impossible to specify without
modifying the I/O library. Additionally because Hoare Logic only captures par-
tial correctness, the divergent computation is a certified implementation of every
specification.

Real-world web systems are considerably more complex than our gradebook
application, and Ynot’s feasibility at larger scales is still untested. Indeed, we
are only now building executable applications (rather than only datastructures)
with Ynot. But given that realistic systems will invariably require imperative
features, we believe our results here are a good start.

One possible future direction is to further refine the I/O library to take addi-
tional behaviors into account. Another direction is to certifying a more realistic
imperative database [9]. It is likely that the results of such an effort would also
be useful in certifying realistic filesystems. Finally, our server is single threaded
but concurrency can be added to separation logic [4] and transactions can also
be considered [16].

18

References

1. Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Texts in Theoretical Computer Science. Springer Verlag, 2004.

2. Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. Engineering with logic: Hol specification and symbolic-
evaluation testing for tcp implementations. In POPL ’06, pages 55–66, New York,
NY, USA, 2006. ACM.

3. Bard Bloom, Sorin Istrail, and Albert R. Meyer. Bisimulation can’t be traced. J.
ACM, 42(1):232–268, 1995.

4. Stephen Brookes. A semantics for concurrent separation logic. Theor. Comput.
Sci., 375(1-3):227–270, 2007.

5. Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan
Wisnesky. Effective interactive proofs for higher-order imperative programs. In
Proc. ICFP, 2009.

6. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst., 8(2):244–263, 1986.

7. Jean-Christophe Filliâtre and Pierre Letouzey. Functors for proofs and programs.
In ESOP, pages 370–384, 2004.

8. Bryan Ford. Parsing expression grammars: a recognition-based syntactic founda-
tion. In POPL ’04, pages 111–122, New York, NY, USA, 2004. ACM.

9. Carlos Gonzalia. Towards a formalisation of relational database theory in con-
structive type theory. In RelMiCS, pages 137–148, 2003.

10. Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and
Sy-Yen Kuo. Securing web application code by static analysis and runtime protec-
tion. In WWW ’04, pages 40–52, New York, NY, USA, 2004. ACM.

11. Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256–290, 2002.

12. Simon L. Peyton Jones and Philip Wadler. Imperative functional programming.
In POPL ’93, pages 71–84, New York, NY, USA, 1993. ACM.

13. Wolfgang Keller. Mapping objects to tables: A pattern language. In EuroPLOP,
1997.

14. Andres Lőh and Ralf Hinze. Open data types and open functions. In PPDP ’06,
pages 133–144, New York, NY, USA, 2006. ACM Press.

15. James Mckinna and Joel Wright. A type-correct, stack-safe, provably correct ex-
pression compiler in epigram. In JFP, 2006.

16. Aleksandar Nanevski, Paul Govereau, and Greg Morrisett. Towards type-theoretic
semantics for transactional concurrency. In TLDI ’09, pages 79–90, New York,
NY, USA, 2008. ACM.

17. Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and sep-
aration in hoare type theory. Proc. ICFP, 2006.

18. Aleksandar Nanevski, Greg Morrisett, Avraham Shinnar, Paul Govereau, and Lars
Birkedal. Ynot: dependent types for imperative programs. In Proc. ICFP, 2008.

19. Gleb Naumovich and Paolina Centonze. Static analysis of role-based access control
in j2ee applications. SIGSOFT Softw. Eng. Notes, 29(5):1–10, 2004.

20. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Symposium on Logic in Computer Science, LICS’02, 2002.

21. Karen Zee, Viktor Kuncak, and Martin Rinard. Full functional verification of
linked data structures. In Proc. PLDI, 2008.

19

20

Towards a Framework for the Verification of UML
Models of Services?

Federico Banti, Rosario Pugliese, and Francesco Tiezzi

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze
Viale Morgagni 65, 50134 Firenze, Italia

fbanti@gmail.com, {pugliese,tiezzi}@dsi.unifi.it

Abstract. We make a connection between different layers of abstraction of the
engineering process of Service-Oriented Architectures (SOAs) by presenting an
encoding of UML4SOA, a UML profile for modeling SOAs, in COWS, a pro-
cess calculus for specifying service-oriented systems. The encoding provides
a rigorous semantics for UML4SOA and paves the way for the verification of
UML4SOA models by exploiting the reasoning mechanisms and analysis tech-
niques that are available for COWS.

1 Introduction

Service-Oriented Architectures (SOAs) provide methods and technologies for program-
ming and deploying software applications that can run over globally available com-
putational network infrastructures. The most successful implementations of the SOA
paradigm are probably the so called web services, sort of independent computational
entities accessible by humans and other services through the Web. They are, in gen-
eral, loosely coupled and heterogeneous, widely differing in their internal architecture
and, possibly, in their implementation languages. Both stand alone web services and
web service-based systems usually have requirements like, e.g., service availability,
functional correctness, and protection of private data. Implementing services satisfying
these requirements demands the use of rigorous software engineering methodologies
that encompass all the phases of the software development process, from modelling
to deployment, and exploit formal techniques for qualitative and quantitative verifica-
tion of systems. The goal is to initially specify the services by exploiting a high-level
modelling language and then to transform the specification towards the final deploy-
ment. This methodology should guarantee the properties of the implementation code
by means of the application of formal methods to test the behavioral and quantitative
properties of the specification.

As a matter of fact, UML [20] is by now a widely used modelling language for spec-
ifying software systems. It is intuitive, powerful, and extensible. Recently, a UML 2.0
profile, christened UML4SOA [17, 16], has been designed for modeling SOAs. In par-
ticular, we focus our attention on UML4SOA activity diagrams since they express the
behavioral aspects of services, which we are mainly interested to. Inspired to WS-BPEL
[19], the OASIS standard language for orchestrating web services, UML4SOA activity

? This work has been supported by the EU project SENSORIA, IST-2 005-016004.

21

diagrams integrate UML with specialized actions for exchanging messages among ser-
vices, specialized structured activity nodes and activity edges for representing scopes,
fault and compensation handlers. Currently, UML4SOA lacks formal semantics and
methods of analysis, and must hence be regarded as an informal modelling language.

On the contrary, several process calculi for the specification of SOA systems have
been recently designed (see, e.g., [15, 6, 11, 5]) that provide linguistic primitives sup-
ported by mathematical semantics, and analysis and verification techniques for quali-
tative and quantitative properties. To exploit previous work on process calculi, in this
paper we define an encoding of UML4SOA in COWS (Calculus for the Orchestration
of Web Services) [15], a recently proposed process calculus for specifying and com-
bining services while modelling their dynamic behaviour. Indeed, in [1] we have first
used UML4SOA activity diagrams to specify the behaviour of a financial service and
then translated by hand these diagrams to COWS terms to enable a subsequent analysis
phase. In that context, we experimented that the specific mechanisms and primitives of
COWS are particularly suitable for encoding services specified by UML4SOA activity
diagrams. In fact, this is not surprising if one consider that, like UML4SOA, COWS
is inspired to WS-BPEL. The encoding we introduce in this paper formalizes those in-
tuitions and supports a more systematic and mathematically well-founded approach to
engineering of SOA systems where developers can concentrate on modelling the high-
level behaviour of the system and use transformations for analysis purposes.

Besides defining a transformational semantics for UML4SOA, our encoding en-
ables the use of the tools and methodologies developed for COWS for the analysis of
UML4SOA models of services. Thus, given a service specification, one can check confi-
dentiality properties by using the type system of [13], information flow properties using
the static analysis of [3], functional properties using the logic and the model checker of
[9], and quantitative properties using the stochastic extension introduced in [22].

Moreover, the encoding we propose is compositional, in the sense that the encoding
of a UML4SOA activity diagram is (approximately) the COWS term resulting from the
parallel composition of the encodings of its components. The encoding is thus easily ex-
pandable, applicable to large and complex real applications, and suitable for automatic
implementation. In fact, we are currently developing a software tool for automatically
translating UML4SOA orchestrations into COWS terms. A first prototype of the soft-
ware can be downloaded from the COWS’s web page (http://rap.dsi.unifi.it/cows/).

The rest of the paper is structured as follows. Section 2 first provides an overview of
UML4SOA by means of a classical ‘travel agency’ example and then presents our pro-
posal of a BNF-like syntax for UML4SOA. Section 3 briefly reviews COWS. Section 4
presents the COWS-based transformational semantics of UML4SOA. Finally, Section 5
touches upon comparisons with related work and directions for future developments.

2 An overview of UML4SOA

We start by informally presenting UML4SOA through a realistic but simplified exam-
ple, illustrated in Figure 1, based on the classical ‘travel agency’ scenario.

A travel agency exposes a service that automatically books a flight and a ho-
tel according to the requests of the user. The activity starts with a receive action,

22

Fig. 1. Travel agency scenario

23

a message from a client containing a request for a flight (flightReq) and a hotel
(hotelReq) is received. Then, the workflow forks in two parallel branches. In the left
branch, by a send&receive action, the flight request is sent to a flight searching service
(flightService) and the service awaits for a response message that will be stored in the
variable flightAnswer. As soon as this action is executed, a compensation handler is in-
stalled. The compensation consists of a send action to the flight searching service with
a message asking to delete the request. The received answer is then sorted by a deci-
sion node. In the right branch, similar actions are undertaken in order to book a hotel by
contacting a hotel searching service (hotelService). If both the answers are positive, the
two branches join, the answers are forwarded to the client and the activity successfully
terminates. If at least one answer is negative, an exception is raised by a raise action.
An exception may also be raised in response to an event consisting of an incoming
message from the client, and requiring to cancel his own request. All exceptions are
caught by the exception handler that through the action compensate all triggers all the
compensations installed so far in reverse order w.r.t. their completion, and notifies the
client that his requests have not been fulfilled.

The syntax of UML4SOA is given in [16] by a metamodel in classical UML-style.
In Table 1 we provide an alternative BNF-like syntax that is more suitable for defining
an encoding by induction on the syntax of constructs. Each row of the table represents
a production of the form SYMBOL ::= ALTER1 | . . . | ALTERn, where the non-terminal
SYMBOL is in the top left corner of the row (highlighted by a gray background), while
the alternatives ALTER1, . . . , ALTERn are the other elements of the row.

To simplify the encoding and its exposition we adopt some restrictions on the lan-
guage. We assume that every action and scope has one incoming and one outgoing
control flow edge, that a fork or decision node has one incoming edge, and that a join or
merge node has one outgoing edge. These restrictions do not compromise expressivity
of the language and are usually implicitly adopted by most of UML users for sake of
clarity. We also omit many classical UML constructs, in particular object flows, excep-
tion handlers, expansion regions and several UML actions. The rational for this choice
is that UML4SOA offers specialized versions of most of these constructs. Regarding
object flows, used for passing values among nodes, they become unnecessary since, for
inter-service communications, UML4SOA relies on input and output pins, while data
are shared among the elements of a scope by storing them in variables.

A UML4SOA application is a finite set of orchestrations ORC. We use orc to range
over orchestration names. An orchestration is a UML activity enclosing one top level
scope with, possibly, several nested scopes. A scope is a UML structured activity that
permits explicitly grouping activities together with their own associated variables, ref-
erences to partner services, event handlers, and a fault and a compensation handler.

A list of variables is generated by the following grammar:

VARS ::= nil | X , VARS | �wo� X , VARS

We use X to range over variables and the symbol �wo� to indicate that a variable is
‘write once’, i.e. a sort of late bound constant that can be used, e.g., to store a correlation
datum (see [19, Sections 7 and 9] for further details) or a reference to a partner service.
Lists of variables can be inductively built from nil (the empty list) by application of the

24

ORC

SCOPE

GRAPH

CONTROL FLOW GRAPH GRAPH

ACTION SCOPE

CONTROL FLOW

FORK JOIN DECISION MERGE

ACTION

Table 1. UML4SOA syntax

25

comma operator “,”. Graphical editors for specifying UML4SOA diagrams usually per-
mit declaring local variables as properties of a scope activity, but they are not depicted
in the corresponding graphical representations. Instead, here we explicit the variables
local to a scope because such information is needed for the translation in COWS. For a
similar reason, we show the name of edges in the graphical representation of a graph.
Notably, to obtain a compositional translation, each edge is divided in two parts: the
part outgoing from the source activity and the part incoming into the target activity. In
the outgoing part a guard is specified; this is a boolean expression and can be omitted
when it holds true.

A graph GRAPH can be built by using edges to connect initial nodes (depicted by
large black spots), final nodes (depicted as circles with a dot inside), control flow nodes,
actions and scopes. It is worth noticing that for all incoming edges there should exist an
outgoing edge with the same name, and vice-versa. Moreover, we assume that (pairs of
incoming and outgoing) edges in orchestrations are pairwise distinct. These properties
are guaranteed for all graphs generated by using any UML graphical editor.

Event, exception and compensation handlers are activities linked to a scope by re-
spectively an event, a compensation and an exception activity edge. An event handler
is a scope triggered by an event in the form of incoming message. A compensation
handler is a scope whose execution semantically rolls back the execution of the related
main scope. It is installed when execution of the related main scope completes and is
executed in case of failure. An exception handler is an activity triggered by a raised
exception whose main purpose is to trigger execution of the installed compensations.

Default event, exception and compensation handlers are respectively as follows: a
graph composed of an initial node directly connected to a final node, a graph composed
of a RAISE action preceded and followed by initial and final nodes, and a graph com-
posed of a COMPENSATE ALL action preceded and followed by initial and final nodes.
For readability sake, these handlers will be sometimes omitted from the representation.

It is worth noticing that, UML4SOA exception handler differs from the correspond-
ing UML 2.0 construct. Indeed, the former can execute compensations of completed
nested scopes in case of failure, while the latter can only provide an alternative way
to successfully complete an activity in case an exception is raised. See Section 4 for a
formal explanation of the behavior of these UML4SOA constructs.

Control flow nodes CONTROL FLOW are the standard UML ones: fork nodes (de-
picted by bars with 1 incoming edge and n outgoing edges), join nodes (depicted by
bars with n incoming edges and 1 outgoing edge), decision nodes (depicted by dia-
monds with 1 incoming edge and n outgoing edges), and merge nodes (depicted by
diamonds with n incoming edges and 1 outgoing edge).

Finally, UML4SOA provides seven specialized actions ACTION for exchanging
data, for raising exceptions and for triggering scope compensations. SEND sends the
message resulting from the evaluation of expressions expr1,. . . ,exprn to the partner ser-
vice identified by p. UML4SOA is parametric with respect to the language of the ex-
pressions, whose exact syntax is deliberately omitted; we just assume that expressions
contain, at least, variables. RECEIVE permits receiving a message, stored in X1,. . . ,Xn,
from the partner service identified by p. Send actions do not block the execution flow,
while receive actions block it until a message is received. The other two actions for

26

s ::= u • u′!ε̄ | g (invoke, receive-guarded choice)
| [e] s | s | s | ∗ s (delimitation, parallel composition, replication)
| kill(k) | {|s|} (kill, protection)

g ::= 0 | p • o?w̄.s | g + g (empty, receive prefixing, choice)

Table 2. COWS syntax

message exchanging, i.e. SEND&RECEIVE and RECEIVE&SEND, are shortcuts for,
respectively, a sequence of a send and a receive action from the same partner and vice-
versa. RAISE causes normal execution flow to stop and triggers the associated excep-
tion handler. COMPENSATE triggers compensation of its argument scope, while COM-
PENSATE ALL, only allowed inside a compensation or an exception handler, triggers
compensation of all scopes (in the reverse order of their completion) nested directly
within the same scope to which the handler containing the action is related.

3 An overview of COWS

COWS is a formalism for specifying and combining services that has been influenced by
the principles underlying WS-BPEL. It provides a novel combination of constructs and
features borrowed from well-known calculi such as non-binding receiving activities,
asynchronous communication, polyadic synchronization, pattern matching, protection,
and delimited receiving and killing activities. These features make it easier to model
service instances with shared states, processes playing more than one partner role, and
stateful sessions made by several correlated service interactions, inter alia.

The syntax of COWS is presented in Table 2. It is parameterized by three countable
and pairwise disjoint sets: the set of (killer) labels (ranged over by k, k′, . . .), the set
of values (ranged over by v, v′, . . .) and the set of ‘write once’ variables (ranged over
by x, y, . . .). The set of values is left unspecified; however, we assume that it includes
the set of names, ranged over by n, m, o, p, . . . , mainly used to represent partners and
operations. The syntax of expressions, ranged over by ε, is deliberately omitted; we just
assume that they contain, at least, values and variables, but do not include killer labels
(that, hence, can not be exchanged in communication).

We use w to range over values and variables, u to range over names and vari-
ables, and e to range over elements, i.e. killer labels, names and variables. The bar
¯ denotes tuples (ordered sequences) of homogeneous elements, e.g. x̄ is a compact
notation for denoting a tuple of variables as 〈x1, . . . , xn〉. We assume that variables in
the same tuple are pairwise distinct. We adopt the following conventions for opera-
tors’ precedence: monadic operators bind more tightly than parallel, and prefixing more
tightly than choice. We omit trailing occurrences of 0 and write [e1, . . . , en] s in place
of [e1] . . . [en] s. Finally, we write I , s to assign a name I to the term s.

Invoke and receive are the basic communication activities provided by COWS. Be-
sides input parameters and sent values, both activities indicate an endpoint, i.e. a pair
composed of a partner name p and of an operation name o, through which communi-
cation should occur. An endpoint p • o can be interpreted as a specific implementation
of operation o provided by the service identified by the logic name p. An invoke p • o!ε̄
can proceed as soon as the evaluation of the expressions ε̄ in its argument returns the
corresponding values. A receive p • o?w̄.s offers an invocable operation o along a given

27

partner name p. Execution of a receive within a choice permits to take a decision be-
tween alternative behaviours. Partner and operation names are dealt with as values and,
as such, can be exchanged in communication (although dynamically received names
cannot form the endpoints used to receive further invocations). This makes it easier to
model many service interaction and reconfiguration patterns.

The delimitation operator is the only binder of the calculus: [e] s binds e in the scope
s. Differently from the scope of names and variables, that of killer labels cannot be
extended (indeed, killer labels are not communicable values). Delimitation can be used
to generate ‘fresh’ private names (like the restriction operator of the π-calculus [18]) and
to delimit the field of action of kill activities. Execution of a kill activity kill(k) causes
termination of all parallel terms inside the enclosing [k] , which stops the killing effect.
Critical activities can be protected from a forced termination by using the protection
operator {|s|}.

Delimitation can also be used to regulate the range of application of the substitution
generated by an inter-service communication. This takes place when the arguments of
a receive and of a concurrent invoke along the same endpoint match and causes each
variable argument of the receive to be replaced by the corresponding value argument of
the invoke within the whole scope of variable’s declaration. In fact, to enable parallel
terms to share the state (or part of it), receive activities in COWS do not bind variables
(which is different from most process calculi).

Execution of parallel terms is interleaved, except when a kill activity or a com-
munication can be performed. Indeed, the former must be executed eagerly while the
latter must ensure that, if more than one matching receive is ready to process a given
invoke, only one of the receives with greater priority (i.e. the receives that generate the
substitution with ‘smaller’ domain, see [15] for further details) is allowed to progress.
Finally, the replication operator ∗ s permits to spawn in parallel as many copies of s
as necessary. This, for example, is exploited to model persistent services, i.e. services
which can create multiple instances to serve several requests simultaneously.

4 A transformational semantics for UML4SOA through COWS

Hereafter we present an encoding of UML4SOA diagrams in COWS. The encoding
disambiguates the meaning of the individual diagrams. It is compositional, in the sense
that the translation of an activity diagram is given by the (parallel) composition of the
encodings of all its individual elements. We first underline the general layout, then
provide specific explanations along with the presentation of the individual encodings.
We refer the reader to Table 1 for the names of the encoded UML4SOA elements.

At top level, an orchestration ORC is encoded through an encoding function [[·]]
that returns a COWS term. Function [[·]] is in turn defined by another encoding function
[[·]]orc

VARS that, given an element of a diagram, returns a COWS term and has the two
additional arguments, the name orc of the enclosing orchestration and the names of the
variables defined at the level of the encoded element. The argument orc is used for trans-
lating the communication activities, by specifying who is sending/receiving messages.
The variable names VARS are necessary for delimiting the scope of the variables used
by the translated element. Variables are fundamental since, as we shall show, they are

28

used to share received messages among the various elements of a scope and, moreover,
they can also be instantiated as names of partner links.

We start by providing the encoding of the graph elements, i.e. nodes with incoming
and outgoing edges, treating actions and scopes as black boxes and focusing on the en-
coding of passage of control among nodes. We provide then the encoding of actions, of
the variables delimited within scopes and of scopes (and related handlers) themselves.
We end with the translation of whole orchestrations.

Graphs. The encoding of a GRAPH is given simply by the parallel execution of all
the COWS processes resulting from the encoding of its elements.

[[GRAPH1 GRAPH2]]orc
VARS = [[GRAPH1]]orc

VARS | [[GRAPH2]]orc
VARS

Control flow nodes. An element of a graph is encoded as a process receiving and
sending signals by its incoming and outgoing edges, respectively. These edges are re-
spectively translated as invoke and receive activities, where each edge name e is en-
coded by a COWS endpoint e. A guard is encoded by a COWS (boolean) expression
εguard. Guards are exchanged as boolean values between invoke and receive activities
and the communication is allowed only if the evaluation of a guard is true. With the
exception of initial and final nodes, the encoding of every node is a COWS process
made persistent by using replication, since a node can be visited several times in the
same workflow (this may occur if the activity diagram contains cycles). Practically, an
initial node is translated as

[[]]orc
VARS = e!〈εguard〉

The encoding of a FORK node is a COWS service that can be instantiated by per-
forming a receive activity corresponding to the incoming edge. After the synchroniza-
tion, an invoke activity is simultaneously activated for each outgoing edge.

[[FORK]]orc
VARS = ∗ e?〈true〉. (e1!〈εguard1〉 | . . . | en!〈εguardn〉)

The encoding of a JOIN node is a service performing a sequence of receive activi-
ties, one for each incoming edge, and of an activity invoking its outgoing edge.

[[JOIN]]orc
VARS = ∗ e1?〈true〉. en?〈true〉. e!〈εguard〉

The order of the receive activities does not matter, since, anyway, to complete its ex-
ecution, i.e. to invoke the outgoing edge, synchronization over all incoming edges is
required.

In the encoding of a DECISION node, the endpoints n1, . . . , nn (one for each outgo-
ing edge) are locally delimited and used for implementing a non-deterministic guarded-
choice that selects one endpoint among those whose guard evaluates to true, thus en-
abling the invocation of the corresponding outgoing edge.

[[DECISION]]orc
VARS = ∗ e?〈true〉. [n1, . . . , nn] (n1!〈εguard1〉 | . . . | nn!〈εguardn〉

| n1?〈true〉. e1!〈true〉 + . . . + nn?〈true〉. en!〈true〉)

A MERGE node is encoded as a choice guarded by all its incoming edges; all guards
are followed by an invoke of its outgoing edge.

29

[[MERGE]]orc
VARS = ∗ (e1?〈true〉. e!〈εguard〉 + . . . + en?〈true〉. e!〈εguard〉)

Final nodes, when reached, enable a kill activity kill(kt), where the killer label kt is
delimited at scope level, that instantly terminates all the unprotected processes in the
encoding of the enclosing scope (but without affecting other scopes). Simultaneously,
the protected term t!〈〉 sends a termination signal to start the execution of (possible)
subsequent activities.

[[]]orc
VARS = e?〈true〉. (kill(kt) | {|t!〈〉|})

Action and scope nodes. An ACTION node with an incoming and an outgoing edge
is encoded as a service performing a receive on the incoming edge followed by the en-
coding of ACTION and, in parallel, a process waiting for a termination signal sent from
the encoding of ACTION along the internal endpoint t and then performing an invoke
on the outgoing edge. Of course, t is delimited to avoid undesired synchronization with
other processes.

[[ACTION]]orc
VARS = ∗ e1?〈true〉. [t] ([[ACTION]]orc

VARS
| t?〈〉. e2!〈εguard〉)

The encoding of a SCOPE node is similar to the previous one, with two main addi-
tions. When a SCOPE terminates, the encoding of its node sends a signal i!〈〉 enabling
the compensation related to the scope. Moreover, it sends its name to the local Stack
process in case compensation activities are started (see the encoding of compensation
handlers below for further explanations).

[[SCOPE]]orc
VARS = ∗ e1?〈true〉. [t, i] ([[SCOPE]]orc

VARS
| t?〈〉. (i!〈〉 | stack • push!〈scopeName(SCOPE)〉 | e2!〈εguard〉))

Function scopeName(·), given a scope, returns its name.

Sending and receiving actions. Sending and receiving actions are translated by rely-
ing on, respectively, COWS invoke and receive activities. Special care must be taken to
ensure that a sent message is received only by the intended RECEIVE action and partner
link. For this purpose, the action names are used as operation names in encoded terms.
Thus, a SEND and a RECEIVE action can exchange messages only if they share the
same name. Moreover, the partner name along which the communication takes place is
the name orc of the enclosing orchestration.

Action SEND is an asynchronous call: message 〈expr1, . . . , exprn〉 is sent to the
partner p and the process proceeds without waiting for a reply. This is encoded in
COWS by an invoke activity sending the tuple 〈orc, εexpr1 , . . . , εexprn〉, where orc in-
dicates the sender of the message and will be used by the receiver to (possibly) provide
a reply. The invoked partner p is rendered either as the link p, in case p is a constant,
or as the COWS variable xp in case p is a write-once variable. In parallel, a termination
signal along the endpoint t is sent for allowing the computation to proceed.

[[SEND]]orc
VARS = {| [[p]]orc

VARS
• name!〈orc, εexpr1 , . . . , εexprn〉 |} | t!〈〉

30

where [[p]]orc
VARS is p if �wo� p < VARS, and xp otherwise; similarly, each εexpri is

obtained from expri by replacing each X in the expression such that �wo�X ∈VARS
with x X.

Unlike SEND, action RECEIVE is a blocking activity, preventing the workflow to
go on until a message is received. It is encoded as a COWS receive along the endpoint
orc • name, with input pattern a tuple where the first element is the encoding of the link
pin p and the others are either COWS variables x X if �wo�X ∈VARS or variables X
otherwise. This way, a message can be received if its correlation data match with those
of the input pattern and, in this case, the other data are stored as current values of the
corresponding variables.

[[RECEIVE]]orc
VARS = orc • name?〈[[p]]orc

VARS, [[X1]]orc
VARS, . . . , [[Xn]]orc

VARS〉. t!〈〉

The encodings of actions SEND&RECEIVE and RECEIVE&SEND are basically
the composition of the encodings of actions SEND and RECEIVE, and viceversa.

[[SEND&RECEIVE]]orc
VARS = {| [[p]]orc

VARS
• name!〈orc, εexpr1 , . . . , εexprn〉 |}

| orc • name?〈[[p]]orc
VARS, [[X1]]orc

VARS, . . . , [[Xm]]orc
VARS〉. t!〈〉

[[RECEIVE&SEND]]orc
VARS = orc • name?〈[[p]]orc

VARS, [[X1]]orc
VARS, . . . , [[Xm]]orc

VARS〉.
({| [[p]]orc

VARS
• name!〈orc, εexpr1 , . . . , εexprn〉 |} | t!〈〉)

Actions for fault and compensation handling. The behavior, and thus the encoding,
of a RAISE is similar to that of a final node. In both cases a kill activity is enabled, in
parallel with a protected termination signal invoking an exception handler. They differ
for the killer label and the endpoint along which the termination signal is sent.

[[RAISE]]orc
VARS = kill(kr) | {|r!〈〉|}

In this way, a RAISE action terminates all the activities in its enclosing scope (where
kr is delimited) and triggers related the exception handler (by means of signal r!〈〉).
An exception can be propagated by an exception handler that executes another RAISE
action. Notably, since default exception handlers simply execute a RAISE action and
terminate, not specifying exception handlers results in the propagation of the exception
to the further enclosing scope until eventually reaching the top level and thus terminat-
ing the whole orchestration.

Action COMPENSATE is encoded as an invocation of the compensation handler in-
stalled for the target scope. Action COMPENSATE ALL is encoded as an invocation of
the local Stack process requiring it to execute (in reverse order w.r.t. scopes completion)
all the compensation handlers installed within the enclosing scope.

[[COMPENSATE]]orc
VARS = c • scopeName!〈scopeName〉 | t!〈〉

[[COMPENSATE ALL]]orc
VARS = [n] (stack • compAll!〈n〉 | n?〈〉.t!〈〉)

Variables. The encoding of scope variables is as follows.

[[nil]] = 0 [[X , VARS]] = VarX | [[VARS]] [[�wo� X]] , VARS = [[VARS]]

31

Thus, variables declared write-once (by means of � wo�) directly corresponds to
COWS variables (as we have seen, e.g., in the encoding of SEND). The remaining
variables, i.e. variables that store values and can be rewritten several times (as usual in
imperative programming languages), are encoded as internal services accessible only
by the elements of the scope. Specifically, a variable X is rendered as a service VarX

providing two operations along the public partner name X: read, for getting the current
value; write, for replacing the current value with a new one. When the service variable
is initialized (i.e. the first time the write operation is used), an instance is created that is
able to provide the value currently stored. When this value must be updated, the current
instance is terminated and a new instance is created which stores the new value. To
access the service, a user must invoke operations read and write by providing a com-
munication endpoint for the reply and, in case of write, the value to be stored. Due to
lack of space, the service VarX has been omitted (we refer the interested reader to [2]).

Variables like X may (temporarily) occur in expressions used by invoke and receive
activities within COWS terms obtained as result of the encoding. To get rid of these
variables and finally obtain ‘pure’ COWS terms, we exploit the following encodings:

〈〈u • u′!ε̄〉〉 = [m, n1, . . . , nm] if ε̄ contains X1, . . . ,Xm

(X1 • read!〈n1〉 | . . . | Xm • read!〈nm〉

| [x1, . . . xm] n1?〈x1〉. nm?〈xm〉. m! ε̄ ·{Xi 7→ xi}i∈{1,..,m}
| [x̄] m?x̄. u • u′!x̄)

〈〈p • o?w̄.s〉〉 = [x1, . . . xm] if w̄ contains X1, . . . ,Xm

p • o?w̄·{Xi 7→ xi}i∈{1,..,m} .
[n1, . . . , nm] (X1 •write!〈x1, n1〉 | . . . | Xm •write!〈xm, nm〉

| n1?〈〉. nm?〈〉. 〈〈s〉〉)

where {Xi 7→ xi} denotes substitution of Xi with xi, and endpoint m returns the result of
evaluating ε̄ (of course, we are assuming that m, ni and xi are fresh).

Scopes. A SCOPE is encoded as the parallel execution, with proper delimitations,
of the processes resulting from the encoding of all its components.

[[SCOPE]]orc
VARS′ =

[e, stack, vars(VARS)]
([r] ([kr, kt] ([[GRAPH]]orc

VARS′,VARS | {|Stack|}
| [t, kt] [[GRAPHev 1]]orc

VARS′,VARS | . . . | [t, kt] [[GRAPHev n]]orc
VARS′,VARS)

| r?〈〉. e!〈〉)
| [[VARS]] | e?〈〉. [t, kt] [[GRAPHe]]orc

VARS′,VARS
| i?〈〉. {| c • scopeName?〈scopeName〉. [t] ([kt] [[GRAPHc]]orc

VARS′,VARS
| t?〈〉. stack • end!〈scopeName〉)

| ∗ [x] c • scopeName?〈x〉. stack • end!〈scopeName〉 |})

Function vars(·), given a list of variables VARS, returns a list of COWS vari-
ables/names, where a COWS name X corresponds to a variable X in VARS, while a
COWS variable xX corresponds to a variable�wo� X in VARS.

The (private) endpoint r catches signals generated by RAISE actions and activate
the corresponding handler, by means of the (private) endpoint e. Killer labels kr and kt

32

are used to delimit the field of action of kill activities generated by the translation of
action RAISE or of final nodes, respectively, within GRAPH.

When a scope successfully completes, its compensation handler is installed by
means of a signal along the endpoint i. Installed compensation handlers are protected
to guarantee that they can be executed despite of any exception. Afterwards, the com-
pensation can be activated by means of the partner name c. Notably, a compensation
handler can be executed only once. After that, the term ∗ [x] c • scopeName?〈x〉. stack •
end!〈scopeName〉 permits to ignore further compensation requests (by also taking care
not to block the compensation chain).

The (protected) Stack service associated to a scope offers, along the partner name
stack, three operations: end to catch the termination of the scope specified as argument
of the operation, push to stack the scope name specified as argument of the operation
into the associated Stack, and compAll that triggers the compensation of all scopes
whose names are in Stack. The specification of Stack is as follows:

[q] (Lifo | ∗ [x] stack • push?〈x〉. q • push!〈x〉
| ∗ [x] stack • compAll?〈x〉. [loop] (loop!〈〉 | ∗ loop?〈〉.Comp)

where loop is used to model a while cycle executing Comp. The term Comp pops
a scope name scopeName out of Lifo and invokes the corresponding compensation
handler (by means of c • scopeName!〈scopeName〉); in case Lifo is empty, the cy-
cle terminates and a termination signal is sent along the argument x of the operation
compAll.

Comp , [r, e] (q • pop!〈r, e〉 | [y] (r?〈y〉. (c • y!〈y〉 | stack • end?〈y〉. loop!〈〉)
+ e?〈〉. x!〈〉))

Lifo is an internal queue providing ‘push’ and ‘pop’ operations. Stack can push and
pop a scope name into/out of Lifo via q • push and q • pop, respectively. To push, Stack
sends the value to be inserted, while to pop sends two endpoints: if the queue is not
empty, the last inserted value is removed from the queue and returned along the first
endpoint, otherwise a signal along the second endpoint is received. Each value in the
queue is stored as a triple made available along the endpoint h and composed of the
actual value, and two correlation values working as pointers to the previous and to the
next element in the queue. The correlation value retrieved along m is associated with the
element on top of the queue, if this is not empty, otherwise it is empty.

Lifo , [m, h] (∗ [yv, yr, ye] (q • push?〈yv〉.[z] m?〈z〉. [c] (h!〈yv, z, c〉 | m!〈c〉)
+q • pop?〈yr, ye〉.[z] (m?〈z〉.[yv, yt] h?〈yv, yt, z〉.(m!〈yt〉 | yr!〈yv〉)

+m?〈empty〉.(m!〈empty〉 | ye!〈〉)))
| m!〈empty〉)

Notice that, because of the COWS’s (prioritized) semantics, whenever the queue is
empty, the presence of receive m?〈empty〉 prevents taking place of the synchronization
between m!〈empty〉 and m?〈z〉.

Orchestrations. The encoding of an orchestration is that of its top-level scope.

[[ORC]] = [kr, c, t, i, edges(SCOPE)] [[SCOPE]]orc
nil

where function edges(·), given a scope, returns the names of all the edges of the graphs
contained within the scope.

33

5 Concluding remarks

We have presented an encoding of UML4SOA activity diagrams into COWS. Both
languages have been defined within the European project S [28] on developing
methodologies and tools for dealing with SOAs. As far as we know, our encoding is
the first (transformational) semantics of UML4SOA. It can be the cornerstone of a
future framework for verification of service models specified through UML4SOA. With
a similar objective, in [4] we have defined a translation from the modelling language
SRML [10] into COWS.

Recently, another UML profile for SOA design, named SoaML [21], has been intro-
duced. With respect to UML4SOA, SoaML is more focused on architectural aspects of
services and relies on the standard UML 2.0 activity diagrams without further special-
izing them. We believe it is worth to study the feasibility of defining an encoding from
SoaML into COWS, but leave it as a challenge for future work.

In this work, we focused on those constructs that are more relevant for UML4SOA,
namely workflow-related constructs and the specialized UML4SOA constructs. Sev-
eral works propose formal semantics for (subsets of) UML activity diagrams. Among
these works the most relevant ones are those based on (extensions of) Petri Nets (see,
e.g., [8, 23]). Although we regard Petri Nets as a natural choice for encoding such as-
pects of UML activity diagrams as workflows, other aspects turned out to be hardly
representable in this formalism. For instance, in [23], the authors themselves deem the
encoding of classical UML exception handling into Petri Nets as not completely sat-
isfactory. Also, variables are not treated by the Petri Nets-based semantics of UML
activity diagrams nor, at the best of our knowledge, by any other semantics.

The UMC framework [26] and the virtual machine-based approach of [7] provide
operational semantics for (subsets of) UML activity diagrams by transition systems. Al-
though these approaches are clearly less expressive, it could be interesting to compare
them with the correspondent fragments of our encoding. In [25] the authors use model
checking to verify a UML activity diagram of a SOA case study. In fact, the analysis
is done on a handmade translation in UMC of the activity diagram. The authors them-
selves point out that an automatic translation like the one presented in this paper would
be highly desirable. In [24], a stochastic semantics for a subset of UML activity dia-
grams is proposed. It could be interesting to compare this approach with a stochastic
extension, along the line of [22], of the encoding proposed in this paper. Anyway, none
of these proposals attempts to encode the UML4SOA profile and, most notably, none of
them seems to be adequate for encoding its specific constructs like message exchanging
actions, scopes, exceptions and compensation handlers.

We have singled COWS out of several similar process calculi for its peculiar fea-
tures, specifically the termination constructs and the correlation mechanism. Kill activ-
ities are suitable for representing ordinary and exceptional process terminations, while
protection permits to naturally represent exception and compensation handlers that are
supposed to run after normal computations terminate. Even more crucially, the corre-
lation mechanism (inspired by that of WS-BPEL) permits to automatically correlate
messages belonging to the same interaction, preventing to mix messages from differ-
ent service instances. Modelling such a feature by using session-oriented calculi de-
signed for SOA (e.g. [5, 27, 12]) seems to be quite cumbersome. The main reason is

34

that UML4SOA is not session-oriented, thus the specific features of these calculi are
of little help. Compared to other correlation-oriented calculi (like, e.g., [11]), COWS
seems more adequate since it relies on more basic constructs and provides analysis
tools and a stochastic extension.

In [16], a software tool for generating WS-BPEL code from UML4SOA models is
presented. This work and the related tool had been very useful for verifying the intended
meaning of UML4SOA constructs by their equivalent WS-BPEL code. However, the
encoding algorithm is not capable of translating all the possible diagrams and is not
compositional. Also, WS-BPEL code has not, in general, an univocal semantics and
indeed the very same code generates different computations when running on different
WS-BPEL implementations [14]. Thus, the proposed encoding in WS-BPEL does not
provide a formal semantics to UML4SOA models.

Our long-term goal is to build a complete framework for verifying UML4SOA
models. To this aim quite some work remains to be done. Currently, the encod-
ing is implemented by a software tool (described in the full version of this paper
[2]) that accepts as input a UML2 EMF XMI 2.1 file storing a UML4SOA spec-
ification. Such file can be automatically generated by the UML editor MagicDraw
(http://www.magicdraw.com) where, to allow users to graphically specify UML4SOA
activity diagrams, the UML4SOA profile (available at http://www.mdd4soa.eu) must
be previously installed. Our tool automatically translates the XMI description into a
COWS term, written in the syntax accepted by CMC [26], a model checker supporting
analysis of COWS terms. As a further step in the development of a verification frame-
work for UML4SOA models, we plan to more closely integrate the tool implementing
the encoding with CMC. We also intend to investigate the challenging issue of how
to tailor the (low-level) results obtained by the analysis of COWS terms to the corre-
sponding (high-level) UML4SOA specifications, thus making the verification process
as much transparent and, hence, usable as possible for developers. Other planned ex-
tensions include the encoding of a larger subset of UML 2.0 activity diagrams and its
stochastic extension by relying on the stochastic variant [22] of COWS.

References

1. F. Banti, A. Lapadula, R. Pugliese, and F. Tiezzi. Specification and analysis of SOC systems
using COWS: A finance case study. In WWV, ENTCS 235, pp. 71–105. Elsevier, 2009.

2. F. Banti, R. Pugliese, and F. Tiezzi. Automated Verification of UML Models of Services.
Tech. rep., DSI, Univ. Florence, 2009. http://rap.dsi.unifi.it/cows/papers/uml4soa2cows.pdf.

3. J. Bauer, F. Nielson, H.R. Nielson, and H. Pilegaard. Relational Analysis of Correlation. In
SAS, LNCS 5079, pp. 32–46. Springer, 2008.

4. L. Bocchi, J.L. Fiadeiro, A. Lapadula, R. Pugliese, and F. Tiezzi. From Architectural to
Behavioural Specification of Services. In FESCA, ENTCS. Elsevier, 2009. To appear.

5. M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured
Service Programming. In FMOODS, LNCS 5051, pp. 19–38. Springer, 2008.

6. N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Choreography and orchestration
conformance for system design. In COORDINATION, LNCS 4038, pp. 63–81. Springer,
2006.

7. M.L. Crane and J. Dingel. Towards a UML virtual machine: implementing an interpreter for
UML 2 actions and activities. In CASCON, pp. 96–110. ACM, 2008.

35

8. C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf, and C. Stehno. Compositional Semantics
for UML 2.0 Sequence Diagrams Using Petri Nets. In SDL, LNCS 3530, pp. 133–148.
Springer, 2005.

9. A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, and F. Tiezzi. A model
checking approach for verifying COWS specifications. In FASE, LNCS 4961, pp. 230–245.
Springer, 2008.

10. J. Fiadeiro, A. Lopes, and L. Bocchi. A Formal Approach to Service Component Architec-
ture. In WS-FM, LNCS 4184, pp. 193–213. Springer, 2006.

11. C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. SOCK: A Calculus for Service
Oriented Computing. In ICSOC, LNCS 4294, pp. 327–338. Springer, 2006.

12. I. Lanese, F. Martins, A. Ravara, and V.T. Vasconcelos. Disciplining Orchestration and Con-
versation in Service-Oriented Computing. In SEFM, pp. 305–314. IEEE, 2007.

13. A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating data exchange in service oriented appli-
cations. In FSEN, LNCS 4767, pp. 223–239. Springer, 2007.

14. A. Lapadula, R. Pugliese, and F. Tiezzi. A formal account of WS-BPEL. In COORDINA-
TION, LNCS 5052, pp. 199–215. Springer, 2008.

15. A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for orchestration of web services. Tech.
rep., DSI, Univ. Florence, 2008. http://rap.dsi.unifi.it/cows/papers/cows-esop07-full.pdf. An
extended abstract appeared in ESOP, LNCS 4421, pp. 33-47, Springer.

16. P. Mayer, A. Schroeder, and N. Koch. Mdd4soa: Model-driven service orchestration. In
EDOC, pp. 203–212. IEEE, 2008.

17. P. Mayer, A. Schroeder, and N. Koch. A model-driven approach to service orchestration. In
SCC, pp. 533–536, 2008.

18. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I and II. Information
and Computation, 100(1):1–40, 41–77, 1992.

19. OASIS. Web Services Business Process Execution Language Version 2.0. Tech. rep., 2007.
20. OMG. Unified Modeling Language (UML), version 2.1.2.
21. OMG. Sevice oriented architecture Modeling Language (SoaML). Tech. rep., 2008.
22. D. Prandi and P. Quaglia. Stochastic COWS. In ICSOC, LNCS 4749, pp. 245–256. Springer,

2007.
23. H. Störrle and J.H. Hausmann. Towards a Formal Semantics of UML 2.0 Activities. In

Software Engineering, LNI 64, pp. 117–128. GI, 2005.
24. N. Tabuchi, N. Sato, and H. Nakamura. Model-driven performance analysis of UML de-

sign models based on stochastic process algebra. In ECMDA-FA, LNCS 3748, pp. 41–58.
Springer, 2005.

25. Maurice H. ter Beek, Stefania Gnesi, Nora Koch, and Franco Mazzanti. Formal verification
of an automotive scenario in service-oriented computing. In ICSE, pp. 613–622. ACM, 2008.

26. M.H. ter Beek, S. Gnesi, and F. Mazzanti. CMC-UMC: A framework for the verification of
abstract service-oriented properties. In SAC, 2009. To appear.

27. H.T. Vieira, L. Caires, and J. Costa Seco. The Conversation Calculus: A Model of Service-
Oriented Computation. In ESOP, LNCS 4960, pp. 269–283. Springer, 2008.

28. M. Wirsing, L. Bocchi, A. Clark, J.L. Fiadeiro, S. Gilmore, M. Hölzl, N. Koch, and
R.Pugliese. At your service: Service Engineering in the Information Society Technologies
Program, SENSORIA: Engineering for Service-Oriented Overlay Computers, pp. 159–182.
MIT Press, 2009.

36

Analyzing a Proxy Cache Server Performance Model
with the Probabilistic Model Checker PRISM ?

Tamás Bérczes1, tberczes@inf.unideb.hu,
Gábor Guta2, Gabor.Guta@risc.uni-linz.ac.at,

Gábor Kusper3, gkusper@aries.ektf.hu,
Wolfgang Schreiner2, Wolfgang.Schreiner@risc.uni-linz.ac.at,

János Sztrik1, jsztrik@inf.unideb.hu

1 Faculty of Informatics, University of Debrecen, Hungary, http://www.inf.unideb.hu
2 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz,

Austria, http://www.risc.uni-linz.ac.at
3 Esterházy Károly College, Eger, Hungary, http://www.ektf.hu

Abstract. We report our experience with formulating and analyzing in the proba-
bilistic model checker PRISM a web server performance model with proxy cache
server that was previously described in the literature in terms of classical queu-
ing theory. By our work various ambiguities and deficiencies (also errors) are
revealed; in particular, it is not clear how the reported paper simulates the net-
work bandwidth, as a queue or a delay. To avoid such ambiguities we argue that
nowadays performance modeling should make use of (at least be accompanied
by) state machine descriptions such as those used by PRISM. On the one hand,
this helps to more accurately describe the systems whose performance are to be
modeled (by making hidden assumptions explicit) and give more useful informa-
tion for the concrete implementation of these models (appropriate buffer sizes).
On the other hand, since probabilistic model checkers such as PRISM are fur-
thermore able to analyze such models automatically, analytical models can be
validated by corresponding experiments which helps to increase the trust into the
adequacy of these models and their real-world interpretation.

1 Introduction

The two originally distinct areas of the qualitative analysis (verification) and quanti-
tative analysis (performance modeling) of computing systems have in the last decade
started to converge by the arise of stochastic/probabilistic model checking [9]. This fact
is recognized by both communities. While originally only individual authors hailed this
convergence [7], today various conferences and workshops are intended to make both
communities more aware of each others’ achievements [4, 12]. One attempt towards this
goal is to compare techniques and tools from both communities by concrete application
studies. The present paper is aimed at exactly this direction.

In [1], we have shown how the probabilistic model checker PRISM [10, 8] com-
pares favorably with a classical performance modeling environment for modeling and

? Supported by the Austrian-Hungarian Scientific/Technical Cooperation Contract HU 13/2007.

37

analyzing retrial queueing systems, especially with respect to the expressiveness of the
models and the queries that can be performed on them. In the present paper, we are mak-
ing one step forward by applying PRISM to re-assess various web server performance
models with proxy cache servers that have been previously described and analyzed in
the literature.

The starting point of our work is the paper [5], which presents a performance model
for a system of a web server and web clients where a “proxy cache server” receives
all the requests from the clients of a local network; with a certain probability the data
requested by a client are already cached on the proxy server and can be returned without
contacting the web server from which the data originate. The paper [5] is based on the
seminal paper [11] which introduces a performance model of a web server. In [3], two
of the authors of the present paper have further generalized this model by allowing the
proxy cache server to receive also requests from external sources.

In this paper, we have constructed a formal model of the informal sketches in the
language of PRISM [10]. This language essentially allows to construct in a modular
manner a finite state transition system (thus modeling the qualitative aspects of the sys-
tem) and to associate rates to the individual state transitions (thus modeling the quanti-
tative aspects); the mathematical core of such a system is a Continuous Time Markov
Chain (CTMC) which can be analyzed by the PRISM tool with respect to queries that
are expressed in the language of Continuous Stochastic Logic (CSL) [9].

The remainder of this paper is structured as follows. In Section 2 we investigate the
model described in [5]. First we implement it in PRISM and we try to reproduce their
quantitative results. Here we only note that this article contains errors. We believe that
this part is the most interesting one for the model checking community. In Section 3 we
show how did we find the errors in the investigated paper by using PRISM. This section
refers to our technical report [2], where more details are given. Section 4 summarizes
our findings.

2 Performance Model of a Proxy Cache Server

The article [5] describes the model of a “proxy cache server” (PCS) to which the clients
of a firm are connected such that web requests of the clients are first routed to the PCS.
Referring to an illustration redrawn in Figure 1 the model can be described as follows:

Using proxy cache server, if any information or file is requested to be downloaded,
first it is checked whether the document exists on the proxy cache server or not. (We
denote the probability of this existence by p). If the document can be found on the PCS
then its copy is immediately transferred to the user. In the opposite case the request will
be sent to the remote web server. After the requested document arrived back to the PCS
then a copy of it is delivered to the user.

The solid line in Fig 1. (λ1 = p ∗ λ) represents the traffic when the requested file
is available on the PCS and can be delivered directly to the user. The λ2 = (1− p)∗λ
traffic depicted by dotted line, represents those requests which could not be served by
the PCS, therefore these requests must be delivered from the remote web server.

If the size of the requested file is greater then the Web server’s output buffer it
will start a looping process until the delivery of all requested file’s is completed. Let

38

Client Network
Bandwidth

Proxy Cache
Server

Web
Initialization

Web Server
Output

Arrival of
Users’
Requests

Server
Network
Bandwidth

l

l2

ql2’ = l2

l2’

l2

l2’l2’

l2

l1

l1

l2

l

(1−q)l2’

Fig. 1. Queueing Network Model of a Proxy Cache Server (redrawn from [5])

q = min{1,(Bs/F)} be the probability that the desired file can be delivered at the first
attempt. Consequently, a (1−q) proportion of the requests will loop back to the remote
Web server for further processing.

In equilibrium, the traffic coming out of the remote Web server toward the PCS after
branching should equal the original incoming traffic, λ2. Hence qλ ′2 equals λ2 where λ ′2
is the traffic leaving server network bandwidth before branching.

The performance of the model is characterized by the parameters (α = β = γ = 1):

Network Arrival Rate (λ)
Average File Size (F = 5000)
Buffer Size (Bs = 2000) PCS buffer size (Bxc = αBs)
Initialization Time (Is = 0.004) PCS initialization time (Ixc = γIs)
Static Server Time (Ys = 0.000016) Static PCS time (Yxc = βYs)
Dynamic Server Rate (Rs = 1310720) Dynamic PCS rate (Rxc = βRs)
Server Network Bandwidth (Ns = 193000)
Client Network Bandwidth (Nc = 16000)

The overall response time in the presence of the PCS is given as

Txc = 1
1

Ixc −λ
+ p

{
1

1
F

Bxc
[Yxc+ Bxc

Rxc
]
−λ1

+ F
Nc

}

+(1− p)

{
1

1
Is −λ2

+ 1
1

F
Bs

[Ys+
Bs
Rs

]
−λ2/q

+ F
Ns

+ 1
1

F
Bxc

[Yxc+ Bxc
Rxc

]
−λ2

+ F
Nc

}

39

In this formula, the first term denotes the lookup time to see if the desired files are avail-
able from the PCS, the second term (with factor p) describes the time for the content to
be delivered to the requesting user, and the third term (with factor 1− p) indicates the
time required from the time the PCS initiates the fetching of the desired files to the time
the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

T =
1

1
Is
−λ

+
1

1
F
Bs [Ys+ Bs

Rs]
−λ/q

+
F
Ns

+
F
Nc

The response times for the PCS model with various arrival rates λ and probabilities p
as well as the response time for the model without PCS, are depicted in Figure 2.

Fig. 2. Response Times With and Without PCS (Analytical Model)

We have reconstructed this system in PRISM, and we found out that actually the
two equations (for T and Txc) and also the visual model, i.e., Figure 1 are wrong. First
we present the corrected equation for Txc, the corrected visual model and the PRISM
implementation of the corrected model. Only after this we tell how did we find those
errors.

40

2.1 PRISM Implementation

First we present the corrections and the PRISM implementation of the corrected model,
because we believe that this is the most interesting part of our work for the community.

Figure 3 shows the actual queueing network described in [5], but it is not the same as
Figure 1, because the visual model in [5] contains errors. Figure 1 contains five queues,
both the ‘server network bandwidth” and “client network bandwidth” are depicted as
queues, although they are not treated as queues in the later analysis. Furthermore, it
contains no queue to model the “client output”. More detailed description of this issue
can be found in Section 3 and in our technical report [2].

Proxy Cache
Server

Arrival of
Users’
Requests

l1

l’ l’

Bandwidth
Client Network

(1−p_xc)l’
l2

l2l

l

l

l = p_xc*l’

Client Loop

Web
Initialization

Web Server
Output

l2l2’l2’

Server
Network
Bandwidth

l2’

(1−q)l2’

ql2’ = l2 l2

l2

Fig. 3. Queueing Network Model of Proxy Cache Server

The equation for the overall response time is also wrong in [5]. The correct one is:

T ′xc = 1
1

Ixc −λ
+ p

{(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc
+ F

Nc

}

+(1− p)

{
1

1
Is −λ2

+
(

F
Bs

)
1

1
Ys+

Bs
Rs

−λ2/q
+ F

Ns
+

(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc
+ F

Nc

}

where pxc = Bxc/F is the probability that the repetition loop is terminated. The corre-
sponding numerical results are depicted in Figure 4.

41

The verbal descriptions (which is however correct in [5]) gives rise to the follow-
ing PRISM code which introduces by the keyword stochastic a continuous time
Markov chain (CTMC) model [9]:

stochastic
...
module jobs // generate requests at rate lambda
[accept] true -> lambda : true ;

endmodule
module PCS // proxy cache server
pxwaiting: [0..IP] init 0;
pxaccepted: bool init true;
[accept] pxwaiting = IP -> 1 : (pxaccepted’ = false);
[accept] pxwaiting < IP -> 1 :

(pxaccepted’ = true) & (pxwaiting’ = pxwaiting+1);
[sforward] (pxwaiting > 0) & (1-p > 0) -> (1/Ixc)*(1-p) :

(pxwaiting’ = pxwaiting-1);
[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)*p :

(pxwaiting’ = pxwaiting-1);
endmodule
module S_C // client queue
icwaiting: [0..IC] init 0;
[panswer] icwaiting < IC -> 1 : (icwaiting’ = icwaiting+1);
[sanswer] icwaiting < IC -> 1 : (icwaiting’ = icwaiting+1);
[done] (icwaiting > 0) & (pxc > 0) -> 1/(Yxc+Bxc/Rxc)*pxc :

(icwaiting’ = icwaiting-1);
endmodule
module S_I // server arrival queue
waiting: [0..IA] init 0;
[sforward] waiting < IA -> 1 : (waiting’ = waiting+1);
[forward] waiting > 0 -> (1/Is) : (waiting’ = waiting-1);

endmodule
module S_R // server output queue
irwaiting: [0..IR] init 0;
[forward] irwaiting < IR -> 1 : (irwaiting’ = irwaiting+1);
[sanswer] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1);
endmodule

The full code is given in [2] in Appendix B.2. The model consists of one process
(“module”) jobs generating requests and four processes PCS, SC, SI , and SR. We de-
scribe them later in this section. Each process contains declarations of its state variables
(bounded integers or booleans) and state transitions of form

[label] guard -> rate : update ;

A transition is enabled to execute if its guard condition evaluates to true; it executes with
a certain (exponentially distributed) rate and performs an update on its state variables.
Transitions in different processes with the same label execute synchronously as a single
combined transition whose rate is the product of the rates of the individual transitions.

42

Since a product of rates rarely makes sense in a model, it is a common technique to give
all but one of the individual transitions the rate 1 and let the remaining transition alone
determine the combined rate (we follow this practice in all our PRISM models).

Each node models a queue with a counter, which is the number of request in the
queue, i.e., we make no distinction between requests, and each node has (generally) two
transitions. One (or more) for receiving requests and one (or more) for serving requests.
The first one increases the counter, the second one decreases it. If two queues, say A
and B, are connected, i.e., a served request from A goes to B, then the server transaction
of A and the receiver transaction of B have to be synchronous, i.e., they have the same
label.

The rate of the server transactions has generally this shape: 1/t ∗ p, where t is the
time for processing a request and p is the probability of the branch for which the trans-
action corresponds. Note that if t is a time, then 1/t is a rate. The rate of the receiver
transactions are always 1 in this PRISM implementation, because product of rates rarely
makes sense.

If a new request arrives and the queue is not full, i.e., its counter has not yet reached
its upper bound, then the counter is increased and we can set an “acceptance” flag;
otherwise, clear the flag (see “pxaccepted” in module PCS). We can use this flag to
approximate the acceptance ratio of the queue.

Module PCS models the proxy cache server, module SC the client, module SI the
initialization queue of the web server, module SR the output queue of the web server
with the following behavior:

– PCS returns with probability q an answer to the client (transition canswer) and
forwards with probability 1−q the request to the server (transition sforward). The
corresponding transitions “carry” the initialization time Ixc of the server.

– SI buffers the incoming server request and forwards it after the initialization for
further processing (transition forward); the transition carries the initialization time
Is of the server.

– SR generates an output buffer with rate 1/(Ys + Bs
Rs

) according to the model. How-
ever, since the request is repeated with probability 1−q (where q = F/Bs), the final
result is only produced with probability q which contributes as a factor to the rate
of the corresponding transition (transition sanswer).

– SS models the repetition behavior of the client; a buffer of size Bxc is received from
the PCS with rate 1/(Ypx + Bxc

Rxc
). However, the request for a buffer is repeated with

probability 1− pxc such that only with probability pxc the final buffer is received
and the request is completed (transition done).

While it would be tempting to model the repetition in SC by generating a new request
for PCS, this is actually wrong, since such a repetition request is only triggered after
the PCS has already received the complete file from the web server, it is not to be
treated like the incoming requests (that with probability 1− p generate requests for the
web server); rather we just consider the probability pxc with which the final block is
received from the PCS in the rate of the termination transition done.

If we could compute N, the number of requests in the system, and P, the probability
that a request is “rejected” (i.e. dropped from the system because it encounters some

43

full buffer), and λ , the arrival rate of the requests, then we could apply “Little’s Law”
from queueing theory [6] to determine the average response time T for a request

T =
N

(1−P)λ
Actually PRISM can be used to compute such quantitative properties of the model

by using its reward system. Rewards have the form:

rewards "name of the reward"
condition : numerical expression;

endrewards

This reward attaches to each state the value of the numerical expression where the
condition is true. One can use the CSL query

R{"name of the reward"}=? [S]

to compute the long term average of this reward, where by operator R we introduce a
reward-based property and by operator S we query the long-term average (”steady state
value”) of this property.

Now we have to compute N and P (λ is given as a parameter of the model). For this
we introduce the following rewards of the model:

rewards "pending"
true : waiting + irwaiting + pxwaiting + icwaiting;

endrewards
rewards "time"
true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda;

endrewards
rewards "time0"
true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda

+ (FS/Nc) + (1-p)*(FS/Ns);
endrewards
rewards "accepted"
pxaccepted: 1;

endrewards

Actually we can compute N by the reward “pending” because it assigns to every
state the number of requests in the system.

It is difficult to compute P, the probability that a request is “rejected”, in PRISM. We
can approximate it by using “accepted” flags, see the details in our technical report [2].
But if P' 0 then T ' N

λ . We can compute this as it is done in the reward “time”. Only
one step is remaining, we have to adjust this time with the delays of the network (the
network bandwidth are simulated by delays in [5]) as it is done in the reward “time0”.

Using the CSL query

R{"time0"}=? [S]

we can compute the long term average of this value, which is the average response time.
To be more correct, it is the average response time if the acceptance ratio for each queue
is almost 1. In this paper we examine only the acceptance ratio of the PCS using the
reward “accepted”.

44

2.2 Test Results

In the following, we present the results of analyzing our model in PRISM (choosing the
Jacobi method for the solution of the equation systems and a relative termination epsilon
of 10−4; the analysis only takes a couple of seconds). As it turns out, it suffices to take
the queue capacities IP = 5, IC = 3, IA = IR = 1 to keep the response times essentially
invariant. With this configuration the model has 192 states and 656 transitions. Note
that the actual value of p and λ do not effect the number of states and transitions.

Figure 5 gives the acceptance ratio for various arrival rates λ and proxy hit rates p;
Figure 6 depicts the corresponding average number of requests N in the system. From
this, we can estimate the total time a requests spends in the system (including the file
transfer) as N/λ + F

Nc
+(1− p) F

Ns
, see Figure 7 and compare with the curve given from

the equation of T ′xc in Figure 4. The results are virtually identical; only for arrival rates
λ > 70 and p = 0, we can see differences (because the web server gets saturated and
the request rejection rate starts to get significant).

Fig. 4. Response Times With and Without PCS (Modified Analytical Model)

3 The Analytical Model Corrected

In this section we tell the “story” how could we find the errors in [5] with the help of
PRISM. Variables with prime, like T ′, represent the corrected equations, variables with-

45

Fig. 5. Estimated Acceptance Ratio

Fig. 6. Number of Pending Requests (N)

Fig. 7. Estimated Response Time N/λ + F
Nc

+(1− p) F
Ns

46

out prime, like T , represent the original equations in [5], and variables with asterisks,
like T ∗, represent the original equations in [11].

3.1 The Model without PCS

It is claimed in [5] that the equation for T

T =
1

1
Is
−λ

+
1

1
F
Bs [Ys+ Bs

Rs]
−λ/q

+
F
Ns

+
F
Nc

represents the special case reported in [11], where T ∗ is given as

T ∗ =
F
Nc

+
Is

1−λ Is
+

F
Ns−λF

+
F(Bs +RsYs)

BsRs−λF(Bs +RsYs)

But this is actually not the case. In [5], the only term where the server bandwidth Ns
plays a role is

F
Ns

which indicates the time for the transfer of the file over the server network. In [11],
instead the term

F
Ns−λF

is used which can be transformed to

1
Ns
F −λ

which indicates the time that a request spends in a queue with arrival rate λ and depar-
ture rate Ns

F . In other words, while [11] did not treat the client network as a queue, it
nevertheless treated the server network as such. However, in [5], neither the client net-
work nor the server network are treated as queues; they are just used to give additional
time constants for file transfers.

The system without PCS can be modeled by the following PRISM implementation:

module jobs
[accept] true -> lambda : true ;

endmodule
module S_I
waiting: [0..IA] init 0;
[accept] waiting < IA -> 1 : (waiting’ = waiting+1) ;
[forward] waiting > 0 -> (1/Is) : (waiting’ = waiting-1) ;

endmodule
module S_R
irwaiting: [0..IR] init 0;
[forward] irwaiting < IR -> 1 : (irwaiting’ = irwaiting+1) ;
[done] (irwaiting > 0) & (q > 0) -> 1/(Ys+Bs/Rs)*q :

(irwaiting’ = irwaiting-1) ;
endmodule

47

Fig. 8. Response Time Without PCS (Modified Analytical Model)

As it turns out, the numerical results produced by the analysis in PRISM do not
accurately correspond to those depicted as “No PCS” in Figure 2, in particular for λ ≥
50. Actually the results are better described by the equation

T ′ =
1

1
Is
−λ

+
(

F
Bs

)
1

1
Ys+ Bs

Rs
−λ/q

+
F
Ns

+
F
Nc

depicted in Figure 8 where the second term (modeling the “repetition loop” in the gen-
eration of the web server output) has been modified. Indeed, a closer inspection substan-
tiates the correctness of this formulation: F/Bs represents the number of “iterations” of
the corresponding queue which has arrival rate λ/q and departure rate 1/(Ys + Bs

Rs
); this

term now also equals the last term of the equation for T of [11]. (taking q = Bs
F).

Actually the same problem also affects the corresponding terms in the equation Txc

Txc = 1
1

Ixc −λ
+ p

{
1

1
F

Bxc
[Yxc+ Bxc

Rxc
]
−λ1

+ F
Nc

}

+(1− p)

{
1

1
Is −λ2

+ 1
1

F
Bs

[Ys+
Bs
Rs

]
−λ2/q

+ F
Ns

+ 1
1

F
Bxc

[Yxc+ Bxc
Rxc

]
−λ2

+ F
Nc

}

48

modeling repetition loops; the correct formulation apparently is:

T ′xc = 1
1

Ixc −λ
+ p

{(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc
+ F

Nc

}

+(1− p)

{
1

1
Is −λ2

+
(

F
Bs

)
1

1
Ys+

Bs
Rs

−λ2/q
+ F

Ns
+

(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc
+ F

Nc

}

where pxc = Bxc/F is the probability that the repetition loop is terminated (please note
also the changes in the arrival rates of the corresponding terms). The corresponding
numerical results are depicted in Figure 4, compare with the original results in Figure 2.
However, here the difference plays only a minor role (for p ≥ 0.2 only the third digit
after the comma is affected).

3.2 The Model with PCS

Also in the model with PCS, the server network is not modeled by a queue but just by
an additive constant for the transfer of the file over the network. This fact is made clear
by rewriting the equation for the average response time as

T ′xc = 1
1

Ixc −λ
+ p

{(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc

}

+(1− p)

{
1

1
Is −λ2

+
(

F
Bs

)
1

1
Ys+

Bs
Rs

−λ2/q
+

(
F

Bxc

)
1

1
Yxc+ Bxc

Rxc

−λ/pxc

}

+
{

F
Nc

+(1− p) F
Ns

}

Here each fraction of form 1
µ−λ indicates an occurrence of a queue with arrival rate

λ and departure rate µ . We can see clearly that neither the server bandwidth Ns nor the
client bandwidth Nc play a role in such fractions.

Figure 1 is therefore highly misleading; neither the server network bandwidth nor
the client network bandwidth are in the model actually represented by queues; thus the
queues labelled as “server network bandwidth” and “client network bandwidth” should
be removed (i.e. replaced by other visual elements indicating simple delays).

Furthermore, similar to the “branching” discussed in Section 2.2 of [2] , the “branch-
ing” in this picture should not start after the “server network” but directly after the
“web server output”, because the repetition rate of requests is not bounded by the net-
work bandwidth in the model. To be more detailed, the server network bandwidth Ns
(determining the processing rate of SR) only shows up in the term F

Ns
,i.e., it is only

used to contribute to the time for the transfer of the file over the server network. If in-
deed, as suggested by Figure 1, after the transfer of every block the server would with
probability q request the transfer of another block, the maximum transfer rate of blocks
(Ns/Bxc ' 96) should also impose a limit on the number of “repetition” requests.

However, on the other side actually a queue is missing (also from the description in
the text); this is the one that models the repeated requests for blocks of size Bxc which

49

are sent by the clients to the PCS (analogous to the repeated requests for blocks of
size Bs sent by the client to the web server in the basic web server model); therefore
the client indeed needs to be modeled by a queue (whose output is redirected with
probability 1− pxc to its input), but because of the looping process, not because of the
client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually
wrong; the corresponding requests do not flow to the PCS queue (where, since the queue
cannot distinguish its inputs, they might generate new requests for the web server) but
directly to the client queue.

Summarizing, the actual queueing network modeled in [5] contains only four nodes
in contrast to the five ones shown in Figure 1 (no queue for modeling the server band-
width) and one of these queues does not model the “client network bandwidth” but the
repetition of block requests (it could be labelled in the figure as “client output” because
it plays for the repetition the same role as the queue labeled “web server output”).

Figure 3 shows a revised picture that describes the model as outlined above.

4 Conclusions

The work described in this paper seems to justify the following conclusions:

– The informal models used in the literature for the performance analysis of com-
puting systems are sometimes ambiguous. This may lead to misunderstandings of
other researchers that build on top of prior work; e.g., [5] describes their results
as to be based on the model presented in [11], but actually [11] models the server
network by a delay element rather than by a queue which gives different results in
the performance evaluation.

– The use of diagrams of queue networks is an insufficient substitute for a formal
specification of a system model and a constant source of pitfalls. In [11], the dia-
gram depicts a queue where the actual performance model uses a constant delay;
likewise [5] depict queues for the server network but also use delays in their analy-
sis. Furthermore, in all three papers there is an apparent confusion of the roles of the
“loop-back” arrows which are shown in the diagrams in places that are misleading
with respect to the role that they actually play in the analyzed models.

– The paper [5] has errors in the analytical model; these errors were only detected
after trying to reproduce the results with the PRISM models. This demonstrates
that performance evaluation results published in the literature cannot be blindly
trusted without further validation.

– Most important, after correcting the diagrams to match the actually analyzed mod-
els, a question mark has to be put on the adequacy of the models with respect
to real implementations. The papers [11, 5] model the client network bandwidth
outside the “loop” for the repeated transfer of blocks from the web (respectively
proxy cache) server to the client. While the informal descriptions seem to sug-
gest that this is intended to model the underlying network protocol, i.e. presumedly
TCP, the “sliding windows” implementation of TCP lets the client interact with the
server to control the flow of packets; this interaction is not handled in the presented

50

performance models (because then the network delay must be an element of the
interaction loop).

– The PRISM modeling language can be quite conveniently used to describe queue-
ing networks by representing every network node as an automaton (“module”) with
explicit (qualitative and quantitative) descriptions of the interactions between au-
tomata. This forces us to be much more precise about the system model, which may
first look like a nuisance, but shows its advantage when we want to argue about the
adequacy of the model.

– The major limitation of a PRISM model is that it can be only used to model finitely
bounded queues, while typical performance models use infinite queues. However,
by careful experiments with increasing queue sizes one may determine appropriate
bounds where the finite models do not significantly differ from the infinite mod-
els any more. Furthermore, since actual implementations typically use (for perfor-
mance reasons) finite buffers anyway, such models more adequately describe the
real-world situation; the work performed for the analysis may be therefore used
to determine appropriate bounds for the implementations and reason about the ex-
pected losses of requests for these bounds.

References

[1] T. Berczes, G. Guta, G. Kusper, W. Schreiner, and J. Sztrik. Comparing the Performance
Modeling Environment MOSEL and the Probabilistic Model Checker PRISM for Modeling and
Analyzing Retrial Queueing Systems. Technical Report 07-17, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, 2007.

[2] T. Berczes, G. Guta, G. Kusper, W. Schreiner, and J. Sztrik. Analyzing Web Server Perfor-
mance Models with the Probabilistic Model Checker PRISM. Technical report no. 08-17 in
RISC Report Series, Johannes Kepler University Linz, Austria, 2008.

[3] T. Berczes and J. Sztrik. Performance Modeling of Proxy Cache Servers. Journal of Universal
Computer Science, 12(9):1139–1153, 2006.

[4] M. Bernardo and J. Hillston, editors. Formal Methods for Performance Evaluation. 7th
International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SFM 2007. Lecture Notes in Computer Science, volume 4486, 2007.

[5] I. Bose and H. K. Cheng. Performance Models of a Firm’s Proxy Cache Server. Decision
Support Systems, 29:47–57, 2000.

[6] R. B. Cooper. Introduction to Queueing Theory. North Holland, 2nd edition, 1981.
[7] U. Herzog. Formal Methods for Performance Evaluation. Lecture Notes in Computer Sci-

ence, 2090:1–37, 2001.
[8] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic

Verification of Probabilistic Systems. Lecture Notes in Computer Science, Tools and Algo-
rithms for the Construction and Analysis of Systems, 3920:441–444, 2006.

[9] G. Norman, M. Z. Kwiatkowska, and D. Parker. Stochastic Model Checking. Lecture Notes
in Computer Science, Formal Methods for Performance Evaluation, 4486:220–270, 2007.

[10] PRISM—Probabilistic Symbolic Model Checker. www.prismmodelchecker.org. 2008.
[11] L. P. Slothouber. A Model of Web Server Performance. Proceedings of the 5th International

World Wide Web Conference, 1996.
[12] K. Wolter, editor. Formal Methods and Stochastic Models for Performance Evaluation.

Fourth European Performance Engineering Workshop, EPEW 2007. Lecture Notes in Com-
puter Science, volume 4748, 2007.

51

52

Verification of Web Content: A Case Study on
Technical Documentation

Christian Schönberg, Mirjana Jakšić, Franz Weitl, and Burkhard Freitag

University of Passau, Department of Informatics and Mathematics
94030 Passau, Germany

{Christian.Schoenberg, Mirjana.Jaksic, Franz.Weitl,

Burkhard.Freitag}@uni-passau.de

Abstract. In this paper, we present the results of a case study on a
novel approach to document verification. Combining new techniques of
user constraint specification and model checking, our aim is to bridge
the gap between logical precision and usability, thus enabling authors
and inexperienced users to employ formal verification methods. Based
on a technical documentation in the form of a web document, we show
that our approach is effective, efficient and has a high usability. Addi-
tionally, we argue that document verification is highly relevant for many
applications, but especially for web content and hypertext documents.

1 Introduction

Keeping technical documentations in a consistent state – w.r.t. both structure
and content – is a hard task. Many documentations today are compiled from a
number of separate resources and text fragments, depending on current require-
ments and priorities. Online documentations complicate matters further because
they usually offer more than one (linear) path through the document, rendering
content consistency almost impossible to check manually.

At the same time, publishing documents online, in digital formats, is steadily
gaining in importance. Most manufacturers make their technical documentations
available on the web, while reusing content that is common to more than one
product. This further increases the impact and relevancy of automatic document
verification.

As part of the Verdikt1 project [WJF09] we propose a framework that em-
ploys information extraction, temporal description logics, and model checking
to verify consistency criteria on a multitude of document types. In this paper,
we will describe the techniques in the context of a case study in the domain of
technical documentation.

The results of the case study

– confirm the usability of our method for users not acquainted with formal
methods,

1 This work is funded by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) under grant number FR 1021/7-1.

53

– show the limited effort required to prepare a web document for model check-
ing,

– reveal the efficiency of model checking, and
– demonstrate the precision and usefulness of error reports generated by model

checking.

As a result, our approach helps bridging the gap between formal precision
and usability. This sets it apart from existing work in the field of document
verification.

For the purpose of this use case, we have adopted a version of our approach
that is simplified in several areas. At the appropriate points, we will describe
briefly how our framework goes beyond the techniques described here. Our ap-
proach is explained in more detail in [WJF09].

The rest of this paper is organized as follows: Section 2 describes our use
case. Section 3 gives an overview of the Verdikt framework. Sections 4 through
6 contain more detailed descriptions of the main components of the framework
and exemplify the overall processing based on our use case. Section 7 presents
the results achieved, section 8 discusses related work, and section 9 concludes
the paper.

2 Use Case

The case study presented in this paper concentrates on the domain of technical
documentation. As a sample document we picked a manual of a digital satellite
receiver published on the manufacturer’s web site and anonymized it, basically
by replacing company names, product brands, images, and most distinct phrases.
This lead to a document containing all the general features, characteristics, and
errors of the original but being anonymous in the sense that it cannot be linked to
a specific brand or seller. As a result, we obtained a document of 80 printed pages,
split into 25 HTML files that is a typical representative of technical documents in
terms of content, structure, and size. By convention, the content of each HTML
file is called a chapter of the document in the sequel.

Start Introduction

Safety
instructions

Important
instructions

Table of
contents

Package
content

Overview
of controls

Trouble-
shooting

Technical
lexicon

Technical
appendix

Fig. 1. Structure of the sample document

54

Fig. 1 presents a part of the basic structure of the web document in the
form of a directed graph of HTML pages / chapters (vertices) and links between
them (edges). The document begins with a title page (Start), followed by a
short Introduction, followed by Important instructions, Package content, and a
Table of contents. The Table of contents is succeeded by Safety instructions
and Overview of controls. Further follow the instructions about all the settings,
options, and functions of the receiver that could be used. The manual includes a
Technical appendix – an overview of the complete configuration of the receiver,
and a Technical lexicon – an overview of all abbreviations and technical terms
with explanations. The document ends with a Troubleshooting chapter.

The manual contains some problems that severely limit its readability. First,
inconsistent notation is used for some technical terms. For example, as a short
form of the term “Conditional Access Module”, the notation “CA-Module” has
been used in all chapters of the document, except for the Technical lexicon,
where this term is referred to as “CAM”. We also found some abbreviations like
“SPDIF”, “EPG”, or “FBAS”, which are not explained in the Technical lexicon
at all. Finally, there are some interfaces (like “Ethernet”) shown in the chapter
overview of controls, which are not described later on.

Among the objectives of this case study is to demonstrate the usability for
the end user and to determine the effort required to apply our framework in a
real-world scenario. Both are important factors for the general practicability of
the approach. In addition, the efficiency of the system is evaluated in runtime
tests.

3 Verdikt Framework

In the context of the Verdikt project, a general framework for document verifica-
tion has been developed [WJF09], which is divided into three major components:
the information extraction and model generation component, the specification
and formula generation component, and the model checking and error reporting
component.
The first component (information extraction) reads all relevant data from the
source document, stores it for further processing, and creates a verification model
suitable for model checking. The second component (specification) allows the
user to specify criteria to be applied to the input document. To this end, a
high level approach to the specification process based on specification patterns
is used [JF08]. The third component employs temporal description logics and
model checking techniques to verify the specification against the model and to
track errors to their origin in the source document. Temporal description logics
allow for the concise representation of consistency criteria evaluated along some
or all paths through the document the reader can sensibly follow. These paths
are subsequently called reading paths. For instance, Start → Introduction → Ta-
ble of contents → Troubleshooting is a reading path in the document depicted
in Fig. 1.

A detailed overview of the framework is shown in Fig. 2. The user defines a
set of consistency criteria to be applied to a document (top left corner). These

55

verification
model

TDL model
checker

logic level
specification

result
interpreter

error report

verification
result

user level
specification

model
generator

user
document

RDF statements

background
knowledge

document metadata

constructs configures

knowledge
extraction

Fig. 2. Overview of the Verdikt framework

user level specifications are converted into logical formulae to be used by the
model checker (top center). From a document (bottom right corner), data is ex-
tracted and stored as RDF metadata statements, which can be combined with
background knowledge about the domain of discourse. The user can choose what
metadata is relevant for the current application and should therefore be trans-
ferred to the verification model (top right corner), which is then passed on to the
model checker. The model checking component, based on temporal description
logics (TDL), calculates the verification result according to the specification and
the verification model, from which an error report is distilled and presented to
the user (bottom center). To make sense to the user, the error report has to
take into account the original user specification and has to refer to the source
document. Those source references are added to the document metadata.

4 Information Extraction

Extracting the necessary data from the document is performed in three stages:
(a) Extract the data from the document sources (in this case HTML), (b) store
the data in an RDF database, and (c) convert the data to a verification model
according to the semantics of the logic level specification language ALCCTL
(see sections 5 and 6). The model generated in step (c) can be adjusted to
meet different requirements, for example a fine-grained model describing every
paragraph of the document, or a more abstract model on the level of chapters.

56

To facilitate creating different models without having to reprocess the original
document, or to allow for ontology inferencing, the data is stored in an RDF
database.

chapter_6 “Overview of Controls”

“Front View”“Chapter”document:Structure

document:Title

c_6_front
“Multifunction Control”

p
document:Title

reference:Part

document:Term

“Back View”

“USB Connection”
“Section”

document:Structure

c 6 back

Back View

“Power Switch”
document:Title

reference:Part

d t T
_ _

“Power Connection”
document:Structure

document:Term

“Ethernet Connection”“Section”

Fig. 3. Small extract of the RDF metadata about the sample document

(a) HTML extraction. First, the HTML source files are preprocessed using
JTidy2 to produce valid XML code. Subsequently, they are converted into RDF
triples by means of an XQuery program. Using the Qexo3 XQuery implemen-
tation, we developed and added further functionality to the XQuery program,
including an extended context to keep track of current and previously parsed
elements, list-like data structures to facilitate a file history and to avoid infinite
loops, and several convenience methods to create valid RDF XML code.

Using a predefined vocabulary and CSS classes to infer structural informa-
tion, a metadata description of the sample document is generated, which is
represented in RDF (see Fig. 3).
Structural metadata includes information about the document’s chapter and
subchapter structure, as well as the content type of text units: for example, a
section is identified as an Introduction or as a Technical appendix. In our case
study, evaluating stylesheet classes and rudimentary keyword analysis were suf-
ficient to determine all important attributes. For more complex documents, we
have dictionaries and thesauri at our disposal, and we have made some ini-
tial experiments based on natural language processing and machine learning
[Sch08,GCW+96].

2 Java HTML Tidy, c© World Wide Web Consortium
3 Qexo is part of GNU Kawa, c© Per Bothner

57

Similar techniques can be applied to the extraction of content information, which
is however the more difficult task. In this case study, we used background knowl-
edge about the important terms, so we could employ elementary grammar rules
to find all instances of those terms in the text.

(b) RDF database storage. After a comparative analysis of both the capabilities
and the performance of different RDF database systems [SF09a], we decided to
employ the Sesame Framework4, an open source software that supports several
relational databases, including PostgreSQL and MySQL, and different query
languages, including SPARQL and an extension of RQL. It both outperformed
and offered better reliability than its major competitor, the Jena Framework5.

In our case study, the RDF data amounted to nearly 900 statements. This
number can easily grow by one or several orders of magnitude for very large doc-
uments or interconnected web pages. In these cases, memory management be-
comes an issue, and storing the data in a database system is mandatory [SF09a].

(c) Verification model generation. We again use XQuery to generate a verifica-
tion model from the RDF graph. This gives us more flexibility in customizing
the verification model to the requirements of the use case than native RDF
query languages would, since these do not support recursive queries required to
track paths in the RDF graph [SF09a]. Instead of simply transferring the entire
metadata about the document to the verification model, we exclude information
irrelevant for the desired specifications. This is information that does not affect
the result of verifying a given specification, because neither the information itself
nor further information inferred from it are referenced in the specifications. This
increases the efficiency of model checking and helps to facilitate a greater ease
of use by providing a concise set of vocabulary for user level specifications.

Fig. 4 provides an example of how the verification model is generated from
the document metadata w.r.t. a set of external parameters. The parameters
for this example specify that the relevant structural unit is the “Chapter” (as
opposed to e.g. “Section” or “Paragraph”), that any technical terms should be
represented by a concept named Term, and that the relation between chapters
and their titles and subtitles should be represented by a role named hasTopic.
The verification model is described in detail in section 6.

5 Formal Specification

For the purpose of our case study, we have chosen the following sample consis-
tency criteria:

1. Each abbreviation has to be defined later on.
2. Any technical term used in the document should be explained in the technical

lexicon.
4 c© Aduna Software
5 c© Hewlett-Packard Development Company, LP

58

chapter_6
“Overview of Controls”

document:Title

reference:Reference

c_6_front

“Chapter”
document:Structure

document:Title

reference:Part

chapter_7

d t Titl

reference:Reference

m
et

ad
at

a
en

ts
)

“Front View”

“Section”

document:Structure document:Term
“Setup”

“Chapter”
document:Structure

document:Title

“Multifunction Control”

do
cu

m
en

t
R

D
F

st
at

em
e

model

Parameters:
• “Chapters” are the relevant structural elements
• Terms are to be represented as a concept Term
• Titles of Chapters are to be represented as a role hasTopic

d (R
el ic

)

generator

at
io

n
m

od
es

cr
ip

tio
n

lo
g

chapter_6 chapter_7

ve
rif

ic
a

(te
m

po
ra

l d
e

hasTopic = {(chapter_6, “Overview…”), (chapter_6, “Front View”)}

hasTopic = {(chapter_7, “Setup”)}

p {(p _) (p _)}
Term = {“Multifunction Control”}

Fig. 4. Generating the verification model from the RDF metadata

3. The safety instructions should be listed immediately after the table of con-
tents.

4. The package content should be listed before the table of contents.
5. Any interface shown in the overview of controls should be explained later on

in the technical appendix.

To prove these or any other criteria automatically, they have to be expressed
in some formal language. For the formal representation of consistency criteria,
we use the temporal description logic ALCCTL, which has been introduced in
[Wei08]. ALCCTL is a combination of the description logic ALC [BN03] and
the branching time temporal logic CTL [Eme90]. ALC is expressive for repre-
senting structured properties of single content elements. CTL is expressive for
representing loose criteria on reading paths through the document. The combi-
nation of description logics and temporal logics provides high expressiveness for
content-related criteria w.r.t. reading paths.

59

For illustration, consider the first sample criterion: Each abbreviation has to
be defined later on, which can be expressed in ALCCTL as:

AbbreviatedTerm v EF DefinedTerm (1)

Criterion 5 is represented in ALCCTL as

OverviewOfControls v ∀shownInterface.AF ∃explainedIn.TechAppendix (2)

AbbreviatedTerm and DefinedTerm in formula (1) are concepts representing an
abbreviation and a definition of a technical term, respectively. v expresses that
all instances of the concept to its left (in this case AbbreviatedTerm) are also
instances of the concept to its right (in this case EF DefinedTerm). EF (read
“some path future”) is a temporal connective representing the set of objects
which on some path are eventually an instance of the concept in the scope of
the EF quantification. For instance, EF DefinedTerm is the set of terms being
defined in some text unit reachable from the current text unit on some reading
path.

shownInterface and explainedIn in formula (2) are description logic roles
representing binary relations between text units and topics.
∃explainedIn.TechAppendix represents the set of objects that are explained in
some (∃) Technical appendix of the document.
∀shownInterface.AF ∃explainedIn.TechAppendix specifies the set of objects that
only (∀) show interfaces that are on all paths eventually (AF) explained in some
Technical appendix. For a the complete and precise definition of syntax and
semantics of ALCCTL we refer the reader to [Wei08]. Formulae (1) and (2)
cannot be expressed by existing propositional temporal logics such as CTL or
LTL [Eme90] because they include quantified expressions (v,∀,∃).

6 Model Checking and Error Reporting

Within our framework, specifications represented in ALCCTL are verified by
model checking [Wei08,WJF09]. ALCCTL model checking combines high preci-
sion with excellent performance [Wei08]. In the case of specification violations,
counterexamples are generated that precisely pinpoint the error locations within
the document.

Here, we cannot give a comprehensive introduction into model checking
ALCCTL. Instead, we illustrate ALCCTL model checking informally on a sim-
plified part of our use case and refer the reader to [Wei08] and [WJF09] for
technical details.

The model checking problem of ALCCTL is defined on top of two structures:

– a finite, non-empty set of ALCCTL formulae F that represent consistency
criteria to be met by a document d.

– a finite verification model Md of document d that is derived from RDF-based
metadata (Fig. 4) and represents the structure and content of document d.

60

Table of
contents

chapter_6 chapter_7 chapter_23chapter_22

hasTopic = {(chapter_6, ”Overview...”),
(chapter_6, “Front View”)}

Term = {“Multifunction Control”}
AbbreviatedTerm = {“CA-Module”,

“USB”, “SPDIF”}

hasTopic = {(chapter_7, ”Setup”)}
AbbreviatedTerm = {“LNB”}

DefinedTerm = {“CA System”,
“HDMI”, “LNB”}

chapter_0

Fig. 5. Simplified verification model of the sample document

Fig. 5 depicts a simplified part of the verification model of the presented
use case. The verification model is an annotated graph (S, R, I): Nodes S of the
graph represent text units of the document (in our case: web pages), edges R
represent links between text units, and annotations I represent the content of
each text unit of the document.

In Fig. 5, S contains the nodes chapter 0 (Start), Table of contents, R
contains, for instance, an edge from Table of contents to chapter 7 and an edge
from chapter 7 back to Table of contents (Fig. 5 center). I maps each node in S
onto a set of annotations. For instance, I(chapter 7) represents the annotations
for node chapter 7 (Fig. 5 center bottom):

hasTopic = {(chapter 7, “Setup”)} (3)
AbbreviatedTerm = {“LNB”} (4)

This expresses that “chapter 7” covers the topic “Setup” and mentions the ab-
breviation “LNB”. The technical details of defining the interpretation I are omit-
ted here for brevity. The respective formal definitions can be found in [Wei08].

In contrast to models of propositional temporal logics such as CTL [Eme90],
the interpretation I of ALCCTL verification models allows to express relation-
ships among objects of the modeled domain. For instance, the fact that the
objects represented by chapter 7 and “Setup” are in a hasTopic relationship in
node chapter 7 (equation (3)) cannot be represented directly by means of propo-
sitional formalism such as CTL. Being able to represent semantic interrelation-
ships among parts and topics of a document is vital for verifying content-related
properties.

The semantics of ALCCTL [Wei08] defines when an ALCCTL formula f holds
at a node s ∈ S of a verification model Md = (S, R, I), in symbols Md, s |= f .

Given a verification model Md = (S, R, I) and an ALCCTL formula f , model
checking is defined as determining the set

Nodes(Md, f) := {s ∈ S | Md, s |= f}

61

i.e. the set of nodes at which a formula f holds in a model Md [Wei08].
Nodes(Md, f) represents the parts of the document that conform to a require-
ment represented by formula f .

In [Wei08] we have shown that the ALCCTL model checking problem is de-
cidable and has a polynomial runtime complexity. This is surprising because
ALCCTL allows quantified expressions typically leading to an exponential run-
time complexity. The polynomial complexity results from the limited interaction
of first order, path, and temporal quantifiers in ALCCTL. These limitations do
not severely affect the expressiveness of ALCCTL in the given application but
guarantee its efficiency also for large and complex scenarios.

We have defined a sound and complete algorithm for determining the set
Nodes(Md, f). This algorithm runs inO(|d|3· |f |) where |d| denotes the size of the
document d, and |f | denotes the size of the formula f to be verified. Documents of
5000 web pages are verified in less than 2 seconds. For comparison, the state-of-
the-art CTL model checker NuSMV [CCG+02] takes 25 seconds for a document
of 500 pages under similar conditions [Wei08].

For an illustration of model checking, let Md be the verification model de-
picted in Fig. 5 and f be the ALCCTL formula

AbbreviatedTerm v EF DefinedTerm

expressing that each “abbreviated term” is on some path within the graph (S, R)
eventually a “defined term” (compare section 5).

Then chapter 7 ∈ Nodes(Md, f) because for the (only) abbreviated term
“LNB” in chapter 7 (Fig. 5 center bottom) there is a path to the node chapter 23
where “LNB” is a defined term (Fig. 5 rhs bottom). However, chapter 6 6∈
Nodes(Md, f) because there are abbreviated terms “CA-Modules”,“USB”, and
“SPDIF” in chapter 6 (Fig. 5 lhs bottom) that are not defined terms in any
node reachable from chapter 6.

The nodes in S\Nodes(Md, f) represent the error locations within document
d w.r.t. formula f , i.e. the parts of the document d that do not conform to
the criterion represented by formula f . By applying appropriate naming con-
ventions, these nodes can be re-mapped easily onto the respective parts of the
document. For instance, node chapter 6 represents the part of the document
that is contained in chapter 6.html (cf. Table 1, first data row).

error location violating terms

chapter 6.html “CA-Modules”,“USB”, “SPDIF”
chapter 10.html “USB”, “CIM”
chapter 11.html “CA”
... ...

Table 1. Error report of verifying formula AbbreviatedTerm v EF DefinedTerm

62

Based on the model checking results, an error report as sketched in Table 1 is
generated. The first data row of Table 1 expresses that the terms “CA-Modules”,
“USB”, and “SPDIF” used in web page chapter 6.html are not satisfying the
formula AbbreviatedTerm v EF DefinedTerm.

In addition to the error report, a CSS file is generated that highlights the
violating terms within an error location of the document. Fig. 6 shows the pre-

Fig. 6. Violating terms highlighted within the verified document

sentation of “chapter 6.html” with violating terms “CA-Module”, “USB”, and
“SPDIF” being highlighted (bottom of Fig. 6).

7 Results

Table 2 summarizes the quantitative results of the case study. We checked a
manual of a satellite receiver, consisting of 25 HTML files, against a set of five

63

chapters of manual / HTML pages 25
formulae 5
violated formulae 3
error locations 18
violating terms 48

total runtime 9.1 s

time taken by knowledge extraction 4.4 s
model generation 4.5 s
model checking 0.1 s
report generation 0.1 s

Table 2. Results for verifying an online manual of a satellite receiver

criteria each of them being represented by a single ALCCTL formula (first and
second row in Table 2).

18 of 25 web pages had errors (“# error locations” in Table 2). These web
pages contained, in total, 48 terms that violated one of the specified properties
(“# violating terms” in Table 2). This is surprising since the manual was not ver-
ified in a pre-release stage but has already been published by the manufacturer.
The runtime results listed in Table 2 have been obtained on a desktop computer
with Intel Pentium IV CPU at 3.2 GHz and 2 GB RAM running Windows XP
and Java Version 6. The verification system has been implemented in Java.

The entire verification process took about 9 seconds (Table 2 center). The
major portion of runtime was consumed by the knowledge extraction and model
generation process (Fig. 2) that analyzes HTML markup, generates an RDF
description of the relevant parts of the document, and finally delivers a verifica-
tion model as described in sections 4 and 6. Note, however, that the verification
model can be generated off-line in a preprocessing step and re-used across dif-
ferent verification runs.

Checking the verification model against the ALCCTL-based specification and
generating an error report each took just 1% of the total runtime. Model checking
and report generation scales, on average, quadratically in the size of the docu-
ment [Wei08]. This ensures a quick response of the system when constructing
and testing different specifications interactively.

The application cost for our verification system arise from

– initial setup of the system for a certain document format and set of target
properties. As for the presented case study, it took about two hours to adjust
the knowledge extraction, model generation, and error reporting components
to the format of the given document. Two additional hours were required to
prepare and formalize five target criteria in ALCCTL. For documents sharing
the same format and target properties, the initial setup cost is independent
of the size and number of documents.

– preparing the document. In our case study, the document has been converted
from PDF to HTML format by using the HTML export function of Adobe
Acrobat. The resulting HTML code has been cleaned up, anonymized, and

64

annotated manually, which took about eight hours. Documents in a more
structured original format would require considerably less effort.

Altogether, the application cost of our verification system amounts to about
12 hours of manual effort. This initial effort amortizes quickly when a document
is changed frequently or parts of it are re-used in different contexts which is
typically the case for technical documentations.

The usability and usefullness of the approach were demonstrated at a large
exhibition of the University of Passau targeted at the general public. Visitors
who did not have any previous knowledge of verification techniques or technical
documentation were able to use the system and understand its verification results
after being given a brief introduction.

8 Related Work

Schematron [Jel02] and xlinkit [NCEF02] are powerful tools for validating the
consistency of XML documents. Our approach is different from these and other
XML validation techniques in the following aspects. First, our method is not
limited to XML documents but can be applied to other formats, e.g. HTML,
Microsoft Word, or LATEX, to name a few (cf. [Wei08,SF09b]). Second, properties
of reading paths are hard to express and inefficient to check using XPath, which
is fundamental both to Schematron and xlinkit. Finally, Schematron and xlinkit
are not designed to be used by authors without detailed knowledge about XML
processing.

There are several approaches (e.g. [SFC98,SDM+05,FLV08]) using some pro-
positional temporal logics (CTL, LTL), which enable the specification of complex
properties along browsing paths in hypermedia structures. Even thoughALCCTL
exceeds the expressive power of these formalisms regarding semantic relation-
ships within the modeling domain, we nonetheless achieve a better usability by
adding a user specification layer on top of the formal core. In addition, the higher
expressiveness of ALCCTL results in richer and more precise error reports that
clearly pinpoint problems within the document.

A system for the automated verification of Web sites has been developed
by the Verdi Project [ABF04]. A rule-based, formal specification language has
been used to define syntactic/semantic properties of a Web site. A verification
facility computes the requirements not fulfilled by the Web site, thus helping
with error correction by finding incomplete or missing Web pages. However, the
proposed specification language cannot express properties concerning the order
of information along the reading paths through the document.

A formal consistency management component based on description logics
is proposed in [ESS05] as an extension to the content management system for
technical documentation Schema ST46. Extensive tool support ensures a good
usability – at least for authors experienced in technical documentation. However,

6 http://www.schema.de

65

description logics on their own are not sufficiently expressive for representing
criteria on reading paths through the document (cf. [Wei08]).

A powerful and flexible framework for checking the consistency of collections
of interrelated documents has been proposed by [Sch04]. The formal basis is full
first order logics interpreted over a language defined in terms of the functional
programming language Haskell. While the suggested formalisms are very expres-
sive, they are also very complex – both in terms of computation and application
costs. Our approach offers a better compromise between high expressiveness and
formal precision on the one hand, and efficiency, usability, and low application
costs on the other.

9 Conclusion

We have sketched a new verification framework for web-based documents and
presented the results of a case study on an online manual of a satellite receiver.

The core of the verification framework consists of flexible RDF-based meta-
data representation, configurable generation of verification models, a temporal
description logic as an expressive specification language, and formal verification
of specifications by model checking.

The case study shows that the modularity and flexibility of the framework
reduces its application cost. Temporal description logics and model checking have
been demonstrated as powerful, efficient, and precise methods for the verification
of web documents. Error reports generated from model checking results pinpoint
error locations precisely within the document and highlight problematic terms.
The system offers a high degree of usability and can – in a restricted version – be
applied instantly by users without any pre-knowledge in the area of document
verification. As compared to existing approaches, a better compromise between
expressive power, low application costs, and usability has been found. Thus, an
important step towards closing the gap between the power of formal methods
and their practical applicability has been achieved. The results of this study have
also raised some issues worth to be examined in more detail.

For one, while the efficiency of the model checking algorithm is already sat-
isfactory, the efficiency of the metadata extraction process still needs to be in-
creased. We believe that, among other things, using more native RDF database
methods may help in that regard. A first prototype has shown encouraging re-
sults. To identify important terms and topics, we used a small amount of back-
ground knowledge during the extraction process. What remains to be investi-
gated, however, is the trade-off of model quality vs. reasoning effort.

Currently, we are successively increasing the flexibility of the system without
jeopardizing its usability. An intelligent specification assistant leads the user from
a first vague idea of a criterion to a precise, unambiguous specification using a
structured base of predefined specification patterns and application examples
[JF08]. First evaluations with end users confirm that a significantly increased
usability is achieved [Jak09].

66

References

[ABF04] M. Alpuente, D. Ballis, and M. Falaschi. Verdi: An automated tool for web
sites verification. In Proc. of JELIA 2004, volume 3299 of LNAI, pages
726–729. Springer, 2004.

[BN03] F. Baader and W. Nutt. Basic description logics. In The Description Logic
Handbook - Theory, Implementation and Applications, chapter 2, pages 47–
100. Cambridge University Press, 2003.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Proc. of CAV 02, volume 2404 of LNCS. Springer, 2002.

[Eme90] E.A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science: Formal Models and Semantics. 1990.

[ESS05] U. Egly, B. Schiemann, and J. Schneeberger. Tech. documentation author-
ing based on semantic web methods. Künstliche Intelligenz, 2:56–59, 2005.

[FLV08] S. Flores, S. Lucas, and A. Villanueva. Formal verification of websites.
Electronic Notes in Theoretical Computer Science, 200:103–118, 2008.

[GCW+96] R. Gaizauskas, H. Cunningham, Y. Wilks, P. Rodgers, and K. Humphreys.
Gate: an environment to support research and development in natural lan-
guage engineering. In Proc. of the ICTAI 1996, pages 58–66, 1996.

[Jak09] M. Jakšić. Evaluation eines Ansatzes zur Muster-basierten Spezifikation
von Konsistenzkriterien für Web-Dokumente. Technical Report MIP-0906,
University of Passau, 2009.

[Jel02] R. Jelliffe. The schematron assertion language 1.6. http://xml.ascc.net
/resource/schematron/Schematron2000.html, 2002. last visited Feb. 2009.

[JF08] M. Jakšić and B. Freitag. Temporal patterns for document verification.
Technical Report MIP-0805, University of Passau, 2008.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a con-
sistency checking and smart link generation service. ACM Transactions on
Internet Technology (TOIT), 2(2):151–185, 2002.

[Sch04] J. Scheffczyk. Consistent Document Engineering. Dissertation, Universität
der Bundeswehr München, 2004.

[Sch08] L. Scharinger. ExtraValid - Evaluation von Methoden und Werkzeugen der
Informations-Extraktion zur automatischen Annotation von Dokumenten.
Diplomarbeit, Universität Passau, 2008.

[SDM+05] E. Di Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia.
Design verification of web applications using symbolic model checking. In
Proc. of ICWE 2005, volume 3579 of LNCS, pages 69–74. Springer, 2005.

[SF09a] C. Schönberg and B. Freitag. Evaluating RDF querying frameworks for
document metadata. Technical Report MIP-0903, Univ. of Passau, 2009.

[SF09b] C. Schönberg and B. Freitag. Extracting and storing document metadata.
Technical report, University of Passau, 2009. to appear.

[SFC98] P. D. Stotts, R. Furuta, and C. R. Cabarrus. Hyperdocuments as automata:
Verification of trace-based browsing properties by model checking. Infor-
mation Systems, 16(1):1–30, 1998.

[Wei08] F. Weitl. Document Verification with Temporal Description Logics. PhD
thesis, University of Passau, 2008.

[WJF09] F. Weitl, M. Jakšić, and B. Freitag. Towards the automated verification
of semi-structured documents. Journal of Data & Knowledge Engineering,
68:292–317, 2009.

67

68

A Query Language for OWL
based on Logic Programming?

Jesús M. Almendros-Jiménez

Dpto. Lenguajes y Computación.
Universidad de Almeŕıa. jalmen@ual.es

Abstract. In this paper we investigate how to use logic programming
(in particular, Prolog) as query language against OWL resources. Our
query language will be able to retrieve data and meta-data about a given
OWL based ontology. With this aim, firstly, we study how to define a
query language based on a fragment of Description Logic, then we show
how to encode the defined query language into Prolog by means of logic
rules and finally, we identify Prolog goals which correspond to queries.

1 Introduction

OWL (Web Ontology Language) is an ontology language based on the so-called
Description Logic (DL) [W3C04a,Bor96]. Description logic is a subset of First
Order Logic (FOL). OWL is a language with different fragments named OWL
Full, OWL DL, OWL Lite and OWL Flight, among others. Such fragments are
restricted in expressive power in order to retain reasoning capabilities and de-
cidability. OWL Full contains all the constructors of the OWL and allows the
arbitrary combination of those constructors. OWL Full semantics is a exten-
sion of Resource Description Framework (RDF) semantics [W3C04b], however
it yields to an undecidable reasoning language [HPSvH03]. Therefore reasoning
in OWL Full can be incomplete. OWL DL and OWL Lite are subsets of OWL
Full in which some restrictions are considered. Therefore the RDF triple-based
encoding of OWL DL and OWL Lite impose some restrictions about the RDF
graphs. OWL Flight [dBLPF05] is based also in OWL, but the semantics is
grounded in logic programming rather than description logic.

In this paper we investigate how to use logic programming (in particular,
Prolog) as query language against OWL resources. Our query language will
be able to retrieve data and meta-data about a given OWL based ontology.
With this aim, firstly, we study how to define a query language based on a
fragment of Description Logic, then we show how to encode the defined query
language into Prolog by means of logic rules and finally, we identify Prolog
goals which correspond to queries. Basically, our work goes towards the use
of logic programming as query language for the Semantic Web. It follows our

? This work has been partially supported by Spanish MICINN under grant TIN2008-
06622-C03-03

69

research line about the use of logic programming for the handling of Web data
[ABE08,ABE06,ABE09,Alm08,Alm09b,Alm09a].

In the Semantic Web, RDF(S)/OWL resources contain data and meta-data
about a certain domain of interest. Such resources should be exploited by con-
sidering reasoning and inference mechanisms. Logic programming is a suitable
framework for reasoning and inference. Logic programming can be used as query
language for databases like in the case of the Datalog language. However, the
structure RDF(S)/OWL resources and the underlined reasoning mechanism of
RDF(S) and OWL, needs a particular treatment by means of logic programming.
A query language based on logic programming to be suitable for OWL resources
should include complex reasoning based on the Description Logic, which is the
basis of the OWL language. In addition, RDF(S) and OWL are an special case
of database in which meta-data (i.e. the database schema) and data (i.e. the
database instance) are mixed, and therefore a suitable query language should
retrieve not only data but meta-data. Meta-data retrieval is vital for accessing
to Web data.

Our framework follows the research line about handling of OWL by means
of logic programming. In this area, some authors [GHVD03,Vol04] have studied
the intersection of OWL and logic programming, in other words, which frag-
ment of OWL can be expressed in logic programming. They have defined the
so-called Description Logic Programming, which is the intersection of logic pro-
gramming and DL. Such intersection can be detected by encoding OWL into
logic programming. With this aim, firstly, the corresponding fragment of OWL
is represented by means of DL, after such fragment of the DL can be encoded
into a fragment of FOL; finally, the fragment of FOL can be encoded into logic
programming. Several fragments of OWL/DL can be encoded into logic pro-
gramming, in particular, Volz [Vol04] has encoded OWL subsets into Datalog,
Datalog(=), Datalog(=,IC) and Prolog(=,IC); where “=” means “with equal-
ity”, and “IC” means “with Integrity constraints”. Some recent proposals have
encoded description logic fragments into disjunctive Datalog [HMS07], and into
Datalog(IC,6=,not) (for OWL-Flight) [dBLPF05], where “not” means “with nega-
tion”.

Description logic is a formalism for expressing relationships between con-
cept and role names, and between concepts, roles and individuals. Formulas of
description logic can be used for representing knowledge, that is, concept de-
scriptions, about a domain of interest. Typically, description logic is used for
representing a TBox (terminological box) and the ABox (assertional box). The
TBox describes concept (and role) hierarchies (i.e., relations between concepts
and roles) while the ABox contains relations between individuals, concepts and
roles. Therefore we can see the TBox as the meta-data description, and the
ABox as the description about data. The most typical decision problems, with
regard to a given ontology, include instance checking, that is, whether a partic-
ular individual is a member of a given concept, and relation checking, that is,
whether two individuals hold a given role, subsumption, that is, whether a con-

70

cept is a subset of another concept, and concept consistency, that is, consistency
through a chain of concept relationships.

However, we believe that an interesting extension of such research line would
be to consider a query language in which answers will give us the names of con-
cepts, roles and individuals for which a given description logic formula is satis-
fied. Such procedure of search of answers can be seen as a decision procedure in
which a description logic formula contains free variables. Adding free variables to
description logic formulas, variables can represent individuals, or even concepts
and roles, and as query language they represent results of queries. In other words,
a description logic-based query language could be used for obtaining either the
concepts in which a given individual is included, or the roles an individual plays.
Therefore our proposed query language is able to retrieve not only data but also
meta-data about a given ontology. In addition, the concepts involved in such
queries can be “complex concepts”, in the sense they can be defined by means of
complex description logic formulas. Our proposed query language is also able to
answer about the typical decision problems: instance checking, relation check-
ing, subsumption and consistency problems, using Prolog as reasoning language.
The reasoning mechanism is however limited by Prolog semantics. In addition,
using Prolog command line, when the goal succeeds one obtain class, property
and individual names as answers, retrieving once at a time. Our proposed query
language will be able to decide about instance checking for complex concepts
like ∃P.C(A). In addition, we are able to handle the concept C and the role P
in such query as the result, in the sense that, we will obtain values for C or P
when A is fixed, admitting to fix C or P . Subsumption is also handled in our
query language including queries about complex relations between concepts like
∃P.C v D, in which any element (i.e. concepts D, C or role P) can be taken as
query result.

Most of DL reasoners (for instance, Racer [HM01], FaCT++ [TH06], Pel-
let [SPG+07]) can handle the typical decision problems, and they are based on
tableaux based decision procedures. Similar to our approach the tool KAON2
[HMS07] is based on logic programming. It encodes an OWL-DL ontology into
a disjunctive datalog program. The encoding can be combined with additional
logic rules, whenever they are DL-safe [HMS07]. KAON2 can express queries by
using the SPARQL query language [dLC06]. It allows to query about the typical
decision problems, but KAON2 does not allow to query about meta-data in the
sense of our proposal. It is due to variables at predicate positions (representing
concepts and roles) are not supported. We have studied a query language based
on a fragment of DL. Although the fragment of DL of our proposal is not as pow-
erful as the supported in KAON2, however our query language is more powerful
than the KAON2 query language, including queries with concepts and roles as
query results. The Protegé tool [GMF+03] is an example of tool in which rea-
soning includes “to find all classes that a given individual belongs to”. However,
our approach extends such kind of reasoning to a more general framework.

Finally, we believe that one of the advantages of our proposal is that our query
language could be used for querying OWL resources by means of a relational

71

database management system (RDBMS). Some recent works are concerned with
the handling of ontologies in a RDBMS (see [JCJ+07,MWL+08,AKK07]). As a
consequence of this research area, some tools (for instance, Jena [Jen08], Sesame
[BKvH02], OWLIM [KOM05] and Oracle Semantic Technologies [WED+08],
DBOWL [dMRA08], among others) are able to handle OWL in a RDBMS. Our
approach is more similar to the approach of the Minerva tool [ZML+06], in the
sense that they follow a logic based encoding and inference process in order
to obtain all the OWL triples to be stored in a RDBMS. However, the query
language of Minerva is not still able to fully handle description formulas. The
Minerva tool is not able to handle complex concepts as query results. It is due
to DL formulas involving complex concepts are represented in the Minerva tool
by means of relational tables and therefore it cannot handle complex concepts
as values.

The structure of the paper is as follows. Section 2 will present the fragment
of DL of our proposal. Section 3 will define the query language defined from the
fragment. Section 4 will describe the encoding of the query language in Prolog.
Section 5 will introduce the RDBMS implementation of our proposal. Finally,
Section 6 will conclude and present future work.

2 Web Ontology Language

In this section we will show what kind of ontologies will be allowed in our
framework. Such kind of ontologies can be mapped into a fragment of descrip-
tion logic. We restrict our work to the case of a fragment of DL which can
be encoded into Prolog. The study of other fragments of OWL (in the line of
[Vol04,HMS07,dBLPF05]) which can be also encoded into logic programming is
considered as future work. An ontology O in our framework contains a TBox
T including a sequence of definitions T1, . . . , Tn of the form:

R ::=
C v D | (rdfs:subClassof)
E ≡ F | (owl:equivalentClass)
P v Q | (rdfs:subPropertyOf)
P ≡ Q | (owl:equivalentProperty)
P ≡ Q− | (owl:inverseOf)

P ≡ P− | (owl:SymmetricProperty)

P+ v P | (owl:TransitiveProperty)

> v ∀P−.D | (rdfs:domain)
> v ∀P.D | (rdfs:range)

where E, F are class (i.e. concept) descriptions of equivalence type (denoted by
E,F ∈ E) of the form:
E ::= A | E1 u E2 | ∃P.{O}

In addition, C is a class (i.e. concept) description of left-hand side type (denoted
by C ∈ L), of the form:
C ::= A | C1 u C2 | ∃P.{O} | C1 t C2 | ∃P.C

and D is a class (i.e. concept) description of right-hand side type (denoted by
D ∈ R), of the form:

72

Fig. 1. Encoding of DL into FOL

fol(C v D) =∀x.folx(C)→ folx(D)
fol(E ≡ F) =∀x.folx(E)↔ folx(F)
fol(P v Q) =∀x, y.P (x, y)→ Q(x, y)
fol(P ≡ Q) =∀x, y.P (x, y)↔ Q(x, y)

fol(P ≡ Q−) =∀x, y.P (x, y)↔ Q(y, x)

fol(P ≡ P−) =∀x, y.P (x, y)↔ P (y, x)

fol(P+ v P) =∀x, y, z.P (x, y) ∧ P (y, z)→ P (x, z)
fol(> v ∀P.C) = ∀x.folx(∀P.C)

fol(> v ∀P−.C) = ∀x.folx(∀P−.C)

folx(A) =A(x)
folx(K1 uK2) =folx(K1) ∧ folx(K2)
folx(C1 t C2) =folx(C1) ∨ folx(C2)
folx(∃P.C) =∃y.P (x, y) ∧ foly(C)
folx(∀P.D) =∀y.P (x, y)→ foly(D)

folx(∀P−.D) =∀y.P (y, x)→ foly(D)
folx(∃P.{O}) =∃y.P (x, y) ∧ y = O

D ::= A | D1 uD2 | ∃P.{O} | ∀P.D

In all previous cases, A is an atomic class, P , Q are property (i.e. role) names
and O is an individual name. In addition, the ABox A contains a sequence of
definitions A1, . . . ,Am of the form:
P (A, B) | D(A)

where P is a property name, D ∈ R, and A,B are individual names.
The logic-based semantics of such fragment can be defined by using the en-

coding of DL into First Order Logic (FOL) (see Figure 1). Basically, the proposed
subset of DL restricts the form of class descriptions in right and left hand sides
of subclass and class equivalence definitions, and in individual assertions. Such
restriction is required according to [Vol04] in order to be able to encode the
cited fragment of DL into logic programming. Following [Vol04], the universal
quantification is only allowed in the right hand sides of DL formulas, which cor-
responds in the encoding to the occurrence of the same quantifier in the left
hand sides (i.e. heads) of rules. Union formulas are required to occur in the left
hand sides of DL formulas, which corresponds in the encoding to the definition
of two rules.

Let us see an example of an ontology O0 (see Figure 2). The ontology O0

describes meta-data in the TBox defining that the elements of Man and the
elements of Woman are elements of Person (cases (1) and (2)); and the elements
of Manuscript are either elements of Paper or elements of Book (case (4)). In
addition, a Writer is a Person who is the author of a Manuscript (case (3)), and
the class Reviewed contains the elements of Manuscript reviewed by a Person
(case (6)). Moreover, the XMLBook class contains the elements of Manuscript
which have as topic the value “XML” ((5)). The classes Score and Topic con-
tain, respectively, the values of the properties rating and topic associated to
Manuscript (cases (7) and (8)). The property average rating is a subproperty of
rating (case (10)). The property writes is equivalent to author of (case (9)), and
authored by is the inverse property of author of (case (11)). Finally, the property
author of, and conversively, reviewed by, has as domain a Person and as range a
Manuscript (cases (12)-(15)).

The ABox describes data about two elements of Book: “Data on the Web”
and “XML in Scottland” and a Paper: “Growing XQuery”. It describes the
author of and authored by relationships for the elements of Book and the writes

73

Fig. 2. An Example of Ontology

TBox
(1) Man v Person (2) Woman v Person
(3) Person u ∃author of.Manuscript v Writer (4) Paper t Book v Manuscript
(5) Book u ∃topic.{“XML”} v XMLbook (6) Manuscript u ∃reviewed by.Person

v Reviewed
(7) Manuscript v ∀rating.Score (8) Manuscript v ∀topic.Topic
(9) author of ≡ writes (10) average rating v rating

(11) authored by ≡ author of− (12) > v ∀ author of.Manuscript

(13) > v ∀ author of−.Person (14) > v ∀ reviewed by.Person
(15) > v ∀ reviewed by−.Manuscript
ABox
(1) Man(“Abiteboul”)
(2) Man(“Buneman”) (3) Man(“Suciu”)
(4) Book(“Data on the Web”) (5) Book(“XML in Scottland”)
(6) Paper(“Growing XQuery”) (7) Person(“Anonymous”)
(8) author of(“Abiteboul”,“Data on the Web”) (9) authored by(“Data on the Web”,

“Buneman”)
(10) author of(“Suciu”,“Data on the Web”) (11) author of(“Buneman”,

“XML in Scottland”)
(12) writes(“Simeon”,“Growing XQuery”) (13) reviewed by(“Data on the Web”,

“Anonymous”)
(14) reviewed by(“Growing XQuery”,“Almendros”) (15) average rating(“Data on the Web”,

“good”)
(16) rating(“XML in Scottland”,“excellent”) (17) average rating(“Growing XQuery”,

“good”)
(18) topic(“Data on the Web”,“XML”) (19) topic(“Data on the Web”,“Web”)
(20) topic(“XML in Scottland”,“XML”)

relation for the elements of Paper. In addition, the elements of Book and Paper
have been reviewed and rated, and they are described by means of a topic.

3 A Query Language based on DL

In this section we will define the query language based on DL. Such query lan-
guage will introduce variables in DL formulas in order to express the values to
be retrieved in the query result. In addition, our query language can handle con-
junctions of DL formulas. We will use variable names starting with lower-case
letters to distinguish them from non-variables. Now, assuming a set Vc of vari-
ables for classes c, d, . . . and a set Vp of variables for properties p, q, . . ., and a
set Vi of variables for individuals a, b . . ., a query φ against of an ontology O is
a conjunction ϕ1, . . . , ϕn where each ϕ has the form:

Query Language
ϕ ::= C v D | E ≡ F | P v Q | P ≡ Q | P (A, B) | D(A)

where C ∈ LV , D ∈ RV , E,F ∈ EV , P,Q ∈ PV and A,B ∈ IV . In addition, EV
contains the set of formulas of the form:

c | c ∈ Vc

A | atomic class

E1 u E2 | E1, E2 ∈ EV
∃P.{O} | P ∈ PV , O ∈ IV
∃P−.{O} | P ∈ PV , O ∈ IV

LV contains the set of formulas of the form:

74

c | c ∈ Vc

A | atomic class

C1 u C2 | C1, C2 ∈ LV
∃P.{O} | P ∈ PV , O ∈ IV
∃P−.{O} | P ∈ PV , O ∈ IV
C1 t C2 | C1, C2 ∈ LV
∃P.C | C ∈ LV , P ∈ PV
∃P−.C | C ∈ LV , P ∈ PV

RV contains the set of formulas of the form:

c | c ∈ Vc

A | atomic class

D1 uD2 | D1, D2 ∈ RV
∃P.{O} | P ∈ PV , O ∈ IV
∃P−.{O} | P ∈ PV , O ∈ IV
∀P.D | D ∈ RV , P ∈ PV
∀P−.D | D ∈ RV , P ∈ PV

and finally, PV contains property names and elements of Vp, and IV contains
individual names and elements of Vi.

As in the case of the data and meta-data definition language, the query
language is restricted to a fragment of DL in order to be encoded in logic pro-
gramming (i.e. in Prolog).

Assuming that variable names start with lower case letters, queries are formu-
las like type(′′Growing X Query ′′) whose meaning is “Find the type of Growing
XQuery”. The query ∃ Reviewed by−.{′′Growing XQuery ′′}(reviewer) means
“Retrieve the reviewers of “Growing XQuery”” and ∃Reviewed by.{′′Growing X-
Query′′}(manuscript) means “Retrieve the manuscripts in which “Growing X-
Query” is a reviewer”. Meta-data can be retrieved by means of our query lan-
guage as follows. For instance, using union and intersection operators we can
retrieve intersection ≡ Book u Reviewed whose meaning is “Find the intersec-
tion of Book and Reviewed”. The query ∃ Writes.range v domain means “Find
the domains and ranges of Writes”. Finally, ∃ property .Person v Book means
“Find the properties from Book to Person”.

3.1 Inference System

Now, we would like to show an inference system, denoted by `OI , in order to
provide semantics to our query language, O `OI α means that α is deduced from
the rules of Figure 3.

The rules from Eq1 to Eq2 handle inference about equivalence. For instance,
Eq1 infers equivalence by reflexivity and Eq2 infers equivalence by transitiv-
ity. The rules from Sub1 to Sub13 handle inference about subclasses. Cases
from Sub3 to Sub8 define new subclass relationships from the already defined
subclass relationships and union and intersection operators. Cases from Sub9 to
Sub12 define new subclass relationships for complex formulas. The rules Type1
to Type11 infer type relationships using subclass and equivalence relationships.
The most relevant ones are the cases from Type6 to Type10 defining the mean-
ing of complex formulas w.r.t. individuals. Finally, the rules Prop1 to Prop7
infer relationships about roles. The most relevant ones are the case Prop5 about
the inverse of a property and the case Prop6 about a transitive relationship.

75

Fig. 3. Inference System `OI

Rule Name Inference
(Eq1) `OI E ≡ E
(Eq2) E ≡ F , F ≡ G `OI E ≡ G
(Sub1) `OI C v C
(Sub2) E ≡ F `OI E v F , F v E
(Sub3) C v D, D v E `OI C v E
(Sub4) C tD v E `OI C v E, D v E
(Sub5) E v C uD `OI E v C, E v D
(Sub6) C1 u C2 v D, E v C1 `OI E u C2 v D
(Sub7) C1 t C2 v D, E v C1 `OI E t C2 v D
(Sub8) C v D1 uD2, D1 v E `OI C v E uD2
(Sub9) ∃P.{O} v D, Q v P `OI ∃Q.{O} v D
(Sub10) ∃P.C v D, Q v P `OI ∃Q.C v D
(Sub11) C v ∃P.{O}, P v Q `OI C v ∃Q.{O}
(Sub12) C v ∀P.D, Q v P `OI C v ∀Q.D
(Sub13) `OI C v >
(Type1) C(A), C ≡ D `OI D(A)
(Type2) C(A), C v D `OI D(A)
(Type3) C(A), D(A) `OI (C uD)(A)
(Type4) (C uD)(A) `OI C(A), D(A)
(Type5) C tD v E, C(A) `OI E(A)
(Type6) C(B), P (A, B) `OI (∃P.C)(A)
(Type7) P (A, O) `OI (∃P.{O})(A)
(Type8) ∃P.C v D, P (A, B), C(B) `OI D(A)
(Type9) ∃P.{O} v D, P (A, O) `OI D(A)
(Type10) C v ∀P.D, P (A, B), C(A) `OI D(B)
(Type11) `OI >(A)
(Prop1) `OI P ≡ P
(Prop2) `OI P v P
(Prop3) P ≡ Q `OI P v Q, Q v P
(Prop4) P v Q, P (A, B) `OI Q(A, B)

(Prop5) P ≡ Q−, P (A, B) `OI Q(B, A)

(Prop6) P+ v P , P (A, B), P (B, C) `OI P (A, C)
(Prop7) C v ∃P.{O}, C(A) `OI P (A, O)

Our inference system is able to infer new information from a given ontology.
For instance, O0 `OI Reviewed(′′Data on the Web′′), using the following TBox
and ABox information:

Book(′′Data on the Web′′).
Person(′′Anonymous′′).
Book v Manuscript.
reviewed by(′′Data on the Web′′,′′ Anonymous′′).
Manuscript u ∃Reviewed by.Person v Reviewed.

by means of the following reasoning:

`(Type1) Manuscript(′′Data on the Web′′)
`(Type6) ∃Reviewed by.Person(′′Data on the Web′′)
`(Type3) (Manuscript u ∃Reviewed by.Person)(′′Data on the Web′′)
`(Type2) Reviewed(′′Data on the Web′′)

3.2 Limitation of the Inference System

Our inference system can be used for inferring consequences from a given ontol-
ogy. The idea is to apply the rules up to a fix point is reached. In order to ensure
a such fix point exists the inference system has been designed for reasoning with
atomic classes (i.e. in the `OI : C, D and E are atomic classes). Reasoning with
complex formulas, infinite subclass relationships are generated. For instance, by
means of the Sub1 rule: ∀P.C v ∀P.C, ∀P.∀P.C v ∀P.∀P.C, etc. In addition,

76

we have designed the inference system in order to be implemented in logic pro-
gramming, in particular, in Prolog. It forces to limit the inference capabilities
of our system. The inference system only handles the user-defined DL complex
formulas (i.e. those included in the TBox). For instance, we cannot infer new
relations like C v ∀P.D because it requires to check all the relations between
individuals for P . The same can be said for ∃P.C v D. We believe that it is not
a serious drawback of our inference system and query language assuming that
the user has to define such relationships as meta-data in the TBox in order to
be handle in queries.

4 Encoding into Prolog

Now, we would like to show how to use Prolog in our framework. The role
of Prolog is double. Firstly, we can encode any given ontology instance of the
considered fragment into Prolog. Secondly, our inference system `OI can be
encoded into Prolog by means of rules, in such a way that a certain class of
Prolog goals can be used as query language.

4.1 Ontology Instance Encoding

The encoding of an ontology instance consists of Prolog facts of a predicate called
triple, representing the RDF-triple based representation of OWL. In the case of
the TBox: en(C v D) = triple(en(C), rdfs : subClassOf , en(D)); en(E ≡ F) =
triple(en(E), owl : equivalentClass, en(F)); en(P v Q) = triple(en(P), rdfs :
subPropertyOf , en(D)); and en(P ≡ Q) = triple(en(P), owl : equivalentPro-
perty , en(Q)). In addition, en(C), en(D), en(E), en(F), en(P) and en(Q) rep-
resents the encoding of classes and properties in which class and property names
C ,P , . . . are translated as Prolog atoms c, d , The special case of > is encoded
as en(>) = owl : thing . In addition, Prolog terms are used for representing com-
plex DL formulas as follows: en(P+) = trans(en(P)); en(P−) = inv(en(P));
en(∀P .C) = forall(en(P), en(C)); en(∃P .C) = exists(en(P), en(C)); en(∃P .-
{O}) = hasvalue(en(P), en(O)); en(C u D) = inter(en(C), en(D)) and en(C -
t D) = union(en(C), en(D)). Finally, the elements of the ABox are also

encoded as Prolog facts relating pairs of individuals by means of properties,
and defining memberships to classes: en(P(A,B)) = triple(A, en(P),B) and
en(D(A)) = triple(A, rdf : type,D). In the case of the ontology O0, we will have:

triple(man,rdfs:subClassOf,person).
triple(woman,rdfs:subClassOf,person).
triple(inter(person,exists(author of,manuscript)), rdfs:subClassOf,writer).
triple(union(paper,book),rdfs:subClassOf,manuscript).
triple(inter(book,exists(topic,”XML”)),rdfs:subClassOf,xmlbook).
triple(inter(manuscript,exists(reviewed by,person)), rdfs:subClassOf,reviewed).
triple(manuscript,rdfs:subClassOf,forall(rating,score)).
triple(manuscript,rdfs:subClassOf,forall(topic,topic)).
triple(author of,owl:equivalentProperty,writes).
triple(authored by,owl:equivalentProperty,inv(author of)).

77

triple(average rating,rdfs:subPropertyOf,rating).
triple(owl:thing,rdfs:subPropertyOf, forall(author of, manuscript)).
triple(owl:thing,rdfs:subPropertyOf, forall(inv(author of), person)).
triple(owl:thing, rdfs:subPropertyOf, forall(reviewed by,person)).
triple(owl:thing, rdfs:subPropertyOf, forall(inv(reviewed by),manuscript)).
triple(“Abiteboul”,rdf:type,man).
triple(“Buneman”,rdf:type,man).
triple(“Suciu”,rdf:type,man).
triple(“Data on the Web”,rdf:type,book).
triple(“XML in Scottland”,rdf:type,book).
triple(“Growing XQuery”,rdf:type,paper).
triple(“Anonymous”,rdf:type,person).
triple(“Abiteboul”,author of,“Data on the Web”).
triple(“Data on the Web”,authored by,“Buneman”).
triple(“Suciu”,author of,“Data on the Web”).
triple(“Buneman”,author of,“XML in Scottland”).
triple(“Simeon”,writes,“Growing XQuery”).
triple(“Data on the Web”,reviewed by,“Anonymous”).
triple(“Growing XQuery”,reviewed by,“Almendros”).
triple(“Data on the Web”,average rating,“good”).
triple(“XML in Scottland”,rating,“excellent”).
triple(“Growing XQuery”,rating,“good”).
triple(“Data on the Web”,topic,“XML”).
triple(“Data on the Web”,topic,“Web”).
triple(“XML in Scottland”,topic,“XML”).

4.2 Encoding of the Inference System `OI

Now, the second element of the encoding consists of Prolog rules for encoding
the `OI inference system. The set of rules can be found in Figure 4, where facts
for predicates class, property and individual are defined for each atomic class,
property and individual. Each inference rule is encoded by means of a rule, but
in some cases by means of two rules (cases Sub2, Sub4, Sub5, Type4 and
Prop3). Let us remark that a Prolog interpreter loops by applying some of
the rules (for instance, Eq2). It can be avoided by memorizing triples in the
interpreter. Alternatively, a bottom-up approach can be considered.

4.3 Using Prolog as Query Language

In this section, we will show how to use Prolog as query language for OWL.
Basically, each query φ = ϕ1, . . . , ϕn in our query language can be encoded as a
Prolog goal ? − triple(en(ϕ1)), . . . , triple(en(ϕn)) in which each element of Vc,
Vp and Vi is encoded as a Prolog Variable. Now, we will show examples of queries
against the ontology O0 and the corresponding answers. Let us remark that in
Prolog variables start with upper case letters.
Query 1: The first query we like to show is “Retrieve the authors of manuscripts”,
which can be expressed in our query language as (∃ Author of.Manuscript)(au-
thor). It can be encoded as:

?− triple(Author , rdf : type, exists(author of ,manuscript)).

Let us remark that our inference system is able to infer that a Paper and a
Book is a Manuscript and therefore the above query retrieves all the manuscripts

78

Fig. 4. Encoding of the Inference System
Rule Name Prolog Rules
(Eq1) triple(E, owl : equivalentClass, E) : −class(E).
(Eq2) triple(E, owl : equivalentClass, G) : −triple(E, owl : equivalentClass, F),

triple(F, owl : equivalentClass, G).
(Sub1) triple(C, rfds : subClassOf , C) : −class(C).
(Sub2-I) triple(E, rdfs : subClassOf , F) : −triple(E, owl : equivalentClass, F).
(Sub2-II) triple(F, rdfs : subClassOf , E) : −triple(E, owl : equivalentClass, F).
(Sub3) triple(C, rdfs : subClassOf , E) : −triple(C, rdfs : subClassOf , D),

triple(D, rdfs : subClassOf , E).
(Sub4-I) triple(D, rdfs : subClassOf , E) : −triple(union(C, D), rdfs : subClassOf , E).
(Sub4-II) triple(C, rdfs : subClassOf , E) : −triple(union(C, D), rdfs : subClassOf , E).
(Sub5-I) triple(E, rdfs : subClassOf , C) : −triple(E, rdfs : subClassOf , inter(C, D)).
(Sub5-II) triple(E, rdfs : subClassOf , D) : −triple(E, rdfs : subClassOf , inter(C, D)).
(Sub6) triple(inter(E, C2), rdfs : subClassOf , D) : −

triple(inter(C1, C2), rdfs : subClassOf , D),
triple(E, rdfs : subClassOf , C1).

(Sub7) triple(union(E, C2), rdfs : subClassOf , D) : −
triple(union(C1, C2), rdfs : subClassOf , D),
triple(E, rdfs : subClassOf , C1).

(Sub8) triple(C, rdfs : subClassOf , inter(E, C2)) : −
triple(C, rdfs : subClassOf , inter(D1, D2)),
triple(D1, rdfs : subClassOf , E).

(Sub9) triple(hasvalue(Q, O), rdfs : subClassOf , D) : −triple(Q, owl : subPropertyOf , P),
triple(hasvalue(P, O), rdfs : subClassOf , D).

(Sub10) triple(exists(Q, C), rdfs : subClassOf , D) : −triple(Q, owl : subPropertyOf , P),
triple(exists(P, C), rdfs : subClassOf , D).

(Sub11) triple(C, rdfs : subClassOf , hasvalue(Q, O)) : −triple(P, owl : subPropertyOf , Q),
triple(C, rdfs : subClassOf , hasvalue(P, O)).

(Sub12) triple(C, rdfs : subClassOf , forall(Q, D)) : −triple(Q, owl : subPropertyOf , P),
triple(C, rdfs : subClassOf , forall(P, D)).

(Sub14) triple(C, owl : subClassOf , owl : thing) : −class(C).
(Type1) triple(A, rdf : type, D) : −triple(A, rdf : type, C),

triple(C, owl : equivalentClass, D).
(Type2) triple(A, rdf : type, D) : −triple(C, rdfs : subClassOf , D), triple(A, rdf : type, C).
(Type3) triple(A, rdf : type, inter(C, D)) : −triple(A, rdf : type, C), triple(A, rdf : type, D).
(Type4-I) triple(A, rdf : type, C) : −triple(A, rdf : type, inter(C, D)).
(Type4-II) triple(A, rdf : type, D) : −triple(A, rdf : type, inter(C, D)).
(Type5) triple(A, rdf : type, E) : −triple(union(C, D), owl : subClassOf , E),

triple(A, rdf : type, C).
(Type6) triple(A, rdf : type, exists(P, C)) : −triple(B, rdf : type, C), triple(A, P, B).
(Type7) triple(A, rdf : type, hasvalue(P, O)) : −triple(A, P, O).
(Type8) triple(A, rdf : type, D) : −triple(exists(P, C), rdfs : subClassOf , D),

triple(A, P, B), triple(B, rdf : type, C).
(Type9) triple(A, rdf : type, D) : −triple(hasvalue(P, O), rdfs : subClassOf , D),

triple(A, P, O).
(Type10) triple(B, rdf : type, D) : −triple(C, rdfs : subClassOf , forall(P, D)),

triple(A, P, O), triple(A, rdf : type, C).
(Type11) triple(A, rdf : type, owl : thing) : −individual(I).
(Prop1) triple(P, owl : equivalentProperty, P) : −property(P).
(Prop2) triple(P, owl : subpropertyOf , P) : −property(P).
(Prop3-I) triple(P, owl : subPropertyOf , Q) : −triple(P, owl : equivalentProperty, Q).
(Prop3-II) triple(Q, owl : subPropertyOf , P) : −triple(P, owl : equivalentProperty, Q).
(Prop4) triple(A, Q, B) : −triple(P, rdfs : subPropertyOf , Q), triple(A, P, B).
(Prop5) triple(B, Q, A) : −triple(P, owl : equivalentProperty, inv(Q)),triple(A, P, B).
(Prop6) triple(A, P, C) : −triple(trans(P), rdfs : subPropertyOf , P),

triple(A, P, B), triple(B, P, C).
(Prop7) triple(A, P, O) : −triple(C, rdfs : subClassOf , hasvalue(P, O)),

triple(A, rdf : type, C).

of the ontology O0. In addition, our inference system is able to infer that au-
thor of is a equivalent property to writes and therefore both cases are retrieved
by the query language. In this case, the answers will be ”Abiteboul”, ”Buneman”,
”Suciu”, ”Simeon”, ”Buneman” .

79

Query 2: The second query we would like to show is “Retrieve the books of
topic XML” which can be expressed as (Booku∃Topic.{′′XML′′})(book). Now,
it can be expressed as:

?− triple(Book , rdf : type, inter(book , exists(topic,′′XML′′))).

However, given that the ontology already includes the class “XMLBook” we can
express the same query in a more concise way as XMLBook(book) and therefore
as:

?− triple(Book , rdf : type, xmlbook)

Query 3: The third query we would like to show is “Retrieve the writers of
reviewed manuscripts”. It can be expressed as (∃Writes.Reviewed)(author). In
this case, the query can be expressed as:

?− triple(Author , rdf : type, exists(writes, reviewed)).

Query 4: Now, the query “Retrieve the papers together with the reviewers”. This
query can be expressed in our query language as Paper(paper),∃Reviewed by−.
{paper}(reviewer). In this case the Prolog encoding is:

?− triple(Paper , rdf : type, paper), triple(Reviewer , rdf : type,
hasvalue(inv(reviewed by),Paper)).

Query 5: Let us see an example of query for retrieving meta-data from the
ontology. For instance ∃ Reviewed by .range v domain whose meaning is “Find
the domains and ranges of Reviewed by” is encoded as:

?− triple(exists(reviewed by ,Range), rdfs : subClassOf ,Domain).

In this case the answers will be Manuscript, Book, Paper for Domain and
Man, Woman, Person for Range.

5 Implementation in a Relational Database System

Finally, we would like to present how to implement our query language in a
RDBMS. Our proposal is similar to the followed in the Minerva tool [ZML+06]
with some differences. Basically, we will include the facts of triple in a relational
table, but complex terms like exists(P,C) will be stored in a separate table.
Therefore we will have two tables called TRIPLES and COMPLEX.

For instance the ontology O0 can be stored as in Figure 5. In order to re-
trieve triple(inter(person,exists(author of,manuscript)), rdfs:subClassOf, writer)
from the tables we have to join the following three records: (id1,rdfs:subClass-
Of,writer) from TRIPLES, and (id1,inter,person,id2), (id2, exists, author of,
manuscript) from COMPLEX.

80

Fig. 5. Implementation with Tables

Table TRIPLE
Subject Property Object
man rdfs:subClassOf person
woman rdfs:subClassOf person
id1 rdfs:subClassOf writer
id3 rdfs:subClassOf manuscript
id4 rdfs:subClassOf xmlbook.
id6 rdfs:subClassOf reviewed.
manuscript rdfs:subClassOf id8
...
authored by owl:equivalentProperty id9
...
“Abiteboul” rdf:type man
“Buneman” rdf:type man
.̇.

Table COMPLEX
Identifier Term Arg1 Arg2
id1 inter person id2
id2 exists author of manuscript
id3 union paper book
id4 inter book id5
id5 exists topic ”XML”
id6 inter manuscript id7
id7 exists reviewed by person
id8 forall rating score
id9 inv author of

The differences with respect to the Minerva tool is that in our proposal
complex formulas (exists, forall, etc) are handled as values of tables instead of
table names, therefore we are able to retrieve DL complex formulas as result
of queries. Similarly to the Minerva tool, we assume that the table TRIPLES
include all the OWL triples inferred from the given ontology. It is reasonable
given that usually ontologies do not change in time. In order to infer all the
consequences from a given ontology instance we can apply the inference rules of
Figure 3 up to a fix point is reached.

Finally, our query language can be easily encoded in SQL, for instance, the
query (∃ Author of.Manuscript)(author) can be encoded as follows:

SELECT Subject FROM TRIPLES,COMPLEX
WHERE Property=rdf:typeOf and
Object=Identifier and Term=exists
and Arg1=author of and Arg2=manuscript

6 Conclusions and Future Work

In this paper we have proposed a query language for OWL based on Prolog.
The query language is able to query about data and meta-data of a given on-
tology. We have studied the implementation of the query language in Prolog
and in a RDBMS. As future work, we would like to extend our approach to
richer fragments of DL and therefore of OWL. We believe that some exten-
sions could be possible following the same technique here presented. We are
now developing a prototype of our proposal using SWI-Prolog and MySQL.
We hope the prototype will be available soon in the Web page of the group
http://www.ual.es/~jalmen.

References

[ABE06] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Magic sets for the XPath language. Journal of Universal Computer Science,
12(11):1651–1678, 2006.

81

[ABE08] J. M. Almendros-Jiménez, A. Becerra-Terón, and Francisco J. Enciso-Baños.
Querying XML documents in logic programming. Journal of Theory and
Practice of Logic Programming, 8(3):323–361, 2008.

[ABE09] J. M. Almendros-Jiménez, A. Becerra-Terón, and F. J. Enciso-Baños. Inte-
grating XQuery and Logic Programming. In Proceedings of the 17th Interna-
tional Conference on Aplications of Declarative Programming and Knowledge
Management, INAP’07 and 21th Workshop on (Constraint) Logic Program-
ming, WLP’07, pages 117–135, Heidelberg, Germany, 2009. Springer LNAI,
5437.

[AKK07] I. Astrova, N. Korda, and A. Kalja. Storing OWL Ontologies in SQL Rela-
tional Databases. International Journal of Electrical, Computer, and Systems
Engineering, 1(4), 2007.

[Alm08] J. M. Almendros-Jiménez. An RDF Query Language based on Logic Pro-
gramming. In Proceedings of the 3rd Int’l Workshop on Automated Speci-
fication and Verification of Web Systems. Electronic Notes on Theoretical
Computer Science (200), 67–85, 2008.

[Alm09a] J. M. Almendros-Jiménez. An Encoding of XQuery in Prolog. In Procs of
the Sixth International XML Database Symposium XSym’09, at VLDB’09.
Springer, LNCS, to appear, 2009.

[Alm09b] J. M. Almendros-Jiménez. Ontology Querying and Reasoning with XQuery.
In Proceedings of the PLAN-X 2009: Programming Language Techniques
for XML, An ACM SIGPLAN Workshop co-located with POPL 2009.
http://db.ucsd.edu/planx2009/papers.html, 2009.

[BKvH02] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: A Generic Ar-
chitecture for Storing and Querying RDF and RDF Schema. In The Semantic
Web - ISWC 2002, pages 54–68. LNCS 2342, Springer, 2002.

[Bor96] Alex Borgida. On the relative expressiveness of Description Logics and Pred-
icate Logics. Artificial Intelligence, 82(1-2):353–367, 1996.

[dBLPF05] Jos de Bruijn, Rubén Lara, Axel Polleres, and Dieter Fensel. OWL DL vs.
OWL flight: conceptual modeling and reasoning for the semantic Web. In
WWW ’05: Proceedings of the 14th international conference on World Wide
Web, pages 623–632, New York, NY, USA, 2005. ACM.

[dLC06] Cristian Pérez de Laborda and Stefan Conrad. Bringing Relational Data
into the Semantic Web using SPARQL and Relational OWL. In Procs. of
ICDEW’06, page 55, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[dMRA08] Maŕıa del Mar Roldán-Garćıa and José Francisco Aldana-Montes. DBOWL:
Towards a Scalable and Persistent OWL Reasoner. In ICIW, pages 174–179.
IEEE Computer Society, 2008.

[GHVD03] Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. De-
scription Logic Programs: Combining Logic Programs with Description Logic.
In Proc. of the International Conference on World Wide Web, pages 48–57,
USA, 2003. ACM Press.

[GMF+03] J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubézy,
H. Eriksson, N.F. Noy, and S.W. Tu. The evolution of Protégé: an envi-
ronment for knowledge-based systems development. International Journal of
Human-Computer Studies, 58(1):89–123, 2003.

[HM01] Volker Haarslev and Ralf Möller. Racer system description. In IJCAR ’01:
Proceedings of the First International Joint Conference on Automated Rea-
soning, pages 701–706, London, UK, 2001. Springer-Verlag.

82

[HMS07] Ullrich Hustadt, Boris Motik, and Ulrike Sattler. Reasoning in Descrip-
tion Logics by a Reduction to Disjunctive Datalog. J. Autom. Reasoning,
39(3):351–384, 2007.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: the making of a Web Ontology Language. J. Web
Sem., 1(1):7–26, 2003.

[JCJ+07] D. Jeong, M. Choi, Y. Jeon, Y. Han, L.T. Yang, Y. Jeong, and S. Han.
Persistent Storage System for Efficient Management of OWL Web Ontology.
In UIC 2007, pages 1089–1097. LNCS 4611,Springer, 2007.

[Jen08] Jena. Semantic Web Framework for Java. URL: http://jena. sourceforge.
net, 2008.

[KOM05] A. Kiryakov, D. Ognyanov, and D. Manov. OWLIM-A Pragmatic Seman-
tic Repository for OWL. In WISE 2005 Workshops, pages 182–192. LNCS
3807,Springer, 2005.

[MWL+08] L. Ma, C. Wang, J. Lu, F. Cao, Y. Pan, and Y. Yu. Effective and efficient
semantic web data management over DB2. In Proceedings of the 2008 ACM
SIGMOD international conference on Management of data, pages 1183–1194.
ACM New York, NY, USA, 2008.

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo C. Grau, Aditya Kalyanpur, and Yarden
Katz. Pellet: A practical OWL-DL reasoner. Web Semantics: Science, Ser-
vices and Agents on the World Wide Web, 5(2):51–53, June 2007.

[TH06] D. Tsarkov and I. Horrocks. FaCT++ Description Logic Reasoner: System
Description. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR
2006), volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297.
Springer, 2006.

[Vol04] Raphael Volz. Web Ontology Reasoning with Logic Databases. PhD thesis,
Universität Fridericiana zu Karlsruhe, 2004.

[W3C04a] W3C. OWL Ontology Web Language. Technical report, www.w3.org, 2004.
[W3C04b] W3C. Resource Description Framework (RDF). Technical report,

www.w3.org, 2004.
[WED+08] Z. Wu, G. Eadon, S. Das, E.I. Chong, V. Kolovski, M. Annamalai, and

J. Srinivasan. Implementing an Inference Engine for RDFS/OWL Constructs
and User-Defined Rules in Oracle. In Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, pages 1239–1248, 2008.

[ZML+06] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan. Minerva: A Scalable
OWL Ontology Storage and Inference System. In ASWC 2006, pages 429–
443. LNCS 4185,Springer, 2006.

83

84

Obtaining accessible RIA UIs by combining RUX-
Method and SAW

Marino Linaje, Adolfo Lozano-Tello, Juan Carlos Preciado, Roberto Rodríguez,
Fernando Sánchez-Figueroa

QUERCUS Software Engineering Group
Universidad de Extremadura

Escuela Politécnica. Avda. Universidad s/n, 10071 – Cáceres
{mlinaje, alozano, jcpreciado, rre, fernando}@unex.es

Abstract. Web 2.0 introduces important features from the User Interface (UI)
perspective such as multimedia support or high levels of interactions, among
others. These features are mainly being implemented using Rich Internet
Applications (RIAs) technologies that are challenging the way in which the
Web is being developed. The popularity of RIAs is witnessed by the flourishing
and rapid spread of their implementation technologies e.g., AJAX, Flash,
FLEX, OpenLaszlo or Silverlight. However, from the UI accessibility point of
view, these technologies pose new challenges that the Web Accessibility
Initiative of the W3C is trying to solve through the use of a standard
specification for Accessible Rich Internet Applications (WAI-ARIA).
Currently, the introduction of properties defined in WAI-ARIA is being done in
an ad-hoc manner due to the lack of models, methodologies and tools to support
the design of accessible RIA UIs. In this paper, we propose a semantic
approach to deal with this modeling issue through the combined use of RUX-
Method, a model-based method that allows building RIA UIs and SAW, a
System for Accessibility to the Web through the specification in an ontology of
different roles, properties and states of accessibility proposed by WAI-ARIA.

1 Introduction

During the last years, the complexity of tasks performed through Web applications
has increased significantly. Modern Web applications support sophisticated
interactions, client-side processing, asynchronous communications, multimedia
handling, and more. In this context, the traditional Web architecture (i.e., HTTP-
HTML) has shown its limits, and developers are switching to novel technologies
known under the collective name of Rich Internet Applications (RIAs). RIAs combine
the benefits of the Web distribution architecture with the UI interactivity and
multimedia support of desktop environments.

From the UI point of view, RIAs expand traditional Web UI features, providing
Richer content types: i.e., homogeneous multimedia content, like video and audio;
Richer controls: i.e., many advanced widgets (e.g., accordion, modal window, etc.)
that can be used to expand the possibilities of the standard HTML controls (e.g.,

85

textinput, combobox, etc.); Richer UI temporal behaviors: i.e., animations, transition
effects, etc.; Richer interactivity: i.e., advanced interaction support through Web-
extended events in the widgets (e.g., drag-and-drop or double-click).Finally, they
allow single-page UI: while the traditional Web UI is Multi-page i.e., the page is
refreshed at each user’s interaction, RIAs can use also the Single-page paradigm,
where the UI is composed by elements that can be individually loaded, displayed or
refreshed according to the UI requirements.

This richness is one of the main reasons why more and more developers are trying
to adapt their applications by replacing the old UI with a new one using RIAs.
However, this richness introduces new accessibility challenges, e.g., drag-and-drop
interaction events are not available to users that cannot use a pointer. Another
situation is e.g., when we consider the single-page paradigm where part of the UI
changes in response to user’s actions or time- or event-based updates; in this case, the
new content may not be available to those users who are blind.

To provide an accessible user experience to people with special needs, assistive
technologies need to be able to interact with these new widgets, behaviors and UI
paradigms. Although some RIA technologies provide support for WCAG [4] or
Section 508 [22] accessibility guidelines, these guides were created for traditional
Web UIs and they are not comprehensive enough for RIA UI accessibility
specification.

WAI-ARIA [1] tries to solve this problem by defining how information about these
issues can be specified to be used later by assistive technologies. At the moment,
WAI-ARIA is focused in those RIA UIs based on W3C standards. However, from our
knowledge the introduction of accessibility features provided by WAI-ARIA is
currently being done in an ad-hoc and craft manner due to the lack of models and
methodologies to support the RIA UI design [2].

This lack of methodologies for RIA UI design was just the origin of RUX-Method
[3], a method for enriching the UI of Model-based Web Applications with RIA
features. In [3] we did not consider accessibility issues. However, and even when the
WAI-ARIA is still a working draft, in this paper we consider the inclusion of
accessibility issues according to these specifications due to the many advantages that
it has already introduced for accessible RIA UIs.

Accessibility can be analyzed from different points of view, such as normative,
legislative and technological. The legislative context is essential but not sufficient. It
is necessary to rely on regulations that help us to break existing obstacles [4].

 From the technological point of view, there are several tools; some of them are
thought for users and others are for designers; some are aimed at overcoming
hardware barriers and others are designed for overcoming software or content
barriers. This technological dispersion, this variety of manufacturers and this lack of
an integrated tool hinder real accessibility.

This situation was just the origin of SAW, a System for Accessibility to the Web
[5] that takes into account the final user as well as the designer. SAW integrates
different tools in order to overcome the three main barriers to accessibility: hardware,
browser and content. One of the main pillars of SAW is an ontology for describing
the HTML elements, their relationships and those properties concerning accessibility
(following WCAG [4]).

86

In this paper we describe the combination of both, RUX-Method and SAW, to
obtain Accessible RIA UIs. In this work the ontology used in SAW has been
substituted by that defined in WAI-ARIA, which is constituted by roles, states and
properties that set out an abstract model for accessible UIs. The bridge between RUX-
Method and SAW relies on the Component Library provided by the former and the
ontology provided by the latter. The information provided by the ontology is used to
enrich the RUX-Method components with attributes related to accessibility. These
enriched components can be mapped to accessibility frameworks that use this
information to provide alternative access solutions or simply can be rendered by Web
browsers that will treat the information accordingly. Currently, there are several
browsers and assistive technologies that give support to the WAI-ARIA draft, such as
the latest versions of Firefox, IE, Opera or Jaws.

The rest of the paper is as follows. Sections 2 and 3 show an overview of SAW and
RUX-Method respectively. In Section 4 the combination of SAW and RUX-Method
is shown. Finally, section 5 summarizes the paper and presents several considerations
about related works.

2 SAW overview

SAW is an ontology-based software suite that aims at providing accessibility to the
Web. It was thought for traditional Web UIs. The software suite incorporates a special
mouse that allows surfing the net to blind users by providing Braille cells to identify
the elements being surfed. The suite applications and their relationships are shown in
Figure 1.

SAW represents the different accessibility attributes of Web page elements in an
ontology [6] named ONTOSAW. This own representation skeleton is used by the SAW
software modules as a common source of information. One of these modules is the
Web page editor EDITSAW, which allows the designer to carry out semantic
annotations inside the HTML code, adding special accessibility elements. These
annotations, together with the outline defined in ONTOSAW are used by the
NAVISAW browser to show this information to the user. NAVISAW contains a speech
synthesizer, voice recognition software and a special mouse (i.e., MOUSESAW). For
the purpose of this paper the role of NAVISAW is not relevant, since we plan to use
standard browsers that support the WAI-ARIA specification. Interested readers can
see [5] for further information about NAVISAW.

ONTOSAW contains the basic structural elements that may appear on pages written
in XHTML such as paragraphs, images, tables, links, objects, etc. ONTOSAW also
takes into account the WAI’s recommendations that determine the attributes of these
elements to make them accessible. Besides, ONTOSAW incorporates other additional
attributes that will allow NAVISAW to offer some special perceptual possibilities to
blind people, such as linking each web page element to a voice file or a Braille file
that describes the content or functionality of some elements. EDITSAW gets as entries
the XHTML document and the ontology. It produces an XHTML document enriched
with semantic annotations (step 2 in Figure 1). The annotations are carried out
manually by the designer. An example of a Table element can be seen below Figure 1,

87

where the attributes ONTOSAW:resume, ONTOSAW:rows, ONTOSAW:columns,
ONTOSAW:Braille and ONTOSAW:voice, with their corresponding values, have been
incorporated.

Fig. 1. SAW components and relationships

Simple example of annotated HTML page
< table
 OntoSAW:resume=“Price table of MP3 player”
 OntoSAW:rows=3 ontoSAW:columns=3
 OntoSAW:braille=“http://quercusseg.unex.es/MP3player/table567/fictable567.bra”
 OntoSAW:voice=“http://quercusseg.unex.es/MP3player/tabla567/fictable567.wav”
 width="100%" height="114" border="0">
 <tr> <td>Product</td> <td>Price</td> <td>Currency</td> </tr>
 <tr> <td>Player P1</td> <td>43</td> <td>Euro</td> </tr>
 <tr> <td>Player P2</td> <td>68</td> <td>Euro</td> </tr>
</table>

In order to make a Web page accessible, EDITSAW follows several steps. Firstly,

EDITSAW connects to the ontology, usually situated in a common repository, through
the Internet. This way, if the ontology has incorporated new elements and attributes
according to the new recommendations from e.g., the WAI, these new characteristics
will be considered dynamically by EDITSAW. After identifying the URL of the Web
page that the designer wants to use, its contents are analyzed and the elements which
are not accessible are shown (in Figure 2 showed with a circled icon). Then, the
designer can modify the attributes of these elements (and others) simply by selecting
the appropriate icon and filling in the values of the corresponding attributes (form at

88

the right part of the figure). Once no circled icons remain (that is, all web page
elements have their attributes with appropriate values for accessibility), it is allowed
to store the new accessible page.

These special annotations that EDITSAW carries out form valid XHTML pages.
Widely spread browsers ignore these labels although they show all the other attributes
of the elements in a conventional way. On the other hand, NAVISAW will use these
annotations to offer better accessibility to impaired users.

Fig. 2. Editing accessibility with EDITSAW

3 RUX-Method

RUX-Method (Rich User eXperience Method, now on RUX) [7], is a model driven
method which supports the design of multimedia, multi-modal and multi-device
interactive Web 2.0 UIs for RIAs. RUX can be combined with many Web models
such as WebML [8], UWE [9] OOHDM [10] or OO-H [11] which model the data and
business logic in order to build complete rich Web Applications.

RUX overview is depicted in Figure 3. Following the multi-level approach
explained in [12], RUX is broken down into four design levels: Concepts and Tasks,
Abstract UI, Concrete UI and Final UI. RUX takes Concepts and Tasks (i.e., data and
business logic) from the underlying Web model while the rest of the levels are mainly
based on RUX UI Components.

89

Fig. 3. RUX-Method architecture overview

In RUX, the Abstract UI provides a conceptual representation of the UI with all
the features that are common to all the RIA devices and development platforms,
without any kind of spatial, look&feel or behaviour dependencies. Following this
idea, each component of the Abstract UI is also independent from any specific RIA
device and rendering technology. This RUX UI level works with the following
conceptual components: views (i.e., any different types of containers like alternative,
hierarchical, etc.), media (i.e., any different type of media like text, video, images,
etc.) and connectors (the connection with the business logic of the underlying Web
model).

In the Concrete UI, we are able to optimize the UI for a specific device or a set of
devices. Concrete UI is divided into three Presentation levels in order to provide a
deeper separation of concerns according to the Web UIs requests: Spatial, Temporal
and Interaction Presentation. Spatial Presentation allows the spatial arrangement of
the UI to be specified, as well as the look&feel. Temporal Presentation allows the
specification of those behaviours which require a temporal synchronization (e.g.
animations). Finally, Interaction Presentation allows modelling the behaviours that
the user produces through events over the UI.

90

The RUX process ends with the Final UI specification which provides the code
generation of the modelled application when using RUX-Tool1 [3]. This generated
code is specific for a device or a set of devices and for a RIA development platform.
This code is deployed together with data and business logic code generated using
other CASE Tools (e.g., WebRatio).

There are two kinds of adaptation phases in RUX according to the UI levels
defined above. Firstly, the adaptation phase that catches and adapts Web data,
contents and navigation from the underlying Web model to RUX Abstract UI is called
Connection Rules. Secondly, the adaptation phase that fits this Abstract UI to one or
more particular devices and grants a right access to the business logic is called
Transformation Rules 1 (TR1).

Finally, there is an additional transformation phase supporting and ensuring the
right code generation (Transformation Rules 2 or TR2).

Closely related to the Transformation Rules, is the Component Library (depicted
in Figure 4). Each RUX UI Component specification is stored in this Library. The
Library also stores how the transformations among components of different levels
will be carried out.

The main interest for this paper relies on the Component Library, so next is
briefly explained.

3.1 Component Library

The Component Library is responsible for: 1) storing the component specification
(mainly composed of name, methods, properties and events), 2) specifying the
transformation/mapping capabilities for each component from an UI level into other
components in the following UI level and 3) keeping the hierarchy among
components at each UI level independently from other levels. The set of UI
Components that can be defined in the Library can be increased or modified by the
designer according to the specifications of the project at any time during the UI
design phase. In addition, the set of available transformations/adaptations for each
Component can be also increased or updated according to the UI Components
included in the Library. Summarizing, for a given component several transformations
can be defined depending on the target components that can be N. E.g., an Abstract UI
component is Text whose type can be input or output; this component could be
transformed to the RichTextEdit or TextControl Concrete UI components or to any
other component that the designer decides to integrate in the Library.

The Component Library is partially based on XICL (eXtensible user Interface
Components Language) [13]. XICL is an extensible XML-based mark-up language
for the development of UI components in Web applications. However, RUX extends
XICL to define UI components (properties, methods and so on) and to establish
mapping options among components of adjacent UI levels. Figure 4 illustrates the
Entity-Relationship diagram for the Component Library.

1 The RUX-Method CASE tool

91

Fig. 4. Component Library E-R description

4. Combining editSAW and RUX using WAI-ARIA

Taking into account the satisfactory results of SAW, we decided to follow the same
strategy for making accessible UIs based on RIA technologies. The idea consists in
replacing ONTOSAW by WAI-ARIA ontology. If SAW project added accessibility
information to HTML elements, in this case we need to add accessibility information
to the description of RUX components at the level of the Concrete UI.
 The incorporation of WAI-ARIA is a way to provide proper type semantics on
custom widgets to make them accessible, usable and interoperable with assistive
technologies [1]. This specification identifies the types of widgets and structures that
are recognized by accessibility products, by providing an ontology of corresponding
roles that can be attached to content. This allows elements with a given role to be
understood as a particular widget or structural type regardless of any semantic
inherited from the implementing technology. Roles are a common property of
platform Accessibility APIs which applications use to support assistive technologies.
Assistive technology can then use the role information to provide effective
presentation and interaction with these elements.

The role taxonomy currently includes interaction widget (UI widget) and structural
document (content organization) types of objects. The role taxonomy describes
inheritance (widgets that are types of other widgets).

Changeable states and properties of elements are also defined in this specification.
States and Properties are used to declare important properties of an element that affect
and describe interaction. These properties enable the user agent or operating system to
properly handle the element even when these properties are altered dynamically by

92

scripts. For example, alternative input and output technology such as screen readers
must recognize if an object is disabled, checked, focused, collapsed, hidden, etc.

Next, we show as an example the textBox role of the WAI-ARIA ontology
represented in OWL language. As shown in the code, the textBox class contains
attributes that describe its accessibility: autocomplete, multiline and readonly. But
also, other inherited attributes such as describedby, hidden or required, specified in
the higher class named roletype. Inheritance occurs because textBox is a subclass of
input, input is a subclass of widget, and widget is a subclass of a superclass named
roletype.

Example of role textbox in WAI-ARIA ontology.

<owl:Class rdf:ID="textbox">

 <rdfs:subClassOf rdf:resource="#input"/>
 <rdfs:seeAlso rdf:resource="http://www.w3.org/TR/2007/
 REC-xforms-20071029/#ui-input"/>
 <rdfs:seeAlso rdf:resource="http://www.w3.org/TR/html4/
 interact/forms.html#edef-TEXTAREA"/>
 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#autocomplete"/>
 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#multiline"/>
 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#readonly"/>

</owl:Class>

Some attributes of roletype class inherited by textbox class.
<owl:Class rdf:ID="roletype">

 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#describedby"/>
 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#hidden"/>
 <role:supportedState
 rdf:resource="http://www.w3.org/2005/07/aaa#required"/>
</owl:Class>

Due to the versatility of EDITSAW, we replaced ontoSAW by WAI-ARIA ontology

to get accessible RIA UIs. We needed to introduce a new property in the component
description that is the role of the component (accordingly to the roles used by WAI-
ARIA).

Next, we show an excerpt of the Spatial Presentation (at the Concrete UI level)
including an instance of the AutoCompleteTextControl component which has been
previously included in the Library. The component is identified by the unique key
CTMI1, whose origin is a Text Media Input from the Abstract UI level (identified by
the unique key ATMI1).

Example of a simple component at the Concrete UI level
<spatialPresentation>
 <structure>
 <part id="CTMI1" class="AutoCompleteTextControl" source="ATMI1"/>

93

 </structure>
 <properties id="Style1" target="AutoCompleteTextControl">
 <property name="vAlign">center</property>
 <property name="hAlign">center</property>
 <property name="width">50%</property>
 <property name="height">50%</property>
 <property name="role">textbox</property>
 </properties>
</spatialPresentation>

The node Properties identifies a set of properties related with a specific component

or type/class of components. In the example several properties for the spatial
arrangement of CTMI1 can be observed. In addition, the property role specifies the
role that this component play from the accessibility point of view (explained in next
section). The introduction of this new property is the only change we had to perform
in the Component Library for accessibility purposes. The rest of the work is done by
SAW using WAI-ARIA and this property, as explained in next sections.

Now, the components belonging to an application at the level of the Concrete UI
become one of the entries of EDITSAW that gets as second entry the WAI-ARIA
ontology. For each component, EDITSAW identifies the role and, using the ontology,
it forces the user to provide appropriate or recommended values for the accessibility
attributes of that component (properties and states). Once all the components of the
RIA have been enriched, then the Final UI can be generated. The outputs of
EDITSAW are the components with information regarding accessibility. Figure 5
sketches this new scenario for EDITSAW.

Next, we show the AutoCompleteTextControl component after being enriched by
editSAW annotations according to the WAI-ARIA TextBox role. In the example, we
use for the implementation an auto-complete AJAX component which needs to
include a library and a specific script code to work. This auto-complete component
includes the “autocomplete”, “readonly” and “multiline” attributes plus “required”,
"describedby" and "hidden" that are inherited properties from Roletype.

The implementation of the component (without accessibility issues) is stored in the
Component Library. After filtered by EDITSAW, the component implementation is
enriched giving the final code shown below.

Example of the AutoCompleteTextControl component enriched with attributes for accessibility
<input id="FTMI1" type="text" name="FTMI1"
class="AutoCompleteTextControl" role="TextBox" value=""
autocomplete="inline" readonly="false" multiline="false"
required="true" describedby="It is a textbox to fill the user
address" hidden="false"/>
<script type="text/javascript">
new Ajax.Autocompleter('FTMI1','update','page1.do?
source=DBConn1_store.data.items[0].data.mytext ', { tokens: ','});
</script>

94

Fig. 5. Inputs and output of EDITSAW

The architecture of EDITSAW has been fully reused. The parser was implemented

in Jena [14]. Instead of using NAVISAW for rendering the page, as done in SAW, now
we can use whatever combination of browser and WAI-ARIA compliant Assistive
Technology to make the interaction with RIA UIs accessible for people with special
needs.

5 Conclusions and Related Work

This paper has introduced the combination of two previous works: RUX-Method and
SAW to obtain accessible Rich Internet Applications. The result is a process that
allows enriching already developed Model-Based Web applications with RIA features
and accessibility issues. While RUX allows the introduction of a RIA UI in these
applications, SAW gives support to the introduction of accessibility issues in those
widgets provided by RUX. The join point between both works is the WAI-ARIA
ontology. This ontology defines the attributes that must contain those widgets
introduced by RIA technologies in order to be interpreted by the combination of
accessibility APIs and assistive technologies.

Talking about related works is not an easy task due to several reasons:
i) Currently, accessibility issues are not being taken into consideration by

Web models, including those that are the most cited in the literature [7, 8,
9, 10]. Although some of these proposals have advanced approaches to
consider RIA features, these ones are mainly related to aspects different

95

from the UI design (logic or data distribution, synchronization, etc) and
there is no known roadmap to include accessibility issues.

ii) Those works addressing accessibility have a limited coverage and fall in
one of the following fields:
a. Works that are focused on the evaluation of the accessibility degree

of Web pages such it is the case of Taw [15], Hera [16], or Wave
[17]. These tools can be considered as post-implementation tools. A
detailed explanation of tool support for accessibility assessment can
be found in [18]. In this context EDITSAW can be seen as an
evaluation tool but it goes a step further allowing the annotation of
those inaccessible elements.

b. Works that are focused only on the UI design [19], paying no
attention to the connection with other models providing data,
business logic or communication issues which are very relevant in
RIAs. RUX-Method also concentrates in the UI design, but provides
appropriate mechanisms to connect to underlying Web models so
applications with inaccessible Web 1.0 UIs developed with these
models can be converted into accessible Web 2.0 UIs.

c. Works that indicate guidelines to include accessibility at the code
level as it is the case of [4] or many other papers [20] or web pages
[21] that one can find in the Web to make Ajax more accessible. In
the context of RUX-Method these guidelines have been taken into
account when generating the final code.

The conclusion is that, to our knowledge, there is no an integrated proposal able to

include accessible RIA features in Web applications already developed using Web
models and methodologies.

Although the obtained results are promising, we have only considered simplified
application scenarios. Future work includes both, developing complex WAI-ARIA
compliant RIAs and testing the results with visually impaired users (our group has an
agreement with ONCE, the Spanish Organization for the Blind).

Acknowledgments

This work has been partially supported by Spanish projects: TSI-020501-2008-47
(granted by Ministerio de Industria) and TIN2008-02985 (granted by Ministerio de
Ciencia e Innovación) and by “Junta de Extremadura - Consejería de Infraestructuras
y Desarrollo Tecnológico y el Fondo Europeo” (GRU09137)

References

1. Accessible Rich Internet Applications. http://www.w3.org/TR/wai-aria/. 28-May-2009

96

2. Preciado, J.C., Linaje, M., Sánchez, F., Comai, S.: Necessity of methodologies to model rich
Internet applications. In: Seventh IEEE International Symposium on Web Site Evolution,
Budapest, 2005, pp. 7-13 (2005)

3. Linaje M., Preciado, J.C, Sánchez-Figueroa, F.: Enriching Model-Based Web Applications
Presentation. Journal of Web Engineering, Vol. 7, Num. 3, pp 239-256 (2008)

4. Web Content Accessibility Guidelines. http://www.w3.org/TR/WCAG20/. 28-May-2009
5. Sánchez, F., Lozano, A., González, J., Macías, M.: SAW, a Set of Integrated Tools for

Making the Web Accessible to Visually Impaired Users. European Journal for the
Informatics Professional, Upgrade, Vol. VIII Núm. 2, Págs. 67-71 (2007)

6. Studer S., Benjamins R. y Fensel D.: Knowledge Engineering: Principles and Methods. Data
and Knowledge Engineering, 25, 161-197 (1998)

7. Linaje, M., Preciado, J.C., Sánchez, F.: Engineering Rich Internet Application User
Interfaces over legacy Web Models. IEEE Internet Computing, vol. 11, no. 6, pp. 53-59
(2007)

8. Brambilla, M., Comai, S., Fraternali, P., Matera, M.: Designing Web Applications with
WebML and WebRatio, in Web Engineering: Modelling and Implementing Web
Applications, G. Rossi, Ed. Springer, 2007

9. Koch, N.; Kraus, A., The expressive Power of UML-based Web Engineering, in Second
International Workshop on Web-oriented Software Technology (IWWOST02). CYTED,
Málaga, 2002, pp. 105-119

10. Rossi, G.; Schwabe, D., The object-oriented hypermedia design model. Communications of
the ACM, vol. 38, no. 8, pp. 45-46, 1995

11. Gómez, J., Cachero, C.: Extending UML to Model Web Interfaces. In Information
Modeling for Internet Applications, P. Van Boomel, Ed. Idea Group Publishing, 2002, ch. 8,
pp. 144-173

12. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez, V.: UsiXML: a
Language Supporting Multi-Path Development of User Interfaces. IFIP Working
Conference on Engineering for HCI. LNCS. 2005. 207-228

13. Gomes de sousa, L.J., Cavalcanti L., Using IMML and XICL components to develop multi-
device web-based user interfaces. In Brazilian symposium on Human factors in computing
systems. ACM, pp.138-147

14. Jena Web site: http://jena.sourceforge.net/. 28-May-2009
15. Web Accessibility Test tool. http://www.tawdis.net. 28-May-2009
16. Hera Accessibility Tool http://www.sidar.org/hera/index.php.en. 28-May-2009
17. Wave 3.0, Web Accessibility Tool. http://wave.webaim.org. 28-May-2009
18. Xiong, J., Winckler, M.: An Investigation of tool support for accessibility assessment

throughout the development process of Web sites. In Journal of Web Engineering, Vol. 7,
Nº 4 pp. 281-298.

19. Vanderdonckt, J., Limbourg, Q., Michotte, B., Bouillon, L., Trevisan, D., Florins, M.:
UsiXMLO: a User Interface Description Language for Specifying Multimodal User
Interfaces. In Proc. Of W3C Workshop on Multimodal Interaction WMI’2004. Sophia
Antipolis, 19-20 July 2004.

20. Kern, W. Web 2.0 – end of accessibility? – Analysis of most common problems with Web
2.0 based applications regarding Web accessibility. In International Journal of Public
Information Systems, vol 2008:2

21. AJAX accessibility for Web sites: http://www.webcredible.co.uk/user-friendly-
resources/web-accessibility/ajax-accessibility.shtml

22. Section 508 US Web site: http://www.section508.gov/. 28-May-2009

97

98

Automatic Functional and Structural Test Case
Generation for Web Applications based on Agile

Frameworks

Boni García, Juan C. Dueñas, Hugo A. Parada G.

Departamento de Ingeniería de Sistemas Telemáticos
ETSI Telecomunicación - Universidad Politécnica de Madrid

Avda. Complutense s/n, 28040 Madrid, Spain
{bgarcia, jcduenas, haparada}@dit.upm.es

Abstract. As web applications get widely available, more popular and
sophisticated, there is an increasing need for methods and tools to produce them
quickly. Web Application Frameworks (WAF) provide configurable libraries
that can be extended with specific components. Testing is still the main
technique to ensure the quality and the accomplishment of requirements. The
approaches that emerged in the field of the automated test case generation are
typically driven by specifications and models, rendering them useless when
these are not available, such as in the case using WAF under agile processes. To
overcome this difficulty, we propose mining the application-specific
components to get information to feed test cases. This paper presents a method
for the automation of test case generation for WAF-based applications
developed under agile processes, considering domain elements as inputs for
generation. This method is supported by an extensible testing platform named
Automatic Testing Platform (ATP).

Keywords: Testing, Automation, Web, Framework, Agile, ATP.

1 Introduction

In the domain of Software Quality Engineering (SQE), software testing is an integral
part of the Quality Assurance (QA) activities [1]. Testing is the process for
discovering errors and failures in software systems; it is probably one of the most
complex tasks in software development, since it is such a time-consuming and usually
frustrating activity. Automated testing methods can significantly reduce the effort and
cost of testing; but as regards the generation of tests and test data, it is a labor-
intensive process yet.

Among the domain of applications with highest growth in the last years are web
applications; there, the pressures to get products or services quickly forced developers
to reduce the time and efforts devoted to the quality activities in general and testing in
particular. Also, there have been lots of enhancements to practitioners’ work, as the
rapid pace of producing frameworks and even programming languages demonstrate:
although Java is still the most important language in the server-side of enterprise web

99

applications in number of developments, new approaches emerged such as the Ruby
on Rails, or the usage of frameworks such as are Grails, Trails, or Roma.

The need to produce results in a short time has even lead to a complete set of
development methods under the “agile manifesto” umbrella. While these methods got
success as regards pure development, it is now acknowledged the need for stronger
QA activities, and some of the methods now incorporate testing activities as first-
citizenship ones, such as in Test Driven Development (TDD) [2]. Automated testing
is in place and many of housekeeping activities related to testing are then coped with.
But, again, the problem is to generate tests (cases and data), which is regarded as a
manual activity.

This paper presents our approach to the problem of automating test generation for
the development of web applications built using WAF under agile processes. We have
tried to put a bridge between WAF-based development and automated test generation,
choosing the generation techniques already known which could be used in this
particular domain, and developing a proof of concept for an automated test generation
framework, the Automatic Testing Platform (ATP).

In the next section we revisit some state-of-the-art concepts that form the
background of this paper. Section 3 provides the research statement, that is, the
description of the problem we are dealing with in the specific context. Next section
describes our proposed platform for automatic test case generation for agile Java
frameworks, and section 5 introduces its usage and extension when using a specific
WAF framework: the Romulus Framework. We conclude presenting our future work
in section 6.

2 Background

This section gives an indication of the current situation on the two main topics we are
building upon: Web Application Frameworks (WAF), and automatic test case
generation techniques. About WAF, we have focused on lightweight Java-based
frameworks stemming from Java Enterprise Edition1 (Java EE or JEE). On the other
side, let us remind that automatic test case generation techniques are framed into the
more general category of automatic testing; while there are lots of approaches and
tools to support testing management, there are only a few for automatic test
generation –we will focus on these–.

2.1 Web Applications Frameworks

WAFs are defined as sets of classes that make up a reusable design for an application.
Perhaps the most successful and widely adopted framework is Java EE, created by
Sun Microsystems for developing server-side enterprise web applications using the
Java language. However, in the last years real alternatives to Java EE in the domain of
enterprise development emerged, in an attempt to ease the development. This is the

1 http://java.sun.com/javaee/

100

case of the Spring Framework2 [3], a full-stack layered Java-based WAF, based on
code published in [4]. Since then, frameworks proliferated and specialized in tiers
(persistence, web, flow, and so on); a complete classification can be found in [5]. On
the other side, full stack WAFs boosted by the introduction of different programming
languages, most of them based on dynamic scripting-based languages, and adherence
to the agile principles of development. For example, Ruby On Rails [6] defines a new
approach to web development, based on the principles of convention over
configuration and avoiding redundancies (the DRY “don’t repeat yourself” principle),
providing an agile web development framework that simplifies the development
process and increases productivity for prototyping web applications.

However, Ruby on Rails is based on the Ruby language despite the fact that Java is
the industry standard for business applications; forking development in two
programming languages is simply not possible in this domain. Then it is necessary to
bring the advantages provided by agile full-stack WAF, but at the same time reuse
most libraries, subsystems and technologies already developed in Java, and retain the
capability to interact with legacy Java systems. This caused the appearance of several
Java-based alternatives to Ruby on Rails (collectively known as the “*rails”
frameworks), such as Grails, Trails or Roma, with different approaches to the reuse of
previous frameworks and technologies and the application of agile principles to
provide simplicity to web development.

Grails3 [7] is a Java-based Rails-like development framework that provides Java
integration while offering a dynamic oriented language, as it is based on the Groovy
language [8], a dynamic object-oriented scripting language for the Java virtual
machine with Java-like syntax. The Trails framework4 allows rapid web application
development creating pages from POJOs (Plain Old Java Objects); its stack is
composed by String, Hibernate and Tapestry. It is based on the principles of Domain
Driven Design (DDD) [9] and Model Driven Architecture (MDA) [10].

The Roma framework5 has just introduced the idea of metaframework. It is also
based on DDD using POJOs for application-specific functionality, but instead of
providing a complete “wired” stack, it offers a common application programming
interface to a set of pluggable Java frameworks such as Spring or JPOX (Java
Persistent Objects) to transparently provide persistence, presentation or
internationalization services. The goal there is getting POJO-based development with
minimal coupling to the pluggable underlying frameworks. As regards testing, Roma
does not offer facilities yet. Therefore, developers have to rely on third party non-
integrated testing frameworks to perform testing activities, or do them by hand.

2.2 Automated Test Case Generation

As mentioned, testing enables software engineers to answer questions about the
quality a software system. In essence, given a piece of software, testing consists of
observing a sample of executions (test cases) of the system under test, and giving a

2 http://www.springframework.org/
3 http://grails.org/
4 http://www.trailsframework.org/
5 http://www.romaframework.org/

101

verdict over them. Managing the test cases, executing them on the proper part of the
system under test, producing the required reports about errors found, among others,
are the issues dealt with by automatic testing [11]. Part of automatic testing, and key
in reducing the efforts and costs of testing, is automated test case generation: the
techniques that help in generating the test cases, test data and oracles and verdicts that
will feed the testing process. So far, these assets are generated by hand, as there is no
information enough in the development process to start with; sometimes it is available
but not represented using the proper modelling formalism.

Several approaches have been proposed in the literature for automated test case
generation. The specification-based test case generation starts with system
requirements expressed using a formal language such as SDL (Specification and
Description Language). The Autolink [12] tool then generates test cases from the SDL
specification and MSC (Message Sequence Chart) test purpose definitions. Other
recent generators use specifications written using a programming language: JML
(Java Modeling Language) is a language used to specify the behaviour of the code
which can be used to generate unit tests to be executed by JUnit [13].

Other researchers have adopted a model-based test case generation, as they use
modelling languages to get the specification and generate test cases. UML (Unified
Modeling Language) diagrams such as state-charts, use-cases, sequence, and so on are
widely employed in these solutions. For example, UMLTEST [14] is a test data
generation tool integrated with Rational Rose6 which employs UML state-chart to get
the specification. Another example is TGV [15], a conformance test generator which
creates test cases based on UML specifications and purposes.

In path-oriented test case generation, the control flow information is the input to
identify a set of paths to be covered and generate the appropriate test cases. These
techniques can be classified in static and dynamic ones. Static techniques rely on
symbolic execution whereas dynamic techniques obtain the necessary data by
executing the program under test. An example of dynamic path oriented test case
generation is implemented by BINTEST algorithm [16], which is employed for the
test case generation based on binary search for the methods of a class.

Random test case generation techniques determine test cases on assumptions
concerning fault distribution. Random testing can be seen as a second-class
alternative to systematic testing. Systematic testing methods generate test cases only
in the limiting sense that each domain point is a singleton sub-domain (also known as
partitioning methods or Bounded Exhaustive Testing, BET). Random testing is
literally the antithesis of systematic testing: no points are considered ‘the same’ and
the sampling is over the entire input domain [17]. RUTE-J is a Java package
providing tool support to programmers for randomized unit testing [18]. After that
many tools have appeared with the same approach, like Jartege [19], in which random
tests are generated and Korat [20], in which methods are tested in an exhaustive way
by analysing the outputs obtained after executing all non-isomorphic tests cases.

In the goal-oriented test case generation approach, the cases are identified
selecting goals such as a statement or branch or irrespective of the path taken [21].
Duy Cu Nguyen et al have developed a goal oriented testing methodology that takes
design artefacts, specified as Tropos (an agent-oriented software development

6 http://www.ibm.com/software/rational/

102

methodology) goal models, as central elements to derive test cases. The test suites are
used to refine goal analysis and detect problems early at the requirement phase. They
are executed afterwards to test the achievement of the goals from which they were
derived [22].

Intelligent test case generation relies on complex computations to identify test
cases. In the AETG system the tester first identifies parameters that define the space
of possible test scenarios. Then the tester uses combinatorial designs to create a test
plan that covers all pair-wise, triple or n-way combinations of test parameters.
Heuristic algorithm has been developed to generate pair wise testing. Empirical
results show that pair wise testing is practical and efficient for various types of
software systems ([23,24]).

3 Research Statement

The focus of this paper is the generation of test cases for web applications based on
Java agile WAF. These frameworks (Grails, Trails, or Roma) follow the agile
approach, that is, rapid and easy development by simplifying processes and
optimizing the return of investment and time to market. They are based on an
Inversion of Control (IoC) container such as Spring and the development is oriented
mainly to the domain (DDD), using POJOs for the implementation of the business
logic. Operations such as CRUD (Create, Read, Update, and Delete) or the view
generation are automated by the framework.

Current solutions, as proposed by TDD offer room for improvements. Agile
developers are more interested in productivity and the easiness of development
process, so we cannot expect they spend too much time in testing. Nevertheless,
testing is still the most important activity for QA. For that reason, some testing tasks
are required for enterprise web systems, even if they are based on agile frameworks.

Testing should be automated as far as possible; we propose a step further: tests
should be generated automatically as far as possible. The methods we have just
summarized present some limitations for our purposes: in specification-based testing,
a prerequisite is to get a complete and consisted formal specification. This restriction
is too strong in our context as no formal specifications are available. Model-based
testing creates flexible, useful test automation from the model, but we cannot count on
the model, because it is not even available. Random test case generation may create
many test data, but might fail to find test case to satisfy requirements. In a path-
oriented approach identifying the path might be infeasible or the test data generator
might fail to find an input that will traverse the path. An intelligent approach
generates test case quickly but is too complex.

Due to the nature of an agile web application, we need a very flexible approach for
the automatic test generation. We need to extract the information for generating the
test cases from the source code of the System Under Test (SUT), or the information
attached to the SUT. This requisite is not easy at all; in fact it is considered a dream
for testing researchers [25]. Thus, we propose a test generation method based on the
exploration of any piece of available information. “Generators” analyse the source
code, annotations, configuration files, etc, and transform the information compiled to

103

test cases. These test cases are configurable with the aid of templates. This template-
based approach offers a high degree of flexibility. We implement this method in the
testing framework named Automatic Testing Platform (ATP).

4 Automatic Testing Platform (ATP)

ATP is based on entities called “generators” for the test case generation. These
entities are in charge of gathering information, transform it and generate each single
type of test cases. For achieving this goal we follow a three-tier architecture:

1. Collection of input data. This gathers information needed for the test case

generation.
2. Transformation. This stage reads the information of the sources and prepares it for

writing the test cases.
3. Test case generation. This stage generates the output, i.e., writes the test cases.

Fig. 1. Three-tier Testing Methodology.

The first stage is performed by entities named “collectors”. The aim of a collector
is compiling the location of the input sources for the test cases. It examines the code
looking for the sources in which the information is stored. The second stage is
implemented by “transformers”. A transformer reads the proper information for a test
case in the source found by collectors. This information is passed to the third stage,
which is implemented by “writers”. The aim of a writer is to generate the test case,
i.e., creating the test case file. Each writer is linked with a testing tool. The
aggregation of these three entities (collector, transformer and writer) is known as a
generator. This cascade process has the Java unit test case generation as a result. The
way of working of a generator is implemented using the following snippet code:

public void generate() throws Exception {

Collection<URL> in = (this.getCollector()!=null) ?
this.getCollector().collect() : null;

 Collection<Map<String, Object>> tc =
 this.getTransformer().transform(in);
 if (!tc.isEmpty()) {
 this.getWriter().write(tc);
 }

104

}

Given the structure of all the test cases is quite similar, we use templates. There are
several Java open-source template engines available, such as Apache Velocity7 and
FreeMarker8. We have chosen FreeMarker because it has a better performance. The
architecture of ATP9 is completed with the usage of different pluggable open source
testing frameworks, such as JUnit v3, JUnit v4, TestNG, Selenium, JUnitPerf, JMeter,
and so on. These automate the execution of tests. In the next section we present in
detail how it works for unit and system testing.

4.1 Automatic Unit Test Case Generation

ATP provides a template-based platform for the automatic unit test generation for
Java-based web applications. The tool is extensible and based on a plug-in design
model, so the amount of generated test cases depends on the numbers of generators
registered by ATP. As we know, a generator is linked to a specific unit technology
because of its writer. The method for extending ATP by registering new unit
generators in the platform is shown in Fig. 2.

Fig. 2. Method for adding new generators in ATP.

1. Select unit under test. This first stage looks for the unit under test. We should
focus on a layer of the web application architecture, and even more in a piece of
this layer.

2. Select tool. The first version of ATP is focused on unit testing. This way, we
select a unit testing Java framework supported by ATP: JUnit3, JUnit4, or
TestNG.

3. Write test case. We have to write once the test case according to the selected tool.
This part is performed by hand, and it will be the pattern of the test cases
generated automatically by ATP.

4. Identify variable elements. The test case generated in the section before should be
susceptible to be generalised. We have to identify the variable elements in the test
case and change this parts for FreeMarker tags, e.g. ${element}. This stage
produces the FreeMarker template, i.e., an FTL (FreeMarker Template Language)
file.

7 http://velocity.apache.org/
8 http://freemarker.sourceforge.net/
9 http://sourceforge.net/projects/atestingp/

105

5. Identify the source of information. According to the selected tags, we must be
capable of locating the source of the information. This is handled by the
collectors.

6. Identify transformation. Transformers must be able to pick up the information in
the found sources by the collector and transform it to a map composed by pairs
key-value. The set of keys must match the templates tags, and the value should be
found in the sources found by the collector. The writer then creates the test cases
using this map as input with the FTL template.

7. Registry in tool. When a generator (collector, transformer, and writer) is created, it
must be registered in ATP, which is performed by adding its information to a CSV
(Comma Separated Value) file which is processed by the ATP to register all the
generators.

4.2 Semi-Automatic Unit Test Case Generation

In addition to the test case generation based on generators, ATP provides a module for
the unit test cases generation based on the information stored in CSV files. For
understanding how this module work, we first have to know what is a unit test case is.

A unit is the smallest testable part of an application. A unit test case strives for
defect localization by ensuring a single condition test that exercise a single method or
object in a single scenario. A general unit test case is composed by four phases [26]:

- Setup: Setting up the test fixture (the “before” situation) that is required for the

System Under Test (SUT) to exhibit the expected behaviour as well as anything
needed to put in place to be able to observe the actual outcome.

- Exercise: Interacting with SUT.
- Verify: Determining whether the expected outcome has been obtained (assertions).
- Teardown: Tearing down the test fixture to go back into the state in which SUT

was.

SUT in short is whatever thing we are testing. Any part of the application or
system we are building that is not included in the SUT may still be required to run the
test (Depended-On Component, DOC). We call test fixture to everything we need in
place to exercise the SUT. Both SUT and DOC are part of the test fixture. These
concepts are illustrated in the next picture:

106

Fig. 3. Unit Test Case Structure.

For the generation of unit test cases, we need a way to codify the whole
information needed. In other words, we need a way to express the four generic phases
of a unit test case: setup, exercise, verify and teardown. Going deeper in this structure,
we can analyse what exactly means each single phase in the Java language:

- Setup: Instantiating Java object and calling methods.
- Exercise: Calling Java methods.
- Verify: Assertions.
- Teardown: Calling Java methods.

In short, we can see there are three different sentences: instantiating Java objects,
calling Java methods, and checking assertions (for each specific tool, such as JUnit or
TestNG). We propose a way to codify these sentences in a simple way: by using CSV
files as a test input. CSV files are basically plain text files in which the information is
separated by tokens (typically the comma or the semicolon). Next paragraphs show
the proposed CSV structure, and after that, we show some example to clarify the way
of working of this module. Our main goal is to ease the developer the writing the
information needed to create test cases, and CSV files can be written using widely
available spreadsheets, or even plain text.

Each CSV file will be composed of one or more test cases. In the CSV a test case
is a set of lines, that when it will be translated by the testing module of
Roma/Romulus. It will generate a test case in JUnit3, JUnit4 or TestNG (depending of
what indicated when using the module). The test cases in the CSV will be separated
from each other by one or more blank lines. There are three types of CSV lines:

Instantiating Java object:

new, <class_name>, param1, param2, ... , paramN (1)

Calling Java methods (two possibilities):

run, <class_name>, param1, param2, ... , paramN (2)

run, $<reference>, param1, param2, ... , paramN (3)

Assertions (two possibilities):

assert, $<reference> (4)

assert, $<reference1>, condition, $<reference2> (5)

Let show an example of how the semi-automatic test generation module works. In

this example, we have a web application with three classes, called Box, Store, and
StaticStore. If a developer creates the following CSV file:

107

new,Store,1000
new,Box,3,2,2
run,$1,fits,$2
assert,$3

new,java.lang.Integer,1000
new,Store,$1
new,Box,3,2,2
run,$2,insert,$3
run,$2,getCapacity
assert,$5,!=,$1

run,StaticStore,getCapacity
assert,$1,<,1000

This CSV file (called testfile1.csv) will generate one Test Case
JUnit3/JUnit4/TestNG (JUnit4 in the example below) file with three test case
methods. The result is a complete test case able to be compiled and executed by the
proper tool without any manual intervention.

package es.upm.dit.test.csv;

import org.junit.Test;
import org.junit.Assert;
import org.apache.commons.lang.builder.EqualsBuilder;
import es.upm.dit.test.StaticStore;
import es.upm.dit.test.domain.Store;
import es.upm.dit.test.domain.Box;
import java.lang.Integer;

public class TestCSVtestfile1 {

@Test
public void testCSV_1() throws Exception {

Store store1 = new Store(1000);
Box box2 = new Box(3,2,2);
boolean boolean3 = store1.fits(box2);
Assert.assertTrue(boolean3);

}

@Test
public void testCSV_2() throws Exception {

Integer integer1 = new Integer(1000);
Store store2 = new Store(integer1);

 Box box3 = new Box(3,2,2);
 store2.insert(box3);
 Integer integer5 = store2.getCapacity();
 Assert.assertTrue(!EqualsBuilder.reflectionEquals(
 integer5, integer1));

}

@Test
public void testCSV_3() throws Exception {

int int1 = StaticStore.getCapacity();

108

Assert.assertTrue(int1 < 1000);
}

}

4.3 Navigation Testing

Using the test generation strategy shown so far it is possible to test the internals of the
web application built using WAF. Unit testing is an important task within QA, but it
is not the only one. In fact, system testing could be as important as unit testing in web
applications. For that reason, ATP contemplates system testing for web applications.
More specifically, the testing technique covered is the automatically checking of the
correctness of the navigations flows in a web application.

This approach is similar to the one proposed by model-based and path-oriented
techniques described in section 2.2. Again, due to the agile nature of the SUT, we do
not have the models or the specification where flows are described. Following the
methodology proposed in section 4, we should extract the information about the
navigation flow from the source code. This task is carried out by ATP. We provide
generators for the automatic generation of this kind of functional test cases.

- Collector. This entity must find the source for the Finite State Machine (FSM) that

implements the navigation flow. This task is specific for each framework. For
example, in Spring Web Flow and Spring MVC (Model-View-Controller) the
flow definitions are located in XML files. In the Roma framework this
information is obtained by reading and transforming Java annotations found in
DDD-POJOs.

- Transformer. This entity is responsible of translating the finite state machine
(FSM) diagram to MBT10, which is an open source implementation of Model-
based Testing [27,28] developed by Tigris. MBT allows generating test sequences
from a finite-state machine in GraphML (XML-based file format for graphs).
MBT can be instrumented in different ways, so the length, coverage, or state
transversal on the FSM can be controlled.

- Writer. This entity is linked with the underlying testing framework. ATP employs
Selenium for this kind of test cases. The information compiled for the transformer
will be used for the writer in order to fill in the Selenium template. When acting
on web applications, the points of control are those HTML elements that represent
data input and interaction with the server, and the points of observation are the
HTML elements that can be obtained as a response to an interaction. Selenium
offers support to identify and handle these important elements.

4.4 Running and Reporting Test Cases

Other facility provided by ATP is the automatic generation of an Ant script for the
execution and reporting of the cases. This script allows running all the test cases

10 http://mbt.tigris.org/

109

generation, but it also generates HTML and XML reports with the results of the test
case execution. In Fig. 4 we provide a screenshot of the generated HTML report:

Fig. 4. HTML report automatically generated.

5 Testing in Romulus Framework

The ATP tool has been extended to a specific existing agile WAF: the Romulus
Framework, which is further based on the Roma Metaframework. This extension to
ATP could be seen as a subclass of it, and therefore it inherits all the capabilities of
the superclass. The name given to this extension is ATP4Romulus, and it can be
found in the Romulus Framework website11.

As of today ATP4Romulus (v0.5) counts with 6 collectors, 19 transformers, and 4
writers. As a result, it has 57 registered generators. The following table summarizes
the unit test cases generated with these 57 generators:

Table 1. Summary of the specific generator included in ATP4Romulus.

Aspect Tool Technique Objective
Domain JUnit v3-v4,

TestNG
Structural Keep the domain classes structure: accesors and

mutators, private fields, and primitive fields
Domain JUnit v3-v4,

TestNG
Structural Inheritance using the composite pattern

CRUD JUnit v3-v4,
TestNG

Functional Ensuring Create, Read, Update and Delete

CRUD JUnit v3-v4, Structural View-CRUD classes structure (Filter, Listable,

11 http://www.ict-romulus.eu/web/atp4romulus/

110

TestNG Instance and Repository)
View JUnit v3-v4,

TestNG
Structural Layout and screen configuration

I18N JUnit v3-v4,
TestNG

Structural Syntax and content of locale files

CSV JUnit v3-v4,
TestNG

Functional Semi-automatic test case generation

Flow JUnit v3-v4,
TestNG

Functional Navigation testing based on contract

Run and
reporting

Ant Functional Running and reporting all the generated test cases

A specific generator has been implemented for the navigation test cases. The collector
looks for the Roma flow annotations. This information is used for the transformer to
create the MBT file, and after that, the writer generates the test case for Selenium.

ATP4Romulus has been employed for the validation of the testing method proposed
by this paper and implemented with the base platform ATP. As a result, we have
obtained a tool that creates several test cases automatically, both functional and
structural and in unit and system level. These tests can also be executed and reported
automatically due to the fact that the script for launching these processes is also
generated.

6 Conclusions and Future Work

As we know, testing is an essential activity in Software Quality Assurance. Enterprise
applications have a technological heterogeneity and complexity that makes testing
very difficult to put into practice. Moreover, a test process usually consists of several
stages, such as test planning, design, coding and result analysis. As long as these
activities are often performed manually, they are both time and cost consuming.

Enterprise web development with Java has been associated to Java EE for years.
Nowadays, developers have real alternatives to Java EE, for example the Spring
framework. Following the Ruby on Rails approach, new agile frameworks emerged in
the Java world, such as Grails, Trails or Roma. When an application based on one of
these frameworks reaches the production environment, these frameworks should
provide testing facilities in order to accomplish functional and non-functional
requirements.

This paper introduces the architecture of a system which tries to fully automate test
generation for web applications based on agile frameworks: ATP (Automatic Testing
Platform). This tool contains a collection of entities called generators, responsible of
the automatic test case generation in several aspects: unit testing, system testing, test
case execution and reporting. ATP is based on the usage of different pluggable testing
tools: JUnit, TestNG and Selenium. ATP is also a template-based tool (FreeMarker),
and therefore it is very flexible and scalable. This platform has been extending for the
Romulus Framework in the ATP4Romulus platform.

111

These two platforms are currently in a continuous development cycle. The new
capabilities of these tools will be in the integration, system level and performance
testing. Thus, the platform will incorporate frameworks tools such as JMock or
JMeter, in order to create new test cases for ensuring functional and non-functional
requirements.

Acknowledgements

This research project is funded by the European Commission under the R&D project
ROMULUS (FP7-ICT-2007-1).

References

1. Tian, J.: Software Quality Engineering: Testing, Quality Assurance, and Quantifiable
Improvement. John Wiley & Sons (2005)

2. Ambler, S.: Agile Database Techniques: Effective Strategies for the Agile Software
Developer. John Wiley & Sons (2003)

3. Walls, C.: Spring in Action. 2nd edition. Manning Publications (2007)
4. Johnson, R.: J2EE development frameworks. IEEE Computer Society Press (2005).
5. Shan, T.C., Hua, W.W.: Taxonomy of Java Web Application Frameworks. ICEBE ’06:

Proceedings of the IEEE International Conference on e-Business Engineering, Washington,
DC, USA, IEEE Computer Society (2006)

6. Thomas, D., Heinemeier Hansson, D., Breedt, L., Clark, M., Duncan Davidson, J.,
Gehtland, J., Schwarz, J.: Agile Web Development with Rails. 2nd edn. The Pragmatic
Bookshelf (2006)

7. Rudolph, J.: Getting started with Grails. InfoQ – Enterprise Software Development Series
(2007)

8. Koenig, D., Glover, A., King, P., Laforge, G., Skeet, J.: Groovy in Action. Manning
publications Co. (2007)

9. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison
Wesley (2003)

10. Beydeda, S., Book, M., Gruhn, V.: Model-Driven Software Development. Springer (2005)
11. Farrell-Vinay, P.: Manage Software Testing. Auerbach Publications (2008)
12. Koch, B., Grabowski, J., Hogrefe, D., Schmitt, M.: Autolink, – A Tool for Automatic Test

Generation from SDL Specifications. Workshop on Industrial Strength Formal
Specification Techniques (WIFT). (1998)

13. Cheon, Y., Leavens, G.T.: The JML and JUnit way of unit testing and its implementation.
European Conference on Object-Oriented Programming (ECOOP), Springer Berlin /
Heidelberg (2002)

14. Offutt, J., Abdurazik, A.: Generating Tests from UML specifications. Second International
Conference on the Unified Modeling Language, pp. 416-429, Fort Collins, CO. (1999)

15. Bousquet, L., Martin, H., Jezequel, J.M.: Conformance Testing from UML Specification
Experience Report. Workshop of the pUML (2001)

16. Baydeda, S., Gruhn, V.: BINTEST – binary search-based test case generation. Computer
Software and Applications Conference (COMPSAC), IEEE Computer Society Press
(2003)

17. Hamlet, D.: When Only Random Testing Will Do. Proceedings of the First International
Workshop on Random Testing (2006)

112

18. Andrews, J.H., Haldar, S., Lei, Y., Li, F.C.H.: Tool Support for Randomized Unit Testing.
First International Workshop on Random Testing (2006)

19. Oriat, C.: Jartege: a tool for random generation of unit tests for Java classes. Quality of
Software Architectures and Software Quality, Springer Berlin / Heidelberg (2005)

20. Boyapati, C., Khurshid, S., Marinov, D.: Korat: Automated testing based on Java
predicates. International Symposium on Software Testing and Analysis (ISSTA). (2002)

21. Pargas, R. P., Harrold, M. J., Peck, R.R.: Test-data generation using genetic algorithms.
Software Testing, Verification and Reliability. (1999)

22. Nguyen D.C., Perini A., Tonella P.: A Goal-Oriented Software Testing Methodology.
Agent-Oriented Software Engineering VIII. Springer (2008)

23. Cohen, D. M., Dalal, S. R., Fredman, M. L., Patton, G.C.: The AETG Design: an approach
to testing based on Combinatorial design. IEEE trans on Software Engineering (1997)

24. Tracey, N., Clark, J., Mander, K.: Automated program flaw finding using simulated
annealing. In SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM Press (1998)

25. Bertolino, A.: Software testing research: Achivements, challenges, dreams. Future of
Software Engineering (FOSE). (2007)

26. Meszaros, G.: xUnit Test Patterns. Refactoring Test Code. Addison-Wesley (2008)
27. Baker, P., Dai, Z.D., Grabowski, J., Haugen, Ø., Schieferdecker, I., Williams, C.: Model-

Driven Testing Using the UML Testing Profile. Springer (2008)
28. Utting, M., Legeard, B.: Practical Model-Based Testing. A Tools Approach. Elsevier

(2007)

113

114

Benchmarking and improving the quality of
Norwegian municipality web sites

Morten Goodwin Olsen1, Annika Nietzio2, Mikael Snaprud1, and Frank Fardal3

1 Tingtun AS,
PO Box 48, N−4791 Lillesand, Norway.

morten.g.olsen@tingtun.no, mikael.snaprud@tingtun.no
http://www.tingtun.no

2 Forschungsinstitut Technologie und Behinderung (FTB)
der Evangelischen Stiftung Volmarstein, Grundschötteler Str. 40

58300 Wetter (Ruhr), Germany.
egovmon@ftb-net.de

http://www.ftb-net.de
3 Agency for Public Management and eGovernment (DIFI)

P.O. Box 8115 Dep, N−0032 Oslo, Norway
Frank.Fardal@difi.no

http://www.difi.no

Abstract. Automatic benchmarking can provide a reliable first insight
into the accessibility status of a web site. The eGovMon project has devel-
oped a tool which can assess web sites according to a statistically sound
sampling procedure. Additionally, the tool supports detailed evaluation
of single web pages. This paper describes the process of data acquisition
for the case of large scale accessibility benchmarking of Norwegian public
web sites. An important contribution is the elaborated approach to com-
municate the results to the public web site owners which can help them
to improve the quality of their web sites. An on-line interface enables
them to perform evaluations of single web pages and receive immediate
feedback. The close collaboration with the municipalities has lead to an
overall higher quality both of Norwegian public web sites, the eGovMon
tool and the underlying methodology.
Automated evaluation alone can not capture the whole picture, and
should rather be seen as a complement to manual web accessibility evalu-
ations. The Norwegian Agency for Public Management and eGovernment
(DIFI/ Norge.no) carries out an annual web quality survey that includes
manual assessment of web accessibility. We present a comparison be-
tween the Norge.no results and the data collected by the eGovMon tool
and verify the statistical correlation.

1 Introduction

The amount of information and the number of public services available on-line
has been growing steadily over the past few years. Many administrative processes
can be carried out via the Internet today.

115

However, a recent study [1] shows that there is still a large number of citizens
who are not using eGovernment services. On the one hand the reasons are that
the citizens feel no need to use eGovernment because they are not frequent users
of the Internet in general or because they prefer to use other channels when
interacting with public administration. On the other hand there are citizens
who would like to use eGovernment applications but are prevented from doing
so by poor accessibility and usability or because relevant content is missing or
difficult to locate.

The latter group can benefit from improved quality and more user oriented
design. In the long run this can help to increase take-up and facilitate the use
also by the former group of citizens.

The Norwegian project eGovMon4 is pursuing a two-fold strategy to advance
accessibility and other attributes of web site quality.

Fig. 1. eGovMon System Architecture

Large scale accessibility benchmarking. The first part of the strategy consists of
large scale accessibility evaluation. Frequently updated data on the accessibility
status of Norwegian public web sites provides a bird’s eye view of the situation
and progress. Equal conditions under the evaluation ensure comparability of the
results from different web sites and across time. This process is visualised by the
solid arrows in Figure 1.

On-line accessibility checker. The second part of the strategy targets the web
site maintainers on eye level. Detailed results for each web page are provided
together with explanations and improvement suggestions. The pilot municipal-
ities participating in the project have expressed a strong demand for practical
4 The eGovMon project (http://www.egovmon.no/) is co-funded by the Research

Council of Norway under the VERDIKT program. Project no.: Verdikt183392/S10

116

support. Often the web site maintainers are not aware of accessibility problems
in their web sites or do not know how to resolve them. Therefore the eGovMon
project tries to provide feedback and improvement suggestions that are easy to
understand, and can facilitate the communication with technical staff, software
vendors and web developers.

For this user group the eGovMon project has developed an easy to use on-line
tool that can check single web pages. The checker provides detailed information
on the identified accessibility barriers and suggests potential solutions. This ap-
plication is shown by the dashed arrows in Figure 1.

Collaboration with other initiatives. In Norway, the Norge.no initiative of the
Agency for Public Management and eGovernment (DIFI) carries out an annual
systematic evaluation of the quality of Norwegian public web sites [2]. The cri-
teria of this assessment address accessibility, usability and relevance of the pro-
vided content and services. The assessments are carried out manually by trained
experts.

Automatic evaluations can support experts in their work, provide interme-
diary results between the annual evaluations, and support policy making and
awareness raising. The eGovMon project is currently developing such automatic
tools in collaboration with a group of 20 Norwegian municipalities, DIFI, and
several additional government agencies and research partners from Norway and
across Europe.

The remainder of this paper is organised as follows: Section 2 presents the
eGovMon tool for automatic evaluation of accessibility. In Section 3 we explain
the methodology used by the Norge.no evaluations. In Section 4 we compare
the manually retrieved results from Norge.no with the automatically retrieved
results from eGovMon. Finally, in Section 5, we present the eGovMon approach
to communicating the results to Norwegian municipalities.

2 Automated evaluation of web accessibility in eGovMon

The large scale benchmarking approach applied in eGovMon is based on the Uni-
fied Web Evaluation Methodology (UWEM) version 1.2 [3], which was developed
by the European Web Accessibility Benchmarking Cluster (WAB Cluster). The
eGovMon system is an implementation of the fully automated monitoring appli-
cation scenario described in UWEM.

Methodology. Web accessibility checking can be carried out in several ways along
the same international standards. The evaluation methodologies used by evalua-
tion and certification organisations in several European countries are different in
subtle but meaningful ways [4], even though they are usually based on the Web
Content Accessibility Guidelines 1.0 (WCAG 1.0) [5]. UWEM offers test descrip-
tions to evaluate WCAG 1.0 conformance covering level AA, a clear sampling
scheme, several reporting options, including score cards and other instruments

117

to help communicate the results of evaluations. UWEM was developed as the
basis for web accessibility evaluation, policy support and possible certification
in Europe [6].

2.1 Sampling of web pages

Crawling. The eGovMon system does not evaluate all web pages within a web
site. Instead, it selects a random uniform sample from each web site. A random
sample can only be drawn if the underlying population is known. Therefore each
web site is explored by a web crawler trying to identify as many URLs as possible
before the actual evaluation starts. The crawler follows a multithreaded breadth
first search strategy and stores all discovered URLs in a URL database. The
number of downloaded pages is constrained by the available download capacity.
The URL discovery phase stops when 6000 web pages have been found.5 In our
experiments 85% of the web sites were crawled exhaustively. The remaining 15%
of the sites are often considerably larger (sometimes consisting of up to several
million single web pages).

In the next phase, 600 pages are randomly selected from the URL database,
allowing the accessibility evaluation to be both representative of the web site as
well as workable in practice.

Choosing sample size. There is a trade-off between system performance and
accuracy of the results. Clearly, a large sample size would provide more precise
results. The most accurate result could be achieved by evaluating every web page
from the site. However, this is impossible in practice.

The sample size of 600 has been selected experimentally. Based on a number
of test run the average standard deviation of the UWEM score within a web site
could be estimated to σ = 0.25. Taking into account the potential values of the
precision parameter d1 = 0.05 and d2 = 0.02 and the desired confidence intervals
95% (i.e. z1 = 1.96) or 99% (i.e.z2 = 2.58) we calculate the sample size as:

n =
z2σ2

d2

In our setup, the evaluation speed is approximately 1.42 seconds per page,
or 0.7 pages per second. The number of web sites which can be evaluated daily
is therefore

N =
1
n

· 0.7
pages
sec.

· 86400
sec.
day

This gives us the sample sizes presented in Table 1. A sample size of 600 pages per
site allows the evaluation of approximately 100 web sites daily – an acceptable
trade-off between precision and performance.
5 For performance reasons eGovMon discovers URLs rather than download web pages.

Discovering means detecting and finding any URL within the web site, and only
downloading enough pages to detect 6000 URLs. For any web site with more than
6000 pages, there is a significant performance improvement gained by only detecting
URLs compared to downloading.

118

σ = 0.25 z1 = 1.96 z2 = 2.58

d1 = 0.05 n ≈ 96, N ≈ 630 n ≈ 166, N ≈ 364

d2 = 0.02 n ≈ 600, N ≈ 100 n ≈ 1040, N ≈ 58
Table 1. Sample Size Calculations

2.2 Web accessibility testing

The system contains 23 web accessibility tests, which are all derived from the
fully automatable tests in UWEM. The implementation is built on the Relaxed
framework [7], which uses Java to parse the the HTML source file into an HTML
tree representation. Subsequently, this tree is assessed with a number of Schema-
tron rules, which were developed specifically for UWEM.

Some restrictions apply when creating automatic measurements. Most sig-
nificantly, many of the UWEM tests require human judgment. In fact only 26 of
the 141 tests in UWEM are marked as automatable. As an example, automatic
testing can find images without alternative text. However, to claim that an exist-
ing alternative text represents the corresponding image well, human judgment is
needed. Thus, automatic evaluation can only be used to find barriers, not claim
that a web site is accessible. Note that the automatic evaluation results can in
some degree be used to outline to predict manual evaluation results [8].

Schematron. The Schematron language6 is a rule-based validation language for
making assertions about the presence or absence of patterns in XML trees. The
context of a rule is described using XPath,7 which provides a unique identifica-
tion of all elements within the HTML tree. The test part of a Schematron rule
consists of an XSLT statement that returns a boolean value. The rules are used
to extract information about the different features of the HTML tree, e.g. pres-
ence or absence of attributes and elements or the relationship of parent, child,
and sibling elements.

Schematron is only an intermediary step that provides direct assess to the
HTML structure. Other tests are then conducted based on the extracted data.
This includes for instance operations such as matching strings with regular ex-
pressions or comparing to features that are not part of the HTML tree structure
(i.e. information from the HTTP header or general information like the URL of
the inspected page).

The Schematron approach provides an accurate and flexible implementation
of the UWEM tests. However, problems can arise if the HTML source has severe
parsing errors which make it impossible to construct the HTML tree in the first
place. In these cases no accessibility evaluation can be carried out.

Initially we applied HTML Tidy8 to clean up malformed HTML [9]. Pre-
processing the HTML with HTML Tidy led to several issues. First of all, even
6 http://www.schematron.com
7 http://www.w3.org/TR/xpath
8 http://tidy.sourceforge.net/

119

though the use of Tidy was set to minimum, it was not clear for the users how
this changed the HTML. Users could claim that the HTML evaluated was not
part of the web page but something adjusted with HTML Tidy. Additionally,
using HTML Tidy made it difficult to identify the location of the barrier within
the HTML source. However, even with the use of HTML Tidy, several web pages
still could not be parsed. Because of these issues, the use of HTML Tidy was
discarded in the final version of the implementation.9

Results. Each UWEM test is applied on each selected page. There are two possi-
ble outcomes: fail (barrier detected) and pass (no barrier detected). An example
of a fail result is an image without an alternative description. This is a barrier
because people who are unable to see images10 rely on the alternative text to
understand the image. When such alternative text is not present, the informa-
tion conveyed in the image is lost to these users. All results are reported in the
Evaluation and Report Language (EARL) [10].

Storing results. For each web site, the EARL output is incorporated into an
RDF graph representing the web site. In addition to the accessibility results
part of the EARL, the RDF graph contains information about web pages down-
loaded, HTTP header, language, technologies used. The data is stored in an
RDF database which was developed specifically according to the project needs
since the existing RDF database technologies were not able to provide sufficient
speed for our application.

An Extract Transform Load (ETL) component reads the RDF-data, and
stores the results in a data warehouse. The data warehouse [11] supports analysis
with regards to multiple research questions. The outcome of the single tests is
summarised into a web site accessibility score for the whole site. The score is
calculated as the ratio of failed tests among to applied tests. The larger this
ratio (percentage) of barriers detected, the less accessible the web site is. In a
completely accessible web site there will not be any barriers and the percentage
of detected barriers will be 0%. If half the tests detected barriers, the percentage
of detected barriers would be 50%, and so on. In addition to these high level
results, eGovMon presents also detailed results on page level.

3 Norge.no

The Norwegian Agency for Public Management and eGovernment (DIFI) con-
ducts a yearly survey on the quality of Norwegian public web sites [2] – often
called Norge.no after the web site where the results are published. The survey
9 Web pages which could not be parsed are deliberately removed from the evaluation

since we do not have any reliable results for these. Note that there is no direct
indication that web pages we cannot parse are inaccessible.

10 People who are unable to see images include for example people with visual impair-
ments, people using mobile phones with images turned off to reduce data traffic, or
people using web browsers without graphical user interface.

120

covers 34 indicators organised into three categories: accessibility, usability and
relevance.

Web Accessibility testing. Twelve of the Norge.no indicators address accessibility.
Out of these seven are directly related to WCAG 1.0 priority 1 and 2, three are
related to WCAG 1.0 priority 3. The remaining two are not directly related to
WCAG 1.0, but target other document formats such as PDF.

The evaluation is run in September and October each year and includes ap-
proximately 700 web sites at governmental and municipal level. The evaluations
are carried out manually11 by trained experts. On average, the review of one
web site takes about one hour.

Sampling and score. Most tests are applied to two or three pages from the
site. Sometimes the whole site it searched for certain features (e.g. data tables,
documents in other formats). A failing test scores zero points. The maximum
number of points for a test ranges from two up to five. The overall rating reports
the percentage of the maximum number of points that has been achieved. These
percentage values are then mapped to stars. The threshold values are based on
a Gaussian distribution for one to five stars, with six stars as an “extra level”
for exceptionally good web sites. The threshold values are presented in Table 2.

Stars 1 star 2 stars 3 stars 4 stars 5 stars 6 stars

Percentage 0− 30% 31− 42% 43− 57% 58− 69% 70− 79% 80− 100%
Table 2. Norge.no star rating

4 Results and comparison

Using the eGovMon tool, we evaluated the accessibility of web sites from 414
of 430 Norwegian municipalities in January 2009. The remaining municipalities
had either no web site or the web site was not available during the evaluation12.

The eGovMon tool is based on WCAG 1.0 level AA and UWEM. In a web
site not conforming to WCAG there will most likely be barriers preventing some
users with disabilities from using the web site. It is worth noticing that people
benefiting from accessible web sites are diverse and what may be barrier for
one user may not be a barrier for others - even within the same disability group.
Because of this, detecting and eliminating false positives would be very challeng-
ing. There has been some work trying to find false positive results in automatic
11 Some tests rely on tool support, e.g. tests for sufficient colour contrast and validity

of (X)HTML.
12 Some municipality web sites deliberately prevent access from tools which are not

known with the help of the robots exclusion standard.

121

accessibility measurements [12]. However, to the best of our knowledge, no such
work has been carried out for UWEM.

4.1 Accessibility of Norwegian Municipality Web Sites

The eGovMon results for single web sites indicate the percentage of barriers.
While the results on county level are averages of the municipality web site results
within the county. The accessibility results on county level are presented as a
map of Norway in Figure 2. The results in this evaluation range from 10% to
37% of barriers detected by the tests. The darker colour means more barriers
detected, while a lighter colour means less barriers detected. The county with
the fewest detected barriers is the Norwegian capital Oslo. Even here, 10% of
the eGovMon tests detected barriers. This shows that the public Norwegian web
sites are far from being accessible. Additionally, our findings show that some
barriers are more common than others.

1. Invalid or deprecated (X)HTML and/or CSS was the most common
barrier found by the eGovMon tool and occurred in 99% of the evaluated
web pages. (X)HTML and CSS are the most used technologies for web pages.
The most recent version of these technologies are built with accessibility in
mind, which means assistive technologies can more easily and successfully
present the web page content when the latest (X)HTML and/or CSS are
used correctly.

2. Links with the same title but different target occurred in 31% of the
evaluated pages. Often links do not describe the target pages well. A typical
example is having links with the text “read more”, which does not explain
anything about the target page. Links should be more descriptive such as
“read more about the economic crisis” or only “the economic crisis”. For fast
and efficient navigation, some assistive technologies present all links within
a web page to the user. However, if all links have the same text such as “read
more”, this is not helpful.

3. Graphical elements without textual alternative were detected in 24%
of the evaluated pages. The most common example of this is the use of
images without alternative text, which causes problems for people with visual
impairments who are unable to see the pictures. Any information conveyed
in an image is lost to these users whenever a textual alternative is missing.

4. Form elements without labels occurred in 24% of the evaluated pages.
An example of misuse would be not to correctly mark a search button as
“search”. The fact that the web site is searchable, is sometimes understood by
the context around the search field, such as a magnifying glass nearby. People
with visual impairments and dyslexia sometimes have the web page text read
out load using screen readers, and may be unable to see the corresponding
magnifying glass. If a text field is not clearly marked, it is challenging to
know that it is intended for searching the web site.

5. Mouse required occurred in 11% of the evaluated pages. Web sites requir-
ing the use of a mouse cause problems for people with motor impairments

122

Fig. 2. Map of Norway showing the eGovMon accessibility results from January 2009.
A darker colour means more accessibility barriers found.

123

who often have challenges using such devices. An example is web sites with
menu items which can only be accessed by clicking with a mouse but not
by keyboard. Often, people with motor impairment are not able to use such
web sites at all.

4.2 Results from eGovMon compared to International Surveys

None of the evaluated sites passed all eGovMon tests. This result is not in
correlation with web accessibility surveys existing in the literature.

The study Assessment of the Status of eAccessibility in Europe (MeAC) [13],
which has received much attention since it was published, shows that 12.5%
of the web sites passed all automatic accessibility tests, and 5.3% passed all
manual accessibility tests. Additionally, the United Nations Global Audit on Web
Accessibility [14] indicates that 3% of the evaluated web sites pass all accessibility
tests. It should be noted that the eGovMon survey only includes results from
Norwegian web sites, whereas both the surveys from MeAC and United Nations
evaluated web sites from the EU member states and United Nation member
countries respectively. The eGoMon evaluation shows that none of the evaluated
sites pass, which is clearly worse than web accessibility surveys results presented
above. This discrepancy may be explained by the fact that eGovMon evaluates
according to WCAG 1.0 level AA while both MeAC and United Nation survey
only included results from WCAG 1.0 level A. Additionally, eGovMon evaluated
up to 600 from each site while MeAC has included only 25. A more detailed
comparison can be found in [15].

4.3 Results from eGovMon compared to National Survey

We are compared the result of eGovMon to the DIFI / Norge.no survey. This
comparison includes only the accessibility part of the Norge.no survey. The re-
sults from Norge.no have been discretized into six levels using the predefined
threshold values shown in Table 2. The more stars a web site has received the
more accessible it is.

The UWEM score is not defined to match any distribution. Instead it presents
the percentage of barriers detected within the applied tests. A low value means
that few barriers were detected which indicates that the corresponding web site
is accessible, while a high value indicates that the corresponding web site is
inaccessible.

The two methodologies have few similarities. The Norge.no evaluations are
conducted manually by trained experts, sometimes supported by tools, while the
current eGovMon runs completely automatically. Furthermore, there exists only
one test which is identical for both Norge.no and eGovMon (valid (X)HTML),
and only two tests which are partially overlapping.

Furthermore, the Norge.no evaluations were carried out in September/October
2008, while the eGovMon evaluations were carried out in the beginning of Jan-
uary 2009. It is expected that several of the web sites have been updated in this
period which will cause some inconsistency in the data.

124

Fig. 3. Comparison between accessibility results from Norge.no and eGovMon

Figure 3 presents the correlation between the expert evaluation results from
Norge.no and the automatically retrieved results from eGovMon. Despite the
methodological differences, the figure shows that there exists a correlation be-
tween these two evaluations. This shows that there is a solid dependency between
the results which indicates that both methodologies are measuring accessibility.
Web sites which perform good in one survey are very likely to get a similar result
by the other (and vice versa).

We can clearly see that the average eGovMon web site score is better (fewer
barriers detected) the more stars appointed to the web site by Norge.no. This is
true for all groups of stars except for the web sites which received six stars and
have been categorised as exceptionally good by Norge.no. These web sites receive
a slightly worse score from eGovMon than the web sites which received five stars.
This indicates that identification of good accessibility (six stars) cannot be done
by automatic evaluation alone, but needs to be supported by manual assessment.

In addition, Figure 3 shows that of the 414 evaluated web sites there are
twelve outliers. In ten of these sites, the eGovMon tool detected a large amount
of deprecated elements and attributes, which in eGovMon and UWEM has a
significant impact on the web site results. In contrast, deprecated elements or

125

attributes are not part of the evaluations of Norge.no. The remaining two outliers
received a very good score by eGovMon while they only got one star by Norge.no.
The reason for this discrepancy is not known, but the two web sites could have
been updated between the Norge.no and eGovMon evaluation.

5 Communication of results

The results of benchmarking studies are often eagerly awaited. The municipal-
ities are interested in using them to compare and improve their web sites. To
enable more targeted use of the results, more detailed information is needed.

To supplement the large scale web accessibility results, the eAccessibility
Checker has been developed.13 The users themselves can use this online tool to
evaluate and detect barriers on a single web page by entering a URL. Figure
4 shows an example of results presented by the eAccessibility Checker. They
include additional information such as:

– location of potential problem
– explanations why the issue might represent a barrier
– suggested solution and good practice example
– background material (e.g. references to guidelines)
– ranking list of evaluated web sites

This allows web developers to get immediate feedback on their implementa-
tion, including how the barriers can be fixed. In the future, the tool could be
integrated more tightly in a web development cycle as suggested in [16].

The tool can also be used by web site editors and owners. However, for editors
who are not very familiar with (X)HTML and CSS, there exists a challenge with
this approach. It is not always easy to understand which problems can be fixed
by the web editors and which barriers are located in the templates of the content
management systems and therefore need to be fixed by the web developers.

Most existing content management systems (CMS) require the editors to
have expert knowledge on accessibility to produce accessible web content, while
only few facilitate accessibility [17].

Coming back to the example of alternative text for images, existing CMS
handle this quite differently. On the one hand there are systems where it is not
at all possible to enter alternative texts for images. On the other hand some
systems force the editors to add alternative text whenever images are uploaded.
In the third set of CMS editors can choose to add alternative texts to images or
not. The editors need to be aware of the web accessibility features of the CMS.

How the barrier can be removed depends on the CMS that is used. There is
no universal solution for the problem. We plan to set up a wiki where developers
and experts of different content management systems can submit descriptions.
The information on how to fix the barriers will be linked to the results presented
by the tool. A similar approach is implemented in the Dutch “Web Guidelines
Quality Model” [18].
13 The checker is available at http://accessibility.egovmon.no/ .

126

Fig. 4. The eAccessibility Checker present a list of results. Each result is linked to
further details.

6 Conclusion and future work

The eGovMon tool has a two-fold strategy for presenting accessibility results.
It provides both survey results from large scale evaluations and an interface for
detecting barriers in single web pages. This strategy makes it possible to both
provide data on a high level – e.g. how accessible is my county compared to
others, and the possibility to find individual barriers on the evaluated pages.

DIFI / Norge.no provides a yearly benchmarking survey on the quality of
public Norwegian web sites, including accessibility. In contrast to eGovMon,
these measurements are done manually by trained experts.

Even though the two methodologies both aim at measuring accessibility,
there are many differences. Indeed, there are in total only three overlapping
tests. Despite of this, we have shown that there is a correlation between the
results produced by the two different methodologies. Web sites which receive a
good or bad result in one of the survey are very likely to get a similar result by
the other.

References

1. European Commission, DG Information Society and Media: Study on
user satisfaction and impact in EU27. Accessed May 2009. (2008)
http://ec.europa.eu/information_society/activities/egovernment/

studies/docs/user_satisfaction_final_report.pdf.

127

2. Agency for Public Management and eGovernment (DIFI): Quality of public web
sites. Accessed February 2009. (2008) http://www.norge.no/kvalitet/.

3. Web Accessibility Benchmarking Cluster: Unified Web Evaluation Methodol-
ogy (UWEM 1.2). Accessed February 2009. (2007) http://www.wabcluster.org/
uwem1_2/.

4. Snaprud, M., Sawicka, A.: Large Scale Web Accessibility Evaluation - A European
Perspective. In Stephanidis, C., ed.: HCI (7). Volume 4556 of Lecture Notes in
Computer Science., Springer (2007) 150–159

5. World Wide Web Consortium: Web Content Accessibility Guidelines 1.0. W3C
Recommendation 5 May 1999. http://www.w3.org/TR/WCAG10/ (1999)

6. Nietzio, A., Strobbe, C., Velleman, E.: The Unified Web Evaluation Methodology
(UWEM) 1.2 for WCAG 1.0. [19] 394–401

7. Nálevka, P., Kosek, J.: Relaxed – on the way towards true validation of compound
documents. In: Proceedings of WWW. (2006)

8. Casado, C., Martinez, L., Olsen, M.G.: Is it possible to predict the manual web
accessibility results using the automatic results? In: Human Computer Interaction
2009 (to appear). (July 2009)

9. Ulltveit-Moe, N., Olsen, M.G., Pillai, A., Thomsen, C., Gjøsæter, T., Snaprud,
M.: Architecture for large-scale automatic web accessibility evaluation based on the
UWEM methodology. In: Norwegian Conference for Informatics (NIK). (November
2008)

10. World Wide Web Consortium: Evaluation and Report Language (EARL) 1.0 W3C
Working Draft 23 March 2007. http://www.w3.org/TR/EARL10/ (2007)

11. Thomsen, C., Pedersen, T.B.: Building a web warehouse for accessibility data.
In: DOLAP ’06: Proceedings of the 9th ACM international workshop on Data
warehousing and OLAP, New York, NY, USA, ACM (2006) 43–50

12. Brajnik, G., Lomuscio, R.: SAMBA: a semi-automatic method for measuring bar-
riers of accessibility. In Pontelli, E., Trewin, S., eds.: ASSETS, ACM (2007) 43–50

13. Cullen, K., Kubitschke, L., Meyer, I.: Assessment of the status of eAccessibility
in Europe. Accessed February 2009. (2007) http://ec.europa.eu/information_

society/activities/einclusion/library/studies/meac_study/index_en.htm.
14. Nomensa: United Nations global audit of web accessibility. http://www.un.org/

esa/socdev/enable/documents/fnomensarep.pdf (2006)
15. Bühler, C., Heck, H., Nietzio, A., Olsen, M.G., Snaprud, M.: Monitoring Accessi-

bility of Governmental Web Sites in Europe. [19] 410–417
16. Brajnik, G.: Comparing accessibility evaluation tools: a method for tool effective-

ness. Univers. Access Inf. Soc. 3(3) (2004) 252–263
17. Nedbal, D., Petz, G.: A Software Solution for Accessible E-Government Portals.

[19] 338–345
18. Overheid heeft Antwoord: The web guidelines quality model. Accessed February

2009. (2009) http://www.webrichtlijnen.nl/english/.
19. Miesenberger, K., Klaus, J., Zagler, W.L., Karshmer, A.I., eds.: Computers Help-

ing People with Special Needs, 11th International Conference, ICCHP 2008, Linz,
Austria, July 9-11, 2008. Proceedings. In Miesenberger, K., Klaus, J., Zagler, W.L.,
Karshmer, A.I., eds.: ICCHP. Volume 5105 of Lecture Notes in Computer Science.,
Springer (2008)

128

A Rule-based Approach for Semantic Consistency

Management in Web Information Systems

Development?

Francisco J. Lucas, Fernando Molina, and Ambrosio Toval

Software Engineering Research Group
Department of Informatics and Systems

University of Murcia (Spain)
fjlucas@um.es,fmolina@um.es,atoval@um.es

Abstract. Consistency problems are mainly due to the existence of mul-
tiple views (models) for the same system, which may contain a contradic-
tory joint description. A scope in which these consistency problems can
also appear is that of Web Engineering, which focuses on the application
of sound practices for the development of web-based information systems
(WIS). The aim of this paper is to show how a rigorous approach based
on the concepts of models transformations and rewriting logic can o�er
a suitable framework to manage (analysis and handling) the semantic
model consistency in this scope. To illustrate this approach, an appli-
cation example is shown, which analyzes di�erent consistency problems
that can appear between WIS navigational models and usability models.

1 Introduction

Consistency problems have existed in Information System (IS) develop-
ment since its beginning. This is mainly due to the existence of multi-
ple views (models) for the same system, which may potentially contain
contradictory speci�cations of that system. These inconsistencies among
di�erent models or views of a system may be a source of numerous errors
in the software system [1] and, moreover, may consequently complicate
the software management [2].

Furthermore, in recent years, these inconsistency problems have be-
come more important as a result of the profound impact of the Model
Driven Engineering (MDE) approach [3] and, particularly, the Model
Driven Architecture (MDA) proposal [4], in which the use of models
guides the development of a system. Within this scope, these problems

? Partially �nanced by the Spanish Ministry of Science and Technology, project
DEDALO TIN2006-15175-C05-03 and MELISA-GREIS (PAC08-0142-335). Fer-
nando Molina is partially funded by the Fundación Séneca (Región de Murcia).

129

could make the use of models as a source of automatic code generation
impossible [5].

A scope in which these consistency problems can also appear is that of
Web Engineering [6], which focuses on the application of sound practices
for the development of web-based information systems (WIS). In recent
years, numerous methodologies for WIS development have appeared and,
most of them, are aligned with the model driven engineering approaches.
Although each methodology has special features that make it di�erent
from the rest, in general, each one proposes the use of di�erent models to
design the di�erent views of a WIS like content, navigation or function-
ality. These models drive the development process and serve as a basis
for the construction of the WIS. The existence of di�erent views for the
same WIS can cause the appearance of consistency problems among the
di�erent models of the system or even within each model.

The aim of this paper is to show how a rigorous approach based on
the concepts of models transformations and rewriting logic [7] can o�er a
suitable framework to manage (analysis and handling) the semantic model
consistency in this scope automatically, only de�ning transformation rules.
Maude [8] is the language used to specify the presented framework, where
transformation rules are used to de�ne the models behaviour and the in-
consistency handling, and commands and inference mechanisms of Maude
are used to simulate the behaviour and to de�ne the inconsistency check-
ing and handling. The concepts of models transformations are used for
linking the approach to the industrial development. To illustrate this ap-
proach, an application example is shown, which analyzes di�erent consis-
tency problems that can be checked and �xed between WIS navigational
models and usability web models.

The remainder of the paper is structured as follows. In Section 2, the
main de�nitions used in the paper as well as the main features of WIS
development and Maude are shown. Section 3 explains the approach for
managing inconsistency problems by means of transformation languages
and Section 4 shows through an application example how the approach can
be used. Finally, related work, conclusions and further work are presented.

2 Background

2.1 Model Consistency Concepts

A review of the existing bibliography about consistency reveals several
possible de�nitions on model consistency, due to the fact that these con-
cepts are used in di�erent, even in ambiguous or contradictory ways in

130

di�erent contexts [9,10]. With the aim of unifying the terminology used in
the remainder of the paper, the de�nitions and sources adopted for each
concept related to consistency are as follows:

� Consistency. A state in which two or more elements, which can be
overlapped in di�erent models of the same system, have a satisfactory
description regarding to a set of de�ned consistency rules [11].

� Syntactic consistency. This kind of consistency should guarantee that
a model conforms to its abstract syntax (speci�ed by its metamodel)
[12].

� Semantic consistency. This consistency requires that models behaviour
be semantically compatible [12]. The approach presented in this paper
is focused on this kind of inconsistency problems.

2.2 Web Information Systems Development

In the scope of Web Engineering, numerous methodologies have arisen
with the aim of helping in the development of WIS that satis�es the
quality requirements demanded by their users. Some examples of these
methodologies are WebML [13], OO-H [14] or UWE [15], to name a few.
As it was aforementioned, generally all of them have proposed to carry
out the WIS development through the use of a set of models, being each
one of them focused on one of the views of the WIS. The models that are
used by almost any methodologies are navigational models (to model the
interaction between users and the WIS), behaviour models (to model the
functionality o�ered by the system) and presentation models (to represent
features related to the �nal presentation of the system).

In this kind of systems, some quality attributes as usability become
critical [16], which has motivated the appearance of quality models that
are used together with navigational or presentation models in order to
evaluate the quality of the designed WIS at modelling time. Thus, these
quality models add a new possible source of inconsistencies because they
establish some constraints that can be violated for other models. As it will
be shown in Section 4, these constraints can be related to the distances
between related nodes, levels of importance of the information presented
in the system, etc. and they will be used to illustrate our approach for
inconsistency management in WIS.

2.3 The Formal Language Maude

The formal language chosen to develop our approach is Maude [8]. This
language is based on equational and rewriting logic. In rewriting logic, a

131

system is speci�ed through a rewrite theory, which consists of a signature
Σ (sorts and operations), a set E of equations, and a set of rewriting rules.
The static part of a system is modelled by means of equational logic (Σ
and E), and the dynamic part is speci�ed by adding rewriting rules, that
is, a set of rules that specify how the state of the system changes.

One of the most important concepts of rewriting logic that will be used
in our approach is that of the rewriting rule. A rewriting rule (named l)
describes a local concurrent transition that can take place in a system. If
the pattern in the left-hand side of the rule (t) matches a fragment of the
system state, the matched fragment is transformed into the corresponding
state of the right hand side of the rule (t ′), which is expressed as: l : t → t ′.
In the context of this paper, this concept can be used directly to implement
transformation rules.

Maude allows both the speci�cation of this kind of logic and its ex-
ecution in an object oriented manner, in which the system elements are
represented as classes that can be instantiated as objects. In addition,
Maude also o�ers several extension modules and features that can be
used in the context of consistency management.

3 Semantic Consistency Management based on Model

Transformation Rules

3.1 Approach Overview

The semantic model consistency is related to the correct behaviour that
the system must have once it has been implemented. Figure 1 summarizes
the main elements of which the presented approach is made up. The main
aim of this paper is to show how rewriting rules can be used as model
transformations rules in order to manage inconsistency problems in WIS
development. The de�nition of a transformation is usually expressed as
a set of transformation rules that describe how a source model is trans-
formed into a target model [17]. That is, these rules describe how meta-
model elements of the source model are transformed into corresponding
metamodel elements in the target model. As we will see in next sections,
in our approach the rewriting rules of Maude will specify the necessary
model transformations to de�ne and handle inconsistency problems in
WIS.

From our point of view, since the semantic inconsistency problems are
related to the behaviour de�ned by the semantics of the di�erent models
(metamodels) involved in the development, transformation rules will be

132

Fig. 1. Approach overview

used �rstly for expressing how the system behaviour, represented by mod-
els, changes. In general, this de�nition may involve any number of meta-
models. Note that, since di�erent semantic inconsistency problems can be
de�ned over the same behaviour, the same behaviour de�nition can be
used for managing all them. At this point, Maude's formal tools/facilities
for analysis are used to execute the transformation rules and check all
these problems. Maude also allows us to use this behaviour de�nition to
execute system prototypes.

Once an inconsistency has been found, in our approach model trans-
formations are used again to de�ne how it will be handled. Maude is used
again to execute the rules and to handle the inconsistency.

Reinterpreting an inconsistency problem this way, the use of Maude
and the concepts of model transformations seems a suitable way for the
de�nition of consistency relationships among models. This process will be
illustrated by means of an example in Section 4.

3.2 Model Transformations Features in Maude

Figure 1 shows the main elements that make up the approach, and how
model transformations will be used to de�ne the system behaviour and the

133

inconsistency handling. Several transformation languages have appeared
in the scope of MDE [18,19,20]. In the scope of MDA, QVT Relations

[21] is one of the languages de�ned by the OMG and is the most abstract
and user-friendly language of the languages de�ned within the QVT stan-
dard. For these reasons, we will use its features to show how they can be
expressed by means of the strengths o�ered by Maude (see Figure 2).

Fig. 2. Model Transformation Formalization

QVT Relations is a declarative models transformation language, so its
implementation over a declarative language like Maude is more `natural'
than with other non-declarative languages.

On the one hand, a transformation is expressed in QVT Relations
by means of relations between metamodel elements. A relation declares
constraints that must be satis�ed by the two or more metamodels (or
domains) that participate in the relation, that is, it speci�es a relation-
ship that must hold between the elements of the candidate models. Each
domain establishes a pattern (with a set of variables and constraints)
that must be matched with the candidate models in order to execute the
transformation, known as object template expressions. These templates
also serve for creating new objects in the target model. Furthermore, a
relation can also have two set of predicates: a when clause and a where

clause, which are used to de�ne pre-conditions and post-conditions of the
relation, respectively.

Figure 2 summarizes how the speci�cation of QVT transformations
can be carried out using Maude. The transformation rules, named rela-
tions in QVT, can be speci�ed as Maude rewriting rules that change and
create the elements of the target model. The object patterns de�ned in
QVT are directly expressed in Maude, since this language o�ers pattern-
matching in the terms simpli�cation.

Finally, in order to specify the constraints, we di�erentiate two kinds
of them: those that express conditions over the models, which will be

134

speci�ed as conditions in the rewriting rules; and those that guide the
execution of a transformation (top-level and non-top-level relations and
invocations from when or where clauses) that will be speci�ed through
the Maude Strategy Language [22].

Note that QVT Relations provides all these elements in a textual way,
but once they are speci�ed in Maude, they have been transformed into
mathematical entities and we can take advantage of all the power of math-
ematical inference mechanisms, without losing the intuition of the QVT
concepts.

All these features will be explained in depth in the next section.

4 Semantic Consistency Management in WIS

This section shows how the presented approach can be used for manag-
ing inconsistencies in WIS scope. To do this, an example of a consistency
relationship among navigational models and usability models is de�ned.
There are numerous possible semantic inconsistency problems between
these kinds of diagrams. In this example, we want to check that the usabil-
ity constraints expressed in a usability model are hold by the navigational
model nodes and the traces for reaching them. That is, if an importance
level is established for a node, the navigation in the system must allow
reaching that node in the number of steps that its level indicates. All these
concepts are explained in depth in next subsections.

4.1 Involved Metamodels

Before de�ning how the inconsistency problem will be checked and han-
dled, it is necessary to show the metamodels involved. In this example,
two metamodels are involved but, in general, more than two metamod-
els can appear, or the inconsistency problem may even involve only one
metamodel.

4.1.1 Navigational Metamodel In this work the �rst metamodel
that we will use is a simple navigational diagram metamodel. This meta-
model will be speci�ed in Maude, and its models will be instantiated
through Maude objects. Figure 3 (a) shows this metamodel.

Two elements appear in this metamodel. One key element is the meta-
class NavigationNode that models a piece of information, represented by
a web page. The second element is the metaclass Link that represents di-
rected relations, which indicate the possible routes that could be followed

135

Fig. 3. (a) Navigational metamodel (b) Usability metamodel

from here on. Other elements can appear in navigational metamodels such
as menus, indexes, etc. but they have not been included to facilitate read-
ers the understanding of our proposal.

Finally, another element has been added to this metamodel that does
not appear in the �standard� navigational metamodel, but that it is neces-
sary to de�ne the behaviour through a transformation rule. This element
is the attribute active of a node that marks the current node of a model
when its behaviour is being simulated.

4.1.2 Usability Metamodel Regarding to the usability features men-
tioned in previous sections, we use a simpli�ed usability features meta-
model to express them (see Figure 3 (b)). In this metamodel, NavigationNode

references the nodes appearing in the navigational models. This element
will be used as a link point between the two metamodels.

Other important element of this metamodel is the metaclass Level.
This element and its attributes are used to represent the concept of im-
portance of a node and its link with the NavigationNode entity allows
modellers to label each node with an importance level. Each Level has
three attributes: a name and the integers maxDistance and minDistance,
which de�ne the minimum and maximum distance between the nodes la-
belled with a Level and the node that represents the entry point to the
WIS. This entity is often used in usability models to express that all the
information presented in the WIS has not the same importance, which
introduce some constraints in navigational models that must be assured.
Interested readers can �nd a detailed rationale behind these usability fea-
tures in [23].

136

4.2 Behaviour De�nition

Once the metamodels have been shown, the behaviour that will be used to
check semantic inconsistency problems has to be de�ned. This behaviour
is based on the simulation of the navigational model using, on the one
hand, the active node and, on the other hand, one of its outgoing links.
Since the execution rules are non-deterministic, di�erent �nal states can be
reached from a node. Note that since the semantic inconsistency problems
are related to the speci�c behaviour de�ned, di�erent problems can be
managed based on the same behaviour de�nition. Figure 4 shows the rule
that simulate a navigational model. To do this, the attribute active of
node is used. This rule makes use of a Message (a sort of Maude), named
simulateBehaviour, that will be used to indicate to Maude the operation
that we want to carry out.

*** Behaviour definition.

op simulateBehaviour : -> Msg [ctor] .

rl [NavigationBehaviour] :

simulateBehaviour

< lOid : Link | linkName : ln, source : nnOid1, target : nnOid2 >

< nnOid1 : NavigationNode | active : true, s1:AttributeSet >

< nnOid2 : NavigationNode | active : false, s2:AttributeSet >

=> simulateBehaviour

< lOid : Link | linkName : ln, source : nnOid1, target : nnOid2 >

< nnOid1 : NavigationNode | active : false, s1:AttributeSet >

*** The new active node becomes the target node of the link.

< nnOid2 : NavigationNode | active : true, s2:AttributeSet > .

Fig. 4. Behaviour de�nition

4.3 Consistency Checking

This section shows how to check the consistency problem previously de-
�ned by means of the search command of Maude. This command allows
us to use the previous rule to make reachability checks in a navigational
model. Since the level of a node establishes the maximum distance that
can exist between this node and the initial one, we will use this command
to check if we can reach that node, and how many steps we have to do
in order to reach it. If this number of steps is greater than the maximum
distance de�ned for the node, an inconsistency problem exists.

The application example chosen to illustrate our approach deals with
an interaction for a simple on-line shop cart system. Figure 5 shows a

137

Fig. 5. Example of navigational model for an online shopping system

navigational diagram that models how to register and buy in this system.
In this model the initial node is named 'Index'. Moreover, Figure 6 shows
the importance levels that the modeller has de�ned and how they are
linked to each node. In order to improve the usability of the WIS, those
nodes considered important have been labelled with a higher importance
level, which implies that they must be near to the entry point of the WIS
in order to ease the users' navigation in the system.

Once the models have been de�ned, the rule shown in Figure 4 is
used together with the Maude search command to check the existence of
inconsistency nodes, that is, nodes that violate the constraints de�ned in
the usability model of 6. Figure 7 (a) shows how the search command is
used to check the node Payment. This command veri�es the reachability
of a node named Payment using the rule previously de�ned. If this node
is reachable in someway using that rule, its attribute active will have
the value true. Finally the Figure 7 (b) shows a fragment of the output
produced by the command, which shows what a solution exists, that is,
the node is reachable and the number of states (steps), four, to reach it.
This way the Payment node is inconsistent regarding to its level whose
maximum distance to the 'Index' node is three. This information together
with the rules de�ned in the next section will be used to o�er users the
possibility of handling this inconsistency.

138

Fig. 6. Example of usability model

(a)

search [1] simulateBehaviour diagram =>* C:Configuration

< nnOid:Oid : NavigationNode | NNname : "Payment" , active : true >

< nnOid:Oid : NavigationNode | NNname : "Payment" , level : lvl:Oid >

< lvl:Oid : Level | levelName : "Medium", s:AttributeSet > .

(b)

Solution 1 (state 4)

states: 5 rewrites: 9 in 464618638ms cpu (26ms real) (0 rewrites/second)

C:Configuration --> simulateBehaviour

< Low : Level | levelName : "Low", minDistance : 1, maxDistance : 100 >

< High : Level | levelName : "High", minDistance : 1, maxDistance : 2 >

< Index : NavigationNode | NNname : "index", active : false > ...

< l1 : Link | linkName : "3->4", source : ConfirmObject, target : Payment >

nnOid:Oid --> Payment

lvl:Oid --> Medium

s:AttributeSet --> minDistance : 1, maxDistance : 3

Fig. 7. (a) Search command, (b) Search command output

4.4 Consistency Handling

To specify the inconsistency handling, we assume that the problem has
been already checked. In this example, once the inconsistency has been
found, several possible solutions appear. To illustrate our approach, the
handling rules proposed are based on adding new links that connect the
inconsistent node with another node or with the index node of the model.
These rules assume that the problem has been found and use the attribute
active of NavigationNode, to match the inconsistent elements. Figure 8
(a) shows the rule that links the inconsistent node with another. To do
this, the user makes use of a new message, addLink, which allow us to
indicate the source and target nodes of the link. This way the user can
create links among nodes and handle the inconsistency. Figure 8 (b) shows

139

the rule that, in the same way as the previous one, links the Index node
with the inconsistent node.

(a)

rl [InconsistencyHandling1] :

addLink(source:String, target:String)

< nnOid1 : NavigationNode | NNname : source:String, s1:AttributeSet >

< nnOid2 : NavigationNode | NNname : target:String, s2:AttributeSet >

=>

< nnOid1 : NavigationNode | NNname : source:String, s1:AttributeSet >

< nnOid2 : NavigationNode | NNname : target:String, s2:AttributeSet >

< oid(source:String + target:String) : Link |

linkName : source:String + "->" + target:String,

source : nnOid1, target : nnOid2 > .

(b)

rl [InconsistencyHandling2] :

addLinkIndex2(node:String)

< nnOid1 : NavigationNode | NNname : "index", s1:AttributeSet >

< nnOid2 : NavigationNode | NNname : node:String, s2:AttributeSet >

=>

< nnOid1 : NavigationNode | NNname : "index", s1:AttributeSet >

< nnOid2 : NavigationNode | NNname : node:String, s2:AttributeSet >

< oid(node:String + "index") : Link |

linkName : "index" + "->" + node:String,

source : nnOid1, target : nnOid2 > .

Fig. 8. Rules for handling an inconsistency (a) Adding a new link (b) Adding a new
link from the Index node.

These two rules can be used by users to handle this kind of incon-
sistency. Figure 9 shows a fragment of the Maude output when the in-
consistency is handled. To do that, the message addLink and the rewrite
command of Maude are used to add a link between the Login and Payment

nodes in the model.

5 Related Work

The inconsistency problems have been tackled in a great deal of work
(see [10]). In the scope of UML development, the most frequently tackled
problems are related to syntactic features and only a few of them handle
semantic consistency problems.

With regard to the formal analysis of consistency in WIS scope, to
our knowledge extent, there does not exist speci�c work that tackle it,

140

Maude> rew diagram addLink("Login", "Payment") .

rewrite in EX1 : diagram

addLink("Login", "Payment") .

rewrites: 1 in 1628036047000ms cpu (0ms real) (0 rewrites/second)

result Configuration: addLink("Login", "Payment")

< Login : NavigationNode | NNname : "login", active : false >

< Payment : NavigationNode | NNname : "Payment", active : false >

...

< oid("loginPayment") : Link | linkName : "login->Payment",

source : Login, target : Payment >

Fig. 9. (a) Fragment of the Maude output when the inconsistency is handled

although there exists some work dedicated to the application of formal
methods in WIS veri�cation and validation. The authors of [24] use Haskell
to o�er automatic veri�cation over Web sites regarding to the correctness
of a set of rules. Di�erently from our work, [24] is focused on the code of
web pages, whereas the presented approach is focused on �nding inconsis-
tency problems in early phases of software development such as modelling.
Moreover, [24] does not tackle system behaviour problems related to the
usability features of the system.

[25] also uses rewriting techniques to model dynamic behaviour of
Web sites. However, the veri�cation checks shown in it can not be used at
modelling time. Veri�cations on a WIS already implemented imply more
cost when errors have to be �xed. Moreover, our work deals with usability
features as well as dynamic behaviour problems.

The authors of [26] tackle usability problems during the navigational
modelling. To do that, StateWebCharts notation is used. This kind of
notation is not well-known in the WIS community and, for this reason,
we think that our approach is more usable due to the use of the de facto

WIS standard diagrams to model the navigation in a WIS.

Finally, [27] also uses Maude to verify properties over WIS using its
model-checking tool. The properties are related to secure access and con-
nectivity. In the same way that other previously commented approaches,
the behaviour checking is carried out on a set of web pages, instead of
making similar checks at modelling time.

6 Conclusions

The research presented shows the feasibility of using formal techniques (al-
gebraic speci�cations and Maude) in order to manage semantic inconsis-

141

tency problems in Web Engineering. The metamodel speci�cations made
in this approach o�er a powerful way to verify type properties and the
correctness of the models without losing the legibility, intuition, and ex-
pressivity of others transformation languages. Furthermore, in the formal
framework proposed the inconsistency problems in WIS development are
expressed by means of mathematical entities, so we can take advantage
of all the power of mathematical inference mechanisms of Maude. This
allows us to apply commands and extensions to infer information about
those problems and use it for handling them.

With regard to future work, on the one hand, this approach is being
integrated within the MOMENT2 framework [28] in order to improve its
CASE support. Moreover, the features of MOMENT2 are also being ex-
tended to improve the support to this kind of problems, for example, since
there is no way of parameterizing the rules in MOMENT2 and the exe-
cution of the rules is non-deterministic, as in Maude, we can not indicate
which inconsistent elements of a model have to be handled. In this paper
this is made by means of a message introduced in the de�nition of the
handling rule, but in MOMENT2 only elements of metamodels/models
can appear in the rules. For this reason, we are working together with the
authors' MOMENT2 to extend its functionality. On the other hand, the
techniques presented in this paper are being applied to technologies used
in real web developments. Speci�cally the inconsistency problems man-
aged in this paper are being used in some industrial case studies to verify
some similar problems over the navigation rules of JSF [29].

References

1. Muskens, J., Bril, R., Chaudron, M.: Generalizing consistency checking between
software views. 5th Working IEEE/IFIP C. on Software Architecture (2005)

2. Huzar, Z., Kuzniarz, L., Reggio, G., Sourrouille, J.L., eds.: Proc. of Workshop on
consistency Problems in UML-based Software Development II. (2003)

3. Schmidt, D.: Guest editor's introduction: Model-driven engineering. IEEE Com-
puter 39 (2006) 25�31

4. OMG: MDA Guide Version 1.0.1, http://www.omg.org/mda. (2001)
5. Simmonds, J., M. Bastarrica, C.: A tool for automatic UML model consistency

checking. 20th IEEE/ACM I. C. on Automated software engineering. USA (2005)
6. Ginige, A., Murugesan, S.: Guest editors' introduction: Web engineering - an

introduction. IEEE MultiMedia 8 (2001) 14�18
7. Ehrig, H., Mahr, B.: Fundamentals of Algebraic Speci�cation. Equations and Initial

Semantic. ISBN 3-540-13718-1 Springer-Verlag. 1985 (1985)
8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcote,

C.: Maude 2.4 Manual., http://maude.csl.sri.com/. (2008)
9. Shinkawa, Y.: Inter-model consistency in uml based on cpn formalism. XIII Asia

Paci�c Software Engineering Conference (APSEC'06), 2006 (2006)

142

10. Lucas, F.J., Molina, F., Toval, A.: A Systematic Review of UMLModel Consistency
Management. IST Special Issue on Quality of UML Models (To appear)

11. Spanoudakis, G., Zisman, A.: Inconsistency management in software engineering:
Survey and open research issues. In Chang S. K., editor, Handbook of Software
Engineering and Knowledge Engineering. (2001)

12. Engels, G., Küster, J.M., Heckel, R., Groenewegen, L.: A methodology for specify-
ing and analyzing consistency of object-oriented behavioral models. In Proceedings
of eighth ESEC held jointly with FSE2001ACM Press, Vienna, Austria (2001)

13. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications. Morgan Kaufmann Inc., San Francisco, CA,
USA (2002)

14. Gómez, J., Cachero, C., Pastor, O.: Conceptual modeling of device-independent
web applications: Towards a web engineering approach. IEEE Multimedia 8 (2001)
26�39

15. Koch, N., Kraus, A.: The expressive power of uml-based web engineering. 2nd Int.
Worskhop on Web-oriented Software Technology (IWWOST) (2002)

16. Juristo, N., Moreno, A.M., Sánchez, M.I.: Analysing the impact of usability on
software design. Journal of Systems and Software 80 (2007) 1506�1516

17. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Archi-
tecture: Practice and Promise. Addison-Wesley (2003)

18. SmartQVT: SmartQVT. http://smartqvt.elibel.tm.fr/ (2007)
19. ikv++ technologies ag: Medini QVT 1.1 . http://www.ikv.de/ (2007)
20. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: Atl: a qvt-like

transformation language. 21th ACM SIGPLAN, OOPSLA, Oregon, USA (2006)
21. OMG: MOF QVT Final Adopted Speci�cation. Object Management Group.,

Retrieved from: http://www.omg.org/docs/ptc/07-07-07.pdf. (2007)
22. Eker, S., Martí-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and

rewriting. Electr. Notes Theor. Comput. Sci. 174 (2007) 3�25
23. Molina, F., Álvarez, A.T.: A generic approach to improve navigational model

usability based upon requirements and metrics. In: WISE Workshops. (2007)
24. Ballis, D., García-Vivó, J.: A rule-based system for web site veri�cation. Electr.

Notes Theor. Comput. Sci. 157 (2006) 11�17
25. Lucas, S.: Rewriting-based navigation of web sites: Looking for models and logics.

Electr. Notes Theor. Comput. Sci. 157 (2006) 79�85
26. Winckler, M., Barboni, E., Palanque, P.A., Farenc, C.: What kind of veri�cation

of formal navigation modelling for reliable and usable web applications? Electr.
Notes Theor. Comput. Sci. 157 (2006) 207�211

27. Flores, S., Lucas, S., Villanueva, A.: Formal veri�cation of websites. Electr. Notes
Theor. Comput. Sci. 200 (2008) 103�118

28. Boronat, A.: Moment2. http://www.cs.le.ac.uk/people/aboronat/tools/moment2
(2008)

29. Microsystems, S.: Javaserver faces. http://java.sun.com/javaee/javaserverfaces/
(2009)

143

144

Slicing microformats for information retrieval?

J. Guadalupe Ramos1, Josep Silva2, Gustavo Arroyo2, and Juan C. Solorio1

2 DSIC, Universidad Politécnica de Valencia
Camino de Vera s/n, E-46022 Valencia, Spain.

{jsilva,garroyo}@dsic.upv.es
1 Instituto Tecnológico de La Piedad

Av. Tecnológico 2000, La Piedad, Mich., México. CP 59300
{guadalupe@dsic.upv.es,juancsol@hotmail.com}

Abstract. Microformats are a medium to incorporate semantic infor-
mation into the web by means of standard tags which are enriched with
particular attributes. They are a set of simple and open data formats
built upon existing and widely adopted standards, hence, they are con-
sidered a pragmatic path to the Semantic Web.
In this work, we introduce a new method for information extraction from
the semantic web. Basically we model the semantic information, which is
contained in a set of web pages, in a formal graph like structure, namely,
semantic network. Then, we introduce a novel slicing based technique for
information extraction from semantic networks. In particular, the tech-
nique allows us to extract a portion�a slice�of the semantic network
with respect to some criterion of interest. The slice obtained represents
relevant information retrieved from the semantic network and thus from
the semantic web. Our approach can be used to design novel tools for
information retrieval and presentation, and for information �ltering that
was distributed along the semantic web.

1 Introduction

The Semantic Web is considered an evolving extension of the World Wide Web
in which the semantics of information and services on the web is made explicit
by adding metadata. Metadata provides the web contents with descriptions,
meaning and inter-relations. The Semantic Web is envisioned as a universal
medium for data, information, and knowledge exchange.

Two important technologies for developing the Semantic Web are already
in use: The eXtensible Markup Language (XML) and the Resource Description
Framework (RDF) among others [1]. Nevertheless, e�orts to extend the Web
? This work has been partially supported by the Spanish Ministerio de Ciencia e
Innovación under grant TIN2008-06622-C03-02, by the Generalitat Valenciana un-
der grant GVPRE/2008/001, by the Universidad Politécnica de Valencia (Programs
PAID-05-08 and PAID-06-08) and by the Mexican Dirección General de Educación
Superior Tecnológica.

145

with meaning have gained little traction. These initiatives have been bogged
down by complexity and over-ambitious goals, or have simply been too much
trouble to implement at a large scale (see, e.g., the discussion in [2]).

Recently, a new initiative has emerged that looks for attaching semantic data
to web pages by using simple extensions of the standard tags currently used for
web formatting in (X)HTML1, these extensions are called microformats [3, 4]. A
microformat is basically an open standard formatting code that speci�es a set
of attribute descriptors to be used with a set of typical tags.

Example 1. Consider the following XHTML code that introduces information of
a common personal card.

<h2>Directory</h2>
<p> Vicente Ramos

Software Development

118, Atmosphere St.

La Piedad, México

59300

+52 352 52 68499

</p>
<h4>His Company</h4>
Company Page

Now, let us see the same information but taking into account the standard
hCard microformat [5], which is useful for representing people, companies, orga-
nizations, and places data.

<h2>Directory</h2>
<div class="vcard">

Vicente Ramos
<div class="org">Software Development</div>
<div class="adr">

<div class="street-address">Atmosphere 118</div>
La Piedad, México,
59300

</div>
<div class="tel">+52 352 52 68499</div>
<h4>His Company</h4>
Company Page

</div>

The class property quali�es each type of attribute which is de�ned by the hCard
microformat. The code starts with the required main class vcard and classi�es
the information with a set of classes which are auto-explicative: fn describes
name information, adr de�nes address details and so on.
1 XHTML is a sound selection because it enforces a well-structured format.

146

Microformats are a clever adaptation of semantic XHTML that makes it eas-
ier to publish, index, and extract semi-structured information like tags, calendar
entries, contact information, and reviews on the web. Microformats have given
rise to the so-called semantic web2 [6]. Indeed, they are considered a pragmatic
path towards achieving the vision set forth for the Semantic Web [4].

Both the Semantic Web and the semantic web require new formal models,
methods and tools to represent and query the embedded information. In the
Semantic Web setting the semantic model is based on the notion of Ontology.
An ontology de�nes and categorizes classes of concepts and their relations [1].

In contrast, in the semantic web setting, there does not exist a widely ac-
cepted model, and thus, the scienti�c community must do an e�ort to propose
new approaches and formal methods. In this paper we propose the use of se-
mantic networks which is a convenient simple model for representing semantic
data; and we de�ne a slicing technique for this formalism in order to analyze and
�lter the semantic web. A semantic network is often used as a form of knowledge
representation; and it is formalized as a graph whose vertices represent concepts,
and whose edges represent semantic relations between the concepts [7].

Once the information is modeled in a semantic network, formal methods for
information extraction are needed to ensure a systematic and sound treatment of
the information. Because semantic networks are implemented as a data structure
that contains a considerable amount of information, its treatment is not a trivial
task. We use a slicing technique to reduce the complexity of such a data structure.

Program slicing is basically a decomposition technique for the extraction of
those program statements�the slice�that (potentially) a�ect the values com-
puted at some point of interest. Program slicing was originally introduced by
Weiser [8] and has now many applications such as debugging, program special-
ization [9], and XML �ltering [10], see [11] for a survey.

Slicing techniques are (usually) based on a data structure called Program-
Dependence Graph (PDG) [12]. The PDG allows slicers to �nd out which sen-
tences of a program are related to some criterion (the so called slicing criterion)
and thus they belong to the slice.

Therefore, program slicing could be a very convenient way to retrieve in-
formation from semantic networks with respect to some slicing criterion. Based
on this idea, we introduce a program slicing inspired technique for information
extraction from the semantic web. Our technique is based on an extension of se-
mantic network, the indexed semantic network, that we conveniently formalize.
This new notion of semantic network contains indexes that allow us to extract
sub-graphs which are related to a speci�c topic. Roughly, the technique proceeds
as follows: Firstly, an indexed semantic network is built from a collection of web
pages. Then, we extract from the indexed semantic network the sub-net which
is related to the slicing criterion. Finally, a slice is extracted from the semantic
sub-net. The slices extracted from the sub-net represent the semantic informa-

2 Note the di�erent use along the paper of Semantic Web (in capital letters) and
semantic web (in lowercase letters).

147

tion associated to the slicing criterion which, in turn, is the required information
by the user.

The main contributions of this paper can be summarized as follows:

� We propose the use of semantic networks to represent semantic webs through
the use of microformats, and show its usefulness.

� We extend standard semantic networks with indexes. This extension acts as
an interface for the semantic network.

� We introduce a formal slicing based method for information recovering in
semantic networks.

The rest of the paper is organized as follows. In Section 2, we overview the
topic of semantic networks and recall the basic concepts related to them. In
Section 3, we describe how semantic networks can be built from the semantic
web. Furthermore, our slicing method for information extraction is formally in-
troduced in Section 4. Finally, in Section 5 we review some related work and
conclude.

2 Semantic Networks

The concept of semantic network is fairly old�in fact, the term of semantic
network dates back to Ross Quillian's works [13] where he introduced it as a
way of talking about the organization of human semantic memory�in the liter-
ature of cognitive science and arti�cial intelligence. Nevertheless, it is a common
structure for knowledge representation, which is useful in modern and di�erent
problems of arti�cial intelligence. For instance, in the recent Semantic Network
Analysis Workshops [14, 15] many applications of this formalism were discussed,
e.g., for social networks or hypertext networks.

A semantic network is a directed graph consisting of nodes which represent
concepts and edges which represent semantic relations between the concepts.
Sowa [16, 7] introduced a classi�cation of semantic networks, in which the type of
de�nitional networks emphasizes the subtype of is-a relation between a concept
type and a newly de�ned subtype. This is the kind of semantic network that we
will use in this paper. In Figure 1, we present a typical example.

3 From the semantic web to the semantic network

Roughly speaking, our method for semantic web information extraction is com-
posed by two main steps:

1. Representing the information in the semantic web with a semantic network
2. Slicing the semantic network

In this section we focus on the �rst step, while the second one is subject of
formal treatment in Section 4.

148

lives in

is an
is a

has

lives in

is a

has
has cat

fish

animal

vertebra

mammal

bear

fur

water

whale

is a

is an

Fig. 1. A de�nitional semantic network.

3.1 Constructing the semantic network from the semantic web

In order to represent semantic information in a semantic network we should de-
cide what is the relevant information to be gathered and what we expect from
a web information extraction query. In this work, we consider the microformats,
i.e., classes as convenient entities for modeling, and then, for indexing or refer-
encing.

Example 2. Let us consider again the semantic microformatted web page code
of Example 1. We see that the semantic information is classi�ed by using prede-
�ned classes which can embed other classes. For instance the main class vcard
embeds the org class (to de�ne an organization), the adr class (to indicate ad-
dressing data), etc. The next code shows a semantic web page composed by two
main classes, i.e., vcard and vevent (for events microformatting [17]):

<h2>Staff</h2>
<div class="vcard">

Jessica Pechuch,
<p class="role">CEO</p>
<div class="org">Software Development </div>
<div class="adr">

<div class="street-address">Atmosphere 118</div>
La Piedad, México,
59300

</div>
<div class="tel">+52 352 52 68499</div>

</div>
<h2>Personal Events</h2>
<div class="vevent">

February 25, 2009

Microformats use at
 Main Street 126
<div class="description">

149

In this meeting we will discuss the use of microformats
</div>

</div>

In the example we see that microformats use classes to hierarchize the in-
formation; thus, classes should be the basic units of our semantic model. If we
focus on the relations between classes we identify two kinds of relations, namely:

strong relations that are the relations which come from hypertext links be-
tween pages or sections of a page by using anchors.

weak relations that can be embedding relationships, for classes that embeds
other classes or semantic relationships among classes of the same type, for
instance, between two vcard.

Example 3. Consider again the microformatted code of Examples 1 and 2. From
their classes we can build the semantic network depicted in Figure 2 (the grey
parts of the �gure do not belong to the semantic network and thus they can be
ignored for the moment).

In the �gure, the nodes of the �rst page are labeled with P1 and the nodes
of the second page are labeled with P2. Thus, nodes (i.e., concepts) are unique.
We observe three kinds of edges: The locality class from Example 1 is embed-
ded in the adr class. Thus, there is an embedding relationship from node adr
to node locality. Furthermore, vcard in P1 and vcard in P2 of the semantic
web of Example 2 are linked by a semantic relationship. Besides, there is one
strong hyperlink to P2 generated by the microformatted tag <a class="url"
href="page2.html">. Observe that the graph only contains semantic informa-
tion and their relations; and it omits content or formatting information such as
the labels. Observe that we add to the graph two additional
concepts, P1 and P2, which refer to web pages. This is very useful in practice in
order to make explicit the embedding relation between microformats and their
web page containers.

It is important to note that, in the previous example, similar classes partici-
pate in a cyclic relation. This is needed and useful in order to preserve semantic
relations among information which is located in many source pages. The source
pages to be analyzed in order to build the semantic network should be de�ned
by the user or by the system, for instance, they could be the answer from a web
searching engine. Another important design decision is related to the classes to
be semantically linked. In the above example we took only main classes, i.e.,
vcard and vevent. It was a design decision not to link other classes such as adr.

4 A technique for information retrieval

In this section we formalize the notions related to semantic networks. Firstly,
we de�ne the semantic networks, then we introduce an extension called indexed

150

pos-code:P2

dtstart:P2

location:P2

P2

vcard:P2

fn:P2 role:P2 org:P2

adr:P2

tel:P2

vevent:P2

locality:P2

st-adr:P2 summary:P2

location:P2

P1

vcard:P1

fn:P1 org:P1

adr:P1

tel:P1 url:P1

pos-code:P1 st-adr:P1

locality:P1

weak links (semantic network):

strong links (typical URLs):

embeds

relates to

links to

 P1

vcard
 P2

 vevent

index

Fig. 2. Semantic network of Example 1 and Example 2.

151

semantic network. In addition, we de�ne the notion of semantic sub-net. Once,
the needed graph structures have been de�ned, we introduce the concept of back-
ward and forward slicing of such a graphs, and enunciate our fundamental result
of semantics preservation of slices. Finally, we show an algorithmic view of our
slicing based method for information extraction. Without loss of generality, we
only consider weak links (i.e., only semantic relations), thus we analyze semantic
networks without taking into account the labels associated to the edges.

4.1 Extending semantic networks

We introduce �rst some preliminary de�nitions.

De�nition 1 (semantic network). A directed graph is an ordered pair G =
(V, E) where V is a �nite set of vertices or nodes, and E ⊆ V × V is a set of
ordered pairs (v → v′) with v, v′ ∈ V called edges. A semantic network is a
directed graph S = (V, E) in which nodes have been labeled with names of web
pages and microformatting classes of these pages.

As an example of semantic network consider the directed graph in Figure 2
(omitting the grey parts) where nodes are the set of microformatted classes
provided by two semantic web pages.

A semantic network is a profuse mesh of information. For this reason, we
extend the semantic network with an index which acts as an interface between
the semantic network and the potential interacting systems. The index contains
the subset of concepts that are relevant (or also visible) from outside the semantic
net. It is possible to de�ne more than one index for di�erent systems and or
applications. Each element of the index contains a key concept and a pointer
to its associated node. Arti�cial concepts such as webpages (See P1 and P2
in Figure 2) can also be indexed. This is very useful in practice because it is
common to retrieve the embedded (microformatted) classes of each semantic
web page.

Let K be a set of concepts represented in the semantic network S = (V, E).
Then, rnode : (S, k) → V where k ∈ K (for the sake of clarity, in the following
we will refer to k as the key concept) is a mapping from concepts to nodes; i.e.,
given a semantic network S and a key concept k, then rnode(S, k) returns the
node v ∈ V associated to k.

De�nition 2 (semantic index). Given a semantic network S = (V, E) and
an alphabet of concepts K, a semantic index I for S and K is any set I =
{(k, p) | k ∈ K and p is a mapping from k to rnode(S, k)}

We can now extend semantic networks by properly including a semantic
index. We call this kind of semantic network indexed semantic network (IS).

De�nition 3 (indexed semantic network). An indexed semantic network
IS is a triple IS = (V, E , I), such that I is a semantic index for the semantic
network S = (V, E).

152

Now, each semantic index allows us to visit the semantic network from a well
de�ned collection of entrance points which are provided by the rnode function.
Example 4. An IS with a set of nodes V = {a, b, c, d, e, f, g} is shown in Figure 3
(a). For the time being the reader can ignore the use of colors black and grey and
consider the graph as a whole. There is a semantic index with two key concepts
a and c pointing out to their respective nodes in the semantic network.

Similarly, the semantic network of Figure 2 has been converted to an IS by
de�ning the index with four entries P1 (page1.html), P2 (page2.html), vcard
and vevent and by removing the strong links. Thus, for instance, vcard entry
points to the cycle of vcard nodes.

Given a graph G = (V, E) and two nodes v1, vn ∈ V , if there is a sequence
v1, v2, . . . , vn of nodes in G where (vi, vi+1) ∈ E for 1 ≤ i ≤ n − 1, then we say
that there is a path from v1 to vn in G. Given u, v ∈ V we say that the node v
is reachable from u if there is a path from u to v.
De�nition 4 (semantic sub-net). Let IS = (V, E , I) be an indexed semantic
network. Then, a semantic sub-net of IS with respect to concept k with (k, p) ∈ I
for some p is Sk = (V ′, E ′) such that V ′ = {rnode((V, E), k)} ∪ {v|v ∈ V and v
is reachable from rnode((V, E), k)} and E ′ = {(u, v)|(u, v) ∈ E and u ∈ V ′}.
Example 5. Figure 3 (a) shows in black color the semantic sub-net extracted
from the whole IS with respect to concept c.
De�nition 5 (semantic relationship). Given a semantic network S = (V, E)
and a node v ∈ V, the semantic relationships of v are the edges {v → v′ ∈ E}.
We say that a concept v is semantically related to a concept u if there exists a
semantic relationship (u → v).

The semantic relations in our semantic networks are unidirectional. The se-
mantics associated to the edges of a semantic network is not transitive because
edges can have di�erent meanings. Therefore, the semantic relation of De�ni-
tion 5 is neither transitive.

Given a node n in a semantic network, we often use the term semantically
reachable to denote the set of nodes which are reachable from n through semantic
relationships. Clearly, semantic reachability is a transitive relation.

The following lemma ensures that an extracted sub-net does not change the
semantics of its associated semantic network.
Lemma 1. Let N be the semantic sub-net extracted from the semantic indexed
network IS = (V, E , I) with respect to concept k. Let n = rnode((V,E),k). Then
N is formed by n and all and only the semantically reachable nodes from n, and
all and only the semantic relationships of its nodes.
Proof. The claim trivially holds from the fact that N is a subset of IS, i.e., N
does not add new nodes nor edges to the semantic network; and also, the nodes
and edges of N are all those nodes and edges in all the paths starting at the
node n = rnode((V, E), k). Therefore, n and all the semantically reachable nodes
from n belong to N ; and all the semantic relationships of n and the nodes in the
paths are preserved because the paths are only traversed forwards.

153

a

b

c

d

e

g

f

 a c

 c d f g

c 0 1 1 0

d 0 0 0 1

f 0 1 0 0

g 0 0 1 0

a

b

c

d

e

g

f

 a c

Fig. 3. a) A semantic sub-net. b) The sub-net's adjacency matrix. c) A backward slice.

4.2 Semantic sub-net slicing

In this section we present a procedure that allows us to extract a portion of a
semantic sub-net according to some criterion. The procedure uses an adjacency
matrix to represent the semantic sub-net.

The adjacency matrix m of a directed graph G with n nodes is the n × n
matrix where the non-diagonal entry mij contains 1 if there is an edge such that
mi → mj .3

Example 6. Consider the semantic sub-net in Figure 3 (a). Node c has two di-
rected edges, one to node d and other to node f. Thus, in the entry mcd and mcf

we write 1, and 0 in the other cells.

Now, we are in a position to introduce our slicing based method for informa-
tion recovering from semantic sub-nets. In traditional program slicing, the user
selects a variable in a sentence of a program, and the slicer extracts the part of
the program that has an in�uence over this variable. This can be done thanks
to the use of a Program Dependence Graph [12] that stores the control and data
dependences in a program. In our context, the slicing criterion is di�erent to
the standard program slicing technique which consists in a single point. Thanks
to the introduction of indexes we can enrich our notion of slicing criterion by
adding an extra level of information which allows us to perform slicing at two
di�erent levels. Firstly, we can select a concept in the index. From this concept
we can extract a semantic sub-net as described before. Next, in the resultant
semantic subnet we can select the node of interest. Hence, our slicing criterion
consists of a pair formed by a key concept and a node. Formally:
3 Note that we could write a label associated to the edge in the matrix instead of 1 in
order to also consider other relationships between nodes.

154

De�nition 6 (slicing criterion). Let IS = (V, E , I) be an indexed semantic
network. Then a slicing criterion C for IS is a pair of elements 〈k, v〉 such that
(k, p) ∈ I for some p, v ∈ V ′ and Sk = (V ′, E ′) is the semantic sub-net of IS
with respect to concept k.

Intuitively, the slicing criterion contains the concept of interest, from which
we can extract a relevant sub-net, and a single node of the computed sub-net.
This node is a particular microformatting class with the semantic information
of interest reachable through semantic relations. Given a semantic sub-net, we
can produce two di�erent slices by traversing the sub-net either forwards or
backwards from the node pointed out by the slicing criterion. Each slice gives
rise to di�erent semantic information.

Example 7. Consider the slicing criterion 〈c, d〉 for the IS in Figure 3 c). The
�rst level of slicing uses c to extract the semantic subnet highlighted with black
color. Then, the second level of slicing performs a traversal of the semantic
sub-net either forwards or backwards from d. In Figure 3 c) the backward slice
contains all nodes whereas the forward slice would only contain {d, f, g}.

Both backward slicing [8] and forward slicing [18] are well-known and widely
used techniques in the literature (see, e.g., [10, 19, 20]). In our context, they can
be used to distinguish between two di�erent semantic relations: While backward
slicing produces more general information (i.e., the classes to which the slicing
criterion belongs), forward slicing produces specialized semantic relations (i.e.,
the classes which belong to the slicing criterion).

Example 8. Consider the semantic network in Figure 2 together with the slicing
criterion 〈P1, adr:P1〉. With P1 we can perform the �rst level of slicing to recover
a semantic sub-net which is composed by the nodes {P1, vcard :P1, vcard :P2}
and all of their descendant (semantically reachable) nodes. Then, from node adr
: P1 we can go forwards and collect the information related to the address or
backwards and collect nodes vcard :P1, P1 and vcard :P2. The backward slicing
illustrates that the node adr :P1 is semantically reachable from P1, vcard :P1,
and vcard :P2, and thus, there are semantic relationships between them. Hence,
we extract a slice from the semantic network and, as a consequence, from the
semantic web.

We can now formalize the notion of forward/backward slice for semantic sub-
nets. In the de�nition we use →∗ to denote the re�exive transitive closure of
→.

De�nition 7 (forward/backward slice). Let IS = (V, E , I) be an indexed
semantic network with (k, p) ∈ I for some p. Let Sk = (V ′, E ′) be the semantic
sub-net of IS with respect to k and C = 〈k, node〉 a slicing criterion for IS. Then
a slice of IS is S ′ = (V1, E1) such that

forward V1 = {node} ∪ {v|v ∈ V ′ and (node →∗ v) ∈ E ′}
backward V1 = {node} ∪ {v|v ∈ V ′ and (v →∗ node) ∈ E ′}

155

Input: An indexed semantic network IS = (V, E , I)
and a slicing criterion C = 〈k, node〉 where (k, p) ∈ I for some p

Output: A slice S ′ = (V ′, E ′)
Initialization: V ′ := {node}, E ′ := {}, V isited := {}
Begin

Compute Sk = (Vk, Ek) a semantic sub-net of IS
whose adjacency matrix is M

Repeat
let s ∈ (V ′ \ V isited)
let c := column(s,M)
For each s′ ∈ Vk with r = row(s′,M) and Mr,c = 1
V ′ := V ′ ∪ {s′}
E ′ := E ′ ∪ {(s′ → s)}

V isited := V isited ∪ {s}
Until V ′ = V isited

End
Return: (V ′, E ′)

Fig. 4. An algorithm for semantic network backward slicing.

and E1 = {(u → v) | (u → v) ∈ E ′ with u, v ∈ V1}
The algorithm of Figure 4 shows the complete slicing based method for infor-

mation extraction from semantic networks. Roughly speaking, given an IS and a
slicing criterion, (i) it extracts the associated semantic sub-net, (ii) it computes
the sub-net's adjacency matrix, and (iii) it extracts (guided by the adjacency
matrix) the nodes and edges that form the �nal slice.

The algorithm uses two functions row(s,M) and column(s,M) which re-
spectively return the number of row and column of concept s in matrix M. It
proceeds as follows: Firstly, the semantic sub-net associated to IS and the ad-
jacency matrix of the sub-net are computed. Then, the matrix is traversed to
compute the slice by exploiting the fact that a cell Mi,j with value 1 in the ma-
trix means that the concept in column j is semantically related to the concept in
row i. Therefore, edges are traversed backwards by taking a concept in a column
and collecting all concepts of the rows that have a 1 in that column.

Now, we present the main result of the paper which states that the slicing
method is correct with respect to semantic relationships.
Theorem 1. Let IS = (V, E , I) be an indexed semantic network, 〈k, node〉 a
slicing criterion such that n = rnode((V, E), k), and S ′ the backward slice re-
turned by the semantic network backward slicing algorithm. Then, S ′ is formed
by node and all the nodes from which node is semantically reachable in the se-
mantic sub-net induced by k. Moreover, all and only the semantic relationships
of the nodes in S ′ that appear in IS also appear in S ′.
Proof. Firstly, S′ is extracted from the semantic sub-net Sk = (V ′, E ′) computed
with respect to k with rnode((V, E), k). Moreover, by Lemma 1 we know that all

156

the nodes in Sk are nodes of IS and they all keep their semantic relationships.
In addition, we know by De�nition 6 that n belongs to V ′. Then, since the
algorithm only collects nodes which are transitively connected to n, we can
ensure that node and all the nodes from which it is semantically reachable are
in S′. Moreover, all edges in the paths also belong to the slice, and hence, all the
semantic relationships of the nodes in S ′ that appear in IS also appear in S ′.
Furthermore, S′ only collects the relations participating in the paths from node
and thus only the semantic relationships of the nodes in S ′ that appear in IS
also appear in S ′.

Ongoing practical approach: In order to demonstrate the usefulness of our ap-
proach we have implemented some tools for discovering and extracting the se-
mantic relationships among web pages. The current prototype is able to analyse a
complete web site by traversing its hyperlinks and identifying semantic relations
between web pages. As an example, Table 1 shows the collection of microfor-
mats found in a set of web pages. Concretely, we launched several queries to
the Google web search engine and took the �rst eight links for each query. The
tool automatically analised Google's results, and it found out their microformats
an the semantic relations between the web pages. Certainly, there are notable
e�orts to extract microformats from web pages [21], and to �lter HTML docu-
ments [22]; however current approaches only focus on single web pages, and thus,
they ignore the relations between data which is located in di�erent web pages.

Table 1. Searching for Microformats

Google query web pages vevent vcard geo hresume hreview
event sport upcoming “New York” 8 17 2 18 0 0
restaurant Paris food 8 0 21 6 0 0
“medical services” madrid hospital 8 0 20 0 0 0
hotel London quality room downtown 8 0 0 17 0 0
personal service “Los Angeles” street 8 0 15 2 0 0
song author 8 0 13 0 0 0
Totals 48 17 71 37 0 0

5 Related work and conclusions

In [23], three prototype hypertext systems were designed and implemented. In
the �rst prototype, an unstructured semantic net is exploited and an authoring
tool is provided. The prototype uses a knowledge-based traversal algorithm to
facilitate document reorganization. This kind of traversing algorithms is based
on typical solutions like depth-�rst search and breadth-�rst search. In contrast,
our IS allow us to optimize the task of information retrieval.

[24] designed a particular form of a graph to represent questions and answers.
These graphs are built according to the question and answer requirements. This
is in some way related to our work if we assume that our questions are the slicing
criteria and our answers are the computed slices. In our approach, we conserve

157

a general form of semantic network, which is enriched by the index, so, it still
permits to represent sub-graphs of knowledge.

To the best of our knowledge this is the �rst program slicing based approach
to extract information from the semantic web. The obtained answers are seman-
tically correct, since, the information extraction method follows the paths of the
source semantic tree, i.e., the original semantic relationships are preserved. Fur-
thermore, semantic relationships contained in sets of microformatted web pages
can also be discovered and extracted.

Program slicing has been previously applied to data structures. For instance,
Silva [10] used program slicing for information extraction from individual XML
documents. He also used a graph-like data structure to represent the documents.
However semantic networks are a much more general structure, that could con-
tain many subgraphs, while XML documents are always a tree-like structure. In
contrast to this method, our approach can process groups of web pages.

This method could be exploited by tools that feed microformats. Frequently,
these tools take all the microformats in the semantic web and store them in their
databases in order to perform queries. Our representation improves this behavior
by allowing the system to determine what microformats are relevant and what
microformats can be discarded. Another potential use is related to automatic
information retrieval from websites by summarizing semantic content related to
a slicing criterion. Similarly, web search engines could use this method to be able
to establish semantic relations between unrelated links.

To summarize, we have introduced an approach for information extraction
from the semantic web. This approach is based on program slicing, and has many
potential applications in the design of modern tools for information extraction.

References
1. J. Hendler T. Berners-Lee and O. Lassila. The Semantic Web. Scienti�c American

Magazine, May 2001.
2. T. Çelik. What's the Next Big Thing on the Web? It May Be a Small, Simple

Thing - Microformats. Knowledge@Wharton, 2005.
3. Microformats.org. The O�cial Microformats Site. http://microformats.org/,

2009.
4. R. Khare and T. Çelik. Microformats: a Pragmatic Path to the Semantic Web. In

WWW '06: Proceedings of the 15th International Conference on World Wide Web,
pages 865�866. ACM, 2006.

5. hCard. Simple, Open, Distributed Format for Representing People, Companies,
Organizations, and Places. http://microformats.org/wiki/hcard, 2009.

6. R. Khare. Microformats: The Next (Small) Thing on the Semantic Web? IEEE
Internet Computing, 10(1):68�75, 2006.

7. J. F. Sowa. Semantic Networks. In S. C. Shapiro, editor, Encyclopedia of Arti�cial
Intelligence. John Wiley & Sons, 1992.

8. M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
10(4):352�357, 1984.

9. C. Ochoa, J. Silva, and G. Vidal. Lightweight Program Specialization via Dynamic
Slicing. In Proc. of the Workshop on Curry and Functional Logic Programming
(WCFLP 2005), pages 1�7. ACM Press, 2005.

158

10. J. Silva. A Program Slicing Based Method to Filter XML/DTD Documents. In
SOFSEM (1), pages 771�782, 2007.

11. F. Tip. A Survey of Program Slicing Techniques. Journal of Programming Lan-
guages, 3:121�189, 1995.

12. J. Ferrante, K. J. Ottenstein, and J.D. Warren. The Program Dependence Graph
and Its Use in Optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 9(3):319�349, 1987.

13. R. Quillian. Semantic Memory. In Marvin Minsky, editor, Semantic Information
Processing. MIT Press, 1969.

14. Gerd Stumme, Bettina Hoser, Christoph Schmitz, and Harith Alani, editors. ISWC
2005 Workshop on Semantic Network Analysis, volume 171 of CEUR Workshop
Proceedings, Galway, Ireland, 2005.

15. Harith Alani, Bettina Hoser, Christoph Schmitz, and Gerd Stumme, editors. Pro-
ceedings of the 2nd Workshop on Semantic Network Analysis, 2006.

16. J. F. Sowa, editor. Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge. Morgan Kaufmann, 1991.

17. hCalendar. Simple, Open, Distributed Calendaring and Events Format.
http://microformats.org/wiki/hcalendar, February 2009.

18. J.F. Bergeretti and B. Carré. Information-Flow and Data-Flow Analysis of
while-Programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 7(1):37�61, 1985.

19. J. Silva and G. Vidal. Forward Slicing of Functional Logic Programs by Partial
Evaluation. Theory and Practice of Logic Programming, 7:215�247, 2007.

20. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In
Proc. of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM'04), pages 123�134. ACM Press, 2004.

21. C. Yu. Tails add-on. Available at: http://blog.codeeg.com/tails-firefox-extension-03/,
2007.

22. J. Silva. Web �ltering toolbar 1.3. Available at:
https://addons.mozilla.org/es-ES/firefox/addon/5823, 2008.

23. W. Wang and R. Rada. Structured Hypertext with Domain Semantics. ACM
Transactions on Information Systems (TOIS), 16(4):372�412, 1998.

24. D. Mollá. Learning of Graph-based Question Answering Rules. In Proc.
HLT/NAACL 2006 Workshop on Graph Algorithms for Natural Language Pro-
cessing, pages 37�44, 2006.

159

160

Author Index

Almendros-Jimenez, Jesus M. 69
Arroyo, Gustavo . 145

Banti, Federico . 21
Berczes, Tamas . 37
Bry, François . 3

Dueñas, Juan C. 99

Fardal, Frank . 115
Freitag, Burkhard . 53

Garćıa, Boni . 99
Guta, Gabor .37

Jaksic, Mirjana . 53

Kusper, Gabor .37

Linaje, Marino .85
Lozano-Tello, Adolfo . 85
Lucas, Francisco J. 129

Malecha, Gregory . 5
Molina, Fernando . 129
Morrisett, Greg . 5

Nietzio, Annika . 115

Olsen, Morten Goodwin . 115

Parada G., Hugo A. 99
Polleres, Axel . 1
Preciado, Juan Carlos . 85
Pugliese, Rosario . 21

Ramos, J. Guadalupe . 145
Rodŕıguez, Roberto . 85

Sanchez-Figueroa, Fernando . 85
Schönberg, Christian .53
Schreiner, Wolfgang .37
Silva, Josep .145
Snaprud, Mikael . 115
Solorio, Juan Carlos . 145
Sztrik, Janos . 37

Tiezzi, Francesco . 21
Toval, Ambrosio . 129

Weitl, Franz . 53
Wisnesky, Ryan .5

161

	preface
	papers
	invited_1
	blank
	invited_2
	blank
	paper_2
	blank
	paper_15
	paper_11
	blank
	paper_3
	blank
	paper_7
	blank
	paper_5
	paper_9
	blank
	paper_10
	paper_8
	blank
	paper_13
	blank

