Analyzing a Proxy Cache Server Performance Model
with the Probabilistic Model Checker PRISM *

Tamds Bérczes!, tberczes@inf.unideb.hu,
Gébor Guta?, Gabor.Guta@risc.uni-linz.ac.at,
Giébor Kusper®, gkusper@aries.ektf.hu,
Wolfgang Schreiner?, Wolfgang.Schreiner @risc.uni-linz.ac.at,
Janos Sztrik!, jsztrik@inf.unideb.hu

! Faculty of Informatics, University of Debrecen, Hungary, http://www.inf.unideb.hu
2 Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz,
Austria, http://www.risc.uni-linz.ac.at
3 Esterhazy Karoly College, Eger, Hungary, http://www.ektf.hu

Abstract. We report our experience with formulating and analyzing in the proba-
bilistic model checker PRISM a web server performance model with proxy cache
server that was previously described in the literature in terms of classical queu-
ing theory. By our work various ambiguities and deficiencies (also errors) are
revealed; in particular, it is not clear how the reported paper simulates the net-
work bandwidth, as a queue or a delay. To avoid such ambiguities we argue that
nowadays performance modeling should make use of (at least be accompanied
by) state machine descriptions such as those used by PRISM. On the one hand,
this helps to more accurately describe the systems whose performance are to be
modeled (by making hidden assumptions explicit) and give more useful informa-
tion for the concrete implementation of these models (appropriate buffer sizes).
On the other hand, since probabilistic model checkers such as PRISM are fur-
thermore able to analyze such models automatically, analytical models can be
validated by corresponding experiments which helps to increase the trust into the
adequacy of these models and their real-world interpretation.

1 Introduction

The two originally distinct areas of the qualitative analysis (verification) and quanti-
tative analysis (performance modeling) of computing systems have in the last decade
started to converge by the arise of stochastic/probabilistic model checking [9]. This fact
is recognized by both communities. While originally only individual authors hailed this
convergence [7], today various conferences and workshops are intended to make both
communities more aware of each others’ achievements [4, 12]. One attempt towards this
goal is to compare techniques and tools from both communities by concrete application
studies. The present paper is aimed at exactly this direction.

In [1], we have shown how the probabilistic model checker PRISM [10, 8] com-
pares favorably with a classical performance modeling environment for modeling and

* Supported by the Austrian-Hungarian Scientific/Technical Cooperation Contract HU 13/2007.

analyzing retrial queueing systems, especially with respect to the expressiveness of the
models and the queries that can be performed on them. In the present paper, we are mak-
ing one step forward by applying PRISM to re-assess various web server performance
models with proxy cache servers that have been previously described and analyzed in
the literature.

The starting point of our work is the paper [5], which presents a performance model
for a system of a web server and web clients where a “proxy cache server” receives
all the requests from the clients of a local network; with a certain probability the data
requested by a client are already cached on the proxy server and can be returned without
contacting the web server from which the data originate. The paper [5] is based on the
seminal paper [11] which introduces a performance model of a web server. In [3], two
of the authors of the present paper have further generalized this model by allowing the
proxy cache server to receive also requests from external sources.

In this paper, we have constructed a formal model of the informal sketches in the
language of PRISM [10]. This language essentially allows to construct in a modular
manner a finite state transition system (thus modeling the qualitative aspects of the sys-
tem) and to associate rates to the individual state transitions (thus modeling the quanti-
tative aspects); the mathematical core of such a system is a Continuous Time Markov
Chain (CTMC) which can be analyzed by the PRISM tool with respect to queries that
are expressed in the language of Continuous Stochastic Logic (CSL) [9].

The remainder of this paper is structured as follows. In Section 2 we investigate the
model described in [5]. First we implement it in PRISM and we try to reproduce their
quantitative results. Here we only note that this article contains errors. We believe that
this part is the most interesting one for the model checking community. In Section 3 we
show how did we find the errors in the investigated paper by using PRISM. This section
refers to our technical report [2], where more details are given. Section 4 summarizes
our findings.

2 Performance Model of a Proxy Cache Server

The article [5] describes the model of a “proxy cache server” (PCS) to which the clients
of a firm are connected such that web requests of the clients are first routed to the PCS.
Referring to an illustration redrawn in Figure 1 the model can be described as follows:

Using proxy cache server, if any information or file is requested to be downloaded,
first it is checked whether the document exists on the proxy cache server or not. (We
denote the probability of this existence by p). If the document can be found on the PCS
then its copy is immediately transferred to the user. In the opposite case the request will
be sent to the remote web server. After the requested document arrived back to the PCS
then a copy of it is delivered to the user.

The solid line in Fig 1. (A; = p * A) represents the traffic when the requested file
is available on the PCS and can be delivered directly to the user. The A, = (1 — p) x4
traffic depicted by dotted line, represents those requests which could not be served by
the PCS, therefore these requests must be delivered from the remote web server.

If the size of the requested file is greater then the Web server’s output buffer it
will start a looping process until the delivery of all requested file’s is completed. Let

Client Network
Bandwidth

Proxy Cache
Arrival of | Server
Users - ||)y 12
Requests Ll
v |
=12
2 V S
i .
e
Server AN
Network
Bandwidth
i ’ AN
i N
o O~ %, O
12’ 12’ 12
Web Server Web
Output Initialization

Fig. 1. Queueing Network Model of a Proxy Cache Server (redrawn from [5])

g =min{l, (Bs/F)} be the probability that the desired file can be delivered at the first
attempt. Consequently, a (1 —g) proportion of the requests will loop back to the remote
Web server for further processing.

In equilibrium, the traffic coming out of the remote Web server toward the PCS after
branching should equal the original incoming traffic, A>. Hence gAj equals A, where A}
is the traffic leaving server network bandwidth before branching.

The performance of the model is characterized by the parameters (ax = =y =1):

Network Arrival Rate (1)
Average File Size (F = 5000)

Buffer Size (B; = 2000)

Initialization Time (I, = 0.004)

Static Server Time (¥; = 0.000016)
Dynamic Server Rate (R; = 1310720)
Server Network Bandwidth (Ny = 193000)
Client Network Bandwidth (N, = 16000)

PCS buffer size (By. = 0By)

PCS initialization time (I, = yI;)
Static PCS time (Y, = BY;)
Dynamic PCS rate (R, = BRy)

The overall response time in the presence of the PCS is given as

1 1 F
T:\"C:ll_‘_p{ I /'L|+NF}
Tre B%[Yxc‘*'%]
H(1=p) i o e o
L B M N gk e
E[XY+R?] B;[Yxc-%—R;]

In this formula, the first term denotes the lookup time to see if the desired files are avail-
able from the PCS, the second term (with factor p) describes the time for the content to
be delivered to the requesting user, and the third term (with factor 1 — p) indicates the
time required from the time the PCS initiates the fetching of the desired files to the time
the PCS delivers a copy to the requesting user.

Furthermore, it is stated that without a PCS the model reduces to the special case

S 1 L F L F
=t L
LA T+ Alg N> Ne

The response times for the PCS model with various arrival rates A and probabilities p
as well as the response time for the model without PCS, are depicted in Figure 2.

0.39
0.385

0.38

0.375

0.37

0.365

0.36 T

time

0.355 [mmmmaniis

0.35

0.345

0.34

0.335 Foommm s SRR S

0.33 : o I I

0.325

10 20 30 40 50 60 70 80 2

lambda

Fig. 2. Response Times With and Without PCS (Analytical Model)

We have reconstructed this system in PRISM, and we found out that actually the
two equations (for T and 7,.) and also the visual model, i.e., Figure 1 are wrong. First
we present the corrected equation for T, the corrected visual model and the PRISM
implementation of the corrected model. Only after this we tell how did we find those
errors.

2.1 PRISM Implementation

First we present the corrections and the PRISM implementation of the corrected model,
because we believe that this is the most interesting part of our work for the community.

Figure 3 shows the actual queueing network described in [5], but it is not the same as
Figure 1, because the visual model in [5] contains errors. Figure 1 contains five queues,
both the ‘server network bandwidth” and “client network bandwidth” are depicted as
queues, although they are not treated as queues in the later analysis. Furthermore, it
contains no queue to model the “client output”. More detailed description of this issue
can be found in Section 3 and in our technical report [2].

Client Network
Bandwidth Client Loop
| .

- |

(1-p_xc)I

Proxy Cache
Server
Arrival of |

e T[O——Ps
Requests I 12

Server
Network
Bandwidth

g2 =12 12
i
)
] S
12 i IR
i el
12’ 12 12
Web Server Web
Output Initialization

Fig. 3. Queueing Network Model of Proxy Cache Server

The equation for the overall response time is also wrong in [5]. The correct one is:

S (L) 1 a
. i -4 Bre Yxc+l Bxc 71/173(0 Ne
_ ot 4 (FN_ 1+ L F_ (FY__1 | F
H-p e+ (7)) e+ () =+ v
S KrJrRi YchrR%

where py. = B,./F is the probability that the repetition loop is terminated. The corre-
sponding numerical results are depicted in Figure 4.

The verbal descriptions (which is however correct in [5]) gives rise to the follow-
ing PRISM code which introduces by the keyword stochastic a continuous time
Markov chain (CTMC) model [9]:

stochastic

module jobs // generate requests at rate lambda
[accept] true -> lambda : true ;

endmodule

module PCS // proxy cache server

pxwaiting: [0..IP] init O;
pxaccepted: bool init true;

[accept] pxwaiting = IP -> 1 : (pxaccepted’ = false);
[accept] pxwaiting < IP -> 1
(pxaccepted’ = true) & (pxwaiting’ = pxwaiting+l);
[sforward] (pxwaiting > 0) & (l-p > 0) -> (1/Ixc)x*(l-p)
(pxwaiting’ = pxwaiting-1);
[panswer] (pxwaiting > 0) & (p > 0) -> (1/Ixc)#*p
(pxwaiting’ = pxwaiting-1);
endmodule
module S_C // client queue
icwaiting: [0..IC] init O;
[panswer] icwaiting < IC -> 1 : (icwaiting’ = icwaiting+l);
[sanswer] icwaiting < IC -> 1 : (icwaiting’ = icwaiting+l);
[done] (icwaiting > 0) & (pxc > 0) -> 1/ (Yxc+Bxc/Rxc) *pxc
(icwaiting’ = icwaiting-1);
endmodule
module S_T // server arrival queue
waiting: [0..IA] init O;
[sforward] waiting < IA -> 1 : (waiting’ = waiting+l);
[forward] waiting > 0 -> (1/Is) : (waiting’ = waiting-1);
endmodule
module S_R // server output queue
irwaiting: [0..IR] init 0;
[forward] irwaiting < IR -> 1 : (irwaiting’ = irwaiting+l);
[sanswer] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)*q
(irwaiting’ = irwaiting-1);
endmodule

The full code is given in [2] in Appendix B.2. The model consists of one process
(“module”) jobs generating requests and four processes PCS, Sc, S, and Sg. We de-
scribe them later in this section. Each process contains declarations of its state variables
(bounded integers or booleans) and state transitions of form

[label] guard —-> rate : update ;

A transition is enabled to execute if its guard condition evaluates to true; it executes with
a certain (exponentially distributed) rate and performs an update on its state variables.
Transitions in different processes with the same label execute synchronously as a single
combined transition whose rate is the product of the rates of the individual transitions.

Since a product of rates rarely makes sense in a model, it is a common technique to give
all but one of the individual transitions the rate 1 and let the remaining transition alone
determine the combined rate (we follow this practice in all our PRISM models).

Each node models a queue with a counter, which is the number of request in the
queue, i.e., we make no distinction between requests, and each node has (generally) two
transitions. One (or more) for receiving requests and one (or more) for serving requests.
The first one increases the counter, the second one decreases it. If two queues, say A
and B, are connected, i.e., a served request from A goes to B, then the server transaction
of A and the receiver transaction of B have to be synchronous, i.e., they have the same
label.

The rate of the server transactions has generally this shape: 1/¢* p, where ¢ is the
time for processing a request and p is the probability of the branch for which the trans-
action corresponds. Note that if 7 is a time, then 1/ is a rate. The rate of the receiver
transactions are always 1 in this PRISM implementation, because product of rates rarely
makes sense.

If a new request arrives and the queue is not full, i.e., its counter has not yet reached
its upper bound, then the counter is increased and we can set an “acceptance” flag;
otherwise, clear the flag (see “pxaccepted” in module PCS). We can use this flag to
approximate the acceptance ratio of the queue.

Module PCS models the proxy cache server, module Sc the client, module S; the
initialization queue of the web server, module Sk the output queue of the web server
with the following behavior:

— PCS returns with probability g an answer to the client (transition canswer) and
forwards with probability 1 — g the request to the server (transition sforward). The
corresponding transitions “carry” the initialization time I, of the server.

— S/ buffers the incoming server request and forwards it after the initialization for
further processing (transition forward); the transition carries the initialization time
I of the server.

— Sg generates an output buffer with rate 1/(¥; + %i) according to the model. How-
ever, since the request is repeated with probability 1 — g (where ¢ = F /By), the final
result is only produced with probability ¢ which contributes as a factor to the rate
of the corresponding transition (transition sanswer).

— Ss models the repetition behavior of the client; a buffer of size B, is received from
the PCS with rate 1/(Y,,, + %). However, the request for a buffer is repeated with
probability 1 — p,. such that only with probability p,. the final buffer is received
and the request is completed (transition done).

While it would be tempting to model the repetition in S¢ by generating a new request
for PCS, this is actually wrong, since such a repetition request is only triggered after
the PCS has already received the complete file from the web server, it is not to be
treated like the incoming requests (that with probability 1 — p generate requests for the
web server); rather we just consider the probability py. with which the final block is
received from the PCS in the rate of the termination transition done.

If we could compute N, the number of requests in the system, and P, the probability
that a request is “rejected” (i.e. dropped from the system because it encounters some

full buffer), and A, the arrival rate of the requests, then we could apply “Little’s Law”
from queueing theory [6] to determine the average response time 7 for a request

N
(1-P)A

Actually PRISM can be used to compute such quantitative properties of the model
by using its reward system. Rewards have the form:

T =

rewards "name of the reward"
condition : numerical expression;
endrewards

This reward attaches to each state the value of the numerical expression where the
condition is true. One can use the CSL query

R{"name of the reward"}=? [S]

to compute the long term average of this reward, where by operator R we introduce a
reward-based property and by operator S we query the long-term average (“’steady state
value”) of this property.

Now we have to compute N and P (A is given as a parameter of the model). For this
we introduce the following rewards of the model:

rewards "pending"

true : waiting + irwaiting + pxwaiting + icwaiting;
endrewards
rewards "time"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda;
endrewards
rewards "timeQO"

true : (waiting + irwaiting + pxwaiting + icwaiting)/lambda

+ (FS/Nc) + (1-p)=*(FS/Ns);

endrewards

rewards "accepted"
pxaccepted: 1;
endrewards

Actually we can compute N by the reward “pending” because it assigns to every
state the number of requests in the system.

It is difficult to compute P, the probability that a request is “rejected”, in PRISM. We
can approximate it by using “accepted” flags, see the details in our technical report [2].
Butif P~0then T ~ % We can compute this as it is done in the reward “time”. Only
one step is remaining, we have to adjust this time with the delays of the network (the
network bandwidth are simulated by delays in [5]) as it is done in the reward “time0”.

Using the CSL query

R{"timeO"}=? [S]

we can compute the long term average of this value, which is the average response time.
To be more correct, it is the average response time if the acceptance ratio for each queue
is almost 1. In this paper we examine only the acceptance ratio of the PCS using the
reward “accepted”.

2.2 Test Results

In the following, we present the results of analyzing our model in PRISM (choosing the
Jacobi method for the solution of the equation systems and a relative termination epsilon
of 10~#; the analysis only takes a couple of seconds). As it turns out, it suffices to take
the queue capacities IP = 5,IC = 3,IA = IR = 1 to keep the response times essentially
invariant. With this configuration the model has 192 states and 656 transitions. Note
that the actual value of p and A do not effect the number of states and transitions.

Figure 5 gives the acceptance ratio for various arrival rates A and proxy hit rates p;
Figure 6 depicts the corresponding average number of requests N in the system. From
this, we can estimate the total time a requests spends in the system (including the file
transfer) as N/A + N% +(1-p) %, see Figure 7 and compare with the curve given from
the equation of T, in Figure 4. The results are virtually identical; only for arrival rates
A > 70 and p = 0, we can see differences (because the web server gets saturated and
the request rejection rate starts to get significant).

0.365 |
no PCS)
p=0.0. ="
030 BN = p=0.2 - n
. a p=0.4
. p=0.6 -
ol P:0.8 R
p=1.0 sz
e s
0.345
N
0.34
0.335 b IS N S
0.33 e — _ | N
0.325
10 20 30 40 50 50 20 0 "0
lambda

Fig. 4. Response Times With and Without PCS (Modified Analytical Model)

3 The Analytical Model Corrected

In this section we tell the “story” how could we find the errors in [S] with the help of
PRISM. Variables with prime, like 7", represent the corrected equations, variables with-

Lo ——t—
0,9
0,8
207
Q
g o6 ~p=0
< = p=0,2
g 0,5 p=0,4
S
g o4 p=06
X -+ p=0,8
0,3 p=1
0,2
01
0,0

10 20 30 40 50 60 70 80 90
lambda

Fig. 5. Estimated Acceptance Ratio

Expected pending

0,00

3,00
2,75
2,50
2,25
2,00
1,75 - p=0

! = p=0,2
1,50 p=0,4
1,25 p=0,6
1,00 - p=0,8

=1
0,75 P
0,50
0,25
10 20 30 40 50 60 70 80 90

lambda

Fig. 6. Number of Pending Requests (V)

035 M
—— 1
0,30
2 0,25
£ -~ p=0
T 0,20 = p=0,2
g p=0,4
2
£ 0,15 p=0,6
w -+ p=0,8
0,10 p=1
0,05
0,00

10 20 30 40 50 60 70 80 90
lambda

Fig. 7. Estimated Response Time N/A + % +(1-p) %Y

out prime, like 7', represent the original equations in [5], and variables with asterisks,
like T*, represent the original equations in [11].

3.1 The Model without PCS
It is claimed in [5] that the equation for T’
1 1

T=— +
1 _ 1
I A BLX[YS"‘%] k/q

+

™=
Sl

represents the special case reported in [11], where T is given as

Fo L F F(Bs+R,Yy)
Ne " 1—=Al; ' Ny—AF ' ByRy— AF(Bs+RyY;)

T =

But this is actually not the case. In [5], the only term where the server bandwidth N;

plays a role is

F

N,
which indicates the time for the transfer of the file over the server network. In [11],
instead the term

Ny, —AF
is used which can be transformed to

1

Ny
F—A

which indicates the time that a request spends in a queue with arrival rate A and depar-
ture rate % In other words, while [11] did not treat the client network as a queue, it
nevertheless treated the server network as such. However, in [5], neither the client net-
work nor the server network are treated as queues; they are just used to give additional
time constants for file transfers.

The system without PCS can be modeled by the following PRISM implementation:

module jobs

[accept] true -> lambda : true ;
endmodule
module S_T

waiting: [0..IA] init O0;

[accept] waiting < IA -> 1 : (waiting’ = waiting+l) ;
[forward] waiting > 0 -> (1/Is) : (waiting’ = waiting-1) ;
endmodule

module S_R
irwaiting: [0..IR] init O;

[forward] irwaiting < IR -> 1 : (irwaiting’ = irwaiting+l) ;
[done] (irwaiting > 0) & (g > 0) -> 1/(Ys+Bs/Rs)=*q :
(irwaiting’ = irwaiting-1) ;

endmodule

0.375 T

0.37

0.365

0.36

time

0.355

0.35 e e

0.345
10 20 30 40 50 60 70 80 90

Fig. 8. Response Time Without PCS (Modified Analytical Model)

As it turns out, the numerical results produced by the analysis in PRISM do not
accurately correspond to those depicted as “No PCS” in Figure 2, in particular for A >
50. Actually the results are better described by the equation

| =

o +<F> L F
i—l By Yﬁ}%_l/q N

s

Z

c

depicted in Figure 8 where the second term (modeling the “repetition loop” in the gen-
eration of the web server output) has been modified. Indeed, a closer inspection substan-
tiates the correctness of this formulation: F /B; represents the number of “iterations” of
the corresponding queue which has arrival rate A /¢ and departure rate 1/(Y; + %ﬁ); this

term now also equals the last term of the equation for 7 of [11]. (taking g = %).

Actually the same problem also affects the corresponding terms in the equation Ty,

1 1 F
Te=T5 4P\ Tt
Ixc F_(y,et Bxe) 1)

+U—M{1%+ : +i+11+£}

1
F ¥ +B.V]7AZ/‘1 F B2 +er]7lz
By UST Ry Byc X Ry

modeling repetition loops; the correct formulation apparently is:

T — 1 (L) 1 F
e %72{ +p{ Bre : 71‘/[’1’(: +NC

xe Yye+ gﬁ:

1—p)d 1L (L)% F (L)% F
+(p){}slﬁ' B ysj%flz/q_FNx_'_ B) T e TN

B
Yxe+ ﬁ

where p,. = B, /F is the probability that the repetition loop is terminated (please note
also the changes in the arrival rates of the corresponding terms). The corresponding
numerical results are depicted in Figure 4, compare with the original results in Figure 2.
However, here the difference plays only a minor role (for p > 0.2 only the third digit
after the comma is affected).

3.2 The Model with PCS

Also in the model with PCS, the server network is not modeled by a queue but just by
an additive constant for the transfer of the file over the network. This fact is made clear
by rewriting the equation for the average response time as

= g o { () =

Lee Vet oo

-) = () =
(p) { 1%712 By YVJ:% A2 /q By Yxclgﬁ *}L/pﬂ
+{E+0-nk}

Here each fraction of form ﬁ indicates an occurrence of a queue with arrival rate
A and departure rate (. We can see clearly that neither the server bandwidth N; nor the
client bandwidth N, play a role in such fractions.

Figure 1 is therefore highly misleading; neither the server network bandwidth nor
the client network bandwidth are in the model actually represented by queues; thus the
queues labelled as “server network bandwidth” and “client network bandwidth” should
be removed (i.e. replaced by other visual elements indicating simple delays).

Furthermore, similar to the “branching” discussed in Section 2.2 of [2] , the “branch-
ing” in this picture should not start after the “server network™ but directly after the
“web server output”, because the repetition rate of requests is not bounded by the net-
work bandwidth in the model. To be more detailed, the server network bandwidth N;
(determining the processing rate of Sg) only shows up in the term NEJ J.e., it is only
used to contribute to the time for the transfer of the file over the server network. If in-
deed, as suggested by Figure 1, after the transfer of every block the server would with
probability g request the transfer of another block, the maximum transfer rate of blocks
(Ns/Bye ~ 96) should also impose a limit on the number of “repetition” requests.

However, on the other side actually a queue is missing (also from the description in
the text); this is the one that models the repeated requests for blocks of size By, which

are sent by the clients to the PCS (analogous to the repeated requests for blocks of
size By sent by the client to the web server in the basic web server model); therefore
the client indeed needs to be modeled by a queue (whose output is redirected with
probability 1 — p,. to its input), but because of the looping process, not because of the
client bandwidth.

Furthermore, the dotted arrow pointing to the input of the PCS queue is actually
wrong; the corresponding requests do not flow to the PCS queue (where, since the queue
cannot distinguish its inputs, they might generate new requests for the web server) but
directly to the client queue.

Summarizing, the actual queueing network modeled in [5] contains only four nodes
in contrast to the five ones shown in Figure 1 (no queue for modeling the server band-
width) and one of these queues does not model the “client network bandwidth” but the
repetition of block requests (it could be labelled in the figure as “client output” because
it plays for the repetition the same role as the queue labeled “web server output”).

Figure 3 shows a revised picture that describes the model as outlined above.

4 Conclusions

The work described in this paper seems to justify the following conclusions:

— The informal models used in the literature for the performance analysis of com-
puting systems are sometimes ambiguous. This may lead to misunderstandings of
other researchers that build on top of prior work; e.g., [5] describes their results
as to be based on the model presented in [11], but actually [11] models the server
network by a delay element rather than by a queue which gives different results in
the performance evaluation.

— The use of diagrams of queue networks is an insufficient substitute for a formal
specification of a system model and a constant source of pitfalls. In [11], the dia-
gram depicts a queue where the actual performance model uses a constant delay;
likewise [5] depict queues for the server network but also use delays in their analy-
sis. Furthermore, in all three papers there is an apparent confusion of the roles of the
“loop-back” arrows which are shown in the diagrams in places that are misleading
with respect to the role that they actually play in the analyzed models.

— The paper [5] has errors in the analytical model; these errors were only detected
after trying to reproduce the results with the PRISM models. This demonstrates
that performance evaluation results published in the literature cannot be blindly
trusted without further validation.

— Most important, after correcting the diagrams to match the actually analyzed mod-
els, a question mark has to be put on the adequacy of the models with respect
to real implementations. The papers [11,5] model the client network bandwidth
outside the “loop” for the repeated transfer of blocks from the web (respectively
proxy cache) server to the client. While the informal descriptions seem to sug-
gest that this is intended to model the underlying network protocol, i.e. presumedly
TCP, the “sliding windows” implementation of TCP lets the client interact with the
server to control the flow of packets; this interaction is not handled in the presented

performance models (because then the network delay must be an element of the
interaction loop).

— The PRISM modeling language can be quite conveniently used to describe queue-
ing networks by representing every network node as an automaton (“module’) with
explicit (qualitative and quantitative) descriptions of the interactions between au-
tomata. This forces us to be much more precise about the system model, which may
first look like a nuisance, but shows its advantage when we want to argue about the
adequacy of the model.

— The major limitation of a PRISM model is that it can be only used to model finitely
bounded queues, while typical performance models use infinite queues. However,
by careful experiments with increasing queue sizes one may determine appropriate
bounds where the finite models do not significantly differ from the infinite mod-
els any more. Furthermore, since actual implementations typically use (for perfor-
mance reasons) finite buffers anyway, such models more adequately describe the
real-world situation; the work performed for the analysis may be therefore used
to determine appropriate bounds for the implementations and reason about the ex-
pected losses of requests for these bounds.

References

[1] T. Berczes, G. Guta, G. Kusper, W. Schreiner, and J. Sztrik. Comparing the Performance
Modeling Environment MOSEL and the Probabilistic Model Checker PRISM for Modeling and
Analyzing Retrial Queueing Systems. Technical Report 07-17, Research Institute for Symbolic
Computation (RISC), Johannes Kepler University, Linz, Austria, 2007.

[2] T. Berczes, G. Guta, G. Kusper, W. Schreiner, and J. Sztrik. Analyzing Web Server Perfor-
mance Models with the Probabilistic Model Checker PRISM. Technical report no. 08-17 in
RISC Report Series, Johannes Kepler University Linz, Austria, 2008.

[3] T.Berczes andJ. Sztrik. Performance Modeling of Proxy Cache Servers. Journal of Universal
Computer Science, 12(9):1139-1153, 2006.

[4] M. Bernardo and J. Hillston, editors. Formal Methods for Performance Evaluation. 7th
International School on Formal Methods for the Design of Computer, Communication, and
Software Systems, SEM 2007. Lecture Notes in Computer Science, volume 4486, 2007.

[5] 1. Bose and H. K. Cheng. Performance Models of a Firm’s Proxy Cache Server. Decision
Support Systems, 29:47-57, 2000.

[6] R.B. Cooper. Introduction to Queueing Theory. North Holland, 2nd edition, 1981.

[7]1 U. Herzog. Formal Methods for Performance Evaluation. Lecture Notes in Computer Sci-
ence, 2090:1-37, 2001.

[8] A. Hinton, M. Z. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic
Verification of Probabilistic Systems. Lecture Notes in Computer Science, Tools and Algo-
rithms for the Construction and Analysis of Systems, 3920:441-444, 2006.

[9] G. Norman, M. Z. Kwiatkowska, and D. Parker. Stochastic Model Checking. Lecture Notes
in Computer Science, Formal Methods for Performance Evaluation, 4486:220-270, 2007.

[10] PRISM—Probabilistic Symbolic Model Checker. www.prismmodelchecker.org. 2008.

[11] L.P. Slothouber. A Model of Web Server Performance. Proceedings of the Sth International
World Wide Web Conference, 1996.

[12] K. Wolter, editor. Formal Methods and Stochastic Models for Performance Evaluation.
Fourth European Performance Engineering Workshop, EPEW 2007. Lecture Notes in Com-
puter Science, volume 4748, 2007.

